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Abstract

This report addresses the important issue of developing a method for
the design of stream quality monitoring networks for detecting trends. The
problem solved involved determining spatial sample station locations and
temporal sample frequencies given a fixed number of samples for a particular
river basin.

Two principal issues important to monitoring were addressed. The first
involved determining the statistical power of detecting a trend of given
magnitude from temporally correlated samples. Two generalized power curves,
one for Spearman's Rho test against a linear trend and one for Mann Whitney's
test against a step trend, were developed. These two tools provide the
necessary power test information for any correlated time series, for any
standard deviation and any sample record length for the best available non
parametric statistical tests for linear and step trends.

The second major activity involved the coupling of statistical methods
and deterministic water quality models to determine the spatial location of
sample stations such that the average trend detection would be a maximum.
State estimation techniques were employed for this activity.

In the numbers of batch samples possible in current monitoring programs,
this research showed that it is much more efficient to use a single station
with a relatively high sample frequency than to use multiple stations with

correspondingly lower frequencies.

Key words: Water Quality Monitoring; Trend Detection; Mathematical Models;
Kalman Filters; Stream Sampling; Network Design; Time Series
Analysis
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CHAPTER 1

INTRODUCTION

I. Research Objectives

The objective of this research is to develop a methodology for the
design of a stream quality monitoring network with the primary purpose
of identification of the existence or absence of trends in a time series
of measurements of water quality indicators. The time scale for trend
identification is taken to be of the order of the permit renewal period
for waste discharge permits, normally two to five years. The methodology
is developed for the case of a free flowing stream; conditions in the
estuarial segment of a river basin or in impoundments are not considered
although suggestions for extension to these cases are made in Chapter 8.
The constraints on the design methodology are taken to be summarized in
a limit on the total number of samples which may be taken for any given
river basin per unit time per water quality constituent.

The funding agency for this research, the Washington State
Department of Ecology, expressed, prior to the initiation of the work,
the desire that the proposed methodology allow a method for determining
the improvement in system response for a given change in the constraint.
Consequently, a requirement for the design methodology is that sensi-
tivity to constraints be easily determined. This feature is essential
to allow for cost-effectiveness considerations in funding of ambient

‘water quality monitoring networks.
It was also desired that the methodology proposed in this research

be demonstrated in the design of ambient water quality monitoring
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systems for two streams of contrasting character in the State of
Washington. The two streams chosen are the Snohomish River on the west
slope of the Cascade Mountains, in a region with marine climate charac-
teristic of the North Pacific Coast, and the Spokane River above Long
Lake in the far eastern part of Washington State, in a region with
climate and hydrologic conditions not atypical of much of the western

interior of the United States.

II. Background

Public concern over environmental degradation in recent years has
emphasized the need for environmental management in much the same way
that full scale economic management began some 40 years ago. In the
areas of both air and water quality, the approach has been to set
standards which provide the objectives for environmental management in
much the same way that prevailing interest rates, GNP, and other economic
indices are used as economic objectives. The differences between the
actual levels of these indices and the objectives or standard values
provide criteria for control. If the actual values are in some sense
better than the desired standard values, system response is deemed
adequate and such action is taken as is necessary to maintain the
existing levels. If the actual values are deemed inadequate, action
is taken to improve future system response so that the objectives can
be met. The action to be taken in either case is always subject to
some constraints. These constraints almost always include components
that are economic in nature, i.e., some cost is associated with
management. This cost ideally should be more than balanced by the

benefits to be derived from management. In addition to economic
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constraints, physical, social and legal constraints may also be present.‘
A general environmentai management system may be shown in schematic
form as in Figure 1.1. The control loop is essentially of the type used
in feedback control theory except that management, rather than physical

components are associated with the elements of the loop.

INITIAL MGT SYSTEM TIME

SYSTEM STATE Twy RESPONSE LAG

TIME FEEDBACK
LAG SIGNAL

Figure 1.1. Stylized Environmental Management System

The critical nature of the feedback loop cannot be overemphasized.
Without some form of a feedback system, response is essentially open
ended. The point may be made that all systems have some form of feed-
back, that only the level of sophistication varies. Effective system
response, howevef, requires special attention to feedback loop design

as well as to the planning of the actual system management.
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Environmental systems, and in particular water quality systems of
the type investigated here, are well adapted to the type of management
control outlined above. They have, in addition, a characteristic con-
tributed by their physical nature: they are stochastic; the response
of any given parameter is, in general, for fixed spatial coordinates a
function of both time and a probability coordinate. Hence, knowledge
of the time coordinate is insufficient to predict system response even
given "perfect" management action because part of the system response
can be attributed to chance. This may be expressed mathematically as
R(t) = D(t) + P(t), where R(t) is the system response as a function of
time, D(t) is a deterministic component uniquely determined by the input
and management action, and P(t) is a probabilistic component at any time
t. The probabilistic component P(t) has two sources. First, errors in
measurement of environmental parameters yield probabilistic outcomes,
hence, it is unlikely that the actual values of the parameters of
interest can be known. Second, the random nature of the physical
driving forces.themselves, particularly meteorological factors, yield
an inherent probabilistic component present even if measurement errors

could be eliminated.

It is essential that the stochastic nature of the system be
recognized. For example, it is possible, especially where record
lengths and sample sizes are small, to observe time series of param-
eters which appear to show a change with time when the apparent
change is the result only of the random nature of the system response.
This suggests that effective envirommental management requires tools
which are stochastic in nature, especially when P(t) is of the same

order of magnitude as D(t). A stochastic approach has been found
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necessary in design of hydrologic, or water quantity related systems
(Fiering & Jackson, 1971). Because water quality is quantity-dependent,
water quality management systems require stochastic methods as well.

The feedback loop of Figure 1.1 implies some kind of measurement.
There is a definite cost associated with each measurement of water quality
parameters; this cost generally is quite high on a per sample basis
(Vanderholm, 1972). The high cost of data acquisition has resulted in
a deficiency of water quality data; one rarely reads a report on water
quality conditions without encountering some mention of data deficiency.
This data deficiency and the high cost of data collection suggest that
some effort in careful design of measurement systems might well be cost-
beneficial. It is to this problem of measurement system design that the
current work is addressed.

One must exercise caution in design of a water quality monitoring
system as such systems have varying objectives. For instance, data may
be collected for abatement purposes, i.e., to detect violation of water
quality regulations. It may also be used to establish a base line of
data for future references, especially where existing data are sparse.
Data may be collected in an attempt to establish cause-effect relation-
ships between parameters. And finally, data may be collected in an
attempt to establish, over the long run, tendencies, or trends in the
level and/or variability of water quality parameters. A trend detec-
tion objective was chosen after a review of the literature (presented
in the following section) indicated an apparent lack of appreciation of
the importance of designing sampling networks for trend detection. The
sparseness of the trend detection literature was particularly notice-

able when viewed in the framework of a feedback management control



system (Figure 1.1).

Guidelines for the design of sampling networks for objectives
other than trend detection have been published in the literature.
Abatement objectives have been shown, subject to the constraints
normally encountered by most managing agencies, to be unrealistic objec-
tives for monitoring system design (Vanderholm, 1972). This results
from the spatial and temporal grid sizes required. Spatial sample spac-
ing is required to be on the order of the distance between sources and
temporal frequency must be on the order of l/Ts, where TS is a typical
spill duration. These requirements indicate that, even for an effi-
ciency of around 50% in spill detection, a sampling effort much larger
than that presently conducted by most states must be implemented (Ward,
1973). Monitoring for data base establishment and for building and
calibration of cause-effect models requires sampling programs of the
same general character, namely a relatively short time frame and a
relatively extensive spatial grid. Surveys of this type lend themselves
to traditional statistical analysis (Elliot, 1971; Slack, et al., 1973).
A somewhat more sophisticated method is provided by Moore (1971) for
handling the same problem. The results of the present research might
be applied to the problem of design of area-intensive surveys (see
Chapter 8), although this is not a principal objective of this work.

The importance of the design of monitoring systems for identifica-
tion of trends in water quality parameters has a basic relationship
with the overall management system schematized in Figure 1.1. It is
the expressed objective of most water quality managing agencies and
much of the applicable legislation (for instance, the Federal Water

Pollution Control Act Amendments of 1972) that water quality indicators
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be maintained at some given levels. To achieve this, various management
actions are undertaken to either improve or maintain existing levels of
water quality. Consequently, it is essential to estimate whether the
system is responding as desired. This implies the identification of
trends.

Operational considerations have often dictated the use of waste
discharge permits. These permits are renewed periodically, and the
managing agency must assess, based on ambient conditions, what discharge
levels are acceptable. Hence, it is desirable to identify the existence
or absence of trends over a time span on the order of the permit renewal
time, usually two to five years. This is the time scale used throughout

this work.

IITI. Literature Review

In the literature review conducted by the author, no work was found
which proposed methods for the design of water quality monitoring sys-
tems for trend detection. The work reviewed fell into two classes,
those which proposed methods for design of surveillance gpd monitoring
systems, and those which attempted to identify trends in time series of
water quality parameters. None of the work reviewed attempted to use
the latter as an objective of the former.

A paper by Wolman (1971) was the only work reviewed which attempted
to identify the coupling between the two areas. In this work a compre-
hensive survey was conducted to determine trends in the quality of U.S.
rivers over the longest period for which data could be obtained. The
" most important conclusion of the study was that existing data were

inadequate to identify trends in water quality. Specifically, the
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paper concluded that existing data were insufficient in volume and that
the parameters being measured were usually inadequate to identify trends
in river quality. Wolman pointed to the establishment of the National
Water Quality Network (Sayers, 1971) as being a step toward providing
the necessary quantity of data, but stated that methods applicable to
design of monitoring networks for determining trends were essentially
nonexistent.

Because the literature is segmented in its approach, the review
presented here is partitioned for clarity. Literature proposing or
utilizing methods applicable to the design of monitoring systems is
presented first, followed by work in trend identification. Literature
specifically applicable to a particular portion of this research is

reviewed in the text as it is introduced.

IIT.1. Monitoring and Surveillance System Design

Spectral analysis was proposed as a tool for stream quality analysis
by Wastler (1963). The application suggested requires a large sample
size, so is only applicable when continuous or near-continuous samples
are taken over a short time horizon or when a very long record length is
available. A further limitation is the requirement that grid spacing
(spatial or temporal) be held comnstant. Gunnerson (1966) applied
spectral analysis to a dissolved oxygen record derived from a continuous
monitor on the Potomac estuary. By sequentially eliminating undesired
observations and transforming the record to the frequency domain, he
was able to determine the minimum number of observations required to
preserve the essential properties of the spectrum. In the case investi-

gated, the required observation period was about two hours. Recent
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literature has reported few applications of spectral analysis to sample
system design, possibly because of the rigid requirements on the observa-
tion intervals and the number of observations required to provide ade-
quate sample estimates of the spectrum. The use of cross spectral
analysis, proposed by Wastler but not pursued in detail, has also re-
ceived little attention, perhaps for similar reasons.

Pomeroy and Orlob (1967) investigated several problems involved in
the setting of water quality standards. Most of their discussion con-
siders the problem of determining which water quality parameters should
be included in the standards. Of particular interest, however, is their
approach to the setting of guidelines for the establishment of a minimum
surveillance system. A nomograph is presented which relates the number
of stations required and the observation frequency per station to river
basin characteristics. River basin characteristics are summarized in
the total drainage area, the average slope along the watercourse, and
the ratio of maximum to minimum flow in the stream. The basis for the
nomograph was not presented. The relationships were apparently derived
from empirical observations of the characteristics of river basins which
were thought to be adequately sampled. The analysis is applicable
primarily to the design of surveillance systems for establishing data
bases suitable for identification of long term trends.

Kittrell (1969) prepared a handbook for the use of field personnel
in designing of sampling surveys for water quality. The primary empha-
sis is on short term intensive surveys; the problem of permanent sur-
.veillance network. design is not addressed.

A report prepared for the Federal Water Quality Administration (NUS

Corp., 1970) investigated the design of water quality surveillance systems



10
ffom a systems analysis framework. The report considered data acquisition
and handling problems, legal problems associated with site acquisitions,
and admissibility in court of data obtained by various surveillance
techniques. The technical aspects of site location and sampling fre-
quency werenot specifically addressed, however.

Arnold (1970) presented a sampling strategy which makes use of the
theory of Markov chains. By the use of a model for stream quality and
the assumption that quality parameters are distributed normally about
the predicted value, acceptance levels for various deviations from the
mean were defined. A time delay representing the time until the next
sequential sample was associated with each acceptance level. Given the
probability distribution of a measure of the state of the system
(dissolved oxygen was used) the number of samples required was calculated
assuming the system was "in control", meaning that no perturbations
occured to make the actual dissolved oxygen levels lie outside designated
confidence bounds about the modelled values. .The application of this
research is limited by its failure to include constraints often faced
in the design of real sampling networks; specifically manpower constraints
in field applications prevent the flexibility required to implement vari-
able sampling strategies of the type proposed.

Sharp (1970; 1971) made use of the concept of stream order numbers
to determine the approximate location of sampling stations in a stream
network. The scheme employed was to determine the approximate centroid
of a branch network based on making the equivalent stream order numbers
at the outlet of each subnetwork approximately equal. A monitoring sta-
tion would be located at the outlet of each subbasin, amd the process

iterated. The method has the advantage that the relative value of each
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station is also an output. This procedure has been the basis for some
more recent work (Sanders, 1974; Chamberlain, et al., 1974). It has
the disadvantage that hydrologic conditions only are included explicitly;
pollutant source information and system dynamics are not incorporated.

Some work in the related field of experimental design for model
parameter estimation has been reported. The original work was by Box
and Lucas (1959) and was extended to applications in water quality
modelling by Atkinson and Hunter (1968) and Berthouex and Hunter
(1971a,b). The basic method is to make an initial guess at the param-
eters, then use the theoretical development to determine spatial and
temporal sample point locations. These values are then processed, and
the location of the next sample point is calculated. The procedure is
ideally suited to sampling for model calibration where a sequence of
measurements can be taken and processed (possibly overnight) so as to
determine the sample point locations for the next sequence. The
methodology does not, however, appear to be applicable to the design
of permanent monitoring systems.

Gupta (1973) proposed the use of the variance of the sample mean
and the variance of the sample variance to determine the necessary
temporal sampling interval to define essentially independent observations.

Two information measures, taken from earlier work by Bayley and

Hammersley (1946) were used. These measures were defined as

=YX
1 _
v, (X)
2
vV(sT)

12 =
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where X is the sample mean, S2 is the sample variance, and where V is a
variance estimate based on an assumption of independence of the data and
V1 is a variance estimate based on a lag one Markov persistence model of
the data. The lag was taken as the sample interval for purposes of
specifying the lag one correlation coefficient. A predetermined
information criterion was then specified, allowing the determination of
a sampling interval. Unfortunately, the example used in the paper was
based on streamflow data for which, at worst, daily measurements are
available. The approach is data intensive, a feature which would make
application to water quality data difficult., In fact, the approach used
is not much different from that of Gunnerson (1966) except that computa-
tions are performed in the time, rather than frequency domain. The
problem of obtaining a good estimate of the autocorrelation function
based on a short time series is present as in the work of Gunnerson (1966).

Chamberlain, et al. (1974) proposed a method for determining both
spatial and temporal sample station location based on a stochastic DO
model developed by Stochastics, Inc. (1971). The model used incorpo-
rates the Streeter-Phelps equations in stochastic form. The variance
and mean of the DO estimates were calculated using a first order
approximation (Cornell, 1972). The river was then segmented and an
ultimate segment priority based on the probability of violation of
specified standards was computed. Sample station location were then based
on the segment priorities. For a given sample station layout, effective-
ness of the network was specified using a temporal priority measure.
This temporal priority measure was defined as the ratio of the

expected number of violations detected to the expected number of
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violations for each station, and is a function of sample frequency.
By constraining the sample frequency the network efficiency was

evaluated as a function of the number of samples available. This

is the only work reviewed thus far which addressed analytically the
problem of both spatial and temporal sample location. One drawback of
the method is that the design is based only on the assumed properties

of the probability distribution of DO; the optimal design for DO sampling
was assumed to be representative of the optimal sampling design for other
water quality constituents. The method could probably be extended to
include more parameters if the underlying stochastic DO model were
generalized. The method is restricted, however, to use of the standards
violation criterion. Consequently, while this method of monitoring sys-
tem design is well-adapted to design of monitoring systems for abatement
purposes, it is of little help in design for trend detection.

Sanders (1974) presented a design method for determining sample
station locations and frequencies for the purposes of establishing base
line water quality information and detecting trends. He utilized the
method of Sharp (1970; 1971) to establish macroscopic station locations,
and mixing length theory (Cleary and Adrian, 1973) to establish micro-
scopic locations. Microscopic locations were set at the point where
complete mixing below an outfall occurred or at the bottom of the reach
if lateral mixing was incomplete. Analysis of variance (one or two way
depending on whether vertical mixing was complete) was used to specify
the number and location of stations needed in the cross-section. It
was found that even when mixing was far from complete, high correla-
tions existed between water quality parameter concentrations in the

cross—section. The residual error in the yearly mean concentraticns
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at each station was used as a criterion for the number of stationmns
required.

The work of Sanders is significant in that it represents the first
attempt to relate sample location to turbulence characteristics of the
stream. The sacrifice paid for including mixing characteristics in the
design rather than using a one dimensional flow model was that assump-
tions of conservative constituent concentration dynamics and point source
effluents with deterministic flow and concentrations were required. In
addition, no method was presented for determining the tradeoff between
sample station density and sample frequency. However, the resuits of
the present work coupled with possible inclusion of mixing length
phenomena discussed by Sanders could ultimately be included in exten-
sions to both methods as discussed in Chapter 8.

Ward, in a series of papers based primarily on a Ph.D. dissertation
by Vanderholm (1972) has investigated cost effectiveness of water quality
surveillance systems (Ward, 1973; Vanderholm and Ward, 1973; Ward and
Russell, 1973; Ward, Nichols, and Skogerboe, 1973; Ward and Vanderholm,
1973). The research addressed primarily the design of surveillance sys-
tems for abatement in contrast to much of the other work reviewed which
is oriented more toward data base establishment and intensive surveys.
The strategy used was to model a conservative pollutant by the convec-
tive diffusion equations. Instantaneous spills were "created" in the
model at random time increments and at random spatial locations along
the length of the stream modelled. Several strategies were investigated
for the spatial location of stations. Various time frequencies of
sampling were investigated, and for each an effectiveness measure,

defined as the ratio of spills detected to total spills, was computed.
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All samples were assumed to be instantaneous, grab samples. The results
of this research allow a roﬁgh estimate of how extensive an abatement
network needs to be. The assumption of a conservative pollutant makes
the estimated effectiveness based on this study an upper bound on what
might be expected in a real system. As such, it appears that under
existing budget constraints (Cunningham, 1970; Ward and Vanderholm,
1973) the use of monitoring for abatement may not be a viable objective.

Moore (1971; 1973) made use of the linear Kalman filter, which had
previously found application mostly in aerospace and marine navigation
systems, for monitoring system design. The Kalman filter (see Chapter
3) utilizes both modelled and measured system response to arrive at a
best estimate of the true state of a system. Moore's work incorporates
the water quality model of Water Resources Engineers, Inc. with a
linearized filter model to determine best estimates of four state
variables for a reach of the Sacramento River. The four state variables
were concentrations of phytoplankton, zooplankton, nitrate, and tem-
perature. Since the Kalman filter algorithm estimates at each step a
system state covariance matrix as well as the estimated system state
vector, a variance criterion can be developed for the sample spacing.
The strategy employed was to sample whenever the variance of any single
state element exceeded a given amount, or alternatively when the sum of
the estimated state variances exceeded some limit. Using this procedure
the necessary sampling period was determined at a given station. The
problem is much more complicated when spatial variation is introduced
- as well; the approach used was to define a state vector element for each
constituent at each of a number of discrete locations. A trial and error

approach was used to determine the "best' measurement matrix, i.e. which
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variables were to be measured at each station. A variance constraint
was then imposed, allowing determination of the optimal temporal sampling
frequency.

Moore's work is significant in that it is the only work reviewed
which can account for multiple quality measures varying in both space
and time. It is also significant in being one of the few applications
of filtering techniques to water quality data, an approach which is very
attractive in that it incorporates both modeled and observed estimates
of the system state in determining the best (minimum variance) estimate
of the true system state. The work has several shortcomings, however.
The constraining of the state variance estimates does not appear to be
realistic; in management applications the cost is usually constrained.
Also, the procedure used in determining spatial locations gives no
guarantee of optimality, it can only determine which configuration among
those tested is best. Finally, high computer costs forced the consider-
ation of only four water quality indicators, and in fact, only one of
these (temperature) is actually included in the water quality standards
of Washington State.

Moore's work utilizes a dynamic stream quality model; hence, both
spatial and temporal variations are included. Unfortunately, this
constrains the optimization to be valid only for the given hydrograph.

A complete optimization will require optimizing over a probability
distribution of hydrographs, and will be prohibitively expensive given
existing computational speeds. Nevertheless, the filter method allows
a convenient method of including the dynamics of parameter interactions
as well as the dynamics of flow routing on the design methodology. The

potential of this method merits further investigation.
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Perlis and Okunseinde (1974) utilized Kalman filter theory in
design of a monitoring system for dissolved oxygen (DO) and biochemical
oxygen demand (BOD) in a stream. This is the only other work known to
the author which makes use of state estimation theory in monitoring
system design. The method incorporates measurements of total organic
carbon and DO, which are available with essentially no time delay, and
BOD, which normally requires a five day laboratory analysis period.
The specified monitoring network minimizes a cost function which includes
a space integral of the estimation error and measurement costs. The
model assumes steady state flow conditions; no temporal sampling
strategy is included. Consequently, the network specified is applica-

ble primarily to intensive surveys.

I11.2. Trend Detection

Enviro Control (1972) prepared an analysis of nationwide trends in
water quality for the Council on Environmental Quality. The analysis
utilized stations in EPA's STORET system. Parameters examined included
measures of oxygen depletion and demand (DO, BOD, TOC, COD), nutrients

NH, + i +
( 5 + organic N, NO3 N02,

salinity. An attempt was made to establish flow dependence of each

total P, soluble P), suspended solids and

parameter at each station, although no attempt was made to normalize
the raw data for this dependence. Stations were segregated into four
classes according to population, agricultural development, and indus-
trial development. Arbitrary limits were set for total variation of
each parameter. If the total variation in a given parameter over the
record length exceeded the limit, a trend was said to exist. It is

unclear how the total variation was calculated; apparently the data
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sequence was partitioned into two halves and the medians of the first
and second sequence compared. The results, regardless of which method
was used in calculation of total variation, are of questionable statis-
tical validity as the confidence level was arbitrarily set for each
parameter. Consequently, there is no common base for comparison of
trends in different parameters since the effective confidence levels
vary. The conclusions made as to general nationwide trends, namely an
apparent increase in nutrient values and no change in other parameters
over the record length (about eight years for most parameters at most
stations) are of doubtful validity.

The Environmental Protection Agency (1974) prepared an inventory
report of 22 U.S. waterways including an analysis of trends using data
from EPA's STORET file. The 22 waterways were selected as belonging to
one or more of three groups: the ten longest rivers, the ten rivers
with the highest average annual flows, and the waters of the ten largest
urban areas in the U.S. The available records were examined for trends
in 28 parameters, although many of the 28 were essentially indicators
of the same quantity and show similar results, for instance, NH3,

27 NO3 + N02, NO3 (as N03), and NO3 (as N) were all

measured at one or more stations. The method used to determine trends

organic N, NO

was a comparison of the medians of the 1963-67 sequence with those of
the 1968-72 sequence for each parameter. An upward trend was said to
exist if the second median was larger than the first, a downward trend
if the reverse was true. No statistical analyses were performed, hence
no confidence limits are available which makes conclusions based on the
results extremely dangerous. For instance, if a different method were

used, e.g., confidence bounds placed on the difference between medians
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of the two sequences and trepds judged to exist only.if the difference
exceeded the value of the confidence bound, it is likely that few of
the sequences would show trends because of the small sample sizes
available and the natural variability of the time series. Alternatively,
confidence bounds might be placed on the percentage values of increasing
trends derived using the method of the report, although this is a dif-
ficult statistical problem. In the form presented, however, the results
give little more than an educated guess as to what is really happening.
The results presented suggest increasing levels of nutrients and decreas-
ing levels of most other pollutants. This may be contrasted with the
results of Enviro Control (1972) which showed few trends in most param-
eters with the exception of nutrient values, which both reports agree
are increasing.

Steele, et al. (1974) conducted an analysis of historical water
quality data from 88 stations of the United States Geological Survey
(USGS) National Stream Quality Accounting Network (NASQUAN). The objec-
tive of the study was to determine areal and temporal variations in
streamflow chemical quality and temperature. Only the latter objective
is of interest here. Data limitations required consideration of specific
conductance as the sole indicator of chemical quality. The method
employed utilized Fourier decomposition of the record into yearly mean
values and amplitude and phase coefficients corresponding to the annual
cycle. New sequences were formed consisting of these yearly values,
hence, each time series (of, for instance, daily values) yielded three

“time series of yeérly values: a fourth was formed by adding yearly
means to yearly amplitude coefficients. These time series were analyzed

for trend using Kendall's tau and Mann-Whitney's tests (see Conover, 1971).
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Fifteen of the 88 stations showed changes in one or more of the yearly
temperature sequences, most of the changes in stream temperature were
apparently attributable to increased regulation and were evidenced in
decreases in the series of annual harmonic amplitude coefficients.
Fifteen of the 88 stations showed significant (997 confidence levels
were used throughout the study) changes in one or more of the annual
chemical sequences, ten of these showed worsening conditions, five
improving.

The results of the USGS (Steele, et al.) investigation are derived
from methods with a sound statistical basis, hence, the results have
considerably more meaning than those of the Enviro Systems or EPA
studies. Principal limitations are sample station locations and param-
eters analyzed. Stations in the NASQUAN system usually are affiliated
with USGS stream discharge stations and may not be in the best locations
to allow conclusions on trends in water quality nationwide. The stations
used are predominantly in rural areas where water quality is primarily
affected by agricultural nonpoint sources, irrigation return flows, and
impoundments; the Enviro Systems and EPA reports center more on urban-—
ized areas where problems tend to be associated with urban runoff and
point source discharges. In addition, the USGS report does not include
nutrients, toxic substances, and oxygen demand measures, primarily
because of lack of sufficient data. The incorporation of (classical)
statistically valid methods in the USGS report results from the relative
completeness of the records used, something not enjoyed by the other
work. A comprehensive nationwide survey remains to be conducted, and
will be a difficult undertaking because of gaps in data and so-called

"wild points". The limitations of the existing work, however, point to
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the necessity for such a study, as important long range decisions must
be based on trends in nationwide water quality. Such a study might well
profit from the nonlinear smoothing methods employed by Cleveland &

Kleiner (1974) in their analysis of air pollution data.






CHAPTER 2

PROBLEM FORMULATION AND SOLUTION APPROACH

I. Analytical Formulation

The objective of the present research is to design a monitoring
a . . s .
system for a state vector of concentrations of water quality indicators
_* _* . . I3 k3
c . Here ¢ 1is a time average concentration vector where the averaging
time Tav is at least long enough to remove fluctuations due to turbulent
flow structure; hence, the convective diffusion equation with source

terms is (Ippen, 1966)

—% —_—
S¢c D, d, kx 9, Rk ] dc
ot + 9x (e + dy (ve)+ dz (we) = 9% (Dx ax
—k —k
3 dc 3 3¢ =
+ 3y (Dy By) + . (DZ 8z) + r (2.1)

* * * . .
where u , v , and w are longitudinal, transverse, and vertical velocity

—k —
components averaged over the same time as ¢ , and r is a vector of
source-sink terms.

. . . . —* 3 . -
Equation 2.1 is difficult to solve for ¢ , since the velocity field
itself is rarely well known and because estimation of the diffision
coefficients will require extensive data not usually available.

Considerable simplification is possible, however, if the investigation

is limited to the propagation of cross-sectional average concentrations

a TN soas
Throughout this report, overbars (e.g. a) indicate vectors, and
underbars (e.g. b) indicate matrices. Throughout this chapter the

notation c* denotes ''the average value of c".
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and velocities. Under this condition the third and fourth terms on the
left hand side of eq. 2.1 drop out, as no concentration flux is possible
across the stream cross-section boundaries (supply and loss from benthal
and atmospheric sources and sinks are included in';).

An order of magnitude analysis may be performed on the remaining
two terms on the left hand side of eq. 2.1. The maximum sampling fre-
quency imposes a limit on the time scale of the fluctuations in E* which
can be tracked. Consequently, the averaging time for E* must be on the

order of the inter-sample time, thus, if the approximation

. %

— c - c

ac t+At t . . X .

Y is made, and for clarity a state vector of dimension
At

one is considered,

c n-1 c

*. 1l 0 _n
ct =2 [2 + 'Z ci + 5 1,
j=1
c n
* 1 1 n+l
v = [+
“e+t a bzt 2 R
. j=2
+
% [Cn Cn+l Co+cl]
9 o -
and 32 Z 2 R (2.2)
l nit J
. cn+cn+1 _ co+c1
dc 2C 2C
then 3t = At (2.3)
3, * * * Spiax” Sx
) LY T eax

%, .
where u” is assumed constant in space,
C is an arbitrary normalizing concentration value,

tn+l—tn = At

and nAt = TAV’ the averaging period.
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The relative magnitudes of the terms (eq. 2.3) may be investigated using
"typical" values, as shown in Table 2.1.

The tabulations of Table 2.1 show that even if the time rate of
change of . is very high locally, the averaging process damps out the
variation to the extent that the first term in eq. 2.1 is usually an
order of magnitude less than the second. Thus, the averaging process
employed provides justification for neglecting the first term in eq. 2.1
unless the averaging period is very short, the spatial change in concen-
tration flux is very small or the time change in concentration is very
high. It should be noted that this approximation is not valid when
concentrations are uniformly increasing or decreasing at a rapid rate
over a long period of time as in curve 1 of Figure 2.1. In the case of

%
uniform changes in concentration %%— ~ %%—where %%—is the instantaneous
time rate of change in concentration. Consequently, the steady state
approximation will surely not be valid, for instance, when a phytoplank-
ton bloom is in progress if nutrient concentrations are of interest. If,
however, local changes in ¢ are either high frequency fluctuations or low
frequency ones of small magnitude (for instance, due to seasonal effects)
as shown in curves 2 and 3 respectively, of Figure 2.1, the approximation
will hold.

Harper (1972) showed that, for steady discharges of wastes the
diffusion terms in eq. 2.1 are negligible. This is essentially the case
to which we are confined by the approximations made above, as we do not

consider short term fluctuations in c. Dropping the diffusion terms,

eq. 2.1 reduces to

5;(u c)=r (2.1a)
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Instantaneous Concentration

Time Tév

Figure 2.1. Possible Modes of Variation in Instantaneous
Concentrations

*
Here u 1is, in general, a function of space and time. It is

desired now to constrain the velocity to also be steady state, i.e.,
*
du

T 0. The validity of this assumption may be investigated using
existing time series of streamflow records. Consider a time series
qi, where qi is the daily average streamflow on day i at a given sta-
. . . . . 1 2 1 2
tion. Now consider the bivariate series (qi, qi) where q9; and q; are
. 1 _ 2 _ - . . .
defined as q = qi—l/qi’ and 9 = qi+l/qi' The joint distribution
function, fQ1Q2(ql, q2) gives a measure of how quickly the daily

~average flows are varying, where, following standard statistical nota-

tion,
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£
= <
XX, (x ’XZ) P(X1 X

< <
X, (x <X +dX_, X <x

1SR TaX s X <x,<X

9 +dx2)

2

hence P(ql,qz) €R = f fQ1Q2(ql,q2) dQldQ2
R

where R is the region containing flow ratios of interest.

The joint distribution functions of ql and q2 for the Spokane River
at Spokane and the Snohomish River near Monroe for water years 1971-73 are
given in Figure 2.2. The joint distribution functions were estimated
using the method of Tarter, et al. (1967). Within the region
0.87 < ql <1.13, 0.87 S_qz < 1.13 the rate of change in average daily
velocities is less than 5%, computed on the basis of a rectangular
channel with constant Manning's n, whence U/Uo = (Q/Qo)°4 with Uo and
Qo as base velocities and flows respectively. This region is shown in
Figure 2.2b; the entire plot area of Figure 2.2a falls within this region.
Figure 2.2 shows that both the Spokane and Snohomish River flow regimes
may be considered quasi-steady state for the purposes of this investi-
gation. The Spokane River, with some upstream regulation and the
damping effect of its source, Lake Couer d'Alene, has an extremely
stable flow regime. The Snohomish River is essentially unregulated,
and the flow regime is much more sensitive to Pacific Coastal storm
fronts. Nevertheless, the flow regime is dominated by the slowly
decaying recession limb of the hydrograph, accounting for the relative
stability of the flow regime.

Including the steady state flow assumption, eq. 2.la now becomes

g’;(u*(x)E*(x)) =T (2.1b)

*
where both u and ¢ are spatial functions only.
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It should be noted that the steady state flow assumption will not
hold for small streams, especially those characterized by partial or
complete urbanization. In these cases variations in flow rate must be
included in the analysis, e.g. the model used must include a rainfall
runoff module with channel routing capability, such as the Stanford
Watershed Model (Crawford and Linsley, 1966). For large streams such
as those investigated here, however, this should not be necessary.

In order to compensate for the assumptions made, it is necessary to

introduce an error term V(x) in eq. 2.1b, hence,

P2 * —% — —
I (u (¥)ec (X)) + V(x) =1 (2.1c)

where the averaging notation has been dropped and it is understood that

[ N P, —
u, c, r, and V are spatial functions only. In addition, it is assumed
that?
E(V(x)V (x,)) = Q(x)8 (2.4)
1 2 = X X
12
. . 0 i#j
where § is the Kronecker delta function, §,, = . - and x_ and x
ij 1 i=j 1 2

are discrete spatial locations. These assumptions are not so confining
as might be imagined. First, the noise covariance matrix Q is normally
assumed zero in the absence of divergence (see Chapter 3). Second, if
the noise vector is exponentially correlated and spatial locations of
interest are sufficiently separated, Jazwinski (1970) has shown that
the problem may be treated as if the requirements of eq. 2.4 were met.

Nevertheless, the solution of eq. 2.1c is by no means trivial as r may

a .
The notatlon\éi denotes '"the transpose of A",
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be very complex, and V can only be known, of course, in a statistical
sense.

The problem as formulated is to design a network of monitoring
stations capable of distinguishing long range changes (trends) in a
vector of water quality constituents whose dynamics are described by
eq. 2.1lc. The assumptions made in reaching this formulation are sub-
stantial, and since the validity of the solution cannot be better than
the assumptions imply, these assumptions should be emphasized. The
monitoring system design optimization is constrained to the detection
of long term variations in water quality parameters where the optimiza-
tion is based on quasi-steady-state flow and steady-state stream
quality dynamics and where only cross-sectional average concentrations
are considered. In addition the noise vector V included to compensate

for the assumptions made is assumed to be spatially uncorrelated.

I1. Design Methodology

" In this section the basis of the overall design methodology is
introduced. Details of methods used in design substeps are addressed
in Chapters 3, 4, and 5. It is the intent here only to provide the
reader with an overview of the relationship of the methods detailed in
later sections to the overall methodology.

As the problem has been formulated in the preceding section,
temporal and spatial dependence may be treated separately, where the
only temporal variations of interest are those measurable as long range
trends. Hence, the monitoring design may be optimized subject to a
constraint on maximum total samples per umnit time, fc, as follows.

First choose a range of candidate numbers of sample stationms,
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. . a . . . .
NS k=1, 2, ..., m. To satisfice sample station locations it is

k’
necessary to determine the propagation of uncertainty of estimated
quantities downstream from the sample station. For instance, associated

. . . . .. . 2
with a measurement Mji of a quantity j at station i is a variance Oji

. . . 2,
which may be used to parametrize the uncertainty, where Gji is deter-
mined by the confidence in both the model used (modelling error) and

.th
the measurement taken (measurement error). If Xi denotes the i sample
. . 2 2 . . .

station, a variance ijloji is associated with each point x where

X, <x<x, .
i i+l

Downstream at any point x, where Xi<X<Xi (the subscripts i and

+1
i+l denote sample station locations) is associated some variance

2 2 . .
ij . Here the conditional notation denotes the value of the

lo%.
ji

quantity j at location x conditioned on the variance based on the
measurement at location i, the closest upstream station. Schematically
the variance propagation as a function of distance, for arbitrary sample
station locations, may resemble that of Figure 2.3. In Figure 2.3
XNS is defined to be the end of the stream stretch, and is not a

k+1
sample station location, a convention followed throughout the remainder
of this work. The point reduction in variance at a sample station
corresponds to the additional information given by the measurement,

which results in a decrease in uncertainty in the estimate of the true

quantity.

8The term satisfice indicates a loosely defined pseudo-optimization in
situations where a strict global optimization is inappropriate. The
~term is especially relevant in problems where a solution which is pre-
ferred to other feasible solutions is readily available, and where the
global optimum is only very slightly preferred to this "satisficing"
solution. In this work solutions are sought which satisfice, rather
than optimize over the design criterion, hence even although the terms
optimal, optimize, etc. are used in later sections it should be under-
stood that the solutions are really satisficing, rather than optimizing.
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Figure 2.3. Variance Propagation Schematic

State estimation techniques allow the determination of variance propa-
gation and are utilized in this research. The details of this method
for determining variance propagation are discussed in Chapter 3.

Given the variance propagation as shown in Figure 2.3, criteria
may be developed for satisficing sample station location. The method

used here is to equalize the integrated variance associated with each

X,
station, i.e., | 1+lo% |0?, dx = constant, i = 1, 2, ..., NS, . Here
X jx!'ji k
i
Xi is the upstream boundary of interest and X&s +1 is the downstream
k

boundary. An apriori estimate of the variance, G§l is made at Xl.

If more than one parameter is included, the criterion is
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X
i+l NV
1 I ol |62

N b
Xi j=1

o,. °* w, dx = constant (2.5)

j1 J

where wj is an arbitrary weighting factor associated with each parameter
of interest, and NV is the number of parameters of interest. The choice
of the wj's is analogous to the choice of the weighting factors in a
multiple objective optimization and is ultimately, of course, subjective
as the wj's essentially provide an equivalence between "apples and
oranges'. In some cases, however, the weighting factors may be dictated
by legislation which establishes the constituents to be monitored.

The station location criterion of eq. 2.5 was chosen because it
provides an equalization of the integrated spatial dependence on each
station. Alternatively, a criterion may be selected which specifies
equalization of the peak variance magnitudes, as was done by Moore
(1971). This assumes, however, that the prediction variance increases
between sample station, as shown in Figure 2.3. Preliminary results of
this work showed, however, that this need not be the case; in fact, the
estimation variance propagation depends on the form of the model
dynamics and may actually decay between stations, making a peak variance
criterion meaningless. For this reason, the integrated variance
criterion was chosen.

Given the sample station locations for candidate numbers of sample
stations, NSk, the temporal sampling frequency may be computed as
f = fc/NSk’ where fc is the constraint on total samples per unit time.
Here uniform temporal sampling frequency is assumed and it is assumed
that the same parameters are measured at each sampling time.

At this point the introduction of some background from statistical
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hypothesis testing theory is necessary. Essentially we require the
power curve for each parameter as a function of spatial location, where
the power, Pw’ following statistical nomenclature, is the probability
of detecting a trend given that one really exists. In general,
Pw = Pw(a,n,oz,Tr) where o is the confidence level, or the probability
of prediction the existence of a trend given that one does not really
exist, n is the sample size, 02 is sample variance, and Tr is the trend
magnitude. The relationship becomes more complicated if the samples
are not independent, which is usually the case. Dependence in time
series and implications for hypothesis testing are discussed in detail
in Chapter 4. At this point, it is necessary only to recognize the
existence of a power curve, usually of the form of Figure 2.4 (curve 1)
for each n, where n = Ny-f, and Ny is the number of years over which
trend detection is desired. Throughout this work a base value of Ny of
four years was taken because this is approximately the length of time
over which permit renewal decisions must be made. The power PW is
determined at each location X where a, n, 02, and Tr are determined as
follows. The confidence level o is selected apriori. A base confidence
level of 95% was used throughout this report. The sample length n is
computed as described above. The variance, 02, must be computed using
historical information as well as the prediction variance. In general,
the variance of an arbitrary historical sequence has two contributions,
measurement and prediction error and natural variability. These two
contributions may be assumed to be independent, hence 02 = Oi + Oi,
where Gi and Gi are the measurement and prediction, and natural

contributions, respectively. At any point x, the variance in the time

series of predicted values based on a given selection of sample locations



36

Figure 2.4, Typical Power Curves

. 2 2 2 c s .

is O = Gn + O'x where the conditional notation has been dropped
Pix 3 J )

but it is implied that © is the predicted variance in the time

ix
series at location x conditioned on the time series at the closest

upstream station, i. Finally, the trend magnitude, Tr is selected
apriori and is equivalent to the selection of, say, the design storm
for a structure. Two forms of trends are considered, linear and step
increase. The linear trend is a uniform increase of magnitude Tr

over the record length and the step increase is an instantaneous



37

change of magnitude Tr at the midpoint of the record. Consequently
a linear trend of magnitude Tr has the same average change over the
record length as a step trend of magnitude Tr/2.

Having determined, in a manner specified in Chapter 4, the power
at each spatial location, an integrated measure of the power may be

computed as

XNSk+l NV
P, = | £ P, W, | dx (2.6)

X i=1 ix J
where Wj is an arbitrary weighting factor and NV is the number of
variables of interest. The optimization is now performed by choosing
P* = mﬁx (Pk)'

Typical power curves are given in Figure 2.4, (Curve 1 shows how the
power of detection of a trend of given magnitude (fixed Tr) increases
with the number of samples, n, taken. Curve 2 shows the increase in
power with increasing trend magnitude Tr for n fixed. Both curves 1
and 2 assume the standard deviation of the series of observations to
be fixed.

This introduction has ignored, in the interest of brevity, such

difficulties as the choice of design trend (Chapter 5), dependence in

the time series of observations (Chapter 4),estimation of oi (Chapter 5)

and the influence of seasonally driven cycles (Chapter 5).



38

III. 1Issues in Model Building

In order to progress beyond a purely kinematic approach to monitor-
ing system design, such as that proposed by Sharp (1970; 1971), it is
necessary to incorporate knowledge of the dynamics relating values of
water quality parameters. This leads inevitably to the need to concep-
tualize the form of the interactions between parameters, hence the choice
of a model. Some brief comment concerning this choice seems appropriate.

The question of choice of model is often surrounded by controversy,
since that decision is, in the end, a subjective one. Recognition of
two differing objectives in model building may reduce some of the sub-
jectiveness, however. Models may be used as an aid in conceptualizing
physical processes; such conceptualization may be an end unto itself,
particularly in scientific research. In engineering research, concep-
tualization is normally seen as a means toward ultimately building
operational models for design application. In either case, if
conceptualization is the objective of the model, a reasonably detailed
approach is usually taken, and there is a conscious attempt to attach
a physical meaning to model components. If, on the other hand, the
objective is to build an operational model, one which merely reproduces
observed phenomena, it is not always necessary to attach direct
physical meaning to components in the modelling process. For instance,
some components may be lumped in such a way that their individual
contributions cannot be disaggregated, and components which are
relatively insignificant may be ignored. Often models of the first

type suggest required forms for models of the second type. Dracup,
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et al. (1970) provide an extensive analysis of considerations in model
building which emphasizes possible pitfalls,

For the purpose of this research, operational models are preferred.
This is so because the requirement for monitoring system design is not
so much a conceptually accurate understanding of parameter interactions
as an adequate basis for describing variance propagation in aﬁ operation-
al sense. 1In fact, a secondary use of the data collected (the primary
use is, of course, trend detection) is the development of improved
models. The improved models may be used to redesign the monitoring

system. The process is an iterative one, as shown in Figure 2.5,

Existing Design/Update Gather
Operational Monitoring Data primary data
Models System use

|

Improve
Operational (e
Models

secondary data
use

Advances in
Conceptual Models
Models

Figure 2.5. Interactions Between Monitoring System Design
and Model Building



40

Harper (1972) conducted a survey of operational water quality
models. In general, he found that the more detailed of these were one
dimensional, included the BOD-DO-nitrification system with settling and
resuspension terms, accounted for phytoplankton photosynthesis and in-
cluded dynamic flow routing. A more recent review by Systems Control,
Inc. (1974) showed that the principal change since Harper's review was
conducted has been the incorporation of hydrologic aspects of water
quality modelling through coupling of a watershed-hydraulic routing model
with water quality modules similar to those reviewed by Harper,

The author is unaware of any quantitative attempt to compare
performance of the different operational water quality models on the
basis of the limited data usually available for calibration and verifica-
tion. There is, however, undoubtedly some level beyond which increased
complexity results in decreasing performance, i.e. 'overfitting" the
data.

The methodology developed in this report is not dependent on a
particular form for the modelling of parameter interactions. Implementa-
tion, however, requires specification of the form of the dynamic inter-
actions using some model as a basis. ‘The model selected has three
modules. The primary module includes interactions between biochemical
oxygen demand (BOD), dissolved oxygen (DO), orthophosphate (O—POA—P),

nitrite (NO -N). Two secondary

2

-N), nitrate (N03—N) and ammonia (NH3

modules describe coliform and temperature dynamics. The primary module
is a simplified form of the DOSCI steady-state stream model developed
by Systems Control, Inc. (Finnemore & Shepherd, 1974). The coliform
module includes a simple first order die-off with a non-point source

supply term, and the temperature model incorporates a simple heat
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balance approach. A detailed description of the models used is provided
in Appendix A. The DOSCI model was chosen because of its ease of acces-
sibility (the program listing itself is available to the user), because
it appears to be representative of the general level of operational
models presently available, and because the steady state assumption

made in this research is incorporated in the model, reducing computation
time considerably. This particular choice of model form does not suggest
a judgment of superiority over other available models, in fact the
methodology developed here could proceed with the choice of any other
available model. The choice is primarily one of convenience to both

the author and potential users of the methodology developed in this
research.

In the following chapter the basic elements of state estimation
theory required to incorporate the dynamics of a deterministic model
(e.g., the DOSCI steady state stream model) in a filter (stochastic)
model are introduced. The results of this development will ultimately
be used in establishing the particular form of the variance trajectories
(Figure 2.3) for a vector of water quality variables. These trajectories
are necessary to specification of sample station locations as well as
to determination of measurement and prediction error as a function of
spatial location. The latter result is necessary to derive trend detect-
ion power curves at each spatial location along a river reach condition-

ed on given sample station locatioms.



CHAPTER 3

USE OF STATE ESTIMATION TECHNIQUES

IN DESIGN OF MEASUREMENT SYSTEMS

I. Introduction

State estimation theory has long been a topic of interest in the
aerospace field. Before the landmark work of Kalman and Bucy (Kalman,
1960; 1963; Kalman and Bucy, 1961), however, the theory was essentially
incompatible with numerical techniques. The work of Kalman and Bucy,
while originally limited to linear time-invariant systems, gave impetus
to more recent work, the result of which has been numerous filtering
approaches applicable to more general nonlinear, time-variant systems.
It is the purpose of this section to briefly review the theory, to
present several of the more well known nonlinear filtering techniques,
and to discuss their adaptability to measurement system design.

The general model considered in all the filtering schemes discussed

here is:
dX(t) = f(X,t) dt + dn(t) (3.1)
dz(t) = h(X,t) dt + dw(t) (3.2)

where ;(t) and ;(t) are Wiener processes and

E(dw(t)dw (t))

R(t)dt (3.3)

h

E(dn(t)dn’ (t)) = Q(t)dt (3.4)
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dZ (t)
dt

Here i(t) is the system state vector and Y(t) = is the measurement
vector.

Special cases of eqs. 3.1 and 3.2 are:

1. f£(X,t) = gﬁt)g(t) linear state equation.

2. ?Ki}t) = fz(t) linear time-invariant state equation.

3. E(i;t) = E(t)i(t) linear measurement equation.

4. h(X,t) = hX(t) linear time-invariant measurement equation.

It should be noted that in aquatic systems measurements are almost
always linearly related to the system state. For instance, a typical
application is the estimation of a state vector of concentratioms of
water quality indicators where some or all of the indicators are measured
directly. Consequently, in the applications of interest the measurement
equation is almost always linear and often time-invariant. Equations

3.1 and 3.2 may be written (formally only, as the derivatives %% and

dw . .
a€~do not exist in a strict mathematical sense) in the more familiar
form
X == dn(t)
e f(xX,t) + e (3.5)
dz _ = == dw
— =Y = + — .
T==Y(0) = h(XK,0) + gy (3.6)

where g-I—l-:—md dw

at qc are independent Gaussian white noise processes with

zero mean and covariances Q(t) and R(t), respectively.

Two criteria form the backbone of almost all filtering schemes.
The first, and that used in the original Kalman-Bucy papers, is the
minimum expected loss (MEL) criterion. The second is the maximum

aposteriori (MAP) criterion motivated by a maximum likelihood
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approach. The more familiar MEL criterion is discussed first.

A necessary concept to the use of state estimation techniques is
that of a loss function. A loss function is a quantitative description
of the weight given to each data value in arriving at the estimate of
a state variable. The state estimate chosen is that which minimizes
some statistic of the loss functions of the data, often the mean. A
simple example is that of finding the "best' estimate of a given func-
tional form through a given data set. If the function f is specified by
a parameter O, the problem is to choose 6 so as to minimize the mean loss

between the data and the function, i.e.

min I L(Xi - f(Xi)) where L is the loss function.
6 i

Two frequently used loss functions are the squared error L(§) = EZ and

absolute value L(§) = |€| loss functions. Squared error loss functions
are generally optimal in a classical statistical sense (i.e. they yield
estimates with minimum variability) if the data are normally distributed.
For other distributions, particularly those with much heavier tails than
the normal distribution, squared error loss functions may be much less
efficient than loss functions which weight the extreme data parts less
heavily, such as the absolute value loss function. The squared error
loss function is chosén here primarily because the existing state
estimation algorithms are based on its use. Modifications are, how-
ever, possible (if necessary) to avoid overweighting the extreme data
(Martin, 1974).

A more rigorous definition of the concept of a loss function is

as follows (McGarty, 1974):
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Define a loss function L to be any function belonging to a class having

the properties that:
1. p(0) =0

2. p(E)) 2 p(E) >0 = L(E,)) 2 L(§)) 20

If we choose p(&) = kEz, k a constant, we have the familiar quadratic
form which leads to minimum mean square error (MMSE) estimates.
Jazwinski (1970) proves that for any real, non-negative loss function

p, the optimal estimate of a state random variable Xt is the conditional
mean E(Xt|Yt), where Yt are measurements of the state Xt up to and
including time t.2 Here "optimal" is defined as the estimate which
minimizes the expected loss. Jazwinski's proof requires the additional
assumption that the probability density function of Xt conditioned on

Yt be symmetric and unimodal. This restriction is not necessary,
however, and a more elegant proof which does not require this assumption
is possible through the use of orthogonal projection theory (McGarty,
1974). Consequently, the conditional mean is the MEL estimate for all
systems of the form of equations 3.1 and 3.2, linear and nonlinear,
subject to the general assumptions made as to the form of the loss
function.

Although the theoretical derivation of the filter equations requires
only that the loss function satisfy the requirements given above, in
practice most MEL filter algorithms require in addition that the loss
function be minimum squared error and that the apriori distribution of

the state variable (vector) be Gaussian. This condition allows

a, . . . .
The notation X 1is used as a contraction of the notation X(t) used
elsewhere in this work.
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propagation of the covariance matrix using the basic property of random
variates that linear combinations of normally distributed random vari-
ables are themselves normal, Hence, choice of the squared error loss
function is implied by the filter algorithms used in this work.

Equations 3.5 and 3.6 for the case of a linear state-linear measure-

ment system lead to the well-known Kalman filter algorithm:

§(k+1|k) = O(k+1,k) %(klk) (3.7)
P(k+1|k) = &(k+1,k) P(k|k) @ (k+l,k) + Qk+l) (3.8)
K(k+1) = P(k+1|k) y_T(kﬂ)(g(kﬂ) P(k+1|k) _y;T(k+1) (3.9)

+ R+ (3.9)
X(k+1]|k) + K(k+1) (Y (k+1) - M(k+1)

§(k+1|k+1)
X(k+1]k)) (3.10)

P (k+1|k+1)

(I - K(k+1)M(k+1)) P(k+1) (3.11)

where ¢ is the solution to é_= F(t)¢ and F(t) is the (linear) coeffi-
cient matrix in eq. 1. In eqs. 3.7-3.11 P is the estimated state
covariance matrix and K is the gain matrix. M is the measurement
matrix corresponding to the linearized form of eq. 3.2. The notation
(k+1|k) indicates an estimate at time k+l based on measurements to
time k. Equations 3.8, 3.9, and 3.11 are sufficient to yield an
estimate of the state covariance matrix at any time, and are indepen-
dent of the measurements. However, this independence breaks down for
non-linear systems. For a detailed derivation of the Kalman filter,
see Jazwinski (1970).

An alternative approach to the filtering problem is to use the

maximum likelihood approach, that is, to ask the question: Which



47
estimate of the system state maximizes the posterior density of the
state estimate conditioned on the measurements? By making use of Bayes'
theorem, this conditional density may be written as a functional of the
probability density function of the measurements conditioned on the
state estimate and the unconditional probability density function of
the state. The desired estimate of the state maximizes this functional.
Cox (1964) presents an approach which makes use of the method of Lagrange
multipliers and dynamic programming to maximize the functional. For a
linear system the solution is much more straightforward; McGarty (1974)
shows that for a linear system the maximum aposteriori (MAP) filter is
identical to the Kalman filter given in eqs. 3.7-3.11. For nonlinear
systems the MAP estimate may be quite close to the MMSE estimate so long
as the posterior density is unimodal. The primary disadvantage of the
MAP approach is that it is essentially a modal technique and may give
spurious results if the posterior density is multimodal. This is a
serious problem since without a much more complex analysis, it is

normally not known if the posterior density is unimodal or not.

II. Difficulties in Implementation

Although the Kalman and related filter algorithms appear quite
straightforward, difficulties are often encountered. The most signifi-
cant of these are the effect of nonlinearities and the divergence
problem. These problems are often not mutually exclusive; the method
used to handle nonlinearities may be responsible for divergence. The
effect of nonlinearities is discussed first.

Filtering of nonlinear systems may be accomplished in several
ways. The most obvious is to make use of the Kalman filter linearized

about a nominal trajectory. Hence eq. 3.7 is replaced by
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dx =
E(tltk) = f(X(tItk)) t St (3.7a)
and the state transition matrix is the solution to
a2
T = Fo (3.12)
Bfi
where F = ’F13§ = Sl (3.13)

X = fi(klk)

In essence, this method involves expanding the nonlinearity as a Taylor
series about the estimated value and retaining only the linear term.
Equations 3.7-3.11, with 3.1 replaced by 3.7a and 3.12 and 3.13 used
to generate the state transition matrix constitute the extended Kalman
filter.

Several more sophisticated filters which retain higher order terms
are presented by McGarty (1974). Schwartz and Stear (1968) presented
a comparison of several nonlinear filters applied to two simple non-
linear problems with and without nonlinear measurements. In general,
as would be expected, the more complex filters performed better thﬁr
did the extended Kalman. Under some conditions, however, notably when
the measurement system was linear, the superiority of the nonlinear
filters was not marked. In such situations the computational simplicity
of the extended Kalman filter may dictate its use.

The problem of divergence results frequently in filter application.
Divergence manifests itself in the decay of the gain matrix (K in eq.
3.9) which causes measurements to be virtually ignored. If the dynamic

model is inexact, which is often the case, the filter estimates may
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diverge from the true values, with the actual estimate error becoming
inconsistent with the estimation error. The source of the problem
usually lies in estimating the system noise covariance matrix, Q. The
Q matrix is difficult to estimate, while the measurement noise covariance
matrix, R is relatively straightforward to obtain. Unlike the measure-
ment noise, (for which the modeller usually has some feel) the system
noise cannot usually be readily estimated from experience. Examination
of eq. 3.9 shows that the gain matrix K depends directly on the value
of the conditional state covariance matrix, E(k+1]k), which is composed
in part of the system noise covariance matrix, Q. Several methods are
available for estimation of Q, although none of them has a strong
theoretical basis. The most straightforward approach is trial and
errdr. The value of Q chosen is that which yields actual mean square
errors between the observations and predicted values which are consis-
tent with the measurement error covariance matrix R. This approach is
probably the most convenient for systems with state vectors of small
dimension. For large dimensional systems, however, complicated search
techniques will be required to find the optimal value of Q, and compu-
tational efficiency may be greatly impaired.

A more elegant approach to the estimation of Q has been proposed
by Jazwinski (1968; 1970). His method makes use of the expected mean
square residual, defined as the expected mean square difference between
the measured values and the predicted state, to yield Q. So long as
the actual residuals are less in absolute value than their one standard
deviation (10) limits, Q is taken as zero, otherwise it is taken as the
excess of the actual residual squared over the expected mean square

residual, scaled appropriately. A problem sometimes arises in obtaining
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a statistically significant estimate of Q using this method. One
approach is to smooth several such estimates. The biggest disadvantage
of the method is that it requifes processing of the measurements first

to obtain the Q matrix, then reprocessing to yield the filter state
estimates. Alternatively, an "o0ld" estimate of Q may be used in process-
ing new measurements, potentially resulting in a lag in filter response
to divergence.

The author has experienced stability problems in the use of the
adaptive filter. A large residual tends to heavily weight the smoothed
estimate of Q toward large values, hence the filter "follows" the meas-
urements very closely. This reduces the residuals and results in the
local estimate of Q being zero (0). The filter slowly recovers under
the influence of these small estimates of Q until another large residual
occurs once again resulting in a large Q. One possible approach to this
problem is to design an appropriate rejection rule for processing the
residuals. However, the computational requirements of the adaptive
filter are already substantial, particularly since measurements must
be processed as scalars. More sophisticated filters such as the
optimally driven filter discussed below aid in eliminating linearization
errors as a source of filter divergence, and were implemented in this
research. Since, in general, only a very few measurements were
actually processed, the diagonal elements of the state covariance matrices
remained quite large and filter divergence was not found to be a signifi-
cant problem.

The optimally driven filter was proposed by McGarty (1974). This
filter makes use of a forcing term added to the right hand side of the

nonlinear state prediction equation 3.7a:
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%(dtk) = ?(i(tltk)) + ¥Y(t) (3.7b)

The forcing function ¥ is chosen to eliminate the bias resulting from
linearizing the non-linear system. The system nonlinearity is expanded
as a Taylor series, retaining terms through second order for use in the
solution for X. Equation 3.7b is iterated to continually provide the
linearization point used in the solution for X. Hence, the filter is
essentially a second order approximation to the nonlinear system with

a corrector for the linearization error. Consequently, the optimally
driven filter should reduce linearization error as a source of divergence.
This is, however, no guarantee that divergence will not occur; lineari-
zation error is only one cause of divergence. A detailed derivation of

the optimally driven filter is presented in McGarty (1974).

III. Applications in Measurement System Design

The use of state estimation or filtering techniques described above
offers a useful tool for measurement system design. All of the filters
discussed provide an estimate of the conditional state covariance
matrik, that is, the second central moment of the probability density
of the state estimate conditionmed on a given number of measurements.
Hence, we are provided with a measure of the propagation of uncertainty
through the system, which allows the measurement points to be chosen in
some optimal manner.

Several possible optimality criteria are feasible. In what follows,
we consider that the number of sampling points has been fixed by some
given constraint, and the problem is to optimally locate the given number

of stations. One possibility is to locate the stations at the points at
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which the uncertainty or sum of estimated variances of the given param-
eters reaches a threshold value. The uncertainty chosen may be either
that provided by the covariance measure at a given point conditioned on
a new measurement (g(k+l|k+l)) or that conditioned on an old measurement
(E(k+1|k)). Moore (1971) used the former criterion. The latter cri-
terion seems more realistic since, as a measure of the uncertainty
conditioned on the last measurement it gives an estimate of how well
the previous (upstream) estimate may be extrapolated to estimate down-
stream conditions; it is not site-specific. The criterion used by
Moore is specific to the location at which the new measurement is taken;
it tells only how much uncertainty remains after taking a new measure-

ment if one is taken; if no measurement is taken the estimate has no

meaning. Since an entire reach of river is being searched for the
optimal measurement station location, it seems appropriate to assume
that a measurement will not be taken at any given location, hence the
use of the covariance conditioned on the previous measurement. The
criterion used here of choosing station locations which equate the space
integrated variance sums between stations is more meaningful than choice
of a maximum variance threshold in cases where the conditional variance
decays, rather than grows with time for the reasons indicated in

Chapter 2.

As discussed earlier in this chapter the measurement and state
prediction equations (eqs. 3.7 and 3.10) do not enter directly into the
measurement problem. They are, however, indirectly present in the case
of a nonlinear system if the predicted state is used in the lineariza-
tion trajectory or in estimating Q. Since parameter uncertainty is

often a substantial contributor to estimation error, systems which are



53
linear in the state variables are usually nonlinear when the parameters
themselves are taken as state variables. Hence, even if the variable
interactions at first glance may appear to be linear, extension of the
theory to nonlinear systems is of interest if parameter uncertainty is
to be modelled. 1In the nonlinear case, the measurements enter into the
determination of the linearization point and the estimate of the state
transition matrix only if linearization about the filter estimate is
used. The linearization point may be determined using a nominal trajec-
tory, thus eliminating the requirement for measurements in estimating
the state covariance matrix. The error introduced by doing this depends
on how closely the true trajectory follows the nominal trajectory. The
Q matrix enters only as an additive term, hence the specification of
station locations will not be affected so long as Q is time-invariant
if the covariance conditioned on previous measurements (eq. 3.8) is
used to estimate propagation of uncertainty. If the updated state
covariance estimate (eq. 3.11) is used, however, Q enters in a more
complex manner and the analysis becomes measurement dependent. The
simulation alternative does provide a method of obtaining an apriori
estimate of Q, however, so that with some additional effort the entire

analysis may be carried out independent of the measurements.

IV. Example of ?ropagation of Conditional State Covariance Matrix

As an example of the propagation of the conditional state covari-
ance matrix (eq. 3.8) the simplified Streeter-Phelps equations have been
treated as a nonlinear problem using an extended Kalman filter. The

system may be written in vector form as:
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where Xl = DO deficit
X2 = BOD remaining
X3 = BOD decay constant
X4 = reaeration coefficient
X5 = stream velocity
wi = Gaussian yhite noise process with variance Qii

The extended Kalman filter intFoduced earlier was implemented using
as the initial uncertainty values (E(OIO)) a diagonal matrix consisting
of the initial values used by Burges and Lettenmaier (1975). The
measurement system consisted of linear measurements of DO and stream
velocity only. The measurement error in DO was taken to be 0.25 ppm2
and in velocity 36 (mi/day)z.

The results of the simulation are shown in part in Figure 3.1.

The general character of the curves is close to that provided by the

first order approach used by Burges and Lettenmaier. Sensitivity tests
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Figure 3.1. Comparative Plot of Uncertainty in DO and BOD

for Conditions of Burges and Lettenmaier (1974)

indicated that the maximum uncertainty in DO is about the same regard-
less of the initial conditions, so long as the initial uncertainty is
not too large. If the initial uncertainty is very large, the maximum
moves to the initial time and decays rather than increases as in Figure
3.1; assymptotically, however, the behavior becomes independent of the
initial conditions. It is the potential for this decaying behavior

that resulted in selection of the criterion measure of eq. 2.5 for
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locating sample statioms.

The use of state estimation techniques to aid in sample station
placement is particularly helpful in the design of trend detection
networks since not only are the sample station locations provided but
the (conditional) variance trajectory itself is specified. This is
especially important as the variance (more accurately, the standard
deviation) of the estimate of the state variable trajectory is required
for determination of the power of trend detection. This issue is ex-
plored in detail in Chapter 4. The application of state estimation
theory is not constrained to use in trend detection alone. Sample
station locations for other types of monitoring may also be determined
using this method. The coupling of the state estimation methodology
with the theory of hypothesis testing necessary to implement a trend

network design approach is described in Chapters 4 and 5.






CHAPTER 4

USE OF STATISTICAL TREND DETECTION TECHNIQUES IN DESIGN OF

AMBIENT WATER QUALITY MONITORING NETWORKS

I. Introduction

The primary reason for the existence of ambient water quality
monitoring networks is the detection of trends or their absence. A
fundamental tradeoff exists between temporal sampling frequency and
spatial sample station location; in general the total number of samples
taken per unit time, i.e., the temporal frequency times the number of
stations is constrained by budget and manpower. A preliminary require-
ment necessary to any optimization scheme is the identification of the
performance of a given sample station in detecting trends as a function
of temporal sampling frequency.

The statistical problem of detecting trends is the well known
hypothesis testing problem of the classical statistics. As hypothesis
testing nomenclature is used throughout this section, a brief review
of the theory is included here.

The standard form of an hypothesis test is to test a data set on
the null hypothesis H0 versus an alternative hypothesis Hl’ where Hl
is the complement of the null hypothesis, or the hypothesis that Ho is
not true. In the tests of interest in this work Ho is the hypothesis
that there is no trend in the population from which the data are drawn
while Hl is the hypothesis that a trend does exist in the population.

Hence we have two possibilities of truth and two possible conclusions

which might be drawn from the data set. Logically, two of the possible
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conclusions will be incorrect, representing two different types of
error. The possible states of truth and test outcomes may be shown

schematically in the table below taken from Conover (1971):

Decision
Accept H_ Reject Ho
H = 1- =
State of o True P > (T 2 1 grror)
Nature P
(truth)

p=28 p = 1-B
Ho False (Type II error)

Type I error is the rejection of HO when Ho is really true and is
parametrized by o, the significance level of the test.

While the probability of type I errors is certainly an important
consideration, it gives no indication of how successful a test is in
establishing differences in the population. For example, in our case
a only gives the probability of stating that a trend is present when
none really is; we are more interested in knowing how effective a test
is in establishing the existence of a trend when one really exists.
This probability is 1-B, and is known, appropriately, as the power of
the test. The power of a test, unlike the confidence level, is not
constant for a given population size; it can vary with parameters
(specified or otherwise) of the population. This does not seem un-
reasonable, since, for instance, the probability of making a type II
error, or of stating that no trend is present when one really is, will

most likely depend (at least) on the trend magnitude.
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II. Parametric and Nonparametric Tests

If the underlying probability distribution is known, a test
tailored to fit that distribution may be designed. Perhaps the best
known of these parametric tests is the family of t-tests for normally
distributed data. If the parametric test is well designed, it will
have power at least as great as any nonparametric competitor. However,
the parametric tests usually are not robust to changes in the distribu-
tion. In practice, sample sizes are often moderate to small, so the
underlying distribution is almost never known with high confidence (most
goodness-of-fit tests require very large sample sizes to distinguish
between distributions with moderately similar characteristics), there-
fore the use of parametric tests is often dangerous. In fact, non-
parametric tests (tests which do not require knowledge of the probability
distribution of the data) exist which have high efficiency relative to
the tailored-to-fit tests for many families of distributions, where
efficiency is defined as the ratio of the number of samples required
for given power for the best tailored-to-fit test to the number required
of the nonparametric competitor.

Statisticians often use the assymptotic relative efficiency
(A.R.E.) which is simply the limit of the efficiency as defined above
as the sample size approaches infinity. The A.R.E. of nonparametric
tests is most often stated with respect to the power function of the
analogous t-test for normal random variates. The appeal of A.R.E.'s
is their ease of computation; unfortunately their usefulness is limited
since the finite (small to medium) size sample behavior is most often
of interest. Finite sample efficiencies usually are most easily deter-
mined using Monte Carlo sampling techniques as a result of mathematical

intractability of the manipulation required. The Monte Carlo approach
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is pursued below with respect to the nonparametric tests investigated.
One set of parametric tests which lends itself to fairly straight-

forward computation of the power function is the family of t-tests.

The computation of the power functions for the t-tests for step trends

as well as for linear trends are carried out in the following section.

The computation of power for the t-tests allows a base against which the

power of the nonparametric tests may be compared.

I1I. The Case for Nonparametric Statistics

0f great interest in many cases is performance of a candidate test
under some family of distributions removed from normality, particularly
those with tails that are heavy compared to the normal distribution with,
say, identical location (e.g. mean, median) and scale (e.g. standard
deviation, inner quartile distance). Distributions with heavy tails are
important in any work dealing with natural systems where occasional very
extreme events (e.g. occasional instrumentation errors or extreme natural
events such as floods) result from a population different from that
generating the majority of events recorded. Gross (1973) presented
Monte Carlo results which showed that two nonparametric tests (the
sign and Wilcoxon tests) performed nearly as well as an approximately
tailored-to-fit test (the wave test) for heavy tailed deviations from
normality in cases in which use of the standard t-test resulted in con-
fidence interval lengths which were up to 55 times too long. This
worst case resulted when the second population contributed a relatively
large proportion of the random variates and where the second population
had very large scale compared to the first. Substantial errors were

also shown to result, however, when the second population contributed
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a relatively small proportion of the total sample and had scale not
greatly larger than the dominant population.

The performance of the nonparametric tests, on the other hand,
broke down only for sample sizes smaller than about 20 and for very
heavy tailed distributions; for larger sample sizes the nonparametric
tests approached the performance of Gross's wave test while the t-test
fell apart completely. The nonparametric tests had a further advantage
in that no assumptions of symmetry in the generating distribution are
required in contrast to the wave test. This is an especially important
consideration in water resource applications where symmetric distribu-
tions are the exception rather than the rule.

It is not surprising that the nonparametric tests perform reasonably
well under heavy tailed alternatives, since these tests make use of signs
and ranks rather than the data itself. For instance, Spearman's Rho test

uses a statistic

2
0l
[ e R =]

L 2
l(Ri—l)

i
where Ri denotes the rank of i in the pool of n observations. The null
hypothesis is rejected if NS lies outside a given range. Mann Whitney's
test uses a statistic based on sums of ranks (Conover, 1971). When
ranks, rather than the data values themselves are used, a single extreme
value has the same incremental effect on the test statistic as does a
moderate value, whereas in the case of a least squares estimate a single
value can overwhelm the test statistic. Because it is extremely difficult
to distinguish between, for example, a Gaussian and a moderately con-

taminated Gaussian distribution for small to medium sample sizes, there

is a great deal to be said for the use of nonparametric statistics.
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A final point concerning robustness of test statistics is the result
that the performance of both parametric and nonparametric statistics with
respect to heavy tailed alternatives tends toward an increase in type II
errors and a decrease in type I errors, i.e. the power decreases and the
true confidence level tends to be less than the stated level. Hence, the
tests always behave more conservatively when used against heavy tailed

distributions.

IV. Power of Some Parametric Tests

Because nonparametric tests are robust against small to moderate devi-
ations from normality, they are used throughout this work. It is useful,
however, to parametrize the power curves of the parametric t-tests since the
power (determined by Monte Carlo methods) of the non-parametric tests may be
described in terms of the analytical results derived for the t-tests. The
power of the t-tests against step and linear trends are derived in the fol-
lowing two sections for the type 1 error probability, o, fixed.

The parameter of principal interest for the statistical tests we select
as candidates is the B error, the probability of acceptance of the null
hypothesis if false. The type II error, or alternatively the power of a
given test, will, in general, be a function of the true trend magnitude, the
record length, the underlying probability distribution of the time series
being tested, and the magnitude of some specified scale estimate of the dis-
tribution. For the two t-tests of interest, this functional dependence may
be derived analytically. The derivation is presented in the following sec-
tions. A Kalman filter approach is used in this derivation of the power
curves for the two t-tests. The Kalman filter approach was chosen in lieu
of a more classical method because it offers an insight into the applica-
tion of the Kalman filter algorithm for two systems with very simple dy-

namics, which should prove helpful in reading the following chapters.
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Step Change, Kalman Filter Approach

We consider first the case of an underlying generating mechanism

which includes a step increase in the mean of the distribution only.

A convenient method of approaching the problem is as a filtering

problem; we attempt to filter out the noise present to allow a possible

distinction between the two levels in the process.

The problem may be

formulated as a linear (Kalman) filter if the underlying probability

distribution is normal, which is, of course, implicit in use of the

t-test.

The true process in

X, =
1

02=

this case is:

€.
1

R

where € is normally distributed with mean zero and variance R, i.e.,

€ VN (-]0,R).

Hence the linear filter is

dx

det
d =
Pk(l—Pk)
whence Pk+l = —
P + R

k

(see Chapter 3):

0 (4.1)
1 (4.2)
(4.3)

Here R is the measurement noise variance, which in this case is

equivalent to the process noise, and Pk+l is the estimate of the

variance of the mean at step k+l.

apriori estimate of the process variance.
+

that

At step zero, we take Po as our

Hence it can easily be shown
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P_ = n‘Po_ii‘ (4.4)
We note that if P0 = «© (no apriori information) Pn = R/n as expected.
In addition, for n large, the effect of the apriori estimate is
negligible, also as expected.
For convenience define 02 = Pn. Now for N = 2n = total record

length and for independent observatious Xi’ we are testing

H : )

vs. Hio: ooy # Hy

where ul and “2 are the population means of the first (and the second)

halves of the data set.

- n _ N
-We make use of the fact that X, = 1 L X, and X =1 L X,
1 n . i 2 n . i
i=1 i=n+l
are independent, hence
Var (X,-X,) = Var(X,) + Var(X)) = 20?2 = g,° (4.4a)
172 1 2 * )

Now we desire, for fixed o, the probability of detecting differences in
the mean values. The problem may be schematized as below for the two

tailed test:

- — —— —— -

lul—uzl—K 0 u M,
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= = 1 =0 9
Here K o*wl—a/Z and wl—a/2 standard normal deviate for 100(1-0/2)%
probability. The above curve may be transformed to a standard normal

by translating by p,-p, and dividing by o,, shown schematically below:
172 *

Od e e =

k'

Iul—uzi

Here ' = 5, - wl—a/Z

2 .
Hence at confidence level 1-0, and assuming ¢ known, Pr(detection)

X -X
172
= PTG T v g0
Iul_uzl 4
R T (4-9)

*

where x v N(-

0,1) and Fx is the cumulative distribution function of x.
We note that the test may be parametrized by

- |~ o o,

___1..__2__‘_/_11 where .—Iel— =

wl—OL/Z - /5 o
€

or, for a given confidence level simply by

luy=u,| v
V2 o
€

since Vi _0/2 is independent of n.
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If the variance is not known, the test may be parametrized by

luy-u, | v _
Y25
where tl—a/2 is the student's t deviate for n-1 degrees of freedom at

confidence level 1-a/2 and SE is the sample standard deviation of €.

In the case where variance is known, a dimensionless number

T N
N = L (4.5a)

T v.9)
€

may be defined where Tr = lul—u2| and N= 2n = total record length.

A plot of power versus N for a step trend is shown in Figure 4.1.

T

1.0

0.8 [~

0.4 -

0.2

0.0 1 i i i 1 1 1 i

0.0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 4.1. Normalized Power Curve for t-Test (Variance Known)
Against a Step Trend
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IV.2. Linear Increase, Ka
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was taken as R, the true variance. For

ter than about 30) the power for the case

than but almost identical to that plotted.

lman Filter Approach

We consider now the case of a linear trend with superimposed

Gaussian white noise. The true process in this case is:
X, =it + €, (4.6)
i i
and the Kalman filter is:
. Xl X2
P = 4.7)
X2 0
1 1
¢ = (4.8)
0 1
i T
R(P + 2P +P,,) R + P, )
llk 12k 22k le 22k
Dy Dy
Pk+l = (4.9)
R(P, + Py, ) Py, (P +R)
k k + PZ
12
Dk Dk k-J
where D, =P + 2P + R.
k llk 12k
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We are primarily interested in P22 , the estimated variance in the trend
k ,
magnitude at time step k. For the general case with estimated apriori

(k=0) values of P P ., and P

11° F12 the general expression for the

22
covariance matrix at any time step becomes extremely messy. If,
however, we choose Pll = P22 = o Pl2 = 0, the relationship is much
o o o
easier to handle. This corresponds to the case of no apriori information,

as is assumed in the classical statistical tests. In this case it can

easily be shown that the succession is as follows:

time step, k P22/R
0 o
1 o
2 2
3 1/2
4 1/5
5 1/10
6 2/35
7 1/28

For the classical regression of Y on X (not to be confused with
notation used elsewhere in this paper) the variance of 7, where Yi =

Y + TXi + €5 and © is the sample estimate of T, is

2
o
Var(?) = ;(E_ (4.10)
) x%
i
=1
_ . n
where x, = X, - X and X = 1/n I X,.
i i n n i
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Here Oe is the variance of the noise process, and is equivalent to
R in the filter problem above. Also, in our case Xi = i, hence we can

compute Var(f) as a function of n as below:

n Var (1) /oe2
i w
2 2
3 1/2
4 1/5

It is apparent that the variance of the classical regression estimate is
jdentical to that of the Kalman filter. A straightforward proof by
finite induction will establish that the filter result is identical to
the classical regression result for all n. Hence the use of the linear
filter to test for the existence of a linear trend will be identical to
the standard t-test.

The values for the power of the t-test based on the filter approach
derived below are based on the assumption that R is known, hence they
give an upper limit for the power of the test. For n 2 30, the
standard t-test will have very nearly identical power to the values
derived below assuming variance known.

The power of a test is, by definition, the probability of detect-

ing a trend when one really exists. Hence if a two sided test is used,

and if the trend magnitude is T, we desire Pr(|?| - wl—a/2 ar(?y > 0)
T
=1 - Fx(wl-d/Z -5 ) where x v N( IO,l),
g = Pll = predicted standard deviation

in trend estimate, and wl—a/Z = normal deviate at probability 1l-u/2.
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Using eq. 4.10 it may be shown making use of the identity

™
[
1

o |

n(n+1) (2n+l) (4.11)

that
120 2

—_— - .__._._._-———E
o =Py TR (D) (4.11a)
Hence the t-test against a linear trend with variance known may be

parameterized by

' @t (n-D)T

Ny =T (4.12)
V12 o,

\J
The normalized power curve using NT in place of NT is identical to the

curve for the case of a step increase plotted in Figure 4.1. It should
be noted that the denominator in the variance equation for the linear
estimator (eq. 4.1la) behaves as 1/n3, whereas for the step estimator
(eq. 4.4a) the variance behaves as 1/n. However, for the case of a
linear trend the trend magnitude must be redefined for each n if the
total difference in the record length is to be kept constant, e.g.,

Tr = Tn in eq. 4.10 and the curves may be parameterized by

' ,ln(n+1)(n—l)Tr

NT = (4.12a)
‘/1_2—noE

which, if the approximation /n(n+l) (n-1) ~ n3/2 is made, is identical

to eq. 4.5a except for a constant.
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V. Power of Some Nonparametric Tests

A number of nonparametric tests exist for the testing of hypotheses
relative to the existence of trends. Two of these (Spearman's Rho and
Mann-Whitney) were introduced earlier. Some analytic results are avail-
able for the power curves of nonparametric tests (for example, Dixon
(1953; 1954), and Hayman and Zakkula (1966)), however, the power functions
are usually very difficult to derive analytically for a general underlying
probability density function. For this reason, Monte Carlo sampling has
been used here. Results are presented for the two tests which show the
best power curves: Mann-Whitney's test (against step trends) and
Spearman's Rho test (against linear trends). Both have A.R.E.'s of
around 95% relative to the t-test against a Gaussian alternative
(Breiman, 1973) and hold up well with respect to a number of commonly
used distributions.

Monte Carlo test results are presented in Figures 4.2 and 4.3 for
the Mann-Whitney and Spearman's Rho tests against Gaussian alternatives
for linear and step trends. The results were derived from 200 test runs

e—a(n—b) were fitted

for each statistic. Curves of the form PW = 1 -
to the raw values for constant Tr and 0E using classical regression.
These curves appeared to give a good fit for all but small (i.e., less
than about 20) n, below which the behavior became erratic. Curves were
computed for 062 = .25, .5, 1, 4, and 16 and for trend magnitudes of

.3, .6, .9 and .15, .3, .45 for linear and step increases, respectively.
From each curve a maximum of 9n values were calculated for NT from

0.5 to 4.5 in increments of 0.5, and were plotted as '"pox diagrams"
(Mandelbrot and Wallis, 1969) in Figures 4.2 and 4.3. It can be seen

from Figures 4.2 and 4.3 that each test is substantially better than the

other with respect to the alternative for which it is designed, e.g.,
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Figure 4.2a. Estimated Dimensionless Power for Mann-Whitney's Test
(lower curve) Compared to t-test (upper curve) for
a Step Trend with Gaussian Distribution

Figure 4.2b. Estimated Dimensionless Power for Spearman's Rho Test
(lower curve) Compared to t-test (upper curve) for a
Step Trend with Gaussian Distribution
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Figure 4.3a. Estimated Dimensionless Power Curve for Spearman's
Rho Test (lower curve) Compared to t-test (upper
curve) for a Linear Trend with Gaussian Distribution

N
T

Figure 4.3b. Estimated Dimensionless Power Curve for Mann-Whitney's
Test (lower curve) Compared to t-test (upper curve)
for a Linear Trend with Gaussian Distribution
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the Mann-Whitney test is substantially more powerful than Spearman's Rho

when the underlying population does in fact include a step change.

vi. Extension to Time Series with Dependence of Certain Kinds

All of the tests, parametric and nonparametric, reviewed above
include an assumption of independence of some kind. The Mann-Whitney
test, for example, requires explicitly that the variables be independently
(not neceésarily identically) distributed. Spearman's Rho test, on the
other hand, tests a null hypothesis of independence against a certain kind
of dependence, but will not yield meaningful results if the data are known
to be correlated in the absence of a trend. Parametric tests require even
more stringent assumptions; an assumption that the data are independently
identically distributed with a specified distribution is usually made.
These assumptions tend to be very restrictive in water resource applica-
tions, particularly in examination of time series for trends. Unless
temporal sample spacing is very large, there is usually significant cor-
relation bgtween the observations. Consequently the tests introduced
above may not be used unless this correlation can somehow be eliminated.

A further complication, usually ignored, is that unless the underlying
distribution is Gaussian, lack of correlation does not imply independence.
For distributions other than Gaussian, it is necessary to show indepen-
dence of all the moments to infer independence of the distributionms.

For small sample sizes it is virtually impossible to estimate dependence
higher than second order, and one can only hope that lack of correlation
will prove adequate for the purposes of the tests.

One analytical technique which will yield essentially uncorrelated

values is to take averages over sufficiently long periods, for instance
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yearly average values (of water quality parameters) are often essentially
uncorrelated. This procedure will be unacceptable, however, if record
lengths are relatively short, say five years or so. (It should be noted
that trends over record lengths on the order of five years are extremely
important, since this is often approximately the renewal period for
waste discharge permits.) A similar complication results if the data
are initially uncorrelated but some kind of smoothing of a local family
of data is performed. The tests introduced earlier will not be applicable
in this case.

The necessary theory to handle dependence of the kinds discussed
above was presented by Sen (1963; 1965). This work presented test
statistics which are assymptotically applicable for large sample sizes
(although "large'" was not defined in the original work, the author has
found that on the order of several hundred samples are required) to two
cases:

m

. = Y .
1. X, j-—z-luj e+i-h (4.13a)

where h = 1 + [%], aj is an arbitrary weighting factor,
and [%] is defined to be %-for m even and % —-% for m odd.
In eq. 4.13a Yt is defined as Yt = Mt + et with Mt a

deterministic component and

_ 2
E[etes] =0 Gts

{Xf (the time series of values Xi) consists of n-(m-1) values,
where m is the span of dependence. Hence {xi is a time series consist-

ing of values derived from another time series with independent values

by linear smoothing over a finite data window.
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m

2. X =M + Lo,e | (4.13b)
t t j=0 3 t—j

with o, M, and t as defined above and
E(e e ) = 026 .
ts ts
Thus §x§ consists of a deterministic part plus a linear
combination of m independently distributed random variables.
In both cases M 1is assumed to be a systematic component and the tests
are designed to test the null hypothesis that Mt is constaﬁt versus an
alternative that Mt is a monotonic function of t. The results presented
by Sen (1965) allow wuse of a modified form of the Cox-Stuart test and a
modification of Kendall's tau test, a rank correlation test which has
performance characteristics almost identical to Spearman's Rho (Conover,
1971). 1In addition, results presented in an earlier paper (Sen, 1963)
provide for use of a modified Mann-Whitney test.

Because the power of the nonparametric tests for dependent time
series has not been published, a Monte Carlo sampling program was de-
signed to estimate the power curves for two nonparametric tests against
trend in dependent time series. The form of the power curves for tests
against trend in a dependent time series is a function of the trend mag-
nitude to noise ratio, the sample size, a vector of parameters relating

observations, and the probability distribution of the data, i.e., for

the probability distribution known.

P =P (T /0, n, 0) (4.14)
where in general

X = £(0, {xj, j=1,2, ... k-1} ) + ¢ (4.14a)

k

i.e. the current observation is the sum of a function of the parameter

vector 6 and the preceding observations plus a noise term.
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The parameter vector § is a function of the actual form of the
dependence of the data. In order to determine the power, Pw’ then,
this dependence must be modelled. A particularly useful set of time
series models are the autoregressive integrated moving average (ARIMA)

models given in Box and Jenkins (1970). The general ARIMA model is:

¢p(B)Vd(Zt—E) = eq(B)At (4.15)
where VZt = Zt - Zt—l
0 (B) = 1 - 0,8 6,8% = nnn. o 8"
0,(B) = 1 - 0B 0,87 = .ooee 0 B
B2, < 2o

and ¢i and Gj are elements of the model parameter vector.

In simulation studies, it is desired to fit models such that d=0
in order to maintain stationarity, a necessary condition for stability
of a synthetic time series (Watts, 1972). Hence any nonstationarity
must be eliminated prior to modelling, possibly by extracting pseudo-
deterministic components such as seasonal cycles. The principal tool
in identification of autoregressive moving average (ARMA) models
(ARIMA models with d=0) are the autocorrelation and partial autocorrela-
tion functions. For a comprehensive discussion of model fitting, the
reader is referred to Box and Jenkins (1970). Briefly, however, the
general ARMA model has the property that both the autocorrelation and
partial autocorrelation functions die off gradually with increasing lags,
whereas pure AR (ARMA (p,0)) models have partial autocorrelation func-
tions which vanish after p lags and decaying autocorrelation functions
and pure MA (ARMA(O,q)) models have autocorrelation functions which

vanish after q lags and decaying partial autocorrelation functions.
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In order to determine the model complexity which might be required
to adequately describe the dependence in time series of water quality
observations, long records of water quality parameters with frequent
observations were sought. Through the cooperation of the U.S. Geological
Survey (USGS) and the Municipality of Metropolitan Seattle (METRO) some
of the longest available time series of daily water quality records were

analyzed. A summary of these records is given in Table 4.1.

Table 4.1. Water Quality Records Analyzed (Daily observations)

k3
location parameter period Source years data

Duwamish R. at Renton Dissolved 1970-74 METRO 5
Junction, Wash.
Duwam}sh R. at Renton Temperature 1970-74 METRO 5
Junction, Wash.

Delaware R. at Trenton, Suspended

New Jersey Solids 1949-73 vses 23
EZéaz:§:e§. at Trenton, Temperature 1954-73 USGS 18**
Stuct, eah Conductiviey 1942760 USGS o
M T | wes we s
el et L L

*
USGS data are for water years indicated, METRO data for calendar
years.

%k
Missing water years 1962, 1964.
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Suitable transformations were sought to yield approximately normally
distributed data. An approximately normal distribution is a necessary
condition for the use of least squares estimation techniques (Breiman,
1973). Different transformations of the data were assessed using quantile-
quantile plots of the transformed observed data against a normal distribu-
tion as proposed by Wilk and Gnanadesikan (1968). After a suitable
transformation was obtained, two Fourier components corresponding to a
six month and twelve month cycle were estimated and residualized data
obtained by subtracting these pseudodeterministic Fourier components from
the transformed data. Partial autocorrelation and autocorrelation func-
tions were then estimated. Due to the large computational requirements,
the autocorrelation and partial autocorrelation functions were estimated
using the first five years of data only. Although the numerical values
of the autocorrelation and partial autocorrelation functions were affected
by this choice, the general form (e.g. cutoff points for partial autocor-
relation functions and decay rates for autocorrelation functions) of the
functions required for model identification did not, and the savings in
computational time appeared to outweigh the loss of accuracy. The lag
one correlation coefficient was estimated based on the entire data
record. Missing data were filled in after removal of the Fourier com-
ponents by disaggregating the data into four seasons and estimating
seasonal means, variances, and lag one correlation coefficients. Miss~

ing data were synthesized using a lag one Markov model,
X = ¢X -X)+o0 1-¢2 A (4.15a)
t t-1 t )

where X, 0, and ¢ were the estimated seasonal mean, standard deviation,

and lag one correlation coefficient, respectively, and At was a
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pseudo-random number generated from a normal distirubtion with mean zero
and variance one. Equation 4.15a was used as the basis for filling in
missing values in order to create a pseudohistoric trace with the same
low order moments (mean, standard deviation, and skew) as the historic
data.

The estimated autocorrelation and partial autocorrelation functions
for the augmented data are shown in Figures 4.4-4.10. With the exception
of the Renton Junction dissolved oxygen and possibly the Delaware River
Temperature series, the data appear to indicate that the use of a simple
lag one Markov (AR(1)) model is sufficient. The results of the investi-
gation are summarized in Table 4.2.

Some of the records showed oscillation of the autocorrelation func-
tion at large lags, particularly in the case of the logarithms of the
San Juan River conductivity data (Figure 4.7) which are shown, for
convenience, on a scale twice the length of the other correlation and
partial autocorrelation plots. This oscillation is apparently the
result of a low frequency component in the data not removed by the
residualization process. These oscillations are of little importance
to the model fitted except where sample frequencies on the order of the
cycle length are specified. In this case, a suitable transformation to
remove the nonstationarity evidenced by the oscillation of the autocor-
relation function would be required.

A cursory examination of the number of variables in equations
4.14 and 4.15 indicates that a comprehensive Monte Carlo testing program
would be extremely expensive, especially since the computation time is
approximately proportional to m in eq. 4.13. However, if some rela-

tionship could be found allowing the dependence to be summarized in such
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Table 4.2 Summary of Results of Investigation of Daily Water Quality

Records
station parameter transformation suggested lag one
model correlation
Duwamish D.O. Yt = Xt AR(2) 0.809
" Temp. Yt = Xt AR(1) 0.876
Delaware S.S. Y, = log(l+log(Xt)) AR(1) 0.782
" Temp. Yt = Xt AR(2) 0.866
San Juan Spec. Cond. Yt = log(Xt) AR(1) 0.830
" S.S. Yt = log(l+log(Xt)) AR(1) 0.818
Arkansas Spec. Cond. Yt = log(Xt) AR(1) 0.869

a manner that the power curves for independent time series could be used,
considerable savings might be realized. Relationships between the actual
number of samples and the effective number of independent samples for an
autocorrelated time series were presented by Bayley and Hammersley (1946) .
They defined a relationship

2
Var (X) = (4.16)

*
oy

for the variance of the mean estimate of an autocorrelated time series of
the form of eq. 4.l4a, where 62 is the variance of X and nb* is the
equivalent number of independent samples. This number can be shown to
be related to the correlation structures of the time series by
1 n-1
% Z (n-j)p(jt) (4.17)

* =1
b J

1,2
n n
1.




Autocorrelation

Partial Autocorrelation

82

1.00

80}

43

20

- .40}

-80}

-1.00 1 1 s 1 1 ) i L 1
o} 5.09 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 $0.00

Lag, days

Figure 4.4a. Estimated Autocorrelation Function for Duwamish
River Dissolved Oxygen Data
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Figure 4.4b. Estimated Partial Autocorrelation Function for
Duwamish River Dissolved Oxygen Data
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where t is the sample interval and p(jt) is the lag jt correlation
coefficient. It should be noted that eq. 4.17 is completely general and
does not require a specific form of dependence (e.g., an ARMA model).
For an AR(1) (lag one Markov) model, eq. 4.17 can be approximated

(Bayley and Hammersley, 1946) as

1/nb* = 1/n {I%égégi - 2/n [ 1/ptp-2 51} (4.17a)
(1/p+p-2cos(p))
in which p is the lag one correlation coefficient.

The concept of using equivalent independent sample sizes was
expected to yield useful results based on the mechanism used in the
classical t-test for the difference between two means. Since the t-test
for a step trend (eq. 4.5) essentially is no more than a method of setting
confidence bounds on the difference between two means, a t-test for an
autocorrelated time series is possible by simply substituting the expres-
sion 4.16 for the standard error of the mean. The t-test for linear
trend uses the same type of expression with only numerical factors
changed. The observation was made earlier that the power curves for
the nonparametric tests appear to follow the same general behavior as
those for t-tests (Figures 4.2 and 4.3), e.g., summarization using the
same dimensionless '"trend numbers" Nt appears to hold. This observa-
tion allowed planning of a limited Monte Carlo testing program to
assess the hypothesis that the nonparametric tests for trend in an
autocorrelated time series can be summarized using the power curves
for an independent time series with an equivalent sample size determined
from eq. 4.17.

Equation 4.17 has several interesting properties which are summarized
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graphically in Figures 4.11 and 4.12. A base sample frequency of 1 day--l
was selected to afford compatibility with the historical records investi-
gated. It may be shown that equation 4.17 implies a maximum effective
number of independent samples which may be collected in a specified time

period no, i.e.,

=Lim {=+ = I (n-j)p(it) (4.17b)
max n-> n j=1

Here n_ was taken as 365 days. The maximum effective sample number
varies with the base lag one correlation coefficient for a lag one Markov
process, pt = exp(ln(p)t), where t is an (arbitrary) sample interval. It
is interesting to note in Figure 4.11 that for a daily lag ome correla-
tion coefficient of about 0.14 (much lower than any of the historical
data assessed) a maximum of 365 equivalent independent samples are
possible per year. For daily correlations of the order of magnitude of
those observed in the historical data, maximum equivalent independent
sample siées on the order of only about 25-35 per year are possible.
Figure 4.12 shows the relationships between effective independent sample
size and actual sample size, for instance, for a series with a base
(daily correlation coefficient of 0.75, 50% of the maximum equivalent
independent samples are collected if only about .06 x 365 = 22 samples
per year are taken. Hence, approximately bimonthly sampling yields

about 50% of the maximum possible information in this case if n'/nmax

is considered as a kind of relative information measure. This result

has important implications for sample system design and is implemented

in Chapter 5.
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Figure 4.11. Normalized Maximum Effective Independent Sample
Size as a Function of One Day Lag One Correlation
Coefficient for a Lag One Markov Model
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Figure 4.12. Effective Sample Ratio as a Function of Normalized

Sample Frequency: N/N_ = 1 corresnonds to daily
sampling. °
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vII. Monte Carlo Test Results

Initial pilot tests of the two tests proposed by Sen (1965) indicated
that neither was effective for small to medium sample sizeé (e.g. n v 10-
100). The problem encountered was that the test statistic, T is

estimated as

1,
a2
T = — (4.18)
a vn'
for the Cox-Stuart analogue, where
m
2 2
a’=b + £b - QuDED (4.19)
o o n n
h=1
1 n'-h
b = =g 151 X IOE, ) (4.20)

with r = number of values of Xi greater than the preceding value,

and

S
~
o
[

~

i}
e
>

|
>

v
o

(4.21)

The problem which arises in small samples is that the covariance estimates
bb in 4.20 become erratic causing the variance estimate (eq. 4.19) to
sometimes assume negative values, especially for large trend magnitudes.
This was a frequent occurrence for small samples (e.g-, n v 20) but
persisted for samples as large as 200. In addition, although the sample
statistic T was demonstrated by Sen (1965) to have assymptotic normality,

for small samples the distribution has extremely heavy tails, making

estimation of rejection values very difficult. Similar problems were
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encountered using the analogue to Kendall's Tau test proposed by Sen
(1965), which uses an estimate of the variance of the test statistic
similar to eq. 4.19.

Only the Mann-Whitney analogue was found not to yield negative
variance estimates. The test statistic for this test, however, had
extremely heavy tails, as shown in a quantile-quantile plot (Wilk and
Gnanadesman, 1968) in Figure 4.13. A straight line in Figure 4.13
would indicate normality of the test statistic; the deviation at the
ends indicates tails heavier than normal. This heavy tailed behavior

makes estimation of the rejection values at confidence levels of
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Figure 4.13 Quantile-Quantile Plot for Generated Test Statistiés

of Modified Mann-Whitney's Test Against Normal
Lag One Markov Series of Length 100, p = 0.50



94

interest (95% in this work) extremely difficult without very large sample
sizes. However, use of the special tests for dependent samples derived
by Sen has no apparent advantage when sample sizes are small, since the
assymptotic normality of the test statistic is of no help in estimating
rejection values. Also, the power of these tests should not be superior
to the classical tests for independent samples applied to the dependent
case as the basic mechanism of estimating the test statistics is the same.
For instance, the numerator in eq. 4.18 is the same as that used in the
classical tests (known in the statistical literature as U-statistics),
only the method of estimating the scale (the denominator in eq. 4.18)
differs.

An alternative approach, then, to the use of the tests proposed by
Sen (1963; 1965) is to use the classical tests (Spearman's Rho and Mann-
Whitney) with rejection values estimated from Monte Carlo samples. Since
the Mann-Whitney and Spearman's Rho test statistics have finite upper and
lower bounds, the distribution tails are relatively stable for small
sample sizes. For sample sizes of 200, power curves were estimated for
lag one Markov models with correlation coefficients of 0.25, 0.5, and

0.75. Equivalent values of

T ./nb* Tr/nb* (nb*+l) (nb*—l)
NT = T and

/12 “b*o

for step and linear trends, respectively were calculated. The results
are plotted for Spearman's Rho test against a linear trend and Mann-
Whitney's test against a step trend in Figures 4.14 and 4.15. The solid
lines in each case are the estimated normalized power curves from
Figures 4.2a and 4.3a. Allowing for estimation errors due to the small

sample sizes used, the results fall closely about the estimated line for



95

‘ueyssnes ST UOIINQTIISTQ BIBQ ‘ddudpuadeq AONIBK 3UQ 8eT YITM
pusay iesur] B 1suredy 1S9L oyy s,uemaeadg 103 SITNSVY IS OTIBD SIUON ¥T'Y 2an314

N

00%P 00t 00<¢ 001

) 00




96

‘ueTSSneH ST UOTINQTIISTQ €IBQ °9ouspuadag Aoqiel duQ SeT Yyirm
puaal deo3g e 3sure8y 3sel s,A3UlTYM-UUBK IO0F SITNSSY IS|] OTIAB) SIUOW CT°Y 2an3tg

N
o0'tv o0t 002 o]0)!
1 ) 1 T T T I T T
x
° +
X O% +
(o]
X
+ 0
X
(o) (o]
X
++ z
+
+
+ Q
+ x 6L0=d x
® | 050 =9 ©
IT

+

G20 =d

00

c0

0

90

80



97

independent samples. Based on these results, it appears that the power
curves for the nonparametric tests investigated are relevant for the
dependent sample case if an equivalent number of independent samples,
as defined by eq. 4.17, is used in specifying the dimensionless trend
number, Nt. This result is used throughout the remainder of this
investigation.

We may make use of this result to transform the curves of Figures
4.11 and 4.12 for normalized equivalent independent samples as a function
of actual sample size to curves for normalized power against sample size.

We may define (for a step trend)

T P ax
=F(———)

nax 75 (4.22)

where F is the normalized power function of Figure 4.14, with n oo« defined
by eq. 4.17b, Tr the trend magnitude, and O the standard deviation of the
time series. We may also define

P = F(T/n—b-"?/ZO) (4.23)

with nb* defined by eq. 4.17. Dimensionless results for Pw/Pmax versus
n/no and Pmax versus daily lag one correlation coefficient are plotted
in Figures 4.16 and 4.17. Clearly, the resulting curves depend also on
the trend to standard deviation ratio. For Tr/O = 0.2 as shown in
Figure 4.17 there is little advantage, for any of the correlation
coefficients plotted, in sampling at a frequency of greater than about
n/no = 0.25 or once every four days. This method of parametrizing
power curves will be of great help in the network optimization method

illustrated in the following chapter.
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CHAPTER 5

APPLICATION TO NETWORK DESIGN

I. Design Method

The results of Chapters 3 and 4 for sample station location and
specification of sample frequency may be combined in a comprehensive
design approach. Given a constraint, NSAMP, on the total number of
samples which may be taken in a given reach per year, various optimal
sample station configurations specified in the manner described in Chap-
ter 2 may be analyzed for power against detection of a given trend mag-
nitude. The power used here for comparison is a weighted spatial average
power over the river basin,

Nr Xu X
p o=z w. [ dp @&, /[ Jax (5.1)
RERE L T A T
i 3
where Nr is the number of reaches in the river basin, Xl and Xu are the
| J
upstream and downstream reach boundaries, Wj is a normalized weighting

factor for each reach such that

and i denotes the i'th water quality constituent. At present sampling
stragegies are constrained to include a sample of each constituent in

every sample event, hence each "sample" included in NSAMP includes omne
sample of each cdnstituent. Consequently, the sample network chosen is

not globally optimal, as variable sample strategies are not admitted.
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This requirement is, however, compatible with operational considerations.
The sample station location algorithm (Chapter 3) requires specifi-
cation of a linearization trajectory as well as the upstream boundary
estimates of constituent variances and the effluent constituent variances.
In addition, stream and effluent flow variances are required. The sample
station selection method assumes complete mixing, hence variance estimates
immediately downstream of an effluent discharge point are updated (assum-

ing Q and Qe uncorrelated) by

2 2 2
oQ, oQ + er (5.2a)

and

(q 1° 2
2 | e 1 2 Q1 2
OC. LQ+er Oc +[Q+er OC. +

i e, i
_ 2 _ 2
Q(ci celfl 2 Qe(ci Ce.ﬂ )
5 ‘ OQ + ——-———;' OQ (5.2b)
(Q“Qe) J (Q"‘Qe) J e

where eq. 5.2b is the first order approximation for uncorrelated random
variates (Cornell, 1972) to the variance of the downstream concentration
of constituent i, with Q = upstream flow, Qe = effluent flow, c; = i'th

upstream constituent concentration, and ce = i'th constituent concentra-

i
tion in the effluent, and where Ui denotes the variance of x. Between

tributaries the state estimation methods of Chapter 3 allow estimation
of the variances of the estimates of each of the constituent concentra-
tions. These variances are the estimation variances at a given time,
and do not include time variability of the sequence of observatioms.

For any observed water quality record at a specified sample station,

the variance of the record is composed of a contribution from
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measurement and prediction (estimation) error and a contribution from
natural effects, primarily climatalogical. Further, the two contributions
may reasonably be assumed independent, i.e., climatological variations
bear no influence on measurement error, hence
02 = 02 m) + 02 .

cyy " O & (5.3)
where Cij is the i'th constituent concentration at the j'th spatial
location, and the superscripts m and n signify measurement (and predic-—
tion), and natural, respectively. It should be noted that where location
j is a sample station, Oigy) will not exceed the measurement error, but
for estimation between sa;gle stations the measurement error may be
exceeded. Equation 5.3 reflects the fact that the variance of a histori-

cal trace may not be reduced below a lower limit specified by natural

conditions. This lower limit may be estimated from historic records as

=g, - 0. (5.4)

2 . . . . X

where Oij is the lower variance bound of the historic trace of constit-

. b 2 .
uent 1, Oij is the observed historic variance, and Oij is the estimat-

m

ed measurement error in constituent i. The historic variance is assumed
to be constant with time, seasonal variations are ignored. Methods for
transforming data to conform to this restriction are discussed in Section
III of this chapter.

In addition to specification of the historic variance lower bound,

the parameters relating dependence in time of the estimated constituent

values must be specified, as well as a design trend magnitude for each
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constituent. Given the values of this parameter vector, the maximum
number of effective samples over a given time horizon may be computed
for each constituent. Using the results of Chapter 4, a maximum power

over the time horizon may be specified, using the normalization

N () = Ti"Mhax (5.5a)

Tij 20,

where Tr is the design trend magnitude, 0, is estimated from eq. 5.4
i I
or is specified apriori, and nmax is the maximum effective number of

independent samples described in Chapter 4. The estimated actual power

may be based on the trend number

T
Ny = riVE; (5.5b)
ij ZOij

. . . . 2 .
with n, the effective independent sample size and Oij the total variance

of the estimated time series (Oi in eq. 5.3). It should be noted that
, ij-
egs. 5.5 are strictly applicable for a step trend only, but yield results

3/2

very nearly equivalent (if the approximation vn(nt+l)(n-1)v n is made

in eq. 4.12) to the case of a linear trend with magnitude T; = TrV1272,
i i

hence design for a linear as opposed to a step trend simply involves

changing the design trend magnitude. The power corresponding to NT(M)

1]
of eq. 5.5amay be defined PW(M), the maximum power in detecting the
ij
i'th constituent while the actual power P corresponds to NT .
ij ij

Hence the efficiency of a trend network may be defined as

E, =¥ /%é“’ (5.6)
i i

"
where x denotes the spatial average of x.
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This normalization allows a convenient method for summarizing results.
Eij may be considered as a sort of relative information measure as well
as a measure of network efficiency.

The prototype network consists of a single reach of length 100 miles

with two point source effluents and one tributary, as shown schematically

in Figure 5.1.

-

RM 100 [€—— K= SO0 CFS (o = 50 CFS)

RM 72 [=— 10 (2.2)
a=— |00 (3.3)
le=——— 6 (4.0)

@ Te}

©w N o
= =

g = &

Figure 5.1. Test Stream Reach with Effluent Locations, Flows, and
Standard Deviations

The system has been purposely simplified to allow easier identification
of the primary factors influencing the design. A set of upstream
boundary values was specified as well as tributary and effluent concen-
trations and variances. These values, and the secondary variable (para-
meter) values used are given in Tables 5.1 and 5.2.

The historical variances and lag one correlation estimates and

measurement errors are given in Table 5.3. Where appropriate,
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Table 5.2 Means and Variances of Secondary State Variables

Variable* Description Mean Variance
KS BOD settling constant 0.03 _ 9 x 10:2
Kn BOD nitrogen decay coefficient 3.33xl(—)4 2.5}(10_6
Kp BOD phosphorus decay coefficient 4.0x10 9.0x10_2
KC BOD carbonaceous decay coefficient 0.3 9.0x10
Kbb benthal nonpoint source BOD supply 8.0x10—3 6.4x10—5

constant

Ka reaeration constant 0.7 0.5

K2 NO2 decay coefficient 0.5 " 0.36_2
Kl NH3 decay coefficient 4.8x%10 l.leO_2
KV NH3 volatization constant 0.3 _3 Z+.0x10-5
Kbn benthal NH3 supply constant 8.0x10 6.4x10
K3 NO3 settling coefficient 3.6x10_2 10—3

Kop Zigggilcgﬁziﬁl‘t‘t source PO, 5.0x1070  6.4x107°
Kps PO4 settling constant 2.2x10:2 5.0x10:2
Kbd benthal DO demand constant 1.7x10 6.4x103
Rbb benthal BOD supply rate 61.0 3.6x10 )
Rbd benthal DO demand rate 31.0 2.25§;0
Rbn benthal NH3 supply rate O.l}2 10 I
Rbp benthal PO4 supply rate 6.5%x10 1.5x10

U cross-section mean stream velocity 25.0 50.0
Qi net incident heat flux 5.0 25.0
Cl net incident heat flux change rate 0.2 0.01
H upstream boundary stream depth 2.0 1.0
C2 stream depth change rate 0.05 l&xlO_4

K coliform decay constant 0. 0.01
R coliform supply rate 0.0 0.0

*
for a more complete description see Appendix A.
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Table 5.3 Constituent Variances and Lag One Correlation Coefficients

Variance
Constituent Units Measure- Historical Lag one
ment minimum correlation
PO4 mg/1 0.01 0.4%*% 0.835
BOD mg/1 1.0 0.75 0.835
Do mg/1 0.25 1.0 0.835
NH3 mg/1 0.01 0.3%*% 0.835
NO2 mg/1 0.0025 0.4%% 0.835
NO3 mg/1 0.04 0.35%* 0.835
Temp Op 4.0 16.0 0.835
FCX MPN* 1.0 3.0 0.835

*natural logarithmic units

**coefficient of variation
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especially for nutrient values, variances are specified as coefficients of
variation where the linearization trajectory (Table 5.1) provides the
mean values for calculating the standard deviation.

Measurement errors were assumed to include both laboratory analysis
and sampling errors and the error present due to characterizing a cross-
sectional average property from a single sample. The lag one correlation
coefficient represents the average over all the records investigated in
Chapter 4. A simple lag one Markov model of temporal dependence of each
water quality constituent was used to determine equivalent independent
sample sizes. The constituent variances were chosen to be realistic in
terms of historical data actually observed and reported in U.S. Geological
Survey Water Supply Papers. The values are not taken from an actual
sampling station, however,

The linearization trajectory was formed by running the simplified
DOSCI filter model described in Appendix A for a case with no sample
stations. This is equivalent to use of one of the many available deter-
ministic stream quality models to specify constituent trajectories. A
polynomial fit was then made to the estimated constituent trajectories

to yield the linearization trajectory.

II. Sensitivity Tests

The monitoring network design optimization (satisficing) requires
specification of a number of parameters. Included are historic time
series parameters (coefficient of variation or variance, and lag one
correlation coefficient), model parameters (linearization trajectory,
stream velocity, and measurement error) and design specifications

(number of samples or constraint level, and design trend level). A
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series of sensitivity tests designed to determine which parameters merit
the most effort in estimation and to determine the general character of
the design efficiency response to increased sample size are reported in
this section.

The initial runs were made using the base conditions of Tables 5.1,
5.2, and 5.3. Table 5.4 shows the locations of each candidate sample
station computed using eq. 2.5. Table 5,5 shows the design trend levels
used. Where coefficients of variation are specified (e.g., PO4 and other
nutrients) trend magnitude is expressed as the ratio of trend magnitude
to mean. Fig. 5.2 shows the resulting average efficiencies over all
eight primary state variables for varying constraint (sample size)
values using the base conditions. The constraint level, NSAMP, repre-
sents the total number of samples taken over a four year period for each
primary state variable. The most striking implication of the results
shown in Figure 5.2 is the loss of efficiency at small samples sizes
with increased numbers of stations. For instance, at the lowest con-
straint lével of 20 samples/year (or NSAMP = 80 samples over the four
year base périod) increasing the number of sample stations from one to
three approximately halves the network efficiency. At higher comstraint
levels, the maximum efficiency shifts toward multiple station configura-
tions, for instance,at the highest constraint value (NSAMP = 1280) four
stations should be used. Possibly more important is the observation
that with increased NSAMP the configuration efficiencies become less
sensitive to the number of stations specified.

If a moderate to large number of stations is specified, time

series of water quality constituents at intermediate points may be
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Table 5.4 Base Sample Station Locations (River Mile)
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Station
Number 2 3 4 5 6 7 8
Number of
Stations
1 48.8
2 32.1 68.8
3 23.4 50.9 76.6
4 19.0 39.8 61.9 82.0
5 16.4 33.9 51.5 85.2
6 14.3 28.6 44.0 58.8 73.9 87.6
7 12.3 25.2 38.7 52.1 64.8 77.6 89.5
8 10.6 21.9 33.5 45.4 57.3 68.7 80.0 90.6
Table 5.5 Design Trend Magnitudes for Sensitivity Tests
Po‘z gop®  DOP NHf; Noaz1 No;‘ Temp® FCx
base 0.2 0.4 0.4 0.2 0.2 0.2 1.0 0.75
low 0.1 0.2 0.2 0.1 0.1 0.1 0.5 0.375
high 0.4 0.8 0.8 0.4 0.4 0.4 2.0 1.5

a
expressed as

ppm
OF
d

MPN (natural log units)

trend to mean ratio
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estimated using relatively unsophisticated methods, such as linear inter-
polation. If few stations (perhaps only one) are specified, a more soph-
isticated method of extrapolating measurement results is required. Since,
in general, few stations are associated with low constraint levels, the
implication is that for small constraint levels a substantial premium
is placed on using a water quality model to augment the data collected
at a single station. At higher constraint levels, substantially
equivalent efficiencies result from large sample networks with relatively
low sample frequencies at each station. Hence, if large sample sizes may
be taken, little additionai benefit accrues from augmenting the monitoring
values with model predictions, whereas the benefit from sample augmentation
is great when small sample sizes are available.

The parameter ranges tested for sensitivity are listed in Tables
5.5 and 5.6. The results of the sensitivity tests are presented in Table
5.7. The efficiency losses are defined as

E.-E
E, = z2_ 1. 100 : (5.7)

E,

where El is the maximum efficiency for the given parameter values, E2 is
the efficiency for the same parameter values but with the number of sample
stations which are optimal for the base conditions (Table 5). Im all
cases investigated in this section, station locations are those given in
Table 5.4.

A single sample station was always associated with low constraint
levels, hence no efficiency loss was found at these levels for any of
the parameter perturbations. The actual efficiency levels, however,
associated with the different parameter combinations do vary widely.

It is important to recognize that while the actual efficiency levels
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Table 5.6 Parameter Ranges for Sensitivity Tests
Parameter PO, | BOD | DO NH, | No, | No, | Temp | FcX
o2 or low |0.267 |0.589 |0.667 [0.2 | 0.267 [0.237| 2.670 {1.178
b _

v highl0.6 |1.299 |1.5 |0.45 | 0.6 |0.525]| 6.0 |2.598
lag one |low |0.75 |0.75 |0.75 |0.75 | 0.75 1{0.75 | 0.75 |0.75
cort. highl0.9 0.9 |0.9 0.9 |0.9 0.9 |0.9 0.9
neas. low | .0134{0.5 .015810.04 | .0126| .05 | 2.0 1.0
error

mean stream low 12.5 mile/day

velocity

high 50 mile/day
linearization
. c |+0.1 [+2.0 |-2.0 |+0.1 | +0.1 |}+0.1 | +10.0 |+3.0

trajectory
a

for others

amount added or subtracted uniformly from base linearization
trajectory (Table 5.1)

standard deviation for BOD, DO, Temp., FCX, coefficient of variation

all units are mg/1l except Temp (°F) and FCX (MPN/100 ml; log units)
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predicted are sensitive to changes in the parameters (especially lag one
correlation coefficient) the network design configuration specified (i.e.,
sample station locations and number of samples) is quite insensitive to
these parameters.

The effects of parameter variations are discussed below by group.
Only model parameters have any influence on the station location algorithm,
as may be seen from investigation of eq. 2.5. 1In reporting sensitivity to
the model parameters, however, station locations reported in Table 5.4
were retained. A separate investigation of the effect of changes in

sample station location (for other parameters at base levels) is reported

in Section II.3. of this chapter.

II.1. Historic Parameters

The lag one correlation coefficient and the variance (oi..(n) in
i

eq. 5.3) or coefficient of variation are denoted historic paraieters since,
in practice they must be estimated from historic records. In this
work the historic parameters are assumed populatioﬂ values.
This choice was made to avoid obfuscation resulting from estimation
problems. Several lag one correlation coefficients were selected to
cover the range of values observed in the data investigated in Chapter 4.
Figure 5.3 shows efficiencies as a function of sample constraint for
three values of the daily lag one correlation coefficient p. The same
data are plotted in Figure 5.4 as a function of the number of sample
stations specified for NSAMP = 320. An apparent anomoly exists at low
constraint values where efficiency increases with increased p. This
effect may be traced to the manner in which efficiency is defined in eq.

5.6 which results in the maximum power being a decreasing function of p.
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Figure 5.3. Maximum Spatial Average Efficiency vs Sample Size and Lag One
Correlation Coefficient for Base Conditions

The absolute powers for the high value of p are much less than for the

low value, only the efficiencies show the reverse behavior at low values

of NSAMP.

Sensitivity of the design network to lag one correlation is surpris-

ingly low, as shown in Table 5.7b. This is a welcome result since,

based on the limited data presently available, accurate summarization

(perhaps using regionalization techniques) of daily lag ome correlation
coefficients for most water quality indicators would be an extremely
difficult task (Lenton, et al., 1974),

The effect of perturbing the coefficient of variation on design
network efficiency is shown in Figure 5.5. As with lag one correlation
coefficient, a change in coefficient of variation changes the maximum

power as well as the actual power (curves 3 and 4 of Figure 5.5),
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resulting in increased efficiency with increasing coefficient of varia-
tion for small sample sizes. As sample size increases, this effect is
reversed, and lower efficiencies are associated with higher coefficients
of variation. Relative network efficiencies show little effect from
changes in coefficient of variation although small coefficients of varia-
tion require networks with relatiyely larger numbers of sample stations

for a constant value of the constraint NSAMP.

1.001
CURVE 1 -~ EFFICIENCY FOR HIGH CV
-9301 CURVE 2 - EFFICIENCY FOR LOW CV
.80} CURVE 3 - POWER FOR LOW CV
CURVE 4 - POWER FOR HIGH CV
.70
.60 —
.50
.40
.30
.20
.10
0 'l A A . A i
0 200 400 600 800 1000 1200

TOTAL NUMBER OF SAMPLES OVER FOUR YEAR PERIOCD

Figure 5.5. Maximum Spatial Average Power and Efficiency vs Sample Size
and Coefficient of Variation or Standard Deviation for Base
Conditions
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I1.2. Model Parameters

Unlike historical parameters, changes in model parameters result in
changes in location of the specified sample stations. 1In these sensiti-
vity studies, changes in sample station location were suppressed, and
are investigated separately in the following section. All the results
given in this section are for the station locations of Table 5.4.

Sample network efficiencies for several stream velocities are shown
in Figure 5.6 for a single station. These curves show less variation
than do efficiency curves for either of the two historical parameters,
even although changes of stream velocity by a factor of two above and
below the base value are represented. Based on these results it may be
concluded that stream velocity is not a critical design parameter for

the range of parameter combinations investigated.

I-OO'
CURVE 1 - HIGH STREAM VELOCITY
-S0r CURVE 2 - BASE STREAM VELOCITY
.80} CURVE 3 - LOW STREAM VELOCITY
~70" |
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.10
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Figure 5.6. Spatial Average Power vs Sample Size and Stream Velocity for
Base Conditions and One Sample Station
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The results of Table 5.7b indicate that the optimal trend network
efficiencies are quite insensitive to changes in measurement error and
linearization trajectory except for moderate values of NSAMP where the
transition to multiple sample station occurs. Even for these sample
sizes, however, the maximum efficiency loss experienced was only about
5%. Based on these results, the effect of model parameter errors on
network design appears to be negligible. This is especially apparent
when viewed in comparison to efficiency losses resulting from an incor-
rect choice of the number of stations, particularly when too many stations

are specified when NSAMP is small.

I1.3. Design Parameters

Two parameters affecting network design are denoted design para-
meters. The first of these is the design trend magnitude. Two approach-
es to the choice of the design trend are possible. If the value of NSAMP
is known, the trend magnitude should be chosen to result in a maximum
power near one, say in the range 0.7 - 0.95. This choice is appropriate
because design trend magnitudes which are too low result in a maximum
power of near zero, which implies that very few trends of that magnitude
may be detected regardless of the level of sampling effort. If trend
magnitudes are specified which result in very high values of NéM)

(eq. 5.5a), maximum power of essentially one results and efficiencies of
near one are yielded by almost any sampling strategy even for small
sampling efforts, affording no useful basis for comparison of alternate

strategies.

It should again be emphasized that the measure of efficiency used



121

here is useful only as a basis for comparison of altermate sampling
strategies for the same river basin. Efficiency comparison between
river basins are not useful since the maximum power levels will vary for
the same trend magnitudes because of climatological influences on the
relevant time series parameters (standard deviation and lag one correla-
tion coefficient).

In some cases the value of the design trend magnitude may be fixed
by threshold values of changes for which detection is desired (Cunning-
ham, 1970; Enviro Control, 1972). In this case, NSAMP will not be fixed,
but will depend on the trend detection power desired for the given trend
magnitude. In either case the sensitivity of the design network to trend
magnitude is important, as it is desired that the specified network be
efficient (relative to other candidate networks) over a range of possible
trend magnitudes.

Figure 5.7 shows network efficiency as a function of constraint
level for the "high" and "low'" trend levels of Table 5.5. As expected,
efficiency is highly sensitive to trend magnitude, since the dimension-—
less trend numbers NT and NT' in eqs. 4.5a and 4.12a are directly pro-
portional to trend magnitude. The relative network efficiencies, how~
ever, are very insensitive to design trend magnitude as shown in Table
5.7b.

The remaining variable which is classified as a design parameter is
sample station location. Station location is not strictly a design para-
meter as it is specified by the station location algorithm developed in
Chapter 3. Nevertheless, if errors are made in specifying the model

parameters, or if the station locations must be changed from those
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determined theoretically for practical reasons (e.g. bridge or waterfront

access locations) the station locations will be perturbed.
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Figure 5.7. Maximum Spatial Average Efficiency vs Sample Size and Trend
Magnitude for Base Conditions

Table 5.8 lists the station locations for up to six stations specified
by the "low measurement error' case of Table 5.6 This class of networks
in general specifies station placements further upstream than the base
locations of Table 5.4. As the number of stations increases, the station
locations for the two cases become nearly identical, hence, the single
station case is investigated here. Table 5.9 shows efficiency losses
using the base parameter values when the single station location of

Table 5.8 instead of that specified by Table 5.4 is used. The losses

are only about 1% for all values of constraint NSAMP investigated,
implying low sensitivity of the optimal design network efficiency to

station location about the base conditions.
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Table 5.8 Station Locations for Low Measurement Error (river mile)
Total No.
of Stations Station # 1 2 3 4 5 6
1 57.1
2 37.0 73.6
3 25.5 54.6 81.0
4 20.8 32.8 64.8 85.5
5 17.2  35.0 54.3 70.8 87.6
6 14.7 29.1 44,2  59.7 73.7 88.4
Table 5.9 Sensitivity Test for Errors in Station Location
Efficiency for large Efficiency for small
NSAMP measurement error sample  measurement error Loss, %
locations sample locations
80 .380 .376 1.1
200 .538 .532 1.1
320 .570 .564 1.1
480 .583 .577 1.0
640 .588 .582 1.0
800 .590 .584 1.0
960 .591 .585 1.0
1120 .592 .586 1.0
1280 .592 .586 1.0




124

III. Issues in Data Analysis

The principal emphasis of this work has been on the design of
monitoring systems rather than the analysis of data derived from such
systems. The data analysis problem is, however, an integral part of the
design problem, in fact, the limited usefulness of much existing data
has resulted from poor design of sampling systems. In this light, the
decision was made to require fixed sample station locations and frequen-
cies. Fixing station locations avoids the problem of analyzing inhomo--
geneous time series, i.e., those whose elements may be drawn from differ-
ent statistical populations. Setting constant sample frequencies enhanc-
es the ease of use of such techniques as spectral analysis.

Requiring constant sample frequencies implies that data sets taken
in different seasons have essentially equivalent information content.
This conflicts with a tendency of some researchers to emphasize critical
periods, especially low flow. The importance of low flow for such para-

~meters as dissolved oxygen and temperature is countered by the importance
of high flow periods for such other parameters as suspended solids and
turbidity. 1In analyzing time series of water quality parameters for
trend, suitable normalization techniques will allow use of high as well
as low flow data, if the data are normalized to a base flow level. The
author has found, for instance, that linear regression of dissolved
oxygen on the logarithms of daily flow values removed almost all of the
annual periodicity in dissolved oxygen data from the Spokane and Duva-
mish Rivers, Washington. Extraction of the six and twelve month Fourier
components (Delleur, et al., 1974) from the daily water quality reported

in Chapter 4 resulted in time series which were essentiglly time
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homogeneous in level. Inhomogeneity in variance may be removed, after
suitable data transformation, using the residualization techniques of
Young and Pissano (1968), although homogeneity in variance is not required

4

for use of the suggested nonparametric statistics discussed in Chapter 4.

Iv. Synopsis

The network design methodology developed in the preceding chapters
appears to be relatively insensitive to all design parameters except the
number of stations selected to detect trends in a river basin. This
result comes about because network efficiency increases rapidly with
increasing sample size, whereas decreasing estimation variance by in-
creasing the number of sample stations has essentially a second order
effect on efficiency. This may be observed in the curves of Figure 5.3
which all show an inflection point after a large initial increase in
efficiency. The initial rise corresponds to increasing NT through
increased sample size at a single station, the secondary rise is caused
by an increase in NT due to the reduction in estimation variance result-
ing from multiple sample statioms. Consequently, all parameters other
than those which affect the number of samples taken at each station
(i.e. number of sample stations in the network) have a secondary effect
for the range of parameters investigated herein.

It is important, in view of this result, to recall the basic assump-
tion made in utilizing the state estimation approach to sample network
design. It was assumed that, given a measurement or set of measurements
and a model of the interactions of the state variables, as estimate
could be made of the vector of state variables at any point in the

stream, and that the variance of the estimate could be specified at
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any given point. Hence, at any arbitrary point, given the time series

of observations at the specified sample stations, an estimated time

series of the state vector can be formed, which may be assessed for trend.
The results of this section indicate that the optimal (satisficing)

sample network will have a small number of stations (in many cases a single
station) when constraint levels are low.

This result suggests the necessity to use a water quality model
when constraint levels are low. At present water quality models are
virtually unused as a method of augmenting time series of water quality
variables. Consequently, the cost of using and updating parameters for
a water quality model must be weighed against the cost of increasing the
constraint level.

Another important implication of the results presented in this
chapter is the relative insensitivity of network design efficiency to
sample station location. This result confirms the original decision to
attempt to satisfice rather than optimize station locations. The station
location algorithm does not attempt to minimize average variance over
the river basin, which would be necessary to achieve a strict optimum
in average trend detectability. In fact, the relative insensitivity of
network trend detection power to station location suggests that a trend
network could be designed to fulfill multiple objectives with little loss
in efficiency, for instance the same network might be used for trend
detection as well as abatement and establishment of a data base. An
example might be placing of stations in such a manner as to provide data
base as well as trend information upstream and downstream of a major

point source discharge which could withstand a legal test.
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An example of a stream with significant reach lengths above and
below a major urban area is presented in the following chapter, which
illustrates application of the design methodology to the Spokane River
in the vicinity of Spokane, Washington. Chapter 7 illustrates an appli-
cation to the Snohomish River basin, Washington, a basin with several
substantial tributaries, unlike both the Spokane and the hypothetical

stream investigated in this chapter.






CHAPTER 6
MONITORING SYSTEM DESIGN FOR SPOKANE RIVER

The Spokane River, which drains a semiarid basin in the extreme
eastern part of Washington and Northern Idaho, was chosen for the first
demonstration application of the design methods presented in Chapters
2-4. Only that part of the Spokane located between its source at Lake
Couer d'Alene (USGS river mile 110.6) and its confluence with the Little
Spokane River (river mile 56.2) were included in the study (see Figure
6.1). The lower boundary was chosen because the river below river mile
56.2 is in the influence of the backwater of Long Lake, hence is not
free-flowing as required in this research.

The stretch of interest has only one tributary which is not dry during
all but the late winter and early spring months. This tributary is Hangman
Creek, which drains an area of 689 square miles south of the Spokane
basin. The mean annual flow of Hangman Creek is less than 5% of that
of the Spokane. Instream quality measurements provided by the U. S.
Army Corps of Engineers and Kennedy-Tudor Consulting Engineérs, Inc.
(Kennedy-Tudor, 1974) indicated that the quality of Hangman Creek during
normal conditions is at least as good as that of the Spokane, hence,
based on the relative flow volumes, sampling of Hangman Creek was not
included in the design objective, which was to design a trend detection
network for the Spokane River main stem.

In general, the soil in the Spokane basin is sandy and percolates
very well, making overland flow and interflow negligible in all but ex-

tremely large storms. Groundwater inflows to the river are substantial and
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Figure 6.1 Spokane River Study Stretch with Point Source Flow Magnitudes
and Standard Deviations

constitute most of the flow during the dry season. Because of the lack of
significant tributaries, the influence of nonpoint sources is small except
during extreme storm events.

Systems Control, Inc. (Finnemore and Shepherd, 1974) conducted a study
of the Spokane River for the Environmental Protection Agency in which
several water quality models were tested for applicability. Most of the
effort was spent on developing the DOSCI steady state stream model, a
deterministic model which formed the basis for the stochastic model developed
in Appendix A. The mean parameter values used in this chapter (see Appendix
C) were taken from the Systems Control, Inc. study. More recently, Hydro-
comp, Inc., and Kennedy-Tudor Consulting Engineers conducted a comprehensive
water resource management study of the Spokane basin in which the

Hydrocomp Simulation Package (HSP) (Hydrocomp International, 1969)
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used. As part of this study, instream quality data were taken at several
stations on the Spokane River at four hour intervals for the period
September 18-20, 1973 and June 11-12, 1974. The September 1973 data were
taken during one of the lowest flow periods on record and included the
first substantial rainfall in several months. Consequently, the data,
while providing an excellent "worst case'" record, are of little use in
establishing the "average'" trajectory needed for this work. The June,
1974 data were taken during a period which reflected much more nearly
average flow and quality conditions. The data collected during this
period are reproduced in Appendix C and were used as the linearization
trajectory. A straight line fit, rather than a polynomial fit as used

in Chapter 5, was used in establishing the linearization trajectory.

This choice was made because the polynomial fit often resulted in large
peaks and valleys in the trajectory between sample points, rather than a
smooth curve (see Figure 6.2)

Data on point source discharges were provided by Kennedy-Tudor,
Inc., and are given in Appendix C. Most of the discharges are located
in the Spokane Valley upstream of the city proper. Groundwater data
provided by Kennedy-Tudor were modelled as two point sources. The dis-
charge volumes and locations are given in Table 6.1. The largest point
source discharge is the Spokane Sewage Treatment Plant, and is the only
discharge (excluding groundwater) located downstream of the city.

Stream velocity throughout the basin is relatively high. Based on
a value of Manning's of 0.038 (Barnes, 1967), a mean stream depth
(hydraulic radius) of 8 feet, and a bottom slope of 0.0015, a velocity
of about 100 miles/day was calculated. At this velocity, the time of

passage through the river basin is only about half a day, hence
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Figure 6.2. Polynomial and Linear Fits to Typical Linearization
Trajectory

Table 6.1 Spokane River Discharge Locations and Flows

River Mile Description Flow (cfs)
87.1 Hillyard Processing 0.845
86.9 Spokane Industrial Park 0.845
86.0 Kaiser-Mead 6.0
86.0 Kaiser-Trentwood 37.2
84.5 Upper Spokane Groundwater 420
83.6 Inland Empire Paper Co. 5.11
72.4 Hangman Creek 250
67.2 Spokane Sewage Treatment Plant 42
64.3 Lower Spokane Groundwater 227
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constituent dynamic interactions are relatively unimportant and may be
considered nearly conservative. Consequently, prediction variances do
not propagate rapidly, and are affected primarily by advective (point)
sources.

Sample station locations were calculated in the same manner as used
in Chapter 5 for up to eight stations. The station locations are
reported in Table 6.2. Cunningham (1970) suggested that four stations be
located on the Spokane. Station placement was to be between major point
source discharges, hence station 1 was to be above river mile 87.1,
station 2 between RM 83.0 and 86.0, station 3 between RM 67.2 and 83.0,
and station 4 below RM 67.2. These station placements are nearly the
same as those listed in Table 6.2 for the case of four stations, except
that the algorithm used in this work specifies that two statioms, rather
than one should be located above the principal point sources in the

Spokane Valley. The results of Chapter 5 indicate, however, that the

Table 6.2. Candidate Sample Station Locations for Spokane River
(river mile)

Station Neo. 1 2 3 4 5 6 7 8

No. of
Stations

1 86.1

2 95.6 74.3

3 100.0 85.3 69.2

4 100.8 87.8 75.9 65.3

5 102.7 92.2 81.8 72.0 63.9

6 103.7 94.6 85.1 76.9 68.8 62.5

7 104.7 96.8 88.5 81.1 73.9 67.1 61.8

8 105.2 99.0 92.6 85.4 79.0 72.4 66.4 61.4
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change in trend detection efficiency is negligible for such a small per-
turbation in station location, hence the locations proposed by Cunningham
could be used if four stations were desired.

The question of how many stations should be specified is much more
critical than that of station location. Figures 6.3 and 6.4 show, in the
same manner as the results of Chapter 5, the maximum average efficiency as
a function of total samples taken over a four year period. Coefficients
of variation and lag one correlations for an assumed lag one Markov model
are identical to those of Table 5.6. Trend magnitudes are identical to

those of Table 5.5.
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Figure 6.3 Maximum Spatial Average Efficiency vs. Sample Frequency
for Spokane River Trend Network
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The results summarized in Figures 6.3 and 6.4 may now be compared with
the sampling program proposed for the Spokane River by Cunningham (1970).
Cunningham suggested a single ambient water quality monitoring network for
three purposes: establishment of water quality standards, implementation
and enforcement of water quality standards, and basin planning. The
basin planning objective requires trend identification.

The sample program proposed by Cunningham (1970) specified that bi-
weekly samples be taken at each of the four stations one year in three.
From a trend detection standpoint, a more efficient sample allocation is
to take samples at equal intervals over the four year period, because
the ratio of equivalent independent samples to actual samples (Figures 4,11
and 4.12) is higher if temporal sample spacing is larger. The equivalent
constraint value, then, is NSAMP = 4 x 24 x 4 x 1/3 = 128 samples over
the four year period. Interpolating in Figure 6.4, it can be seen that
this constraint level is too low to support four stations, in fact
efficiency losses will be great if more than one station is used. The
present constraint level must be at least tripled to allow efficient
operation of two stations, and must be increased by a factor of
approximately six to allow efficient operation of four stations.

It should be emphasized that the network proposed by Cunningham
has multiple objectives, whereas the network proposed in this chapter has
the single objective of trend detection. The additional objectives con-
sidered by Cunningham of establishing and implementing water quality
standards may be met equally as well, however, by use of a water quality
model (calibrated and verified on the basis of an intensive monitoring
program separate from the ambient monitoring network) in conjunction with

measurements taken at the trend network station(s). Consequently, since
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substantial efficiency losses result from utilizing four sample stations
rather than one, it is recommended that unless the constraint level
(NSAMP) can be increased to about 300, only one sample station be used

to characterize the river basin.






CHAPTER 7

MONITORING SYSTEM DESIGN FOR SNOHOMISH RIVER BASIN

The Snohomish River basin was selected for a second demonstration
In contrast to the

application of the methods developed in this work.
Spokane, the Snohomish basin includes two major tributaries (the
Snoqualmie and Skykomish Rivers) and several smaller tributaries. The

Also in

Snohomish basin network is shown schematically in Figure 7.1.

SNOHOMISH R

SNOHOMISH ESTUARY

with Major Tributaries

Figure 7.1. Snohomish River Network
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contrast to the Spokane, the Snohomish basin is in the influence of the
marine climate of Western Washington. Annual precipitation in the basin
ranges from about 35 inches near the mouth of the Snohomish River to well
over 100 inches along the Cascade Crest at the basin headwaters. Unlike
the Spokane which has its source in Lake Couer d'Alene, the Snohomish is
fed primarily from direct runoff and snowmelt. The basin is mostly
heavily forested, with substantial logging operations. Agricultural uses
dominate the floodplain in the lower basin.

Nonpoint sources were found, using mass balance techniques, to be
the major source of pollutants in the Snohomish basin (Systems Control,
Inc., and Snohomish County Planning Department, 1974). The waste dis-
charge data used in the systems control study were provided to the author
for use here, and are reported in Appendix D. A comprehensive sampling
program was undertaken in the Snohomish basin in November, 1973. The
results of this program provided the linearization trajectories and minor
tributary constituent concentrations reported in Appendix D. Daily
average flow values at several stations in the Snohomish basin for the
days during which the sampling program was conducted were obtained from
the U.S. Geological Survey and were compared with the historical average
flows for the same stations. In general, historic means were about 20%
lower than the daily average flows on the sample dates. Relative to the
difference between extreme and average conditions, however (usually one
or two orders of magnitude) the agreement was close enough to allow
characterization of "average" conditions by the sample data.

The design objective was to specify a monitoring system which would
maximize trend detection over the Snohomish-Snoqualmie-Skykomish network

downstream of river mile 66.7 on the Skykomish River and downstream of
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river mile 46.3 on the Snoqualmie River. The weighting function (Wj in
eq. 5.1) was taken as 0.42 for the Skykomish and Snoqualmie Rivers above
their confluence and 0.16 for the Snohomish River. These relative weights
were chosen to approximately reflect the length and flow volumes of the
three branches, however any other desired weighting technique might be
selected.

The design methods applied in Chapters 5 and 6 are valid for a single
river stretch. The Snohomish, with multiple stretches, requires some
modification of the design approach. While such optimization methods as
linear programming and dynamic programming might be applied to maximizing
sample network efficiency, a more informative approach is to simply
simulate the several candidate networks. This approach is feasible in a
relatively simple network, especially where some of the candidates may
be eliminated by inspection. Furthermore, the results of the simulations
for this relatively simple network may suggest methods for handling more
complex cases, discussed later in this chapter.

None of the smaller tributaries were included in the design network.
Consideration of the relative flow volumes and small pollutant loads
present in the smaller tributaries indicated that inclusion of sample
stations on these streams would be inefficient in terms of the monitor-
ing system objective unless constraint values, NSAMP were extremely high.
If sampling objectives other than maximizing trend detection in the main
network are to be considered (if, for instance, trends in some or all of
the minor tributaries are to be detected) this objective may indicate
that the minor tributaries be treated separately.

The candidate sample station allocations are shown in Table 7.1.

For each of candidates 2-10, zero and one sample station, respectively,
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were postulated on the Snohomish River below the Skykomish-Snoqualmie
confluence (candidates 11-19), Table 7.2 lists the station locations
for each candidate.

For each fixed number of total stations, the candidate giving the

maximum efficiency was chosen. These candidates are given in Table

7.3. The resulting maximum efficiencies for each level of constraint

Table 7.1, Candidate Sample Station Allocations for Snohomish River

Basin
Candidate # Snoqualmie Skykomish Snohomish

1 0 0 1

211)? 1 0 0(1)
3(12) 0 1 0(1)
4(13) 1 1 0(1)
5(14) 1 2 0(1)
6(15) 2 1 0()
7(16) 2 2 0(1)
8(17) 3 2 0(1)
9(18) 2 3 0(1)
10(19) 3 3 0(1)

a . . . . . .

candidates in parentheses include one station on Snohomish River.
For instance, candidates 2 and 11 are identical except for the number
of stations specified on the Snohomish,
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Table 7.2. Candidate Sample Station Locations (River Miles)a

Candidate Snoqualmie Skvkomish Snohomish
Number 2 3 2 3

1 16.9
2 21.2

3 46.0

4 21.2 46.0

5 21.2 52.6 35.7

6 30.0 13.8 46.0

7 30.0 13.8

8 34.5 22.0 10.4 52.6 35.7

9 36.0 13.8 56.4 43.9 31.6

10 34.5 22.0 10.4 56.4 43.9 31.6
11 21.2 16.9
12 46.0 17.0
13 21.2 46.0 16.9
14 21.2 52.6 35.7 17.0
15 30.0 13.8 46.0 16.9
16 30.0 13.8 52.6 35.7 16.8
17 34.5 33.0 10.4 52.6 43.9 31.6 16.8
18 30.0 13.8 56.4 43.9 31.6 16.8
19 34.5 22.0 10.4 56.4 43.9 31.6 16.7

a . . . .
candidates are same as listed in Table 7.1, which gives numbers of
stations on each tributary for each candidate.
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Table 7.3. Preferred Sample Station Allocations

Total Stations Candidate #

~N o BN
O 00 ~N O B~

19

NSAMP and for each number of total stations are plotted in Figures

7.2 and 7.3, respectively. The results are seen to be very similar to

0 200 400 600 800 1000 1200
TOTAL NUMBER OF SAMPLES OVER FOUR YERR PERIOD

Figure 7.2 Maximum Spatial Average Efficiency vs. Sample Frequency
for Snohomish River Trend Network
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those presented in Chapters 5 and 6, specifically choosing the correct
number of stations (usually one) is very important when constraint
levels are low. Again, station location was found to have a second
order effect on efficiency. For instance, for the total number of sta-
tions set at three, the resulting efficiencies for the three candidate
configurations are given in Table 7.4. The differences are small, sug-
gesting again that station location is not nearly so critical as proper

selection of the total number of stations.

Table 7.4. Efficiencies for Three Candidate Station Allocations
Specifying Three Stations Total

Candidate # 5 6 13

NSAMP
80 .275 .276 .273
200 .523 .525 .519
320 .668 .670 ,663
480 .756 .758 . 750
640 . 794 .796 .788
800 .814 .816 . 808
960 .825 .830 .819
1120 .832 .835 .826
1280 .836 .839 .831

The secondary effect of station location implies that a sophisti-
cated optimization technique for allocating sample stations among river
network branches is not merited. The small differences in efficiencies

for the various allocations compared in Table 7.4 suggests that a more



145

straightforward approach might be to allocate stations apriori, perhaps
based on a relative comparison of tributaries on the basis of flow value,
mean constituent concentrations, and economic importance of water quality
in each tributary. Choice between candidates could then be made on the
basis of trend detection efficiency as was done here. The satisficing
network selected using this method will have almost the same efficiency
as would one selected using a sophisticated (and probably costly) global
optimization.

Cunningham (1970) proposed that 11 stations be located on the
stretches of the Snohomish, Skykomish, and Snoqualmie Rivers included in
this study. Additional stations to be located on the minor tributaries
are not included in this total. Sampling was to be as proposed for the
Spokane basin, semimonthly sampling one year in three. This indicates a
constraint level of 4 x 1/3 x 11 x 48 = 704 samples over a four year base
period for the entire basin. Interpolating in Figure 7.3, at most three
stations can be supported at this constraint level. Two of these stations
should be located on the Snoqualmie and one on the Skykomish. The sta-
tion location algorithm specifies that the stations on the Snoqualmie be
located at river miles 30.0 and 13.8 and that the station on the
Skykomish be located at river mile 46.0. It is not critical that these
station locations be used, however it is important that three stations
be specified, rather than the larger number suggested in the earlier
work.

It should again be emphasized that the monitoring network proposed
by Cunningham is based on multiple objectives (see Chapter 6), rather
than the single trend detection objective considered here, However,

it appears that the additional objectives considered by Cunningham



146
can be accommodated equally as well by a small number of stations, and
it is recommended that a maximum of three stations be included in the

proposed network for the Snohomish River basin.



CHAPTER 8
SUMMARY

The purpose of this research has been to develop a method for the
design of stream quality monitoring networks for trend detection. Alter-
nate objectives, such as abatement, were investigated and were found to
be either unfeasible or best handled through intensive monitoring
programs, for which design methods are presently available. An approach
is provided here which yields both spatial sample station locations and
temporal sample frequencies for a given constraint, fc, on the total
number of samples which may be taken in a given time period for a speci-
fied river basin. In addition, a relative efficiency measure is provided
which enables comparison of system performance at different constraint
levels fc. A review of the literature showed that, although most ambient
water quality monitoring networks have explicitly or implicitly the
primary objective of detecting trends, this objective has not previously
been included analytically in a design formulation.

A segmented approach was taken and the problem was partitioned into
the two subproblems of spatial station location and temporal frequency
specification. Choice of the temporal sample frequency required con-
sideration of the power or probability of detecting a trend (given its
existence) for fixed trend magnitude, record length, and sample standard
deviation. A complication resulted from dependence which exists in time
series of measurements of water quality parameters.

Normalized power curves were derived based on an assumption of

independence of the data set for two nonparametric tests (Spearman's
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rho and Mann Whitney's tests) for linear and step trends. A method was
developed which allowed application of these curves to dependent time
series using an equivalent independent sample size. Use of the normal-
ized power curves requires the standard deviation of the time series,
in addition to knowledge of the sample size, correlation structure of the
time series, and trend magnitude. The theoretical development was based
on population values; in practice sample statistics may be used if proper
account is taken of persistence in the time series from which the
statistics are estimated. Nonparametric tests were used in this develop-
ment because of their robustness to slight changes in the underlying
probability distribution of the data set, nominally assumed to be
Gaussian.

State estimation theory provided the link between the two subproblems.
The time series variance is composed of two parts, an historical component
which may be attributed primarily to meteorological variation, and a
measurement and prediction component which results from measurement error
and (if detection is desired at points where no sample station is located)
errors in predicting water quality based on a measurement at the nearest
upstream station. The measurement and prediction variance (standard
deviation) is required in both the setting of sample station locations
and in determining trend detection power. Measurement and prediction
variances were estimated using Kalman filter methods and a knowledge of
the dynamics relating water quality constituents in time. An approach
combining use of the normalized power curves (modified to admit
dependent samples) with the variance propagation trajectory (determined
using the Kalman filter approach) allowed comparison of trend detection

powers for various sampling strategies for fixed total sample size. The
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comparisons were made on the basis of spatial average powers computed for
each river reach and weighted to give a basin average power. Demonstra-
tion applications were provided for two Washington streams, the Spokane

and Snohomish Rivers.

I. Conclusions

Four principal conclusions were suggested by the research reported
in this dissertation:

1. It was shown that an earlier theoretical development by Bayley
and Hammersley (1946) which allows computation of an equivalent indepen-
dent sample size from an autocorrelated time series may be extended to
allow normalized power curves derived for independent samples to be used
in the dependent case, specifically for autocorrelated time series.

oo

For time series with a finite span of dependence (i.e., X Py < ) this
i=1

result was shown to have several striking implications. Since, for such

models, there is an upper limit on the equivalent independent sample

size over a given time horizon, a limit also exists on the maximum avail-

able power in trend detection for a time series of observations collected

over this horizon, regardless of how many samples are taken.

Depending on the size of the trend magnitude to time series standard
deviation ratio, this maximum power may be substantially less than one.
Regardless of the stated objectives of a monitoring system, this result
imposes a physical bound which dictates that it will be essentially
impossible to detect trends of small magnitude over a short period of
time for moderate (i.e., on the order of one) values of the trend to
standard deviation ratio, even if an infinite number of samples are

taken. This result is quite general and holds for all time series

models having at least an exponential decay in the autocorrelation
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function, and includes, for instance, the class of autoregressive moving
average (ARMA) models frequently used in time series analysis.

2. When maximization of spatial average trend detection power is
taken as the objective of a monitoring network, location of the sample
stations is relatively unimportant. This insensitivity resulted when
state estimation techniques (specifically an optimally driven filter)
were used to yield measurement and prediction variances in estimates of
water quality constituents based on measurements at upstream stationms,
and was observed in both demonstration applications. The physical sample
station location controls only the measurement and prediction error vari-
ance at each point along the stream. This measurement and prediction
error variance must be added to the natural (meteorologically driven)
variance to yield the total variance in the estimated time series of
water quality (state) variables at each point. Since the natural vari-
ance at each point is unaffected by station location, the location of
the stations, especially in cases where measurement and prediction error
is relatively low, may have little effect on trend detectability. The
tradeoff in variance reduction between placing a station far upstream
as opposed to the resulting downstream growth in variance also tends to
reduced the sensitivity of spatial trend detectability to station loca-
tion (see Figure 2.3).

3. Spatial average trend detection power is highly sensitive to
the number of sample stations, when the total sample size is fixed. If
the constraint on sample size, fc’ is relatively small (generally less
than about 50 samples per year for an entire basin) it is usually much
more efficient to use a single station with a relatively high sample
frequency than to use multiple stations with correspondingly lower

frequencies. Most of the present sampling effort in Washington State,
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and in particular the ambient monitoring networks for the two demonstra-
tion streams, falls into this category. Only at substantially larger
constraint levels can multiple stations be supported. This result comes
about because trend detection power increases more rapidly with increased
effective independent sample size than with the alternmate reduction in
standard deviation of the time series (achieved by a lower frequency of
measurement at multiple stations) until the maximum effective independent
sample size has almost been reached at each station. The best trend
detection network, then, is essentially the network containing the maximum
number of stations for which the maximum effective independent sample size
has been nearly (say n/nmax N 0.9) reached at each station. If the
constraint level is too low to reach this level, a single station must be
used, As a very rough rule of thumb, it appears that for correlation
coefficients in the range of those calculated from the observed data
(p v 0.75-0.90) sample frequencies should be approximately weekly at each
station.

4. Because constraint levels, fc’ for ambient water quality monitor-
ing are presently quite low (often on the order of magnitude of 50-100
per constituent per year for an entire river basin) the use of water
quality models to augment measured data is essential. Modelling becomes
less necessary as constraint levels increase, since the number of sample
stations increases with constraint level, requiring less sophisticated
approaches to extrapolating and interpolating data between measurement
stations. The Kalman filter formulation will be extremely helpful in
data augmentation, because it allows direct incorporation of measured
values and knowledge of the dynamics of parameter interactions. 1In
addition, the same filter model used to describe variance propagation

in the design stage may be used to augment data in the collection stage.
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Although this research has not examined the question of the level of
sophistication required in water quality modelling, it appears that,
based on experience with the two demonstration streams, water quality
in Washington Streams is governed primarily by advective process and
that relatively simple models might suffice for description of water

quality variable interactions.

II. Recommendations

This work has served to raise a number of questions not apparent to
the author when this research was initiated. The most significant of these
are suggested here as recommendations for future research.

A general comment regarding approaches to the utilization of water
quality data appears warranted. At present, handling of water quality
data is characterized primarily by an apparent quest for quantity rather
than utility. Much might be learned from the approaches to data analysis
used in the closely related field of water quantity management. In
general, the statistical tools developed and/or used by the hydrologic
time series analyst have not been brought to bear on water quality data
analysis. Several reasons for this are obvious, for instance, water
quality assessment requires a multivariate rather than a univariate
approach, making data handling problems much more voluminous. In addi-
tion, examples of statistical stationarity, the basis for most hydrologic
studies, are the exception rather than the rule in water quality time
series. Finally, record lengths are, generally, much shorter for water
quality parameters as opposed to streamflow measurements. Nevertheless,
attempts to build statistical models of water quality time series could
prove extremely helpful in gaining insight into the time dependence of

water quality variables. For instance, the use of statistical techniques,
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particularly for trend analysis of ambient water quality is essential to
meaningful action on waste discharge permit renewals; there is no
evidence that such analysis is presently used. Beyond the use of statis-
tical techniques for trend detection, regionalization methods could
prove extremely helpful in assessing the level and variability of water
quality variables in data deficient basins, especially given the severe
budget constraints often faced by managing agencies.

The approach suggested by the results of this work of incorporating
statistical methods with physical models will probably be necessary be-
fore much more progress can be made in assessing changes in the aquatic
environment. The necessary changes in approach could probably be
included within the framework of existing water quality monitoring
programs. The physical modelling required could be based on intensive
surveys presently used by most water quality managing agencies. These
surveys could provide, periodically, sufficient data to calibrate a
water quality model of any given river basin. The model could then be
used to augment the data collected in an ambient monitoring program at
points of interest where measurements were not taken. Periodic
recalibration could be used to correct for nonstationarity in the
dynamic interactions. There do not appear to Be any conceptual diffi-
culties in implementing such an approach at present, the problem is
more one of the volume of work required and the general change in
approach to monitoring which is necessary.

Beyond this general recommendation for implementation of the
results of this work several specific recommendations for further

research are included here.
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1. The problem of sample station location merits further investiga-
tion. Since basin wide trend detectability is relatively insensitive to
station location, the stations may be located to satisfy alternative
requirements so long as the required number of stations are used. The
method of station location proposed by Sanders (1974) might be used. His
approach has the advantage that mixing characteristics are included, which
would be an apparent improvement over the one dimensional flow assumption
made in this research.

2. A more comprehensive survey of dependence in time series of water
quality parameters should be undertaken. For instance, can such time
series be adequately described in general by low lag autoregressive
models? 1In addition, some regionalization of parameters would be
extremely helpful, for instance coefficients of variation and lag one
correlation coefficients might be regionalized to enable design of
monitoring systems for data-deficient basins.

3. Extension of the method proposed in this research to multidimen-
sional flow conditions would enable use of the design method for estuaries
and impoundments. The principal change required would be to model the
variance propagation as a smoothing rather than a filtering problem. This
approach would be required since estuaries and impoundments do not have
flow regimes which readily enable transformation from temporal to spatial
domains. Alternately, the use of multidimensional random field theory
(Rodriquez and Mejia, 1974) might be used to describe the multidimensional
variance contours associated with different sampling strategies. The
statistical part of this work could then be utilized essentially intact

to determine optimal sampling strategies.
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4. The use of state estimation theory should be investigated for
application to area intensive water quality surveys. Station location
is far more critical in such surveys than in ambient networks, since no
model normally exists to augment such data, or, if one exists, the data
collection program is often performed for the purpose of calibrating the
model. 1In such cases measurement sites should be based on the relative
information provided by successive measurements. Such a measure is
provided by the relative magnitudes of the prediction variances at sample
points by the Kalman filter.

5. A comparison should be made of commonly used water quality models
based on their predictive capabilities. Such an approach will be essen-
tial if increased utility is to be extracted from water quality models in
data augmentation. Many operational water quality models presently exist,
covering a wide range of complexity. Calibration and operation costs are
usually proportional to the level of complexity, making it desirable to
select the least complex model which will perform adequately under specified
conditions. It is commonly assumed that predictive capability increases
with conceptual accuracy. The results shown in Appendix»A for the
attempted use of Raphael's (1962) model for temperature prediction show
that this is not always the case. A comparison of different models based
on several extensive data sets would be extremely useful to modellers in
determining the complexity necessary in modelling water quality inter-
actions. However, such a comparison should not be made solely on the
basis of the ability of the models to "fit" the data, as more complex
models, properly calibrated, may always be expected to yield better fits,
‘due to the greatef number of adjustable parameters. A more useful

comparison would be to examine prediction variances of the different
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models using either a number of test traces of stochastic sequences of
data sets or theoretically through a Kalman filter adaptation of each of
the models.

6. This work has considered allocation of sampling effort within a
given river basin for a set constraint, fc’ on the sampling effort for
that basin. In practice, a managing agency must allocate its sampling
budget on, for instance, a statewide basis to arrive at fC values for
each river basin. This allocation problem is probably not amenable to
a purely technical solution as provided for the intra-basin allocation
problem studied here. A multiple objective optimization will most likely
be required.

7. The constraint level, fc’ on basin-wide sample frequency has
been taken as fixed in this research, although efficiency response of
trend detection to the constraint level has been provided. The choice
of a fixed constraint level is compatible with budget constraints
experienced by managing agencies. However, given the opportunity to
allocate more funds to monitoring efforts, it may be useful to examine
the possible existence of an optimal level of fc' The optimal level
would require assessment of the relative costs of modelling as opposed
to monitoring for trend assessment, for instance relatively little (or
no) modelling effort is required if extensive monitoring is performed
while extensive modelling may allow relatively low monitoring effort.

8. This research has demonstrated an approach to design of trend
detection networks for streams. The approach is relatively straight-
forward, and with some modifications (for instance regional summarization
of results might avoid the necessity for computing variance trajectories

for each river reach) is capable of direct implementation. Unfortunately,
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long time lags have often been observed between development and imple-
mentation of applied research as a result of lack of adequate technology
transfer. The time lag could best be reduced by a demonstration
application to a regional or statewide ambient water quality monitoring

program. Such a demonstration application is strongly recommended.
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APPENDIX A FILTER MODELS OF A STREAM SYSTEM

The dynamics of the stream system are handled by three independent
models. Nutrients, DO, and BOD are modelled by a filter adaptation of
EPA's DOSCI steady state stream model (Finnemore and Shepherd, 1974).
Temperature is modeled by using a simple heat balance approach.

The filter model of coliform uses a first order decay approxima-

tion with a distributed source term to account for non-point sources.

A transformation of variables is made to model the logarithm of coliform
counts rather than the numbers themselves. This transformation makes use
of the assumption of normality inherent in the filter model more reason-
able, as raw coliform data are usually highly skewed.

Stream velocity is included in all three models as a state variable.
This allows modelling of the effect of uncertainty in stream velocity on
uncertainty in the state variables. Using the steady state assumption
a simple transformation of the standard time dependence in the filter
model is made to one of spatial dependence:

dxX dx
EERlTiT: -5

where X = vector of state variables

s spatial coordinate

U

stream velocity

Hence state estimates and state covariance estimates are for a specified
spatial, rather than time coordinate. The interactions within the three

models are explained in detail below. No link is provided between the
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temperature and nutrient and coliform models, although some of the
parameters in the two latter models are temperature dependent. This
exclusion is justified by the results provided in Burges and Lettenmaier
(1975) which show that uncertainty in BOD and DO estimates due to uncer-
tainty in temperature contributes negligibly to overall parameter uncer-

tainty in BOD and DO models.

Nutrients, DO, and BOD

The dynamics of the filter model for this segment of the stream
system follow closely the BOD-DO-nutrient interactions of the DOSCI
model. Two classes of state variables are included in the filter model.
The first class is referred to as primary variables, and includes those
water quality parameters which are of direct interest. The primary

variables are:

symbol state wvariable
designation

PO4 Xl inorganic soluble reactive phosphate
(orthophosphate)

BOD X2 biochemical oxygen demand

DO X3 dissolved oxygen

NH3 X4 ammonia

NO2 XS reactive inorganic nitrite

NO3 X6 reactive inorganic nitrate

The second class of state variables are referred to as secondary
state variables, and are the constants used in linking the primary
variables. The secondary vairables for this segment of the stream model

are:



symbol

state variable
designation
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BOD settling constant

BOD nitrogen decay coefficient

BOD phosphorus decay coefficient
BOD carbonaceaous decay coefficient

benthal-non-point source BOD supply
constant

reaeration constant

NO2 decay coefficient

NH3 decay coefficient

NH. volatization constant

3
benthal NH3 supply constant
NO3 settling coefficient

benthal-non-point source PO4 supply
constant

PO4 settling constant

benthal DO demand constant
benthal BOD supply rate
benthal DO demand rate

benthal NH3 supply rate

benthal PO4 supply rate

Cross-section mean stream velocity

The interactions of the primary variables are explained below:

BOD is lost to ammonia, phosphate, bottom sediments, and directly

first order reactions.

as carbonaceous dissolved oxygen demand. All losses are modelled as
BOD is supplied by non-point sources and ben-

thal esuspension, which is modelled as the product of a supply rate and
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a constant. Hence the balance is:

dX2

5 =~ + K+ K+ K) X, + K Ry (A.2)

Figure A.l shows this balance schematically.

SEDIMENTS

PO,

[ BENTHAL
50T & NON-POINT

DO

Figure A.1. BOD Mass Balance

DO: Dissolved oxygen is supplied by reaeration if the DO concentration

is less than saturation and is lost if the DO value exceeds saturation.

Oxygen is given up in the nitrification reactions of NH3 and NOZ' In

addition, DO is lost directly to BOD (carbonaceous BOD) and through

direct demand of bottom sediments. Hence the balance is:

dx
3 = — - —— — —
= K_(C_-X;) = 1.11 KX = 3.22 KX, - KXy = Ky 4Ry, (A.3)
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The factors 1.11 and 3.22 are stoichiometric coefficients from the nitri-
fication reactions of NO2 and NH3, respectively. Cs is dissolved oxygen
saturation concentration, and is taken as constant. The DO balance is

shown schematically in Figure A.2.

BOD

NH,

ATMOSPHERE

BENTHAL

NO,

Figure A.2. Dissolved Oxygen Mass Balance

POA: Phosphate is supplied by BOD and bottom sediments and is lost to

settling. The bottom sediment supply term also accounts for non-point

source supply. The balance is:

Xm 2
T Kprbp B Kpsxl * KPXZ -4
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Here, following Finnemore and Shepherd (1974) the decay reaction is

modelled as second order. Figure A.3 shows this balance schematically.

BENTHAL &
NON-POINT

SEDIMENT |< PO,

BOD

Figure A.3. Orthophosphate Mass Balance

NH3: Ammonia is supplied by bottom sediments and BOD decay and is lost
through volatization and through the nitrification reaction to NOZ'

At sufficiently low DO values this reaction may proceed in the

reverse direction. This possibility is allowed in the original DOSCI
model but not in the filter version since DO levels in the streams of

interest were always near saturation.

The balance is:

ac —Kvxa + KnXZ + Kbann - K1X4 (4.5)

Figure A.4 shows this balance schematically.
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VOLATIZATION BENTHAL &
NON-PQINT
NO, BOD

Figure A.4, Ammonia Mass Balance

.

NO,: Nitrite is modelled entirely as part of the nitrification reaction.

Supply is from ammonia, loss is to nitrate:

dXS
'a—t—=KX—KX (A.6)

Figure A.5 shows this balance schematically.

NO5 NH

Figure A.5. Nitrite Mass Balance

N03: NO3 is supplied by NO2 in the nitrification reaction and is lost

to sediments through settling:

T = K2X5 - K3X6 (A.7)
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Figure A.6 shows this balance schematically.

SEDIMENT | NO,

Figure A.6. Nitrate Mass Balance

Advection is included in the model by treating local inflows and
withdrawals as occurring at the beginning of each spatial increment, or
subreach. Non-point sources of the state variables are included in
eqs. A.2-A.7; associated distributed inflows and outflows, e.g.,
contributions directly from interflow and overland flow or from small
channels and groundwater inflow/outflow are treated as point inflows or
withdrawals at the head of a subreach. For large inflows, subreaches
are set to begin at the intersection point.

The actual filter implementation of the nutrient-DO-BOD model is
by means of the optimally driven filter discussed in Appendix B. The

total mass balance of the nutrient-DO-BOD model is shown in Figure A.7.

Temperature

The temperature dynamics are derived from a simple heat balance,

ar _ 2
dt 62.4V

(A.8)

where V/A ='E, the mean depth. Transformation to spatial dependence
yields

ar _ %

— - (A.9)
dx 6o 4hy
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PO, A
)
BOD
y BENTHAL
ATMOSPHERE T Bnon-PonT
OD ~—<—P"
SEDIMENTS
1 & ALGAE
NO,
NO,

Figure A.7 . Mass Balance for Nutrient-DO-BOD Model. OD is
oxygen deficit, defined as saturation minus actual
dissolved oxygen concentration.
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Qt and h are assumed to change linearly with distance downstream, hence

dx 1’ dt
o G
dx 2’ dt
. . du
and velocity is assumed constant, ax = 0.
The filter formulation is
Y2/62.4Y4Y6
Y3
dy 0
= = - (A.10)
4
0
0

where Y, = T

1
Y, 7 Q
Y, =C
Y, = h
Y5 = 6
Y, = U

Following the earlier convention, Y1 is a primary state variable while
Yj’ j=2,..6 are secondary state variables.

An earlier approach attempted a filter adaptation of Raphael's
method (Raphael, 1962). This approach uses eq. A.8, where Qt is taken
to be the sum of net short wave solar insolation, net long wave back

radiation, conductive heat transfer to the atmosphere, and evaporative
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heat transfer:
Q. = kq, -1 663x10-7(T4—K T4) - .00543U0 P(T -T) - 16U K (A.11)
t i ) a : w - a w ev :

Here Qi is net short wave solar insolation to the water body and k is an
adjustment for cloud cover. The second term is net long wave radiation
from the water body where K is a constant allowing for the 'gray body"
nature of long wave radiation from the atmosphere. The third term accounts
for net energy convection to the atmosphere, which is assumed directly
proportional to wind velocity, atmospheric vapor pressure, and air-water
temperature differential. The final term is net heat lost to the
atmosphere through evaporation, which is assumed directly proportional

to wind velocity and the difference in vapor pressure between saturated

air at air temperature and actual vapor pressure at air temperature.

The attempted use of Raphael's method was abandoned after investiga-
tion of the derived variance trajectories. The long wave radiation term,
involving the fourth power of the absolute temperature dominates the
characteristics of the variance trajectory, and causes rapid growth of
the conditional variance. 1In addition, relatively small step sizes are
required to yield accurate results. Step sizes which are too large cause
negative solutions to the variance equation. A typical variance trajec-
tory derived using Raphael's method is shown in Figure A.8 Here the
assumed initial values Ta = 65, Tw = 50,-H = 10, and U = 50 mile/day were
used with measurements at 5 and 50 miles downstream from the upstream
boundary and a tributary located at 42.2 miles downstream. The initial
variance in stream temperature was taken as 4°F2, with the source flow
1000 cfs. The tributary flow was 100 cfs, with temperature 90° and

. 2 L
variance 100°F“. The measurement error standard deviation was taken as
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100.0,

a
=

g
2

a
-

_5.0 i 1 N L L. 1 - | i
[1] 10.0 20.0 30.0 40.0 50.0 60.0 0.0 80.0 80.0 100.0

Distance Downstream, Miles

Figure A.8. Variance Propagation for Test Case Using Raphael's
Temperature Model

1°F. After two measurements the conditional variance becomes essentially
the measurement error variance, however conditional standard deviations
of nearly 10°F are predicted between stations 1 and 2. Errors of this
size are not physically reasonable, as investigation of historical
records shows that variations in mean daily stream temperatures are much
smaller. Even with no measurements, standard deviations on the order of
5°F would be expected. Consequently, Raphael's method, while concep-

tually realistic, was not incorporated as a predictive tool  and

.

a lumped net heat influx term Qi was used in the temperature

modelling.

The actual filter implementation is by means of the optimally
driven filter discussed in Appendix B. As in the nutrient-DO-BOD model,
advective terms are included at the beginning of each subreach, where

complete mixing is assumed.
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Coliform
Coliform is modelled as a first order decay reaction with a source

term to account for non-point supply:

dc
L2 - K C+ A.12
dt cC Rc (A.12)
where C = coliform count (numbers-unit volume)

Kc = coliform decay coefficient

Rc = coliform distributed source magnitude

Since coliform levels commonly fluctuate by several orders of magnitude,
a transformation is made to allow modelling of log coliform counts,
rather than coliform counts themselves. This transformation also will
substantially reduce the skew usually present in coliform time series,
making the assumption of normality made in use of the filter model more

reasonable. The transformation is:

Z = 1nC, hence C = exp(Z )
c c

and d
bt = - +
TS (exp(ZC)) Kcexp(zc) Rc’

dz
C:_
exp(ZC) It Kcexp(zc) + RC,

I = Kot Rcexp(—ZC) (A.13)

Transforming to spatial dependence,

ch —KC RC
‘CTS— = —U—' + ﬁ—' exp(—ZC) (A.14)
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In state variable form, the only primary variable is Zc, the log coliform

count, which is denoted Z The secondary variables are:

1
symbol state variable
designation
KC Z2 coliform decay constant
Rc Z3 non-point coliform supply rate
U Z4 stream mean velocity

Use of the logarithmic model requires that coliform counts be
non-zero. The most practical approach to this requirement is to simply
replace measured counts of zero with a small number, for instance, if a
culture revealed no colonies per 100 ml., this might be arbitrarily
replaced by a count of one.

As in the other filter models, advection is included at the begin-
ning of a subreach. The actual filter implementation uses the optimally

driven filter of Appendix B.



APPENDIX B OPTIMALLY DRIVEN FILTER

An outline of the derivation of the optimally driven filter is given
below. The derivation presented here is not rigorous, but is rather an
approach which will give insight into the mechanics of the filter
algorithm with some sacrifice in mathematical rigor.

The numerical implementation of the filter is discussed in some
detail, and the actual equations used in the coliform model are derived.
For a more complete treatment, McGarty (1974, pp. 281-90) should be

consulted.

Derivation

Throughout this section the notation C denotes a vector, and C
denotes a matrix. Vectors in standard form are column vectors, hence
- . _T R —
C is a column vector. C° is the row vector transpose of C. The nota-
tion "tr" denotes the trace of a matrix.

We model the system dynamics as

dX _ == -
3¢ - f&0) +n(t) (B.1)

where X is a vector of state variables and n(t) is a Gaussian white

noise process. The measurement system is modelled as
Y(t) = C(£)X(t) + w(t) (B.2)

where Y is a vector of measurements, C is a coefficient matrix, and
" w(t) is a Gaussian white noise process. The system noise covariance

matrix Q and the measurement noise covariance matrix R are defined as
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E@(t)n (t))

EGw(t)w (t))

(B.3)

(B.4)

The forcing function f is expanded (to second order) in a Taylor series

—%

about an operating point X :

n

- = — =% & — % - — =% T k% — %k
fX) = fX) + AX)EXE-X) +1/2 % yi(x—x ) gi(x ) (X-X) (B.5)

i=1

where n is the dimension of the state vector X and the A matrix is:

—
AX ) =

axl

of
9x

af
i

3X13X1

of

BXHBX1

of
ox
n

af,
. i
BXlBXn

of

" 9X 09X
n n

=]
ol

> |
ol

(B.6)

(B.7)
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and'—Y_i = 1 i i.e., an n x 1 colum vector of zeros except
for a one in the i'th position.

dx

s E?(t) = f(i(t)), where the notation X

We note that if Q(t) = O
indicates a prediction based on given initial conditions. The real
system, however, is perturbed by noise. Hence we define an additional

forcing function which we hope will in some way compensate for the noise,

i.e.,

Loy = TX(®) + B(o) (8.8)

'$(t) is now chosen so that the expected error E(i(t)—i(t)) is zero.
Setting the expected error equal to zero and substituting B.5 in B.8

ultimately yields

n

B(E) = 1/2 Ly, tr(B (XHM(E)) (8.9)
i=1
2 n
where M(t) = E(X iT) (B.10)
~n " A

and X is the error in the estimate §.of'i (i.e., X=X -X.

The next step is to derive an equation for M(t), the state covariance
matrix conditioned on a prior measurement. The derivation is based on
. an assumption of Gaussianness. This assumption yields two simplifica-

tions:
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(1) Since the apriori distribution of the state vector is assumed
Gaussian, any linear combination of the apriori values (including com~
binations of differentials, which are linear operations) will be Gaussian.
Hence, the estimate i'of X will be Gaussian.

(2) Since X is Gaussian, all the odd moments of X will be zero. The
assumption of Gaussianness and resulting simplifications combined with
the definition of M(t) (B.10) and the Taylor series expansion of ?(B.S)

yield:

aM(t)
dt

—% T —*
= A(X )M(t) + M(£)A (X ) + Q(t) (B.11)

where M(k-1) = P(k-1) is the initial condition, and P(k-1) is the state
covariance matrix at discrete time k-1 conditioned on a measurement at
time k-1,

R,
P(k) = E(X(k|K)X (k|k)) (B.12)

Here, and in the subsequent development, the notation °(k|j) indicates
the estimate of a quantity at time k conditioned on a measurement at
time j. Also, for simplicity the notation - (k) implies '(klk).
The filtered estimate of state is defined as
o 2 — el
X(k|k) = X(k|k-1) + K(k) {Z(k) - C(k)X(k|k-1)} (B.13)

Hence, substituting B.13 in B.12,

P(K) = (I - K(K)C(k))IM(K) (I - K(K)C(Kk))T

+ E(klg(k)g?(k) (B.14)

Here C, M, and K are matrices defined in egs. B.2, B.10 and B.13,
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respectively and k denotes discrete time.

The solution for K(k) requires choice of a statistical cost function.
The cost function commonly used is quadratic, i.e., for S(k) any arbitrary
symmetric n x n positive-definite matrix, the cost, J(k) is

N "
J(k) = EX(k|k)S(R)X(k|K)) (B.15a)

Hence, the cost associated with a bad estimate § of X increases
quadratically with the error. The implications of this choice of loss
function and other possible choices are discussed in section I of

Chapter 3. The choice of a quadratic cost function and the minimization

with respect to K(k), (k) = ( leads to
3K (k)
T T -1
K(k) = M(k)C (k) (C(k)M(k)C (k) + R(k)) (B.15)

The complete algorithm may be summarized:

1. Choose §(0),_§(0)

2. Solve eqs. B.6, B.7, B.9, and B.1l1l simultaneously for M(t) and
W(r).

3. Solve B.15 for K(k)

4. Solve B.1l4 for P(k)

5. Solve B.8 for ﬁ(k|k-1)

6. SolveB.13 for %(klk)

7. Return to step 1, using initial estimates i(lll), P(1)

Numerical Solution

The equations necessary for implementation of the optimally driven

filter are listed below for convenience of reference:
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dM

—_— —k T —k
o= AGHH +MAT®) + Q) (B.
- n_ %
D(t) = 1/2 8 ¥, e (3, X HM(D) (B.
i=1
el = £ (0)) + Beo (8
T T -1
K(K) = M(K)CT (k) (M) C (k) + R(K)) (B.
P(k) = (I - K(K)C(K))M) (L - K(K)C(k)) ™
+ ROR)K (k) (B.

§(k|k) = §(k|k—1) + K(k) (Z(k) - g(k)ﬁ(k|k-1)) (B.

The Taylor series expansion of f'(eq. B.5) requires a nominal trajec-
—%
tory X about which the expansion is to take place. The nominal trajec-

tory may be selected apriori, or may be an estimate derived from the

filter model itself. Consider the latter case first.

If the nominal trajectory is to be derived from the filter model,

11)

9

.8)

15)

14)

13)

—% 2
i.e. X (t) = X(t|k—l) eqs. B.8, B.9, and B.1ll must be solved simul-

taneously. The numerical approach used is a simple backwards
equation:
X =X
R |
—k T —k
- = + .
Vae@-M; 1) = AR DM, + M A& ) (8
n
— — —%
., =1/2 % vy, tr(B,. (X ,)M.) B.
wl : YJ —J i"=j (

j=1

difference

16)

17)
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o & — % —
Vbe(X =X, ) = £(X ) + ¥, (B.18)

1 i

This sequence of equations is iterated N, times, where N, denotes the

k k

number of integration units per time step k. Ultimately X, is derived,
8 P ep y

and equations B.13-15 are iterated. Then the new estimateli(k|k) is
used in eqs. B.16-18, and the process repeated.

The simple backwards difference scheme of eqs. B.16-18 is only one
of many possible numerical solutions. For instance, a multistep predic-
tor-corrector method or a Runge Kutta method might be used. The conver-
gence of the single step backwards difference approach is relatively slow,
and might be improved by use of a more sophisticated method. Three
considerations lead to retention of the simpler method. First, the
single step approach precludes the presence of extraneous (possibly
unstable) solutions to the difference equation as the difference equation
and the differential equation are of the same order. Second, the equa-
tions are matrix, rather than scalar differential equations. Consequently
more sophisticated methods of solution will require additional matrix
multiplication, and computational requirements increase very rapidly.
Finally, the solutions to eqs. B.16-18 are required at a number of inter-
mediate (between time steps k and k+1l) locations to identify the trajec—
tories of the variance and state estimates. Consequently, solution
methods which reduce the number of increments required for the same
accuracy are not particularly useful, as the intermediate solutions are
required as well as the solutions at discrete values of k. Consequently,
the simple backwérds difference approach to numerical solution of egs.

B.16-18 was retained.



185

If an aprior nominal trajectory is used, only eqs. B.1ll and B.9
need be iterated simultaneously. If only the predicted error covariance
matrices M and P are desired, only eqs. B.1l4 and B.15 need be iterated
subsequently.

In practice, the B matrices are often very sparse, and the compu-
tational load may be greatly reduced. If the secondary state variables
are modelled as being constant, their associated B matrices will all be
zero, hence the summation in B.9 may be taken over n', the number of
primary variables. For the n' non zero B matrices, the densities, for
the models used, never exceed 50 per cent, and in some cases are as low
as about 2 percent. Rather than carry out the classical matrix multi-
plication indicated in eqs. B.9, the sparsity of the matrices makes it
practical to store and manipulate the nonzero elements individually. A
further computational savings is realized by noting that all of the rows
of the A matrix below the n'th row are zero. Hence the multiplications

required by eq. B.1ll may be reduced substantially as well.

Illustration for Coliform Model

The numerical implementation of the filter algorithm for the coli-
form model is presented here. The implementation of the other segments
of the model (DO-BOD-nutrients and temperature) follows exactly the same
approach.

The coliform model dynamics are derived using spatial rather than

time dependence:

+ ﬁg exp(—Zc) (B.19)
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(See Appendix A for the derivative of eq. B.19.)

Using the notation of Appendix A,

dz Z Z2

3 - .2
e 24 exp ( Zl) 24 (B.20)

dz dz dz
2 3 _ 4 _
dx  dx dx 0 (B.21)

hence,
» e
23/24 exp(—Zl) - zz/z4
_ 0
£(Z,x) = (B.22)
0
0
_ ) -
o —Z3/Z4exp(—Al) —l/Z4 exp(—Zl)/Z4 1/24(22—Z3exp(—zl))
and A = =1 = 0 0 0 0
a X,
J
0] 0 0 0
0 0 0 0

The B matrices are determined using eq. B.7.

Clearly, §2 = EB = Eﬁ = 0, and, for example,
B - /Z ) =2,/2Z yA
1, =g, CZylzexe(c2y)) = Zy/z, exp(Zy)
11 1
B, = 23/24(Z3exp(—21) - zz)

44



23/Z4exp(—zl)

0
hence B, =

—exp(—Zl)/24

2
LZ3/ZAeXP(_Zl)
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1/2

—l/Z4exp(—Zl)

0

2
Z3/Z4exp(—Zl)

2
l/Z4

2
—exp(—Zl)/Z4

-exp(—Zl)/Zz 2(23exp(—Zl)-Zz)/Zz

The four non-zero elements in A and the 10 non-zero elements in B. are

1

stored and eqs. B.8-9, B.1ll, and B.13-15 are discretized using eqs.

B.16-18. 1In this manner the filter estimates of state and the state

covariance matrix may be derived.



APPENDIX C DESIGN DATA FOR SPOKANE RIVER

Data used in the Spokane River demonstration design are given in
this appendix. For convenience, the location of the various data in

tables are given below.

Table Contents
c.1 Effluent flow and concentration means
C.2 Effluent flow and concentration variances
c.3 Headwater flow and concentration means and
variances
C.4 Secondary state variable means and variances
C.5 Linearization trajectory (instream concentrations)

Effluent flows and mean concentrations were obtained from Kennedy-Tudor

Inc. (1974). Effluent flow and concentration variances were established

by the author apriori, for most constituents the variances were based on
coefficients of variation of approximately one. The linearization
trajectory was derived from instream measurements taken by Kennedy-Tudor,
Inc., in June, 1974. Headwater conditions were also provided by Kennedy-
Tudor. Secondary state variable mean values were obtained from Finnemore
and Shepherd (1974), variances were selected by the author and, in most

cases, are based on coefficients of variation of about one.



189

¢0°8
€9

0°¢

%6°C

60°1

T@ Q0T1/udum

eXod

‘@ pue o saorpuaddy InoySnoayl s3Tun OTWYITABZ0T [EINIBU UT PIIST] 918 BIBP WIOJTTOD Hmummm

£°TS
€19
6q
0L
T TS
0L
¢ 6L
0L

0L

‘dwag

€CT°T
VAT

69’

€T’ T
%0*
T1

[A/AN1

1/3u
ON

00"

o

600~

¢00°

T/3u
ON

GTO"
L6°ET

80°*

¢10°
8°T
8y”
VARY
08
1/3u
HN

0'8
0's
YL
0°G
0°8
0°¢
0°8
6°8
0°8
T/8u
0od

Tt
0°'1
1A
0
G'¢
V7
€°q
YA

T/3u
aod

SUOTIBIJUDOUO) UBSIR AieIngIiL/IudnTiiy

110°
T'%
90°
96°
T110°
ST
LT®

8y

1/8u

qom

Lze

(A

0s¢

IT°¢

0cy

[AA

0°9

Gyg*

i

s30
moTd

.

*13mpy duedjodg I9MOT
*d°1L's dueyodg
¥oo1) uewduey

1odeg satdug pueTul

*13mps auedodg xoddp

poomjuai]-1astey
peOR-I3STEY
jaed °puy auexodg

Surssedoag paeLITTH

UOTIBOTFTIUSPT

€°%9

¢ L9

Va4

0°¢s8

S'y8

0°98

098

6°98

1°L8

3TTH
I9ATY

*1°D °TqeL



190

z S 1 0T 0T T T 0T 00SZ  ‘I3mpp suexyodg 19M07T €49

9- y- -
6 S %9 N ¥4 6 0T v 0§ *d'1's @uejods z°L9
Y or 9" 0T 01 1 T %00° 00T ¥o91) ueuduey VA
6 001 o .0t 01 6 00% T 01 1adeg oardug pueTul 0°€8
z < T 40T 0t T T 0T 005z 38D sueyodg 1eddp S %8
6 00T TO° 0T € 0T 70" STT poom3jud1]-19sTeY 0°98
T v Te'T 0T ST T g* €0°  0°6 PESR~198TeY 0°98
g 00T € %0 6 1 T4 TN A0 ¥ieq °-pul suexodg 6°98
0 00T 79,01 9 T 90* 0T vIL* Buyssedoag PIBATTITH  T°(8
NHE 001 /udu Nmo Namws NHMwE NHMwE NH\wE NH\wE Nﬂmwa Nmmu OTTH
%04 rdweg ON on HN od  @od 0d MOTd UOTIBOTITIUSPT  I9ATY

S9OUBRTIBA UOTIRIIUIOUO) d81eYdSTA °7°D @Iqel



191

Table C.3. Spokane River Headwater Data

PO BOD DO NH NO NO
Flow

4 3 2 3
cfs mg/l mg/l  mg/l mg/l mg/l mg/l
mean 6870 .018 1,21 9.0 .05 0 .08
, 4 ~4 -2
variance 10 .0004 1 1 .0025 10 10

Temp
°F

55

FCX
mpn/100 ml

4

2
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Table C.4. Secondary State Variable Means and Variances

Description

Parameter Units
K day_l
S -1
K day
n -1
K day
P -1
K day
Ky 2
b 1
K day_l
a -1
K day
1 -1
K day
2 -1
K day
v
2
K m
bn -y
1
-1
3 day
m2
bp —
1,4
K day
ps 2
m
Ky L
Rob !
m hr
R4 _mg
mzhr
e 3
m hr
R g
bp ?
m hr
U mile/day
Qt B;u
ft hr
C1 Btu

fe2hr mile

BOD settling coefficient

BOD nitrogen decay coefficient
BOD phosphorus decay coefficient .0004
BOD carbonaceous decay constant

benthal-non point source BOD

upply constant
reaeration coefficient
NH, decay coefficient

3

NO2 decay coefficient

NH3 volatization constant
benthal NH3 supply constant

NO3 settling coefficient

benthal-non point PO4 supply

PO4 settling constant

benthal DO demand constant

benthal BOD supply rate

benthal DO demand rate

benthal NH3 supply rate

benthal PO4 supply rate

cross—-section mean stream
velocity

net heat influx

net heat influx change rate

Mean Variance
.03 9x10™%
.00333  2.5x10°
9x10~°

.3 .09

-5
.008 6.4x10
.7 .5
.096 .015
.36 .36
.3 .04

-5
.008 6.4x10
.036 1073

-5
.005 6.4x10
.022 :sxlo'4
017 6.4x107°
61 3600
15 225
.11 .01
.065 .015
75 50
7 25
.2 .01



Table C.4 (cont.)

H ft

C ft/mile
2 -1

Kc day

Rc mpn
1060 ml-day

193

upstream boundary depth 2
depth change rate .05
fecal coliform die-off coeff
coefficient .4
fecal coliform supply rate 0
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Table C.5. Linearization Trajectory for Spokane River

River PO BOD DO NH NO NO3 Temp.

Mile mg/l mg/l mg/l mg/l mg/l mg/l °F

77.9 .002 b 9.0 .02 .003 .02 57.
69.7 .002 .5 10.0 .015 .003 .02 57.

66.6 .006 .7 9.5 .025 .003 .035 57.

7

6

6

FCX
mpn/100 ml

1.6
5.7

5.7






APPENDIX D DESIGN DATA FOR SNOHOMISH RIVER SYSTEM

Design data for each of the three major tributaries in the
Snohomish River system are given below. For each tributary, the first
table lists the effluent and tributary mean flows and concentrations,
the second table lists effluent and tributary flow and céncentration
variances, and the third table gives the linearization trajectory.

For the Snoqualmie and Skykomish Rivers, a fourth table gives headwater
conditions.

Effluent and tributary concentrations were provided by the
Snohomish County Planning Department (Systems Control, Inc., and
Snohomish County Planning Dept., 1974). Variances were estimated
apriori, as for the Spokane (Appendix C). Headwater data and the
linearization trajectory were based on instream data collected by the
Snohomish County Planning Department in November, 1973. Units are

identical to those used in Appendix C.
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Table D.1.3,

198

Snoqualmie River Linearization Trajectory

River
Mile P04 BOD Do NHB NOZ N03 Temp.
39.7 .08 3.15 12. .005 .005 .54 42.62
27.2 .06 2.04 12. .005 .005 .06 42.8

24.9 .001 3.9 12. .005 .005 .05 42.8

6.6 .001 4.92 12, .005 .005 .52 43.34
Table D.1.4. Snoqualmie River Headwater Data

Flow PO4 BOD Do NH3 NO NO3

mean 3460 08 .901 12. .008 .005 .08
variance 4x10% 1074 1 107% 10 107

FCX
1.6

3.93

3.78

FCX
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Table D.2.3. Skykomish River Linearization Trajectory

ﬁi;ir PO,  BOD DO NH, NO, NO, Temp. FCX
41.0 .001 3.71 13.0 .001L .005 .12 41.72 2.99
34.4 .001 .73 10.8 .00l .005 .19 41.9  2.99
25.5 .001 2.18 12.4 .00l .003 .32 42.8 2.99
24.0 .001 2.66 12.48 .001 .005 .23 42.7  2.99
20.5 .001 2.73 12.45 .001 .005 .22 43,98 4.68

Table D.2.4. Skykomish River Headwater Data

Flow PO BOD DO NH3 NO2 NO3 Temp. FCX

mean 3460 .001 1.76 11.9 .001 .005 .49 39.2 2

variance 4x10% 107% 1 1 1074 107 1007% 4 2
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Table D.3.3. Snohomish River Lineariation Trajectory

River
Mile 9 Bop po 3 NO MOy oo, Fex
19.5 .08 2.18 12.30 .018 .005 .52  42.8  4.17






