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Serial correlation in annual stream runoff is examined in the
light of its application in simulation. For maore than thirty streams
with relatively long streamflow records it is found that the
Thomas-Fiering linear algorithm can not be improved on with statistical
significance by any of three similar non-linear expressions. It is
also determmined that historic deviations from this linear relation for
each of twenty-four streams can not reliably be said to be non-normal
in distribution. The use of a miltiple degree Markov chain of serial
correlation is found to give significant improvement over the
one degree relation used in the Thomas-Fiering model. Evidence of

possible cyclicity is found.

Key words: hydrology, streamflow, runoff, simulation, synthesis.
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CHAPTER I

Today's demands, created by an increasing population density and an
advancing degree of technology, have brought numerous problems concerning
both the quality and the quantity of water in our rivers and streams.
Dilution of pollution; firm flow for hydroelectric power generation;
determination of water storage capacity for agricultural, damestic and
industrial uses; and proper water allocation are just a few of these problems.
Objective engineering solutions to these problems require extensive know-
ledge of annual streamflow which frequently is not available in our historic
records. As a result, several methods of generating adequate streamflow
records were developed.

The earliest mathematical model of streamflow synthesis was developed

by Hazan1 in 1914. Later came contributions by Suiiler:2 in 1927, Yule3 in

4 5 in 1960, Julian® in 1961, Thomas and Fiering’

9 1

1927, Barnes in 1955, Brittan

in 1962, Maughan and Kawano8 in 1963, Yagil® in 1963, and Yewdjevich 0 in

1964.
This report will concentrate on the annual streamflow synthesis of

serially correlated data represented by Eg. 1.1

Y., =X+b(Y - X) + 5, 1/YtR (1.1)
where Yt = non-historic streamflow for time t+l1
Yt = non-historic streamflow for time t
b = regression coefficient (correlation coefficient)
X = average of historic streamflow sequences
SYt+1/Yt = standard error of estimate, Yt+1 on Yt

R = random variable, nommally distributed with zero
mean and unit standard deviation.



which was extensively examined by Thomas and Fiering, and referred to by

Brittan, Julian and Yagil.
If we drop the wexplained error estimator temm { (Sy )R}
t+l’ 't
from BEq. 1.1 we get

Y

e+l ™ X+ b(rt-ﬂ (1.1-a)

Fiqure 1.1: Gra;i'x‘of Y™ X + b(Yt-i)

=X ¢ b(Yt-X)

Tee1
(crs)

Y

Yt(cfs)

Looking at Figure 1.1 we see that
X-b(X) = a
Rearranging Bg. l.1-a we get

Y = (X-bX) + by, (1.1-b)

t+l

Substituting a for X-b(X) in Bg. 1l.1-b we get

Y (1.2)

4+l = a + bYt



which is the mathematical expression for the regression line through
the plot of Y.,y versus Yt. Equation 1.2 can be mathematically classified

as a one degree Markov chain.

"A Markov chain may be defined as a stochastic process whose
development may be treated as a series of transitions
between certain values (called the "states" of the process)
which have the property that the probability law of the
future development of the process, once it is in a given
state, depends only on the state and not on how the process
arrived in that state, i.e., given the present, the future is
independent of the past."!}

Note that in the above reference stochastic process is defined as "a
family of randem variables [X(t), teT] where for each t in a set T, the
observation X(t) is an observed value of a randam variable."!}

The algorithm {Eq. 1.1} presupposes that the historic data when
arranged sequentially is normmally distributed about the regression line
{Eq. 1.2} and implies that normally distributed random numbers can be
used to reproduce the unexplained variationms.

Because low flows cannot became negative, but instead level off to
same minimum asymptote and because we can intuitively imagine an upper
limit to high flows for a given watershed, the sequentially arranged
historic data might not be normally distributed about the regression line
described by Egq. 1.2 except in the vicinity of the average flow position.

Chapter II examines sequentially arranged historic streamflow data
with Eq. 1.2 as the regression line to see if, in fact, the values of
Y on Y, are normally distributed about the entire length of the

t+l t
regression line.



Review of St:a\i::i.st::lcsl3

Before we start the examination of sequentially arranged
historic data, let us review the parameters used as indicators of

statistical properties.

Figure 1.2: Regression Statistics Illustration

N > 30
rs = Regression Line

Relationships Derived From Illustrations of Figure 1.2

a) The four maments

M, = Moment #l = Z(YS)l = 0.0 when least sgquares
regression analysis is
N-DOF. amlm.
N, = Mament #2 = Z(y)z
2 s
N-D.F.
3
M, = Moment #3 = Leyg)
N-D.F.
M, = Moment #4 = J(y)*
N-DQF.

where N = length of record (years)

D.F. = degrees of freedom



b) The standard deviation
o /Mament #2
¢ = 1,0 for normal random numbers

c) The skewness coefficient

8, . (Mment #3)3
Mament ¥#2)
Bl = 0.0 for normal distributions

or Mament #3
Moment #3

"-" for negatively skewed distributions
"4+" for positively skewed distributions

nn

d) The kurtosis coefficient

B, = (Moment #4),

(Mament #2)
B, = 3.0 for normal distributions
By < 3.0 for flat distributions
By > 3.0 for peaked distributions

3) The standard error of estimate

SYt:+1/Yt - (Z(Ye)z )%

N-D.F.
SYt+1/Y t is small when the regression equation
found by least squares techniques represents the data closely. The larger

the SY value the poorer the regression representation.
t:+1/Y t



CHAPTER II
EXAMINATION OF BQUATION 1.2 AS BEST REGRESSION
FIT THROUGH SEQUENTIALLY ARRANGED DATA

If the historic data points represented by the regression line
{Eq. 1.2} are nommally distributed about the line at all points along
the line, Eq. 1.1 cannot be improved and is indeed the best possible
algorithm available to generate stochastic annual streamflow.

To test this, an examination of Yt+l on Yt is made placing
Eq. 1.2 through this autocorrelated data using the least squares
regression technique. It is now possible to examine the scatter of
points about the regression line. A moving band procedure is employed

for this examination.

2.1 Moving Band Procedure

A moving band is simply a moving set which contains a constant
given number of points out of the total population of points. The total
population is equal to the historic record length minus one {N-1}.  {For
a one degree Markov chain, as is Eq. 1, one year of record is lost at the
end of the series because "t+l1" cannot exceed N, hence, the maximum "t"
value is given by "N-1"}. This moving band starts at the left of the
plot and moves to the right. Its initial position at the extreme left
takes the first set of specified size and examines it for o, I, I, N3,
m,, By, B, and a deviation {6}. The preceding symbols are commonly
recognized as representing the standard deviation, the four moments, the
skewness coefficient, and the kurtosis coefficient respectively. The

term deviation {6} represents the difference between Y,

t+1 derived using



the points within the set, and the expected Yti-l value which lies on the
regression line where a vertical line through the middle of the set inter-

sects the regression line. {See Figure 2.1}

Figure 2.1: Moving Set Boundaries and Middle Point

t+1
(cfs)

t+1 (Band 1)
t+1 (Band 1)

®Expected
&lset Y,

where the

1; Set = 10 points

2) Band incremented 2 points
to right

The band is then moved to the right a specified number of points
and the same calculations are made for the set in its new location. The
amount that the band moves {the number of points passing out of the set
through the left boundary as the set moves along the Y, axis} should be
less than the number of points within the set so that some overlap occurs
between successive positions of the band. This procedure continues until
the band is positioned such that the right boundary of the set coincides

with the largest Yt value.
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Because all calculated terms for a given band are representative
of a position at the middle of the band as shown in Figure 2.1 it is
now possible to tabulate the variocus calculated parameters with their
respective mid-band values and examine the tabulation for meaningful
trerds.

The above procedure was employed using band widths or sets con-
taining from five to forty-five points. The purpose of varying the set
size was to substantiate the fact that for statistical calculations a
minimum set size of thirty points is required before stable results are
obt:ainable.15 Stable results were obtained when the set size was thirty
or greater.

Because a minimum of thirty points are required for a set to be
representative, only streams of long historic virgin annual streamflow
record can be examined in the manner described above. There are few
streams on record with the length and quality of record which satisfy
this requirement. For example, a stream with N = 60 being examined as
described above with a band containing thirty-five points will give only
six checks on the statistics of the scatter of points about the regression
line through the plot of Y, ., versus Yt when the band is incremented by

four points to the right.

2.2 FExamination of Columbia Riwver Data

There is for the Columbia River at The Dalles, Oregon a record of
eighty-five years of historic annual streamflow which has been adjusted
back to represent virgin conditions as well as possible. These data

were analyzed by the moving band technique. The band contained a set of



thirty-five points out of a population of eighty-four {N-1} points, and
was moved an increment of four points each time until the entire scatter
about the regression line {Eg. 1.2} was examined.

It was found that the standard deviations calculated for each band
position were very nearly equal, which means that each set of thirty-five
points was in fact representative of the entire population of eighty-four
points.

The deviation was quite small showing that the expected ?t+l was
very nearly cbtained. However, there was an indication that at low flows
{flows below average, X} the average in each set was slightly higher than
that expected and at high flows {flows above average X} the average in
each set was slightly lower than expected. This might suggest a tendency
for the linear regression being examined to try to became "S" shaped.

The skewness showed an interesting trend also. It was non-zero and
was negative at low flows and positive at higher flows. {8, = 0.0 for
normal distributions}. This too might show a tendency for the regression
line to become "S" shaped.

Kurtosis values showed an increasing trend fram 8, < 3.0 at low
flows to B, = 3.0 at mean flow to 8; > 3.0 at high flows with a "8,"
value equal to 3.0 for normal distributions.

These statistical parameters are summarized in Table 2.1.
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Table 2.1: Summary of the Statistical Characteristics of Scatter
about the Linear Regression Line {Eg. 1.2}.

Mid-Band Value Deviation o 81 B2
.803 .01 .166 -.072 2.02
.839 -.009 .169 ~.01k 1.86
.871 .003 .16k -.031 1.94
.916 -.008 .162 -.180 2.32
JOuT -.016 171 -.055 2.29
.985 .010 .162 -.329 2.80

1.010 .001 .15k -.202 2.99
1.030 .001 .17k .218 4,72
1.055 .008 .178 .095 4.2k
1.080 .009 175 .070 L.38
1.101 .02k 172 .07 L.k9
1.119 .009 .179 .027 4.1k
1.178 .011 .163 .135 4,58
1.305 -.017 .161 .132 L, T7h

Note: The above values were made dimensionless by dividing

both Yt+ and Yt values by X.

1

The trends visible in Table 2.1 suggest a non-normal distribution

of the scatter of points about the linear regression designated by a

one degree Markov chain {Eg. 1.2}.
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It is possible that a regression line that curves as shown in
Figure 2.2 might better represent the values of Yt+1 on Yt and produce

a scatter closer to normal because:

1) Intuitive limits on low flows and high flows for a given
basin tend to raise averages in sets at low flows above that
by linear regression analysis and lower averages in
sets at high flows below that expected by linear regression
analysis,

2) The Columbia River record which is among the best available
showed that the

a) Skewness is negative at low flows and positive at
high flows,

b) Kurtosis increases fram B8, < 3.0 at low flows to
B, > 3.0 at high flows,

Figure 2.2: Proposed "S" Shaped Regression

A

—— —~ "S" shaped regression
—— Linear regression

t+l
(cfs)

Y, (efs)

Chapter III examines this possibility and in particular examines

several mathematical expressions that represent "S" shaped curves.



CHAPTER III
EXAMINATION OF NON-LINEAR REGRESSION
BQUATIONS AS POSSIBLE BETTER FITS
Two equations that develop "S" shapes when their regression
constants are calculated using the least squares regression technique

were tried with thirty-one different autocorrelations of Y., On Y,

developed from thirty-one sequences of historically recorded annual
streamflow of various record lengths from rivers in the Pacific
Northwest Region {See Appendix A}. The values for the standard error

of estimate { SYt+1 /Yt} were calculated for each of the proposed equations

/Y
t+l’ 7t
two equations which were examined in this manner are: (1) a three degree

value obtained when Eq. 1.2 was used. The

polynomial and (2) the sinh function converted to a natural log function.

3.1 The Three Degree Polynomial

The three degree polynamial is written mathematically as

_ 2 3

Instead of developing the desired "S" shaped portion, the proposed
polynomial for the most part tended to become fully developed with
sixteen of the thirty-one examinations possessing a positivé internal
limb slope and fifteen of thirty-one possessing a negative internal limb

slope as shown in Figure 3.1.



t+l
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Figure 3.1: Results of Polyncmial Test

3
— — Proposed "S" Shape 1 — —Proposed "S" Shape
—— Resulting Polynomial Shape ——Resulting Polynomial Shape
in 16 of 31 Tests in 15 of 31 Tests

|

Yt Yt

a) Positive Internal Limb Slope b) Negative Internal Limb Slope

However, a few did approach the desired shape and all polynomial

{Eq. 3.1} tests showed standard error of estimate terms very close to

those values obtained using Eq. 1.2. Six of the thirty-one tests

actually developed smaller standard error of estimate terms and hence

represented better fits to the plot of Yt+l vs. Yt. Table 3.1 campares

the standard error of estimate values obtained using the one degree

Markov chain {Eq. 1.2} and the polynomial {Eqg. 3.1} as regression equations.
Because only 20% of the tests showed improvement over Eq. 1.2

with the maximum improvement being 4%, it can be concluded that the

polynamial proposal is not a good one.



Table 3.1:

14

Standard Error of Estimate Camparisons*#*

Sequence One Degree Three Degree Sinh Natural Log vs.
Number® | Markov chain Polynomial Function Natural Log
(Eq. 1.2) (Eq. 3.1) (Eq. 3.3) function
_ (Eq. 3.4)
1 .3188 .3078 .3188 .3290
2 .1587 .1619 .1587 L1634
3 .1549 157k L1549 .1538
N L1702 .1709 .1701 JATTh
5 L1737 L1776 1737 .1836
6 .2086 .2162 .2087 . 2206
7 L2149 .2233 .21k9 .2353
8 .2Lk20 .2L8L .2k19 .2693
9 .1h1k .1k26 L1k1k .1k50
10 .1656 .1584 L1657 L1661
11 L1517 .1551 L1517 .1532
12 .2010 .1959 .2013 .2038
13 .1538 .1570 .1538 .1558
1k .1664 L1676 L1664 L1737
15 .1813 L1814 .1813 .18L41
16 L1687 L1715 .1687 .1699
17 .181k4 .1830 .1815 .1830
18 .1979 .1978 .1980 .2105
19 .181k L1757 .181L .1866
20 .1959 .2009 .1960 .2010
21 L2021 .20kL1 .2022 2121
22 .1869 .1906 ,1869 .191k
23 .1905 .1903 .1906 .1894
2L L1712 .1766 1712 ATTh
25 .1853 .1896 .1855 .188L4
26 176k 179k L1765 L1787
27 .1798 .1843 L1799 .1786
28 277 .1296 .1278 L1241
29 .2257 .2280 .2258 .2372
30 .17kO L1754 .1739 L1TLT
31 .1695 L1722 .1695 .1782

**he above standard error of estimate temms are
dimensionless values obtained by dividing the

Y
%,/

term by the mean {X}

*See Appendix A for streams represented by
sequence numbers 1 thru 31.
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3.2 The Sinh Function

The sinh function is written mathematically as

-1
Yeu1="G (sinh (Yt)) 3.2

It can be transformed into a natural log function written mathematically
as

Y

41 = C

1 In(y, + v’(!rt)2 +1) 3.3

This form of regression when tested, in all cases produced

essentially a straight line within plotting accuracy instead of the

proposed "S" shaped curve as shown in Figure 3.2.

Figure 3.2: Results of Sinh Function Test

A — — — Proposed "S" Shape

Resulting Sinh Function Shape
in 31 of 31 Tests

t+l
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Therefore, the limited historic data present in a plot of Yt+1
versus Yt represents only the interior limb of the "S" shaped curve.

However, again the standard error of estimate temms calculated
for the thirty-one tests using Eq. 3.3 are all nearly equal to those
values obtained when Eq. 1.2 was used. In fact, eighteen of the thirty-

one resulting
Nea1/Y,
the one degree Markov chain valuves ofSY .
w41 Ve
camparison between the values of the standard error of estimate

values are equal to or less than 1% better than

See Table 3.1 for a

determined using Eq. 1.1 and Eg. 3.3.

Although the sinh equation could be used for the Columbia River and
other Pacific Northwest streams, no significant improvement or simpli-
fication over the linear model {Eq. 1.2} has been made by either of the

proposed non-linear models, Eg. 3.1 or Eq. 3.3.

One more test was made to see if a non-linear model might better
represent the plot of Yt+1 versus Yt'
It has been widely accepted by hydrologists that a plot of the

natural log of flow versus the probability of occurrence will scmetimes
approximate a straight line more closely than will a plot of arithmetic
flow versus probability. Therefore, as a final check let us try taking
the natural log of both Y and Yt in Eq. 1.2 to see if the resulting
equation would better represent the values of Y4 OO Yt' If a non-linear

fit is characteristic of the values of Yt+1 ony

g an equation of this

type would tend to linearize it.
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3.3 The Natural lLog of Yt+l and Yt

If the natural log is taken of the flow terms {Y, ., and Y.} in

Egq. 1.2 it then becomes

iIn (Yt+1) = C1 +C, ln(Yt) 3.4

When the curve of Eq. 3.4 was fitted to the values of Y 4 o0 Yt

using the least squares regression technique a straight line resulted
which had very nearly the same slope and standard error of estimate
values as did Eq. 1.2. Four of these thirty-one tests showed an
improvement over the arithmetic one degree Markov chain, although the
improvement was only as high as 3% and therefore insignificant. See
Table 3.1 for a comparison of the standard error of estimate values
determined using Eq. 1.2 and Eq. 3.4.

In summary, this investigation has found no grounds for justifying
a non-linear regression equation to represent the values of Yt+l on Yt'
This means that a linear model {Eq. 1.1} is the best mathematical
representation of the sequential values of annual streamflow {Y, , on Y}
and suggests that the reason for the non-normal scatter of points about
the regression line represented by Eq. 1.2 as shown by Table 2.1 might

lie in the unexplained variance term {(SY )R} of Eq. 1.1. 1If this

41/
is indeed the case, then the variable {R} might not be randam as
assumed.

Chapter IV examines the actual historic variations required to
reproduce the exact scatter of points about the regression line {Bq. 1.2}
to see if they do indeed satisfy the required properties of a randam

number.



CHAPTER IV
EXAMINATION FOR THE PRESENCE OF RANDCM VARIATIONS

A random number {R} was previously introduced as a random
variable, normally distributed with a mean of zero and a standard
deviation {c} equal to one. An hypothesis is presumed that these
nurbers, when multiplied by the standard error of estimate, simulate
the historic scatter about the regression line placed through the values
of Y,‘__‘_'_1 on Yt. |

Let us henceforth call R a residual number {V} until it has been
shown that V should be defined as a random number {R}.

Rewriting Eq. 1.2 with the error estimator term from Bq. 1.1 added

Y =a+ b(Y,) + R
t+1 t SYt+1/Yt

and solving for the residual {V = R} we get

Yeqp -2 b(y,)

SY

w+1/ Y

4.1

VvV =

4.1 Examination of Residual Mean and Standard Deviation

Twenty-four sequences of historical annual streamflow are
examined with Eq. 1.2 as the regression line about which the scatter of
points is to be examined {see Appendix B}. Once the regression constants
[a and b} and the standard error of estimate {sy

t:+l/Y t
it is possible to use Eq. 4.1 to calculate all of the residual numbers

} are evaluated

necessary to reproduce the exact scatter developed by nature.
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These values of "V" are then grouped versus their respective Yt
values so that the statistical properties of these residual numbers can
be examined. This examination is conducted by placing a straight line
regression R = C + d(Yt) through the values of R on Yt and employing
the moving band technique described earlier.

Both of the regression coefficients {c & d} were found to be
zero in each of the twenty-four tests, proving that the mean value
{V} of the historic residuals for both high and low flows is equal to
zero.

Again, the standard deviation values {o} for each band position
were essentially equal, illustrating that each set of thirty-five points
incremented to the right across the values of R on Yt each time by four
points was equally representative of the total population of points.

Also, there were visible trends in either or both the skewness
coefficient {8,} and the kurtosis coefficient {8,} for each of the

twenty-four tests.

Three of these tests are summarized in Table 4.1.
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Table 4.1: Summary of Residual Number Statistics

a) Columbia River at The Dalles, Ore., with N = 85 years and X = 202,242 cfs

Mid-Band
Value (cfs) o By B2

162,350 .954 -.064 1.95
169,700 .967 -.000 1.84
176,250 .967 -.018 2.02
185,200 .970 -.169 2.38
191,450 .989 -.070 2.34
199,300 .9L7 -.338 2.83
204,350 .906 -.185 3.01
208,350 1.007 .206 L. .62
213,400 1.028 .098 L.22
218,450 1.009 .109 4.50
222,700 1.007 .04o 4,52
226,250 1.057 .027 4.20
238,150 .960 .125 L.87
263,950 .967 .120 4.78

b) Merrimac River at Lawrence, Mass., with N = 71 years and X = 6,836 cfs

5180 .982 211 2.86
5922 1.02k .36k 2.80
6122 1.081 171 2.53
6452 1.081 .281 2.72
6603 .920 -.000 1.85
693k .913 .001 1.92
7382 .950 -.030 1.75
7577 .9k5 -.011 1.79
7908 <997 -.112 1.96

c) Oostanaula River at Resaca, Ga., with N = 68 years and X = 2,748 cfs

2011 <99l -.006 2.32
2200 1.047 -.046 2.09
2468 1.0L47 -.031 2.00
2632 1.107 -.011 1.91
2743 1.083 .002 2.07
2897 1.008 -.013 2.13
3025 1.068 .002 2.28
3262 1.000 -.007 2.59
3600 .96L .00k 2.65
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Looking at the values tabulated for the Columbia River {Table 4.l-a}
it can be seen that the residual numbers are negatively skewed {8<1.0}
flows below the mean {X]} and positively skewed {8,>1.0} at flows above
the mean {X}. Also the kurtosis {B,} varies from flat {Platykurtic} at
flows below the mean to peaked {leptokurtic} at flows above the mean.

The standard deviation {¢} is approximately equal to unity for all
positions of the band although it is closer to unity at flows near the
mean.

The Merrimac River has characteristics opposite to that of the Columbia
River {Table 4.1-b}. It is positively skewed at lower flows and negatively
skewed at higher flows. The kurtosis coefficient in general, decreases
as the flow increases although it always remains flat or platykurtic.

Note that again the standard deviation is very close to unity.

The third test using the historic data of the Oostanaula River
shows still another trend {Table 4.1-c}. Here, the skewness is close
to zero {on the negative side} at both high and low flows with a platykurtic
kurtosis coefficient constant at a value of 8, = 2.25. The value of the

standard deviation is again essentially equal to unity.

In all of the twenty-four tests the mean value of the residual
number {V]} was essentially equal to zero, and the standard deviation {o}
was essentially equal to one. However as has been shown, the skewness
and kurtosis coefficients {8, and B,} possess various visual trends which
are not characteristic of a normal distribution in which 8, and B8, equal

0.0 and 3.0 respectively for any flow value.
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The fact that all tests show the mean value {V] and the standard
deviation {¢} of the residuals to be respectively 0.0 and 1.0, satisfies
two of the requirements of a normal random number but, because the skew-
ness and kurtosis values were found to be non-normal, the validity of
them as non-normal must be checked.

4.2 Validity Examination of Skewness and Kurtosis as Non-Normal

The main question to be answered here is, do we have a sufficient
length of historic record to create stable predictions of either non-normal
skewness form or non-normal kurtosis form for a given sequence?

To answer this question the eighty-five year record of the
Columbia River at The Dalles, Oregon is again examined. If an eighty-five
year record is sufficient, then the statistical properties of the
residual numbers calculated when various small amounts of record are
deleted from the full record should equal the statistical properties
calculated when the full record is examined. {One, two, three, four or
five years of record are eliminated in this test.}] Also, the statistical
properties of the residual numbers should remain constant when the
property calculations are based upon either the first seventy-seven years
of record or the last seventy-seven years of record.

To check the above hypothesis, the residual values {v} are calculated
for several lengths of record obtained by deleting various amounts from
the total eighty-five year record. For each record length;

1) An array of the calculated residual number values’ {V} on
their respective Y, values is made.

2) Through the array of these V on Y _ values, a straight line
regression {V = c + dYt} is placed Ssing the method of least
squares.
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3) Then skewness and kurtosis coefficients are calculated for
the scatter of V values about the regression line

[V =c +ay,} employing the moving band technique as was done
in Section §.1.
4) Finally, two new arrays are made;

a) An array of the skewness coefficient values {8;}
on their respective mid-band Yt values.

b) An array of the kurtosis coefficient values {8}
on their respective mid-band Yt values.

5) Through these two new arrays a straight line regression is
placed.

The first new array {step 4-a} is an array of skewness values
versus their respective mid-band values for all band positions in the
V onY_ array. A straight line regression {g;=h + i(Yt)} is placed
through the positive skewness versus mid-band value portion and then
through the negative skewness versus mid-band value portion of this
total skewness versus mid-band value array. {see Appendix C for an
explanation of why the negative and positive portions had separate
regressions}. The slope and intersection of these straight line
regressions should be constant for the various record lengths examined
if the historic length of record is sufficient. The second new array
Istep 4-b} is an array of kurtosis versus its respective mid-band value
for all band positions in the V on Y, array. A straight line regression
{82 =h' + i’ (Yt)} is then placed through this total kurtosis versus
mid-band value array. The slopes {i &i'} and intersectioms {h & h'} of
these straight line regressions shiuld be constant for the various record

lengths examined if the historic record length is sufficient.
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The comparison of the skewness and kurtosis regression formulations
for the various record lengths found using the above procedure is
tabulated in Table 4.2.

Table 4.2: Skewness and Kurtosis Trend Formulation Examination

a) Skewness predictions for various sequences of the 85-year
historic Columbia River record. {8 =h + i(Y)}

Partial Sequence Positive B; "versus" Negative B; "versus"
Examined from Mid-band (Y, ) Mid-band (Y, )
t t

N = 85 years

h 1 ®o1/1, h 1 g1y,
First 77 years .197 -2.0x10‘$ .0k2 0.91 -5.6x10‘2 .056
Last 77 years .020 1.0x10" .035 1.k42 -8.6x10‘6 .062
Full 85 years .198 “k.1x1077 .059 0.96 -5.9x10‘6 .080
First 84 years 127 —l.TxlO—z .050 0.58 —3.7x10—6 .066
First 83 years .790 —3.3x10_7 .030 1.23 -7.5x10’6 .072
First 82 years -.090 8.0x10'6 .031 1.02 -6.hxlo'6 .056
First 81 years -.250 1.4x10° .040 1.04 | -6.5x10" .057
8L year sequence - - - 0.73 -—h.6x10-'6 .06k
with largest flow
value absent

b) Kurtosis predictions for various sequences of the .
85-year historic Columbia River record. {8, =h' + i'(y,)}

Partial Sequence h' it SB /Y
Examined from 2/
N = 85 years

First 77 years -5.19 | L.2ox1072| .55
Last 77 years 23.02 | 3.10x1072 | .58
Full 85 years L. 46 3.80x10—2 .52
First 84 years -k,52 3.80x10" .59
First 83 years -6.17 )4.80)(10-S Lk
First 82 years -4.37 3.80x10"5 .52
First 81 years -3.77 3.hhx10'5 L5
84 year sequence -2.36 2.56)(10-5 .19
with largest flow

value absent
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It can be seen in Table 4.2-a that the skewness slope fluctuates
markedly when various sequences of the total eighty-five year record are
used. The slope of the positive skewness portion even reverses itself
three times. For instance, when the first seventy-seven years of record
are used the slope has a magnitude of twice that found when the last
seventy-seven years of record are used and is a negative value; whereas,
the last seventy-seven years of record has a slope value which is
positive. Also, if the largest value of annual streamflow is removed
fmnﬂxetotalsequencearﬂtteresultingrecoxﬁisexanined,ﬂeskew—
ness normally found to be positive at higher flows becames negative.

The skewness intersection also fluctuates markedly, with a range from
+0.20 to -0.25 which has a mean skewness intercept approximately equal
to zero. Therefore, because the slopes are quite flat, with a mean
intersection value of zero, and because the values of slope and inter-
section change so drastically for small changes in record length fram a
given sequence, it must be concluded that existing historical streamflow
record does not have sufficient length to formulate residual number
skewness trends which might be used to improve the predictability of

Eq. 1.1.

Further, it can be seen fram Table 4.2-b that the kurtosis slope

5 and 4.80x107°

fluctuates between 2.56x10 when various sequences of the
total eighty-five year record are used and that the kurtosis intercept

fluctuates between values of |6.17| and

2.36]. This seemingly unstable
formulation of a residual number kurtosis trend is supported by Fiering

when he states that "the small sample instability of estimates of higher
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moments increases astronomically, so that there is little utility in
trying to preserve a parameter whose estimated value might easily be
in error by several orders of magnit\xie."B Therefore, it must again
be concluded that existing historical streamflow record does not have
sufficient length to develop either residual number {R} skewness or
kurtosis trend formulations that would be statistically valid.

In sumary, the examination of the residual numbers {R} has
found that the residual numbers can be classified as random variables,
normally distributed with a mean of zero and a standard deviation of
one because there appears to be insufficient record length upon which
formulations of skewness and/or kurtosis can be developed. Therefore
Eq. 1.1 appears to be a relatively good algorithm for predicting annual
streamflow.

However, another avenue of exploration that might lead to an
improvement in predictability of sequential annual streamflow remains
unexplored. That avenue is the use of higher order Markov chains and

is examined in Chapter V.



CHAPTER V

EXAMINATION OF MULTIPLE DEGREE MARKOV CHAINS

It has been shown in Chapters I thru IV that a one degree
Markov chain {Eq. 1.2} best represents the least square regression
lirneont+lonYt. Let us now examine this algorithm form to see
if two, three or higher degree Markov chains might reduce the
unexplained error and hence give us better predictability of Yt+1tl'1an
the one degree chain.

The general equation for a multiple degree Markov chain is given
mathematically as

Y + C,Y

t-l 2 t"z e o o o + cht-(n (5.1)

Y =a+bYt+C

t+l 1

5.1 Multiple Degree Chain Examination Procedure.

To test the predictability of Yt+1 using higher degree Markov
chainsweagainusethestandarderrorofestimateasanindicatorand
apply the following steps.

1) Calculate the standard error of estimate value for the
one degree Markov chain least squares regression.

2) Calculate the standard error of estimate values for the
two, three . . . . . (mtl) degree chain least squares
regressions conserving the requirement that [N-(m+2) ]>
30 {the minimum statistical set size}.

3) Subtract the higher degree standard error of estimate values
from the one degree value, divide by the one degree value
and multiply by 100%. If a resulting percentage is plus,
the higher degree chain under examination is a better
regression fit than the one degree chain and vice versa.

This procedure was employed in the multiple degree Markov chain
examination. Twenty-five streams with various historic record lengths

and hydrologic conditions were examined.
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5.2 The 1 Thru 10 Degree Chain Examination

Using BEg. 5.1, varying the "m" value fram "0" to "9", and
employing the test procedure outlined in Sec. 5.1 the percentage change
in the standard error of estimate value was calculated for the one
through ten degree chains at twenty-five different river gaging stations.
These percentage changes are tabulated in Table 5.1-a and 5.1-b. Note
again that for a statistically valid set size a minimum of thirty points
are required. Hence, for a six degree chain examination to be valid
thirty-seven years {N>30 + 6 + 1} of record are required. For a ten
degree chain examination forty-one years {N>30 + 10 + 1} of record are
required. The percentage values listed for higher order chains which
have set sizes less than thirty as defined only show trends. These
trends are not valid statistically but are still good indicators of the
standard error of estimate behavior for higher order chains.

Out of twenty-five streams tested, fifteen showed improvement
{a plus percentage change in the standard error of estimate value as
outlined above} when higher order chains were used. It can be seen in
Table 5.1-a that the statistically valid improvements in the standard
error of estimate value range fram 0.4% to 15.2%. At the same time we
see good trend indications of improvement possibly as high as 34%. Both
trend improvements and statistically valid improvements group about the
six degree Markov chain with this six degree chain as both median and

mode.



29

A3TpTTeA TEOTISTIEIS WNMITUTW UTYITM SnTes Soxbop 3sSUDTH «

€'0-|60+|nz-1€0+ |aGn+|€E0-}9°€-] 02|20+ LE ‘uM ©°y YSTWONLNS
9*CT+ | 9°L +| L°6 + 0 - | 0T+ |#°0+|K'T :.o+ g e~ 9¢ ‘uMq ¢y dosiysg
G+l g +| g6+ 96+ TG+ | EO0-|LO-| 670+ T7e 0$ | 3uOW ¢y suo3sMOTIAX
%9°2 + | QE 4| NEH QN+ QN+ | QN H]EOH o~ | nT+ 89 *8D ¢y BINBUBSOQ
U ET+ | LoqT+| €°6T+ | €°LT+ | 79T+ 6°9T+ | Lo+ | n°0+| L0~ 94 yeln Y ussdy
«2'€ -1 g€-}gc- 0 L2+ 0 6'0+| O°E+| E°E+ o Th *310 ‘Y SNITOISW
6'2-160-l€c+]9g+|ne+]2o-jEa+|676+]T 0+ m uts ‘up ¢y dnrreing
2+ | 6+ oI+ | 66+ | 8L+ |xOL + ST | TTTH|CTHE 9¢ ‘uM ‘¥ uoqaw)
L'T+ | ocg+lc6+]ee+]aec+ |«90+ |6 | nE-LEO 9¢€ *um ‘¥ 93TUM
T'€E - 0 g'c - | T'T-|s2°€E+ ]| 0°G~]es-| 22| €0+ LE *um ‘g ¥mes
C'2 + |uSCE+l L0+ ] 9E+ ]| T°E+ ] EGH]OT-| Ty~ 2'c on ‘upM ¢y 93YdooufM
Lot- | gen-low+ o2+ | ST+ EE-|RO-| BT+ T CH g2 ‘up ©°y ssausdung
2T+ | G OoT+| 26 + | ST+ | 26T+ | L'E+] O 6°0+| 8T+ T | "um ‘usTWONOXS 4 N
LE+ ] 26+l g+ oL+ eg+ |6t +]|2T-|#8°0" 0T HE | cuMm ‘UsTWOXOXS ‘d °S
1°6T+ | T'92+| nree+ | € xE+ | LT+ | 0°0T+ | @°6-| &'T~| €70~ L2 ‘up ‘¥ ysngsyong
ot 6 8 L 9 S f € 2 T [(S4X)
SUOTABUTWBXE UTBYD 93aFaQ 0T nNIU3 2 N SuB) WwesJI3S
J0J onyep 2BWIFST JO I0IIY PIBPUBIG UT aduByp ¢

{seabep 01 N3 z } I9pI0 IBYBTH X0F quawsaoxduy sjeur3ysd JO IOITY pPIepue3s

squaumAoIduT JUedTITUDbTS BUTMOYS SuRaIlS UsSsljitd
‘suTeyD AONIEW

(e

1°G 91qeL




30

A3TPTTeA TEOTISTAEAS UNWTUTW UTYITM SnTeA 59I69p 3ISSUBTH «

‘u
6T -1 g€-|LL-] 19-|a«lT- | O°2-]8e-| 82| 60+ LE ..m ysTWBnFBTTIIS *d°S
e 1= | wL-|16-] T'9-|%T- | 9°6-|9°9- | 0| 6°0- LE ‘upM ©'d 9peISEY
o't-1|€e-|qe-] 6€-] 9~ |«T'T-|9 T+ ]| LO-| 270+ 9e| (sak ¢g asaty)
8- Ln-lge-| Teg-| w1 | sr0-jg0+ | 9°0-) £°T- 2L|  ssBW ¢y YOBWLLIBN
negl- | 16 -|6¢t- | g61-| 9'€T-| 2'g-|¢9- | S| TO- 1e| (*sak o 3sa13)
WS €T-1 €'g-|26- ] 2ot-| w9~ | on-j9ce-| TTO+| O+ m Th| (*sak oy 3sa1y)
'€ -1 we-lse-1| o2 | Lo- | 60| O neo+] 9o+ | ®| <8 210 'y BIQUATOD
L'1t- | 6°ct-]got- | $9- | g1~ | e |nl- | O"L-|aTE- €c| um -9 YO®SOON "d°S
W6 -1 woL-Llqw-| T | 21~ | 62 |6 | 0°€E~| 6T 4 “up ¢y 29YdIBUIM
£00 -1 Ln-len-| 9= | 12 | ee-|le-| €e| 9T 1S cup g TBUTND
¢rg-| Lz-|TL- | Le |#6T- | 2T-|2n | 0e| TUT+ LE [uMf ysTmeFRITTIIS "d N
Wg-| wro-jne-| L= | e | Lo et | wEs| LTS S [um ¢ *9 usTwOMAMS 'd S
g = | vt -6€- | an- | ne- | nor)€0-]0 Lre- gg ‘upM ‘ISATY YOH
[} 3 8 L 9 S | € 2 | t|(5IK)
SUOT4BUIWeX UTBYD 994890 QL NIU3 ¢ N swre) wBSJI1S
J0J 9nTsvp 99BUIISH JO J0JJIy PpPJIBPUBLS at 0&5&0 &

JusuBAoIdWT JUeoTITUDTS ON BUTMOUS sureaIls USL

pSauT3uc)

@

‘1°9 STqelL




31

The remaining ten streams fram the twenty-five tested did not
show significant reduction in the standard error of estimate when
higher order Markov chains were examined. Looking at the values tabulated
in Table 5.1-b it can however, be seen that there is a tendency for the
five, six and seven degree chain values to be substantially less
negative than the higher order chain values on either side of these
three. {This might indicate that the parameter causing the five, six
and seven degree chains to have smaller standard error of estimate values
than the one degree chain in the first fifteen drainage basins examined
is not as strong an influence in the last ten drainage basins examined}.
In fact, the six degree chain is again the mode and median for the
grouping of these substantially less negative values. This suggests
that the persistence represented by the isolated five, six, and seven
year lags might have more influence upon the algorithm than the per-
sistence represented by the isolated one through four year lags. A test
for the validity of this suggestion was conducted by isolating the five,
six, seven, eight and ten year lags fram the N. F. Skokamish River data
to form five different regression equations from which five different
standard error of estimate values could be calculated.

These five standard error of estimate values were all larger than
the standard error of estimate value obtained when the full six degree
Markov chain was used as can be seen in Table 5.2 Regression lines
formed by combining lag separations {i.e. 1 &5; 1 & 7; 1 & 10; and
5, 6, 7 & 8} were also examined and their resulting standard error of

estimate values are tabulated in Table 5.2.
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In no case did a lag separation examination or cambined lag separation
examination give a better reduction in the unexplained error than did
the full uninterrupted six degree chain. We can therefore conclude
that the one through four year lags are as necessary to the full

six degree Markov chain as are the five and six year lags.

The fact that fifteen of the twenty-five streams examined above
show reduction in the unexplained error when full higher order Markov
chains are used as regression equations, indicates that there is
better than a 50 percent chance that any stream examined might best be
represented by a multiple degree Markov chain regression equation
[Bg. 5.1} instead of the one degree equation {Eq. 1.2}.

Further examination of higher order Markov chains was conducted
because of the high probability that they might give improved algorithms
for many drainage basins. One such examination looks at the standard
error of estimate values for the one degree through twenty-four degree

Markov chains.

5.3 The 1 Thru 24 Degree Chain Examination

Four streams were examined using Markov chains from one degree
to twenty-four degrees in size. The purpose of this test was to see
how large a chain could be employed and still have it develop a smaller
standard error of estimate value than that obtained using a one degree
chain. Fiering notes a rationale for determining the number of lags

that can be added to increase the multiple Markov chain.13
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1) Lags generally increase with record length.

2) Truncation and round off error limits lag on
strictly numerical (not statistical) grounds.

3) An arbitrary limit of 20 is imposed.

This rationale supplements the minimum statistical requirement that
a minimum of thirty points be contained in the set for valid repre-
sentation. For a twenty-four degree chain then to be statistically
valid a minimm of fifty-five years of record {N>30 + 24 + 1} must be
available.

The resulting standard error of estimate values obtained in
this test are tabulated in Table 5.3. A close examination of this
tabulation reveals signs of possible cyclicity. This cyclicity is
represented by a substantial reduction in the standard error of
estimate value when higher order chains of approximately one, six,
twelve, eighteen and twenty-four degrees in size are employed
{approximate multiples of six}. For instance, the North Fork of the
Skokamish River has minimum standard error of estimate values when the
one, six and thirteen degree chains are used. The Yellowstone River
has minimum values at about the three, eight, twelve and eighteen degree
chains. The standard error of estimate values minimize when the six,
twelve, seventeen and twenty-four degree chains are used as regression
equations for the Oostanaula River data. Finally, the minimum standard
error of estimate values for the Columbia River at The Dalles, Oregon
are developed when the two, six, eleven and sixteen degree chains are

employed. The factors or parameters which control this action are not
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Table 5.3: Tabulation of Standard Error of Estimate Values Displaying
Possible Signs of Cyclicity.

Standard Error of Estimate Values
Chain N.P. Skokomish R. | Yellowstone R. | Oostanaula R. | Columbia R.

Size N =14l N = 50 N = 68 N = 85
1 96.6 641.0 T40.5 34,302
2 94.8 654 .6 730.3 34,113
3 95.7 635.0 Thi.1 34,150
N 96.6 6L45.6 738.5 34,220
5 93.0 643.2 705.0 34,606
6 81.9 608.3 70k.9 34,546
7 84.6 579.0 704 .4 34,99k
8 87.7 578.1 715.6 35,143
9 86.5 586.8 T12.7 35,113
10 83.0% 604 .4 T21.4 35,604
11 83.5 616.5 732.0 34,993
12 86.k4 557.1 708.2 35,553
13 69.1 575.6 722.3 35,723
1k 72.9 601.0 737.2 36.072
15 67.5 564.0 751.3 36.577
16 581.2 75T.b 33,306
17 500.3 756.4 33,593
18 423.2 T68.9 33,958
19 Ly L 791.3 34,028
20 80kL.4 34,50k
21 826.2 34,904
22 837.5 35,696
23 865.8 36,529
2k 854.0 37,508

* The highest degree value that satisfies
minimum statistical validity.
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understood at this point, but the fact that multiple degree Markov
chains and chains which are approximate multiples of six give
substantial reductions in the unexplained variation could be a key

to better algorithms for generating stochastic annual streamflow.



CHAPTER VI
SUMMARY

The primary reason for examining the regression equation
relating serially correlated annual streamflow data was the hope that
an improved model for the simulation of annual stream runoff could be
found.

Non-linear regression equations were examined for thirty-one
historic streamflow sequences but those examined showed no significant
improvement above the simulation capability of a linear equation.

Data arrays obtained by serial grouping {Qi+1 on Q, } were examined
to see if subsets from the total array at various positions along the
regression equation had normal distributions of Qi +1 about the subset
mean 61 41+ Indications that subsets at certain points along the
regression were non-normal were later proved unstable and therefore the
assumption that they be treated as normal is valid until larger sequences
of data become available.

The hypothesis that the unexplained variation was normal and hence
that random variables with zero mean and unit variance could be used in
conjunction with the standard error of estimate to reproduce this
unexplained variance was also examined using thirty-one streamflow
sequences. This examination showed that with the virgin, historic, annual
streamflow data available today, the hypothesis is a good one. However,
as time goes by and more historic record becomes available, it might be
possible to modify the linear regression to include a skewness or kurtosis

trend determinable and stable for a given drainage basin.



38

Finally, an examination of serially correlated annual streamflow
data was made using higher order {xmxltllag} Markov chains as regression
equations. These regression equations reduced the unexplained error
below the value obtained when a one degree Markov chain {the linear
algorithm} was employed and therefore became the best available
algorithm for use in predicting or generating ammual streamflow sequences.
Unfortunately the physical reason why the higher order Markov chain gives
better results is not known at this point. Same interesting events
unexamined in this study due to lack of time are:

1) The higher order chains which are approximate multiples

of six seem to give the best predictions, i.e., the
six, twelve and eighteen degree chains.

2) The intercept coefficient for the Oostanaula River is
greater than the average annual flow, suggesting a
trend negative to that which initiated this model.
However, this could be explained by the geology of
the basin, i.e., broken shale and its reaction to
moisture.

3) When the six degree chain was used to generate small

sequencestheaverageobtainedsemedtoincrease

slightly above the historic value. This increase

seemed to be related to the values used as initiators

of the short sequence and to the regression slope

values.
If the degree of chain to be used and the regression coefficients
associated with the chain can be correlated with some parameter common
to all drainage basins that respond favorably to higher order Markov
chains, then we will have an algorithm available to simulate annual
streamflow sequences with less unexplained error than any algorithm
in existence today. This method might even be extended to improve
monthly streamflow generation as is indicated by one short study using a

two degree Markov chain.



APPENDIX
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APPENDIX A

LISTING OF THE THIRTY-ONE STREAMS
USED IN NON-LINEAR REGRESSION EXAMINATION

Sequence Number l ﬁ_Strean _
1 N.F. Ahatahum Cr. near Tampico, Wn. near
Asotin, Wn.

Carbon R. near Fairfax, Wn.

Cascade R. at Marblemount, Wn.

Columbia R. at The Dalles, Ore,

Duckabush R. near Brinnon, Wn.

Dungeness R. near Sequim, Wn.

Green River near Palmer, Wn.

Greenwater R. at Greerwater, Wn.

Hoh R. near Spruce, Wn. near Forks, Wn.
Naselle R. near Naselle, Wn.

S.F. Nooksack near Wickersham, Wn.

North R. near Raymond, Wn.

Puyallup R. near Orting, Wn.

Quinalt R. at Quinalt Lake, Wn.

Satsop R. near Satsop, Wn.

Sauk R. near Sauk, Wn.

Sauk R. above Whitechuck R. near Darrington, Wn.
N.F. Skokamish R. below Staircase Rapids near

Hoodsport, Wn.
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19 S.F. Skokomish R. near Union, Wn.

20 Skykomish R. near Goldbar, Wn.

21 S.F. Skykomish R. near Index, Wn.

22 Soleduck R. near Fairholm, Wn.

23 Stehekin R. near Stehekin, Wn.

24 Stetattle Cr. near Newhalen, Wn.

25 N.F. Stillaguamish R. near Arlington, Wn.
26 S.F. Stillaguamish near Granite Falls, Wn.
27 Sultan R. near Startup, Wn.

28 Thunder Cr. at Newhalem, Wn.

29 Wenatchee R. near Plain, Wn.

30 white R. at Greerwater, Wn.

31 Wynoochee R. below Staircase Rapids near Hoodsport, Wn.

Note: Flows for above came from Water Supply Papers
U. S. Geological Survey.
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APPENDIX B

LISTING OF THE TWENTY-FOUR STREAMS USED
IN THE EXAMINATION FOR THE PRESENCE OF

RANDOM VARTIATIONS

Stream

Ui N

10

15

20
21
23
24

Schoharie Creek at Prattsville, N.Y.

James River at Buchanan, Va.

Roancke River at Roancke, Va.
Chattahoochee River at West Point, Ga.
Greenbrier River at Alderson, W. Va.
Allegheny River at Red House, N.Y.

Wolf River at New London, Wis.

Neches River near Rockland, Tex.

Mill Creek near Salt Lake City, Utah

Kings River at Piedra, Calif.

Arroyo Seed River near Soledad, Calif.
South Branch Nashua River at Clinton, Mass.
Penobscot River at Millinocket, Maine
Presumpscot River at Outlet of Sebago Lake, Maine
Oostanaula River at Resaca, Ga.

French Broad River at Asheville, N.C.
Mississippi River at St. Paul, Minn.

Red River of the North at Grands Forks, N. Dak.
Yellowstone River at Corwin Springs, Mont.
Osage River near Bagnell, Mo.

Brazos River at Waco, Tex.

Green River at Green River, Utah

St. Lawrence River at Ogdensburg, N.Y.
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APPENDIX C
EXPLANATION OF SKEWNESS VERSUS
MID-BAND VALUE REGRESSION SEPARATION
If the skewness values were plotted versus their respective
mid-band values for the Columbia River when the full historic record
sequence is used the plot would lock like that shown below.
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The slope of a visual linear regression line through the
negative skewness versus mid-band value portion of the plot {line rs}
is approximately equal to the slope of a visual linear regression line
through the positive skewness versus mid-band value portion of the plot
{line uv}. For this reason, the total plot was broken into two portions

as described in CHAPTER IV.
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