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PREFACE

This report is the result of a study funded by the Washington State
Department of Ecology (DOE) to review DOE's existing ambient stream
quality monitoring program and to analyze certain records from the
existing network for possible trends. Since the two activities were
essentially independent, this report has been divided into two sections.
In addition to the activities mentioned above, a computer program was
developed to assist in the data analysis required in Part II; this

program is descv*hed and documented in Appendix B.

While some of the work reported herein is specific to problems faced by
DOE, and the data analysis is, of course, specific to Washington State
streams, most of the material presented in Part I is general in applica-
bility. This work arose from an earlier, theoretical investigation
conducted by the author (Lettenmaier, 1975); some of the resuits

of the earlier study indicated that the existing ambient water quality
monitoring program conducted by DOE, which has as its primary objective
the detection of trends in water quality, includes too many stations
with insufficient sampling frequencies at each station. The original
analysis, however, was conducted for data collection activities where
the sampling frequency is constant; application of this work was compli-
cated by the fact that the existing DOE strategy utilizes a variable or

stratified sampling strategy in which each station is sampled fairly
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intensely (two samples per month) at each active station, while the
active station pool rotates so that each station is active only one year
in three. This strategy was adopted because it results in regional
economies which allow more total samples to be taken than could be were
each station uniformly sampled. Since the existing program utilizes
"grab samples," each sample or set of samples requires movement of a
sample crew; by regionalizing the active sample station's travel time
and expense is greatly reduced. While the travel time problem might be
eliminated by implementing automatic monitoring equipment, past DOE
experiences with poor reliability and high capital cost of automatic
sampling equipment, coupled with the inability of existing equipment to
automatically sample some parameters, has resulted in continuation of
the grab sampling approach. The DOE experience has been reported else-

where (Ward, 1973; Beck, et. al., 1976).

The first part of this report investigates the trade-off between reduc—
tion in statistical power (trend detectability) of tests on data collected
under the stratified (one year in three) and continuous sampling strate-
gies. 1In Part II of the report, techniques for assessing autocorrelated
time series for trend are reviewed, and an number of the practical
problems in data analysis are discussed. The emphasis is on graphical
screening techniques, followed by appropriate use of two nonparametric
tests, Spearman's rho and Mann Whitney's. These two tests were utilized
in the earlier (Lettenmaier, 1975) report; a limited Monte Carlo sampling

program was conducted here to allow estimation of rejection levels for a
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certain kind of sample dependence described by the lag one Markov process.
Finally, analyses of a number of records collected from DOE's existing
ambient monitoring network are conducted. The results of the analyses
are reported along with a review of possible causes for the apparent

trends observed.
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PART I. DESIGN CONSIDERATIONS

CHAPTER 1.1 INTRODUCTION

With the increase of expenditures in a nationwide effort to upgrade

water quality has come increased emphasis on the monitoring of waterways

to identify trends. Several large scale studies of nationwide water
quality, however, (Wolman {1971); Steele, et al. (1974) and EPA (1974)) have
cited the inadequacy of existing data for trend assessment. Deficiencies

of data include sporadic sampling, lack of samples of indicators of
biological grow*™ such as nutrients, and changes in laboratory analysis
methods which invalidate comparisons using historic data. These defi-
ciencies may generally be traced to the lack of design guidelines for
establishing trend monitoring programs. In this paper a methodology for

designing trend monitoring networks is developed.

Several problems are faced by agencies establishing trend monitoring
programs. The first of these is to determine the basic strategy for
collecting samples in time. Samples may be taken either uniformly,

i.e., at equal intervals in time, or a stratified, or unequal time
increment strategy may be followed. Two recent studies have addressed

the problem of sampling strategy (Beck, et al. (1976); Lettenmaier (1975));
both these studies have suggested a uniform sampling strategy.

However, in establishing trend monitoring programs in jurisdictions of
moderate to large size, such as the western states, geographical loca-

tions of stations are a very important consideration, since the time
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which must be allocated for traveling of sample crews may be substantial.
This consideration favors stratified sampling. The State of Washington
Department of Ecology, for example, has adopted a sampling strategy in
which the state is divided into three regions; stations in each region
are sampled uniformly on a rotating basis one year in three. The strati-
fied samping strategy allows more total samples to be taken at a given
station because of the regional travel economies achieved, however, the
sampling pattern at any given station consists of a year of data followedA

by two years of no data.

In addition to establishing the basic strategy, the desired sampling
frequency at each station must be selected. A tradeoff must also be
established between the sampling frequency at any given station and the

number of stations to be established.

In this paper the statistical power of uniform and stratified sampling
strategies are compared on the basis of modified t- and F-tests for any
trend which may be described at least approximately as a polynomial in
time. The relative power of the two tests aid in choice of the basic
sampling strategy to be followed. General guidelines and tables which
may be used to aid in selecting sampling frequencies are developed, and
some guidelines for determining sample station locations are given. In
addition, the use of a relatively new approach to detection of trends in
dependent time series, intervention analysis (Box and Tiac (1975)) and
its implications for sampling strategy are discussed. While in each
section of the paper a sufficient statistical basis is provided to
support the required derivations, the mathematical framework is not

essential to an understanding of the results. The reader who is willing



to accept the derivations may proceed directly to the end of each section,

in which the results and implications of the results for trend monitor-

ing design are given.



CHAPTER I.2 STATISTICAL FRAMEWORK FOR TREND ASSESSMENT

The problem of asserting the existence or nonexistence of trend in a
recorded time series may be treated in the classical hypothesis testing
framework. Two hypotheses are considered. Ho’ the null hypothesis is
the '"no change" (no trend) alternative, while Hl’ the alternative
hypothesis is that a trend exists. The choice between Ho and Hl is
made on the basis of an as yet unspecified test statistic, T, computed
from the data. The computed test statistic T is compared to a critical
value, TC, and the null hypothesis, Ho is either accepted or rejected.

"eritical values' are avail-

Many such test statistics exist; tables of
able for the most common tests. Four combinations of states of nature

(truth) and test indications are possible:

Test Indication

H true H, true
o 1
HO true P=1-20a Pl= o
States of Nature P =B (type error)
H. t B = _
p true (type B error) P 1 8

The confidence level o is normally specified apriori, the critical value
of the test statistic is a function of o and the sample size, n. At a
fixed value of o, the power of a test gives the probability of choosing

the alternative hypothesis given that it is true; in the present case



this is the probability of detecting a trend when one exists. The power
and confidence of a test are inversely related; increasing the confidence

level of a test will lower its power.

Two of the most straightforward types or trends are step and linear. A
step trend is an instantaneous jump in process mean level at some point
in the record, i.e.,

Xt = ul + [uz - ul]T + st 1.2.1

where ul and uz are the true means of the first and second half of the
record, the not-+ion [L]T denotes a function with value zero for t <T
and L for t > T, and et is a stochastic noise term. A linear trend is

simply a uniform increase in process mean level;

Xt = U+ t/TAp + €, 1.2.2

For large sample sizes or when the variance of €. is known, the power of
the classical two-tailed t-tests (Breiman (1973)) against the trend in

€gs. I.2.1 and I.2.2, where the noise terms €, are statistically independent

t

. . . . 2
and normally distributed with mean zero and variance 08 , 1s

— = — I.2.3
L-B=F Wy =Wy )
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where Fg is the cumulative distribution function of a standard normal
probability distribution, Wl - a2 is the standard normal quantile at

probability level 1 - a/2, and

TrJrT
NT =55 (step trend)
£
Tr/n(n+1) (n-1) Tr/ﬁ
NT = = (linear trend).
nv1l2 0E V12 OE

Where Tr is the trend magnitude (total change in mean level over the
record length) and is equal to I My~ Hy l for the step trend and Au

for the linear trend.

I.2.1 General Polynomial Trends

While the linear and step trend models described above often give a
sufficient approximation to time series containing trends, a more general
model to the deterministic (trend) component is sometimes desired. Beck,
et. al. (1976) and others have suggested use of a general polynomial in

time to describe trend effects:

X =

i
I1.2.4
X aik +

0 k

I ~38

1

where k denotes discrete time steps with t = kAt, the noise term gk is
assumed to be normally distributed with variance OEZ and mean zero. It
will be shown that the power of the t-test against such trends has a

form very similar to eq. I.2.3.



The deterministic part of eq. I.2.4 (noise term set to zero) may be described

by the (linear) vector differential equation

Xl X2
) X3
X3 .
d -
it : = Xm I.2.5
Xm Xm+l
Xm+1 0 where xm+l = m!am,

allowing use of the Kalman filter algorithm (Jazwinski (1970), Lettenmaier
and Burges (1976)) to compute the variance of the estimate of the coeffi~-
cient of the highest order term, a . The state covariance matrix is
defined as P = E(§fz)(§fg)T where X is the true value of the state

vector and X is the Kalman filter estimate. The Kalman filter algorithm

computes Pk’ the state covariance matrix after the k'th measurement, as

P! = 3(At)POT (AL) I.2.6a

K = PéMT(MPLMT + )t 1.2.6b

P, = (I, - KDP I.2.6¢
where M is a 1 x mtl matrix with elements Mi = 1, i=1

0, otherwise,

. . . 2 .
R is the measurement error variance and is equal to o, the variance of



g, in eq. I.2.4, 1 is the m+l x mtl identity matrix, and ¢ (At) is the

k m+1l

, —_— -_— . .
solution to ""—i = Fo N where dt = FX, henc_e from eq.

and

2 m
At At
1 At Y
m—-1
_ At
= (0 1 At ... YE:ITT
0 0 0 1

If the set of equations I1.2.6 is initialized with P, =« i = 3

0 |1 # ]
the Kalman filter is equivalent to a sequential updating method for the
classical regression solution for the variance of the coefficient of the
highest order term in the polynomial. Estimation of only the variance
of the highest order term is not a severe constraint, however, since
statistical significance of the highest order term is a necessary and
sufficient condition to justify fitting of a polynomial of that order to
the data. The special case for m = 1 (linear trend) is given in Lettenmaier
(l975)g additional simulations for m = 2, 3, and 4 were performed
in this work. Although a closed form solution for the variance of the
estimate ém of a, is intractable for m > 1, the variance may be calculated

numerically. For the measurement error variance R = ¢ 2 taken as 1 (with
€
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no loss in generality), the variance of 5m was computed as a function of
At and n. At was taken as l/2j, j=0, 1, 2, ... 6, for a number of

time steps ook 10x2j, hence the total time covered in the simulations
was the same in each case, only the sample frequency varied. The depend-

ence of G2 on n may be shown by plotting 02 against nAt; the results

a a
m m
are shown for m = 2 (2nd order or parabolic process) in Figure I.1, from
which it is clear that Og = Kn_s. The constant K may be estimated frow
2

the computed variance directly. Since there is a transient numerical
effect resulting from the use of a finite value for the initial diagonal
element of P (109 was used here), it is best to estimate K from the last
calculated value of 02 at time t = NAt. 1In addition, a convergence in

m
the estimate of K was usually apparent as At increases, apparently
corresponding to the faster loss of initialization effects in the cases
where a greater number of smaller time steps were used. The estimates
of K given below are the values to which K appeared to be converging.
The value of K for m = 1 is known to be 12, as derived in Lettenmaier (1975)

the numerical estimate was identical to this value to within

three decimal places.

In general, then, the test for significance of the highest order
coefficient of a polynomial fit to a time series will depend on the

normalized test statistic

I.2.8

m €
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and the noncentrality parameter of the test for significance for normally

distributed data will be given by

N = an I.2.9
o
K o

m €

~

with power given by Pw = Fg(NT - W ) for a two-tailed test and where

1-a/2

for small n wl — /2 is replaced by t where v is the degrees of

1 -a/2,v

freedom of the test. 1In this form, a is a function of the sampling

interval, however if eq. I.2.3 is rewritten

m n_ *
= = 1.2.10
Xk '2 ai(k - )+ €1
i=0
then letting
a* = a,(n )i I.2.11
i i‘ o
the resulting normalized form is
m i
Xk = z a* n k' + ¢ 1.2.12
. i k
i=0
This formulation has the advantage that
2m+1-m
2 * J/n
= * _a n
NT am n = m I.2.13
Ve K
Km OE m OE
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which has the same form for all m regardless of the sampling interval. As

a result of this analysis, the power curves originally derived by Lettenmaier
(1976) for step and linear trends are valid for any general polynomial with
only a change in the constant Km; the noncentrality parameters NT are com=-
puted in exactly the same manner as for step and linear trends. While a
polynomial form may not be conceptually reasonable, especially considering
the algebraic unboundedness of eq. I1.2.10 as k»», in practice a general poly-
nomial will often yield a very good fit to a nonlinear trend over a limited
range. For this reason, knowledge of the form of the power curves for a
general polynomial may be useful in trend network design. Consequently,

the monitoring recommendations made in the following sections based on

the analysis of this section hold for a quite general class of trends.

Table I.1l: Estimated Values of Km

180
2.80 x 10
4.411 x 10

3
4

>~ W N = O B

*exact analytical result

I.2.2 Stratified Sampling

For a uniform sampling strategy and independence of the error terms ¢,
it has been shown in the previous section that for moderate to large

sample size, the power of the classical t-tests may be expressed as

Tr/rT
P = Fg - W 1.2.14

1-a/2
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with Km a function of the order of the polynomial m and Tr the trend
magnitude expressed as the total change over the record length. For
the case of dependence of the observations, the power becomes
= Yn* - % § i i dent
PW Fg (Tr nb/KmG€ Wl _ a/2) where n¥ is the effective independen

sample size given by Bayley and Hammersley. A common form of

time series dependence is the lag one Markov process,

£ = pe 1 +n I1.2.15

where p is the lag one correlation coefficient and n, is a normal

2
independent process with mean zero and variance o a - p2)0€ . Letten-
maier (1975) 1investigated several records of daily water quality

observations which suggested that the lag one Markov model may be

generally applicable to water quality time series.

When a stratified sampling strategy is used, the t-tests used in
detecting trend in continuous records are no longer appropriate. Rather,
the F-test, used for detecting differences in mean levels in several
records, should be used. The F-test for independent error terms makes

use of the test statistic

T=2— 7 2 1.2.16

~

where there are Nt groups (years) with n measurements in each group, My

A

is the sample mean of the i'th group, u is the grand sample mean,
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t

~ 2 . .
ui, and S° is the sample variance. When there is no trend,

u=1/N
=1

i

I~ 2

Hy = M and T has an F distribution with Nt - 1 and n(Nt - 1) degrees
of freedom (Breiman (1973)). For Ntn > 20, S2 = 02, and T is distributed

approximately as XZN /Nt—l. This approximation is equivalent to the

t-1

normal approximation to a t-test for moderate to large sample sizes.

It may be shown that when the groups are described by a lag one Markov

process,
- ui) + Ne i=1.2, ... N I.2.17

the classical test may be modified by using the effective independent

sample size,

n*
& 1.2.18
t

2 2 . .
We note that for S° = ¢, and for normally distributed error terms the
numerator remains the square of a normal random variate, and hence has
2 .. . . \ R
the x distribution. Further, the expectation of the test statistic
becomes
N
*
o I

E(T) = Y = E (v, - uw) 1.2.19
(Nt—l)o i=1

However, from the definition of the effective independent sample size,

~

~ 2 2
E(ui - =0 /ng » hence E(T) = 1, and the test statistic is distributed

2
as x /N -1 when p, = u.
Nt—l t i
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The power of the test is calculated by noting that when Wy # u, T is the
sum of the squares of Nt non-zero mean normal variates, which has a non-
central xz distribution (Lehman (1959). 1If we let u, = w + 4, the

expectation of the test statistic becomes

where the quantity ZAizng/oz(Nt—l) is the noncentrality parameter.

N O~ e 2
n Eowy —w Ay
T E( ] ———-—=5 =1, hence (N_ - 1T

o}
i=1

Further, the variance of T is

has the standard noncentral x2 distribution with Nt - 1 degrees of freedom
N 2

t
and noncentrality parameter A = 2

The expected value of the test statistic may also be written as

T 2
r

E(T) = 1+K1;n3; (5—)

where Tr is the total change in process mean level over the record length

as for the t-tests. For a step trend, Km has a value of 0.25 when Nt is
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N

t
Nt—l

odd and a value of 0.25 when Nt is even. For linear trends, the

values of Ké are given below:

N Kn
2 0.5
3 0.25
4 0.185
5 0.156
6 0.140
7 0.130
8 0.122
9 0.117
10 0.113
The effective .. '~pendent sample size ng may be computed using eq. ¥.2.20

For sample sizes n of 24 and 48 samples per year, the ratio ng/n is
plotted as a function of p, the one day lag one correlation coefficient
for a lag one Markov model in Figure I1.2. It should be noted that the

365

. n
actual correlation coefficient for the lag one Markov model is p' = p

for instance, for n = 48 and p = 0.9, p' = 0.45.
The power of the modified F-~test* for dependent samples was calculated as

2
= _ '
Pw 1 FXZ(Xl - a, v)

I1.2.19a

where v = Nt - 1 and Fiz is the cumulative distribution function of the

noncentral x2 distribution with noncentrality parameter A = (E(T)-l)(Nt—l)

*The test discussed is referred to as the "modified F-test'" even though
the large sample assumption has been made resulting in the test statistic T
having a noncentral x2, other than F distribution.
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and degrees of freedom v = Nt - 1. The cumulative distribution function of
the noncentral x2 distribution was computed numerically using the second
approximation given by Abdel-Aty (1954). The power curves defined by Eq.
1.2.19a are plotted in Figure 3 for convenience, since the noncentral X2

distribution is not commonly available in tabular form.

Given the power of the modified F-test, the number of samples required

to obtain the same power from a uniform sampling strategy may be calculated

*
in a straightforward manner by using eqs. I.2.3 and I.2.9 and solving for n .

Noting that for a lag one Markov process,

2t

t
2(0 " = p" )
[1 + ] 1.2.20

(n - 1) pt _ ant + p(n+l)t L1
t 2

(b - 1) n (o~ - 1)

1 1 2
ok T a2
b n

*
where t is the sampling interval in days, the ratio n/n

b may easily be

computed, and the required number of samples n for the same power from a
uniform strategy calculated. Figures I.4-I.6 give the ratio of the
number of samples required in a uniform strategy to the number required
in a stratified strategy at the same power level,Nu/NS, for linear and
step trends and for trend to standard deviation ratios of 0.5 and 1.0.
These values of trend to standard deviation ratio were chosen because
they result in power levels in the approximate range 0.2-0.9 over the
range of sample sizes and lag one correlation coefficients thought to be
typical of most monitoring programs. The Nu/Ns ratios are given as a
function of the lag one correlation coefficient of a lag one Markov
model. The confidence level has been taken as 95 percent for both
tests; sampling in the stratified strategy was assumed to be done either

twice or four times monthly one year in three.
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The flat region for p§.65 in Figures I.4 thru I.6 corresponds to effective
independence of samples in both strategies. The reduction of effective
independent sample size is felt first in the stratified samples since

v _ p365/n

p » where n is the number of samples taken yearly and p is the

daily lag one correlation coefficient of the data. The lag one correla-

p365x3/n _ p.B. In all

tion coefficient of the uniform samples is p'' =
cases the stratified strategy becomes considerably less effective as p
increases until a final increase occurs for p%.95, however daily correla-

tions of this magnitude are unrealistically high, and for practical

purposes, the effectiveness may be considered to decrease as p increases.

When samples are effectively independent, the ratio Nu/Ns’ where Nu and

NS are the number of samples required for the same power from unifo.m and
stratified sampling strategies, respectively, is on the order of 0.6 for
step trends and decreases from a value of about 0.9 to about 0.6 as Nt
increases from three to seven. At higher values of p, this ratio drops

to a value as low as about 0.2. Clearly, the stratified strategy is, in
general, much less efficient than the uniform sampling strategy. Unless
regional travel economies allow on the order of two to three times as many
samples to be taken as with the uniform strategy, the uniform strategy is

preferred.

I.2.3 Intervention Analysis

Recently, Box and Tiao (1975) have given a generalization of the auto-
regressive integrated moving average (ARIMA) model (Box and Jenkins (1970)

to include the effect of one or more interventions, where an

intervention is any event which might effect the mean level of a time
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series. The technique is particularly well adapted to detecting the
effect of event-related trends, but may also be used in assessing the
effect of gradual changes (such as a linear trend) where no definite
intervention is identifiable; in these cases the "intervention' is
simply taken as occurring at the beginning of the time series. The

Intervention Analysis model for NI interventions is

N
I (k)

=y 9B My 1.2.21
=1 6@ Tt E

Y
t

£
where Yt is an appropriate transformation of the data to yield approxi-
mately normally distributed residuals,

o) gy = (O _

- _ o, (B)p2
wo wl B wz B ‘e

s gy = 1 - 5l(k)B - sz(k)Bz - ...

t t—j

0, otherwise

and Ut is an autoregressive integrated moving average process. Tk is
the time at which the k'th intervention occurs. The general form given by
Eq.I1.2.21 may be used to model the simple step and linear trends illus-

trated above, however it is also possible to model the effects of inter-

ventions which may be characterized by decaying transients, delayed
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responses, slow movement toward a new mean level, etc. In general, the
class of intervention effects which may be modeled is far more extensive
than the general modified t-test which is restricted to polynomial trends.
In addition, intervention analysis (IA) has the advantage that it may be
used in a predictive mode if several constraints on parameters are
observed; this is not possible with a general polynomial which must
ultimately grow without bound. Generalizations of eq. I.2.21 given by kox
and Tiao (1975) and Hipel, et al. (1975) allow modeling of seasonal time series
as well as the effect of covarying time series, for instance, the effect
of streamflow on sediment load levels may be estimated along with inter-
vention effects. This feature is extremely useful in removing effects

of covarying time series which might suggest spurious trends; the

t-tests make no provisions for such effects.

While IA is a very new technique, it shows great promise and will very
likely become the accepted method of assessing trends in autocorrelated
time series in the future. However, one requirement of the method is
that the data be spaced equally in time; there does not appear to be any
straightforward method of adapting the approach to stratified data,
particularly since the data collected near the intervention times Tk are
weighted quite heavily in the estimates of the parameters w(?) and S(E)

(Box and Tiao (1975)). Consequently, in addition to the results of

the previous section derived in terms of modified t- and F-tests, the avail-

ability of a new more powerful tool in IA also strongly suggests that a

uniform sampling strategy is to be preferred.
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I.2.4 Sample Statistics

The derivations of the power of trend tests for time series show that
the design of trend monitoring systems require knowledge of the trend to
standard deviation ratios and lag one correlation coefficients of the
trend time series being collected. 1In general, the lag one correlation
coefficient and standard deviation are not known a priori, but must be
estimated. In many cases, previous records will not exist at proposed
station locations and data collected at other stations must be used to
estimate the desired parameters. While extensive computations have been
made of hydrologic time series summary statistics, relatively little
work has been done on water quality time series, and it appears useful
to provide sufficient summary statistics to allow a rough idea of the
magnitude of lag one correlation coefficients and standard deviations
(coefficients of variation) present in time series of water quality

parameters.

Earlier work by Lettenmaier (1976) has found daily lag one correlation
coefficients for water quality data to be in the range 0.75-0.9; however,
the data analyzed included only temperature, dissolved oxygen, suspended
solids, and specific conductivity; no microbial or nutrient data were
included and only seven records were analyzed. In an attempt to give a
better background for estimating daily lag one correlation coefficients
and variances which might be expected for different water quality indi-
cators, ten Washington stations with up to six parameters at each

station were analyzed.
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The geographic locations, parameters and record lengths of the time series
analyzed are given in Table 1.2 Specific conductance and total coliform
records were initially transformed by a natural logarithmic transformationm.
Each record was residualized by computing monthly mean values and sub-
tracting the monthly ﬁean from each value. Nonstationority was removed

by computing, for each observation, the moving average of the ten adjacent
terms of the deseasonalized time series, then computing the residual of
the observation from this moving average. Subsequent computations were

performed on this stationary (with respect to mean level) time series.

Table 1.3 gives the results.The lag one correlation coefficient was

computed arc

|
1

LDNIGH Xy - X) Xy - X)

1 . =2
P I(J)(Xj X)

I ~12

j=1
where I is the indicator function with I(j) = 0 if Xj is missing and
N-1 N

I(j) = 1 otherwise, and p = 2 I()I(GG +t), q = z I(j) (Jones (1971)).
j=1 j=1

In all cases the nominal sampling period was monthly. The average
correlation coefficients were computed as weighted averages using the
p's as the weighting factor, while the average standard deviations and

coefficients of variation were computed by weighting with the q's.
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The standard error of the correlation coefficient for a lag one Markov

2
~]'—-—_'—B—-(Box and Jenkins (1970)). Accordingly,

model is given by Var(p) = o

the approximate 95 percent confidence intervals for the average correla-
tion coefficients were computed and compared with the estimated values

to determine the significance of the differences from zero. At the

99 percent confidence level, only the values for NO3 and OPO4 are
significantly different from zero, while at the 90 percent confidence
level, NO3, OPOA, and SPC are significantly different from zero. Unfor-
tunately, however, the correlation structure of a lag one Markov model

is given by P = p?, so even if the daily lag one correlation coefficient
p, were as large as 0.9, the monthly value would be only 0.04 which will
require many more samples than were available to be statistically dis-

tinguishable from zero.

To establish conclusively the characteristics of the correlation struc-
ture of water quality parameters, records with a more frequent sampling
base, preferably daily, must be analyzed. 1In general, since daily
records are normally not available, summary statistics from the few
stations with such frequent sampling periods must be utilized. Fortu-
nately, the seven records analyzed by Lettenmaier (1976) show a rela-
tively narrow band of estimated daily lag one correlation coefficients,
and the average of these estimates might be used as a starting point for
design purposes. While the estimated correlation coefficients of Table
I.3 are primarily useful to illustrate the difficulty of estimating
the daily value required for design purposes, the estimated standard
deviations may be used in estimating trend detection thresholds from
given trend to standard deviation ratios, such as those given in

Figures I.4-I.6.
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CHAPTER I.3 NETWORK DESIGN

I.3.1 Sampling Frequency

A key question to be answered is the frequency at which samples should
be taken. Increasing the sample frequency increases the effective
independent sample size and hence the power of a trend test, however,
for a lag one Markov model, a finite upper limit on the effective
independent sample size which may be collected in a given time period
(e.g., one year) exists. When the effective independent sample size
corresponding to a given sampling frequency exceeds about 80-90 percent
of the maximum value, a point of diminishing returns exists where the
effective independent sample size increases only very slowly as sampling
frequency increa:.cs. Table I.4 below gives, for several values of the
lag one correlation coefficient (daily value) of a lag one Markov model,
the number of samples which must be taken to reach 50, 70, and 90

percent of the maximum effective independent sample size.

Table I.4: Number of Yearly Samples Required to Reach
Given Proportion of Yearly Maximum Effective
Independent Sample Size

% of noox
P 20 0 20
0.65 41 73 124
0.70 33 52 119
0.75 28 46 91
0.80 21 37 73
0.85 16 26 52
0.90 10 17 33

0.95 5 8 17
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In an earlier study, Lettemmaier (1975) found that in determining the
number of sample stations which should be established in a given river
basin, it is best to "saturate" each station to roughly 70 percent of
the maximum effective independent sample size before establishing an
additional station. Hence, Table I.3 may be used to estimate maximum
desirable sample frequencies in conjunction with the estimated lag one

correlation coefficients given by Lettenmaier (1975).

Determination of the actual sample frequency requires consideration of

the trend detectability (power) desired, given (for a uniform sampling stra-
tegy) by eq. I.2.14. The cumulative Gaussian distribution function is
available in standard tables, e.g., Hald (1952). The trend magnitude

must be specified apriori as a threshold level; the standard deviation

and lag one correlation coefficient may be estimated from historic
data.Table I.5 shows required sampling frequencies for given power and
trend to standard deviation ratios at the 95 percent confidence level

for a step trend. It should be noted that the table is not strictly
correct when the total sample size given is less than about 20, since at
these sample sizes, the large sample approximation to the t-test power
given by eq..I1.2.3 is not valid. The effect of the large sample assumption
is that slightly higher sample frequencies than those given by table I.5

are required for ng 20.

Table I.5 may be used as follows. An acceptable power level is chosen.
For a primary station, this power level would be relatively high, say

0.90, since fairly reliable trend information is required. At a
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secondary station, a somewhat lower power might be accepted. The best
available estimate of the daily lag one correlation coefficient is used;
in practice, sufficient records for estimation of the daily correlation
coefficient rarely exist, and as shown by the results of Table I.2, use
of less frequently collected (e.g. monthly) data to estimate the daily
value will usually be 'insuccessful. Until the results of more extensive
analyses become available, use of the average daily correlation coeffi-
cient given by Lettenmaier (1976) of about 0.85 is suggested. The
sample standard deviation, S may, however, be estimated from historic
data such as those given in Table I.3. With this information, a range of
trend to standard deviation ratios and accompanying sample frequencies
are surveyed. Actual trend magnitudes are calculated by multiplying the
trend to standard deviation ratio by the sample standard deviation.
Results of such an analysis for the Nooksack River near Ferndale,
Washington, are given in Table I.6 for a power of 0.90 and daily lag one

correlation coefficient of 0.85, and record lengths of 5 and 10 years.

It is clear from Table I.6 that the trend detection threshold for a bi-
weekly sampling program is nearly as small as for a weekly program. The
greatest difference in detectable trend level appears to be between
bimonthly and monthly sampling. These results suggest that the best
sampling frequency will be at least monthly, but not more frequently
than biweekly. The actual detectable trend levels should be compared
with established criteria to determine if they are sufficiently small.
If they are not, the only alternative is to establish a larger record
length for trend assessment. More frequent sampling is clearly not the

answer.
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It should be emphasized that Tables I.5 and I.6 are based on a step trend,

so the trend magnitude is independent of the record length. For a linear
trend or any higher order polynomial, the trend magnitude will increase
with increased record length, which will greatly enhance trend detect-
ability (lower threshold trend detection levels at a given power).
However, in general, such unbounded trends are not physically reasonable,
as most biochemical processes ultimately seek some equilibrium level,

and it seems more reasonable to design monitoring systems on the basis

of a fixed trend magnitude.

I.3.2 Station Location

A number of techniques have been proposed for locating sample stations,
for instance Sharp (1970; 1971), Moore (1971), and Lettenmaier (1975) have
proposed analytical methods for locating sample stations. Lettenmaier (1975)
found, however, using a statistical criterion that the location of

sample stations was much less important than the number of stations
established when maximization of basin-wide trend detectability was taken
as the objective and a constraint was met on the number of samples which
could be taken basin-wide. Consequently, it appears that the inclusion

of a number of criterion in a less formal, matrix style approach such as
that discussed by Sargent (1972) may be preferable to an analytical
technique in establishing station locations. Factors which should be

considered in such an approach include at least the following:

1. Consideration should be given to making use of existing stations or
stations at which earlier data from discontinued stations can be
corrected for inclusion in trend analysis of data collected at the

new station.
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Stations should be situated so as to monitor a substantial propor-
tion of the total runoff from a river basin. In general, this
consideration favors location of stations as far downstream as is

possible, consistent with other factors.

Stations should be located so that trend analysis of data collected

at the given station taken together with data collected at adjacent

stations can isolate effects of suspected trend causes (interventions).

Trend causes may include the effects of large urban centers, growing
suburban areas expected to result in increased nonpoint pollutant

loads, impoundments, etc.

Sample stations should be located such that the best available
estimate of cross sectional stream quality is given by a single grab
sample; for instance, samples taken from bridges often allow more

representative sampling than do shore samples.

Care should be taken to locate samples such that local effects do
not indicate spurious trends; for instance, stations should not be
located in areas where major highways construction, stream channeli-
zation, etc. are planned or appear likely unless it is desired to

assess the impact of these projects on stream quality.

At each established station, it is desirable to establish a correc-
tion curve to compensate for diurnal effects. This may be accom-
plished by use of an automatic monitor to collect high frequency data

over several days, possibly seasonally. Samples should then be
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corrected to a common sampling time; for instance, 12:00 noon. For
some parameters, diurnal variations may be negligible; however, for
biologically influenced variables (e.g., dissolved oxygen, HCOB,
etc.), slight variations in the time at which samples are collected

can induce extra variability or even spurious trends in the data.

7. When compatible with considerations 1-6, stations should be located
in such a manner as to minimize sample transport time and sample

crew travel requirements.

Ultimately, the techniques of the evolving field of multiple-objective
planning (Cohon and Marks (1975)) may be brought to bear on the station
location problem. The problem does not, however, lend itself easily to
the formulation of a mathematical objective function, and for the present

a less formal approach appears sufficient.
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CHAPTER 1.4 CONCLUSIONS

An analytical comparison of the power in trend detectability of two
alternate strategies, uniform data collection in time and a more travel-
economical time-stratified strategy has shown that the uniform strategy
is generally preferred. This conclusion holds even if the travel
economies in the stratified strategy allow as many as 2-3 times as many
samples to be taken, and holds for any trend which may be described at
least approximately as a polynomial in time. In addition, the emergence
of a new statistical technique, Intervention Analysis, tailored to the
detection of trend in autocorrelated time series, favors the implemen-
tation of 'mifc.~ data collection strategies for trend detection. When
total data collection capabilities are constrained, it is important that
a relatively complete record be collected at each station even if the
resulting network is quite sparse geographically. The optimal data
collection frequency at each station appears to be in the range from
biweekly to monthly; at any given station and for any given parameter,

this judgment will depend on the actual correlation structure present.

An attempt to estimate the correlation structure for a number of parameters
on ten Washington rivers was largely unsuccessful because the available
sampling intervals are too large. In contrast to the desirable data
collection frequencies for trend detection, frequently sampled data
(preferably daily) is necessary in order to adequately estimate persist-
ence structure. Since relatively few such records exist, it will probably

be necessary to employ a regionalized approach to estimating correlation
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structure for water quality parameters. At present, the best available
procedure is to use the average daily correlation coefficients from

several very complete water quality records analyzed in past studies.

In determining the geographic location of sample stations, the best
procedure appears to be utilization of a matrix-style approach in which
a number of factors are weighed subjectively. Suggested factors for

inclusion in such an approach have been given.

The importance of incorporating an analysis of the statistical power of a
proposed trend network cannot be overemphasized. Because of mathematical
limits on the power, or trend detectability of a station over a base time
period of fixed length, failure to evaluate the power of a proposed network
can result in either unobtainable sample network objectives, collection of

a large number of samples which add little or nothing to trend detectability
of the network, or both. The approach presented herein should aid the

designer in avoiding both of those pitfalls.
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Table I.2:Time Series Analyzed

Station a/

Period of

Number Location Record Parameter
01A070 Nooksack River near Ferndale 1961-66 DO, pH, NOB’ OPOA, TCX
62A150 Pend Oreille River at Newport 1959-66 SpC, DO, pH, NO3, OPO4, TXC
45A070 Wenatchee River at Wenatchee 1960-76 SpPC, DO, pH, NO3, TCX
08B070 Sammamish River near Bothel 1959-70 SPC, DO, pH, NO3, 1CK
23A070 Chehalis River at Porter 1959-70 spC, DO, pH, NO3
10A050 Puyallup River at Puyallup 1959-70 spCc, DO, pH, NO3, OPO4
324070 Walla Walla River near Touchet 1959-66 SPC, pH, NO3, OPO4
37A090 Yakima River at Kiona 1959-66 SPC, pH, NO3

54A070 Spokane River at Long Lake 1959-70 spC, DO, pH, NO3
07A090 Snohomish River at Snohomish 1959-70 SPC, DO, pH, N03, OPO4

SPC = Specific Conductivity

DO = Dissolved Oxygen

NO3 = Dissolved Inorganic Nitrate

OPO4 = Dissolved Inorganic Phosphate (Orthophosphate)

TCX = Total Coliform

_3/ Station numbers are STORET station identification numbers.
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Table I.3: Summary Statistics

Parameter Station P q b S(CV)

SPC 62A150 73 78 -0.07 0.03
45A070 50 74 -0.19 0.14
03B070 80 92 0.18 0.07
23A070 114 121 -0.18 0.11
10A050 55 75 -0.05 0.14
32A070 75 76 0.24 0.27
37A090 60 61 0.47 0.18
54A070 95 99 0.23 0.14
07A090 115 118 0.07 0.18
Average 717 794 0.07 0.14

DO 01A070 51 53 -0.01 0.69
62A150 73 76 0.18 0.72
45A070 42 64 0.04 0.79
08B070 77 96 0.05 0.63
23A070 98 99 0.13 0.58
10A050 40 56 -0.40 0.45
54A070 56 63 0.21 1.46
07A090 85 87 -0.10 0.58
Average 522 594 0.03 0.72

pH 01A070 51 54 -0.16 0.15
62A150 73 78 0.10 0.19
45A070 50 74 0.07 0.25
08B070 80 97 -0.08 0.17
23A070 114 121 -0.11 0.16
10A050 55 74 -0.13 0.17
32A070 75 76 0.00 0.22
37A090 60 61 0.36 0.20
54A070 95 98 -0.07 0.20
07A090 115 116 -0.14 0.18
Average 768 849 -0.03 0.19

NO3 01A070 51 54 0.02 0.06 (0.34)
62A150 65 72 -0.08 0.03 (0.59)
45A070 50 74 -0.51 0.07 (0.47)
08B0O70 80 97 0.19 0.44 (0.41)
23A070 114 120 0.24 0.27 (0.53)
10A050 54 73 0.05 0.22 (0.60)
32A070 68 76 0.10 0.38 (0.39)
37A090 26 34 0.14 0.73 (0.27)
54A070 89 99 0.39 0.51 (0.41)
07A090 114 115 0.04 0.36 (0.72)
Average | 711 814 0.09 0.30 (0.46)

i




35

Table I.3: Summary Statistics (Continued)

Parameter Station P q p S(Cv)
OPO4 01A070 39 43 -0.01 0.01 (0.36)
62A150 50 63 -0.24 0.05 (1.62)
10A050 26 42 0.36 0.02 (0.40)
32A070 67 70 -0.08 0.09 (0.24)
07A090 64 67 -0.42 0.02 (0.82)
Average 246 285 -0.14 6.0% (0.69)
TCX 01A070 51 54 -0.01 1.07
62A150 28 47 -0.30 1.15
45A070 34 55 -0.01 1.06
08B070 44 65 -0.10 0.93
Average 157 221 -0.09 1.04
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PART II. DATA ANALYSIS

Chapter I1.1 Analytical Methods

Part I of this.report has described suggested data collection nrocedures.
Implementation of these procedures will ensure the future availability
of historic water quality time series suitable for such parametric time
series analysis techniques as Intervention Analysis, discussed in Part I.
However, existing time series of water quality data are often not well
suited to parametric techniques which require equal data spacing in time
with no "geos" 1. the record. Nevertheless, utilization of existing
data is essential to identify current trends in water quality regionally.
Consequently, an approach to analysis of existing time series, which may
not meet the rigorous requirements of parametric time éeries analysis is
given. Application is illustrated for 13 DOE stations with two to six
parameters at eacﬁ station. The analytic techniques described are not
limited to use with incomplete data records; in fact, the screening
techniques discussed are recommended for general use. However, in
analysis of complete records which "pass" the screening tests, use of
the more powerful tools of time series analysis, and in particular,
Intervention Analysis (Box and Tiao, 1975) which includes predictive

capability, may be preferred.
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II.1.1 Recommended Approach: Data Editing

Figure II.1 shows schematically the recommended approach to analysis of
time series for possible trends. The final step is to compute test
statistics for one of two nonparametric tests, Spearman's rho (SR) or
Mann Whitney's (MW). The preliminary steps are designed to edit the
data in such a manner that the assumptions required for the tests are
met, and to screen out records for which a visual inspection suggests

that no trend exists.

The principal assumption of the tests is that the data possess a symmetric
probability density function (PDF), i.e., at each time, the mean, the
median, and the mode (assuming a unimodal distribution) coincide, and

that the data are independent in time. The latter requirement may be
relaxed, and will be discussed in detail below. Most water quality data
have a lower bound of zero, but no absolute upper bound, hence the data
are often positively skewed. In some cases, the data rarely lie near

the lower bound or have no lower bound and the raw data are approximately
symmetrically distributed; examples are temperature, dissolved oxygen,

and nutrients. When the raw data are skewed, the data may be transformed
so that the transformed data are nearly symmetrically distributed. The
logarithmic transformation, Yt = 1n(Xt) is often adequate and in some
cases has a physical interpretation. When, for example, a process is
generated as the product of a number of random variables the logarithmic
transformation will yield a transformed time series with PDF similar to
that of the random variables composing the product. For instance,

coliform bacteria counts are the products of the counts of each of a



IDENTIFY
OUTLIERS

]

55

RAW DATA

CENSOR
OUTLIERS

y ¥

TRANSFORM

REMOVE SEASONAL

Figure II.1.

>> DATA EDITING

_J

NO VISUAL TREND

MEAN
ASSYMMETRIC DIST-
RIBUTION Q-Q PLOT
4 CUSUM PLOT
TIME SERIES
TREND << PLOT
ANALYSIS W
NONPARAMETRIC
TEST

EVIDENCE

~ GCCEPT Hl ) GEJECT HD(

Suggested Procedure for Data Analysis



56

series of bacteria generations, which themselves are randomly distributed
owing to a variety of external factors, hence the logarithms of the
measured coliform counts should approximately follow the same PDF (and
exactly if the PDF of the individual generations is normal) as the
individual generations. Consequently, the logarithmic transformation is

a natural one for coliform counts.

In any event, a tool is available for checking whether the data meet the
symmetric PDF requirement. This tool is the Q-Q plot, in which the
sample percentiles of the data are computed (usually as Pj = j/(n+l)
where the n data have been ordered) and the corresponding observation is

plotted against the theoretical quantile at percentile P,, X The

P’
technique, described in detail by Wilk and Gnadesikan (1968) implifies
departures from the theoretical distribution in the "tails' of the
distribution; if the data follow the theoretical distribution, the Q-Q

plot is a straight line, otherwise "bending'" is observed at the extreme
quantiles. If the theoretical distribution is symmetric (the program

given in Appendix B uses the normal distribution as the theoretical
distribution) and the observed deviations at the upper and lower quantiles

are symmetric, the actual PDF may be assumed symmetric, even though

different from the theoretical PDF used. For example, Figures II.2a and b are
Q-Q plots for two independent data sets generated from the t (with 2

degrees of freedom) and the lognormal PDF's where the theoretical distri-
bution is normal. The deviations at extreme quantiles for the t distribu-

tion are symmetric, while those for the lognormal are not. In the

latter case some transformation of the data is indicated.
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In practice, time series data are usually correlated, and water quality
data are no exception. However, it is possible to make use of an effec-
tive independent sample size if a certain correlated structure is assumed
for the residuals of the data from the trend in process level, if any.

The form of the correlation structure assumed here is that of the lag

one Markov process, discussed in Part I of this report. The principal
requirement of this aséumption is that the residuals be stationary to
second order, i.e., that the resiual process mean (assumed zero),variance,
and autocorrelation function be independent of time. In order to meet
this requirement, seasonal effects must be removed from the data. A
number of approaches may be used; one of the most straightforward is to
divide the year into seasons (months, quarters, etc.), estimate the

grand mean over the record for each season, and form a new time series

as the difference between the raw time series and the appropriate seasonal
mean. A subroutine is given in the program documented in Appendix B
which removes seasonal fluctuations in the data in this manner. The
recommended season length is two months when monthly data are available,

and one quarter when the data are collected quarterly.

The recommended approach to transformation and removal of seasonal means
is as follows. First, the raw data should be deseasonalized, then a

Q-Q plot made. If the deseasonalized data appear to be symmetrically
distributed, the deseasonalized time series is used as the input to the
second loop in Fig.II.1l. However, if data transformation is required, the
raw data are transformed first, then seasonal means are removed. This
order is taken because in some cases in which the variance, as well as

the process mean, varies seasonally; transformation will tend to level
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out the seasonal fluctuations in the variance. This is a secondary
advantage of some transformatiors (particularly the logarithmic); however,
even if the residual variance contains seasonal fluctuations, the validity
of the trend tests for changes in mean level are not greatly affected;

removal of seasonal nonstationarity in mean level is much more critical.

One final check should be made in the data editing stage. In some
cases, the Q-Q plot will indicate a very few (usually one or two) values
which deviate very greatly from the remaining data. Frequently, these
values, known as outliers, are attributable to mistakes in data coding
or laboratory analyses, or, sometimes the recordings are legitimate, but
represent an extreme event which cannot be considered to belong to the
same statistical population which has generated the remaining data (the
primary population). In such cases the outliers may be edited, i.e.,
treated as missing data. Inbgeneral, this step should be taken only if
there is reason to believe that they could not have come from the primary
population. Care should be taken not to edit data merely because they
deviate greatly from the apparent process mean. Since the tests used
(SR and MW) are nonparametric, the results will not normally be highly
sensitive to data editing; one great advantage of nonparametric tests.
However, the nonparametric tests will estimate only the direction of
trends, and not their magnitude. If estimates of trend magnitude are
made, they will be quite sensitive to outliers, and the editing issue is

more critical.
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JI.1.2 Recommended Approach: Trend Analysis

With the editing stage complete, a time series is available which is
presumed to consist of (possibly) a trend in mean value with additive noise
modeled as a lag one Markov process. The objective is to determine
whether a statisticall; significant trend in mean value exists (alterna-
tive hypothesis), or whether the mean value is constant with time (null
hypothesis). Again, the basic form of the hypothesis test discussed in
Part I of this report should be emphasized; the tests are conservative

with respect to type I errors.

In applying the MW and SR tests, it is necessary to specify the subse-
quences to be tested. Care must be exercised here. The temptation is

to screen the data visually, and test the most extreme subsequences for
significance of differences in estimated process mean. However, the
confidence limits for the most extreme case are substantially different
than for any two subsequences picked at random. For example, if an
independent sequence of length n = 200 is split into ten subsequences of
length 20 and a test performed for the significance of differences
between the local and grand mean, at the 90 percent confidence level on
the average the test should show one sequence to have mean level signifi-
cantly different than the mean when the mean level is constant (no trend
exists). Hence, the most extreme subsequence will only have a probability
on the order of 50 percent, rather than 90 percent, of exceeding the

test statistic. The true rejection levels for the extreme subsequence
are much higher than for a single (randomly selected) subsequence. This

problem is not of great significance so long as the subsequences taken
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together comprise most of the record length, for instance, the first and
second halves of the record. However, testing of much shorter sub-
sequences, for instance, years one and two of a ten-year sequence,

should be avoided.

With this note of caution in mind, the visual screening tests are
introduced. The first, and simplest test is to plot the data against
the time of collection (time series plot). In this manner, long range
trends may sometimes be identified. A slightly more sophisticated
technique, Fhe cumulative sum plot, where the cumulative sum is defined

m
as CUSUM, =%Xi - j/mZXi, may also be used. The cumulative sum is simply a

I =1 i=1
fraction of the area under the mean of the first m observations and the area
under the local mean up to point j. Clearly, if the mean is constant, the CUSUM
local mean up to point j. Clearly, if the mean is constant, the CUSUM
is zero; if a change in mean level occurs at time step m, the CUSUM plot
is linear for t>m, if a linear change begins at t = m, the CUSUM is
quadratic for t> m, etc. No confidence limits are placed on the CUSUM
plot; it is only a visual test, hence no conclusions as to trend existence
should be based solely on the CUSUM. However, in many cases it will be
apparent from examination of the CUSUM and time series plots that no

apparent trends exist, and the alternative hypothesis may be rejected

without further analysis.

Records which "pass'" the screening tests are subject to either the MW or
SR test at this point. The mechanics of the tests are described in
Appendix A, but briefly the MW test statistic is derived by summing the

pooled ranks of the first partition of the data, while the SR test
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statistic is derived from the sum of the squares of the differences
between the pooled ranks and the original data order. The MW test is
generally most powerful against abrupt (e.g., step) changes in mean
level while the SR test is most powerful against gradual (e.g., linear)
changes. This consideration will dictate the most appropriate test in

any given situation.

When the data are independent, the computation of the appropriate test
statistic and comparison with tabulated critical levels completes the
trend analysis. With dependent data, however, one further step remains.
When the data are dependent, the critical levels for independent data
(e.g., Tables 8 and 9 of Conover (1971)) must be modified. The modifica-
tion required depends on the form of the data dependence. A Monte

Carlo sampling program was performed to identify the correction required
when the data dependence is of the lag one Markov type discussed earlier.

Details of the experiments performed and results are given in Appendix A.

The corrections given in Tables A.l1 and A.2 are factors applied to the
difference between the table critical levels (for independent data) and
the upper or lower bound of the test statistic distribution. The new,
modified critical level is calculated as the upper or lower limit plus

the scaled difference:

Ll = -
TCJL L2 + f(n, a, p)(TCIL LQ) (I1.1.1)
T(': = Lu + f(n, o, p)(TC - Lu) (I1.1.2)

u u
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where T! , Té are the modified lower and upper critical values,
L u

£(n, a, o) is the correction from Table A.1l or A.2Z, TC and TC are the upper
2 u

and lower critical levels of the test statistic, for independent random

variates, and L, and Lu are the distribution upper and lower bounds.

%
For example, to derive corrected critical levels for Spearman's rho test
with n = 30, p = .2, a = .05, the procedure is as follows: From Conover
(1971, Table 9) for a two-sided test, the critical levels (corresponding
top =0/2=.025 and p = 1-a/2 = .975) are 2032 and 6958, respectively.

From Table A.2, the appropriate correction factor is .854, hence

Té = 0 + .854x2032 = 1735, and Té = 8990 - .854x2032 = 7255. Note
2 u

that for the SR test, the lower limit is zero and the upper limit is
l/3n(n2—1), and that the test statistic is symmetrically distributed.

For the MW test, the lower bound of the test statistic is zero and the

upper limit is nn,, where ny and n, are the number of data in the first

and second data partitions, respectively. It should also be noted that if the
Conover (1971) tables are used, the approximate formula for the critical

levels of the test statistic for the MW test for ny, n, > 20 is incorrect,

and should read

v oo nn, ' x //hlnz(nl+n2+l)
p 2 P 12

1I.1.3 Example Analysis

To illustrate the approach to trend analysis recommended here, details of
the analysis of the specific conductance record for the Chehalis River
near Porter, Washington are given. Initially, means for two-month

"seasons" (e.g., January-February) were estimated and subtracted from the
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raw data. No transformation was made initially based on earlier expe-
rience that transformation of specific conductance data is not usually
required. The Q-Q plot for the deseasonalized data is given in Fig. II.3
and is clearly nonlinear. However, most of the distortion is in the

upper end of the scale (large data values), and is apparently attributable
to a single data point. The time series plot of the data is given as Fig.
II1.4, and shows an outlier at t = 161 which is so much larger than the
remainder of the data that it is extremely unlikely to have come from

the same statistical population as the rest of the data. When this out-
lier is censored, the Q-Q plot of Fig. II1.5 results, and suggests that a
normal assumption is reasonable. Examination of Fig. II.4 suggests that
there may be a gradually increasing trend in the data. A further check

is provided by the CUSUM plot shown in Fig. II.6, where m, the "break
point" has been arbitrarily taken at t = 101, approximately halfway
through the record. The cusum plot verifies that an apparently increasing
trend exists, and a rigorous statistical analysis is indicated. Further
examination of the time series plot and the CUSUM plot suggests either a
possible gradual increase from about t = 50 on or perhaps an abrupt change
at about t = 70. The first possibility was checked using Spearman's rho
test and the second using Mann Whitney's test. The test statistics calcu-

lated were

S

1742, n, = 68, n, = 99

SR 156670, n = 119

it

The sample sizes are less than the time spans because some of the data

are missing, and so are ignored in calculating the test statistic.
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Critical test levels at the 99 percent confidence level for a two-sided

test are
T! T/
S S
MW 4157 2575
SR 366715 194964
where 2 = .2 has been selected apriori. This value is quite conservative,
since the data were collected at monthly intervals and p = .2 would

21/30 = ,948 which is higher than would normally be expected.

imply Py = -
Nevertheless, both computed test statistics are well below the lower
critical level at 99 percent confidence level, hence an increasing trend
is indicated. Note that, for both the SR and MW tests, small test
statistics indicate increasing trends, and large test statistics indicate
decreasing trends. Similar analyses were conducted for 15 Washington
State ambient stream quality monitoring stations with up to six parameters

at each station. The results of these analyses are discussed in the

following chapter.
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Table II.1 Group 1 Stations and Parameters

Station Description Dates Parameters
41A070 Crab Creek near Beverly 1959-76 T, DO, SPC, TN
23A07¢C Chehalis River at Porter 1959-75 T, DO, SPC, TN
37A190 Yakima River near Parker 1970-76 T, DO, SPC, TN, TC
07A090 Snohomish River at Snohomish 1959-76 T, DO, SPC, TN
03A060 Skagit River at Mount Vernon 1959-70 T, DO, SPC, TN
04A100 Skagit River at Marblemount 1959-70 T, DO, SPC, TN
37A090 Yakima River at Kiona 1952-62 SPC, TN
37A090 Yakima River at Kiona 1968-75 T, DO, SPC, TN, TC
where T = temperature

DO = dissolved oxygen

SPC = specific conductivity

TN = total inorganic nitrate

TC = total coliform

OP = orthophosphate

Table 1I1.2 Group 2 Stations and Parameters

Station Description Dates Parameters
34A070 Palouse River at Hooper 1959-66 SPC, TN, OP
34A070 Palouse River at Hooper 1970-76 T, DO, SPC, TC, TN,
13A050 Deschutes River at Tumwater 1962-69 T, DO, SPC, TN
13A080 Deschutes River near Olympia  1970-77 T, DO, SPC, TC, TN,
12A070 Chambers Creek nr.Steilacoom 1962-66 T, DO, SPC, TN, OP
12A070 Chambers Creek nr.Steilacoom 1971-76 T, DO, SPC, TC, TN,
03B050 Samish River nr.Burlington 1959-74 T, DO, SPC, TC, TN,
10A050 Puyallup River at Puyallup 1959~76 T, DO, SPC, TC, TN

0P

0)

10)¢
oP
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Table II.3a Hypothesized Changes for Group 1 Stations
Based on Preliminary Screening

Station Number

41A070

23A070

37A190

07A090

03A060

04A100

37A090 (1952-62)

37A090 (1968-75)

Possible Trend

T decrease
DO increase
SPC increase 1959-67, Decrease 1969-72
TN increase

T decrease

SPC increase

TN increase 1959-69, decrease 1969-72
SPC decrease 1973-76

TN decrease

TC decrease

TN increase

T decrease 1959-64, increase 1964-70
SPC increase 1959-65, decrease 1965-70

TN increase

SPC increase
TN increase

No changes

TN decrease
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Table II.3b Hypothesized Changes for Group 2 Stations
Based on Preliminary Screening

Station Number Possible Trend

34A070 SPC increase 1959-63
SPC decrease 1964-66
TN increase 1959-62
TN decrease 1963-66
OP increase 1959-62
OP decrease 1963-66
DO decrease 1973-76

13A050 TN increase 1962-69
13A080 none

12A070 SPC increase 1962-66
03B050 DO increase 1959-74

SPC increase 1959-74
TN increase 1959-65
TN decrease 1966~74
OP decrease 1959-66
OP increase 1967-74

10A050 DO increase 1959-76



Table 1I.4a

Station

Crab Creek near
Beverly

Chehalis River
at Porter

Yakima River
near Parker

Snohomish River
at Snohomish

Skagit River at
Mount Vernon

Skagit River at
Marblemount

Yakima River at
Kiona (1968-75)

Parameter Test
T MW
DO MW
SPC MW
SPC SR
TN MW
TN SR
T MW
T SR
SPC MW
SPC SR
TN MW
TN SR
TN SR
SPC MW
SPC SR
TN SR
TC MW
TC SR
TN MW
T MW
T SR
SPC MW
SPC SR
SPC MW
TN MW
TN SR
TN SR
SPC MW
TN MW
TN MW

68

Time

1-100, 101-205
1-100, 101-205
1-100, 101-205
84-205
1-100, 101-205
1-125

1-96, 97-195
1-195

1-70, 71-195
50-195

1-60, 61-195
24~-130
130-195

1-24, 25~69
24=72

1-69

1-36, 37-69
1-69

1-75, 76-183

24-60, 61-134
60-134

1-80, 81-134
1-80

50-80, 81-134
1-70, 71-134
1-70

50-134

1-20, 21-40
1-20, 21-41

1-30, 31-83

Summary of Test Results for CGroup 1 Stations

Significance

Trend (%)
Decrease 95
Decrease 95
None
Decrease 99
Increase 80
Increase 99
Decrease 80
Decrease 95
Increase 99
Increase 99
Increase 99
Increase 99
None
Increase 90
Decrease 95
Decrease 95
Decrease 90
Decrease 90
Increase 99
None
None
None
Increase 80
Increase 80
None
Increase 99
None
None
None
Decrease 99
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Table IT.4b Summary of Test Results for Group 2 Stations

Significance
Station Parameter Test Time Trend (%)
Palouse River SPC SR 1-52 up 95
at Hooper SPC MW 25-52,53-81 down 99
(1959-66) TN SR 1-40 up 95
TN SR 41-81 down 80
OoP SR 1-40 up 99
oP SR 41-81 down 99
Palouse River DO SR 40-72 down 99
at Hooper
(1970-76)
Deschutes River TN SR 1-29 down 99
at Tumwater
Chvambers Creek SPC SR 1-44 up 99
near Steilacoom
Samish River DO SR 1-183 up 95
near Burlington SPC SR 1-183 up 99
N MW 1-80,81-130 up 99
TN MW 81-130,131-183 down 99
oP SR 1-120 down 9¢
OoP MW 70-130,131-183 up 99
Puyallup River DO SR 1-210 up 99
at Puyallup TN SR 1-140 down 90

TN MW 60-140,141-210 up 99
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CHAPTER I1.2 RESULTS

The recommended analysis outlined in Figure II.1 was applied to historic
data from two groups of Department of Ecology stream quality monitoring
stations. The first group given in Table II.1 are the same stations for
which statistical analyses were conducted in Part I. Parameters available
at these stations include one or more of temperature, dissolved oxygen, and
specific conductance and total inorganic nitrate. The Yakima River at

Kiona record has been split into two separate records because of the lack of
data collected during the period 1962-68. The additional stations included
in Group 2 (Table II.2) were selected because of the availability of ortho-
phosphate measurements. Orthophosphate is an important nutrient which often
limits nuisance algal growth. The records for the Palouse River at Hooper
and Chambers Creek near Steilacoom were split because of the existence of
large data gaps. The Deschutes River records were split because of move-
ment of the sample station in 1970. Upon detailed investigation it was
found that the number of orthophosphate measurements for the Puyallup River
at Puyallup (station 10A050) and the early Deschutes River (1962-69) records
were insufficient to justify a detailed analysis, so this parameter was

dropped from these two records.

The analyses proceeded exactly as for the example in the preceding chapter.
The first step was visual editing and screening to establish those records
for which trends appeared to exist. The results of this screening are given

in Tables II.3a and II.3b for Group 1 and 2 stations, respectively.
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Analyses were then conducted for those records which appeared to contain
underlying trends. In all cases, an assumed lag one correlation of p = 0.1
was used. This value is high for the monthly data available so the results

should be conservative (actual significance level higher than computed).

The results of the analyses are given in Tables II.4a and II.4b for Group

1 and 2 stations, respectively. Figures II1.7-II.17 are the deseasonalized
time series plots for these records. For the Group 1 stations (Figs. II.7-
I1.13) time series plots are shown for all the records summarized in Table
I1.1, while for the Group 2 stations plots are given only for the records
containing statistically significant trends. For the Group 2 stations, the
best fit (least squares) step and linear trend lines are shown where
Mann-Whitney's and Spearman's rho tests, respectively, have been used.
These trend lines are used as a graphical aid only; no confidence limits

have been placed about these trend lines.

A detailed investigation of factors leading to possible trends for each of
the stations analyzed has not been conducted. It is only possible, then,
to attempt to identify general characteristics of stations and parameters
for which trends appear to be present, eg., by geographic location or by
parameter. Table II.5 shows the results of the analyses by parameter. In
determining the total number of records analyzed for each parameter, those
stations having split records (Tables II.1 and II.2) are treated as two
records. The totals of the number of records showing increases, decreases,
and no change may exceed the total number of records analyzed since some

records show both significant increases and decreases.



Table I1.5 Results of Statistical Tests by Parameter

Records Analyzed
Increasing Trends
Decreasing Trends

No Change

14

72

DO
12

SPC
16

TN
16

OP

TC
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Table II.5 suggests that temperature or dissolved oxygen changes are not
widespread. Of the two stations showing temperature changes, one is
located in the eastern part of the state and the other in the west. Of
the stations with apparent dissolved oxygen changes, both of the statiomns
with decreases are FEastern Washington stations, while both of the stations

with increases are located in the western part of the state.

The Crab Creek stations, which showed a dissolved oxygen decrease, also

had a declining trend in the temperature record. Decreasing temperatures
would tend to result in higher DO, so the apparent DO trend may be stronger
than the initial analysis would indicate. Specific conductance tended to
increase in most of the cases in which trends were apparent. Two of the
three decreases in SPC were for stations which showed an initial increase,
so in the early part of the records the overall chemical quality of the stations
analyzed appeared to reflect some degradation. There was, however, no clear
geographical pattern in these results. The results of the dissolved
inorganic nitrate analyses were less clear-cut. Perhaps significantly,

most of the stations analyzed showed some apparent trend in this parameter.
However, the results are somewhat clouded by a possible change in the method
of chemical analysis of this parameter in the early 1960's (Cunningham,
1977) so the potential usefulness of the TN results may be limited. Only

a few records had sufficient orthophosphate records for analysis; the
results showed two stations each with apparent increases and decreases.
Adequate coliform records were even more sparse; of the two records

available one showed a decrease and the other no change.

On a station by station basis, only a few stations showed fairly consistent

results. For the Palouse River at Hooper, TN, OP and SPC all showed
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initial increases with subsequent decreases; the DO record showed a decrease
over the entire record. This station is located downstream of a major
agricultural area, so the chemical quality may well reflect the effects of
agricultural activity in the area. The results for Crab Creek show a
dissolved oxygen decrease and TN decrease, which might suggest increased
biological activity as the result of increased nutrient washoff from
surrounding agricultural areas. An OP record was not available for this
stations. However, SPC showed a decrease for this station. It is, of
course, possible for SPC to drop while nutrient levels increase; however
if increased nutrient levels are attributable to agricultural washoff an
accompanying increase in TDS would appear more likely. The records for
the two Yakima River stations showed a general improvement in overall
quality, with the exception of an early increase in conductivity at the
Parker station. TN and TC decreased at the Parker station, as did TN at

the Kiona station.

The only Western Washington stream showing fairly consistent trends were

the Chehalis River (SPC and TN increases, no OP record) and the Skagit

River at Mount Vernon (SPC increase, TN increase near the end of the record).
At a further upstream station (Marblemount) no apparent trends were found.
The lack of consistent changes in the other records may be attributable

more to the lack of an adequate data base than to the absence of trends.
Certainly, following the discussion in Chapter I.1 the lack of a statisti-

cally significant trend should not be taken as evidence that no trend exists.

In general, the results appear to be inconclusive. The exceptions are

two Eastern Washington stations in areas of great agricultural activity
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where some early degradation of stream quality appeared to take place,
followed by a later recovery. For the two Western Washington stations
which appeared to show consistent results, the trend appeared to be toward
degradation near the end of the record length. However, the records are
so sketchy and the coverage so sparse that any conclusion regarding trends

in stream quality statevide would be premature.
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CHAPTER II.3 SUMMARY

A proposed approach to trend assessment of water quality records has been
illustrated in this chapter. The method incorporates a screening phase,

in which visual tests are used to eliminate records with no apparent under-
lying trends. The principle visual screen tools are the quantile~quantile
plot, used to check for symmetry of the marginal probability distribution,
and the time series and CUSUM plots used to identify trends. If more
detailed analysis is indicated, use of either Mann-Whitney's test for step
trends or Spearman's rho test for linear or other gradual trends is
recommended. In all cases, seasonal effects are accommodated by forming

a new time series of residuals of the raw data or transformed data from the
seasonal means. All screening and detailed analyses, if necessary, are

conducted on this deseasonalized time series.

The methodélogy has been applied to thirteen Washington streams with records
generally covering part or all of the period from 1959 to 1976. Most records
include substantial gaps in the data record; in some cases the records were
split into two shorter, more continuous records. The results of the analyses
were generally inconclusive, with the exception of two Eastern Washington
streams which showed fairly consistent changes in chemical quality possibly
attributable to agricultural practices. Some of the apparent changes in
other stations for which changes were not consistent for most or all of the
parameters assessed may have been attributable to changes in laboratory

analysis techniques.
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While no clear pattern of statewide water quality changes emerged from the
analyses, the results are useful in demonstrating the potential of the
recommended approach to trend assessment. In addition, the results serve

to underscore the importance of the recommended monitoring network design

practices introduced in Part I of this report.
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APPENDIX A

Nonparametric Tests

A.1l Test Descriptions

Brief descriptions of the two nonparametric tests used in this paper are
given below. TFor more complete descriptions and tables of rejection

levels for both tests, Conover (1971) may be consulted.

A.1.1 Mann-Whitney's Test

Given a data vector X = (Xl, Xps oo Xn)’ partition X such that
Y= (Xp, Xy, ooe X))
Z= (X g5 X os oor X))o

The two-tailed Mann-Whitney's test tests the hypothesis HO that P(y<z) =

1/2 against the alternative hypothesis H., that P(y<z) # 1/2, where y and z

1

are arbitrary elements of the data vectors Y and Z, respectively. The

test statistic is

m(m+1)

n
T= I R(Yi) -

=1

where R(Yi) is the rank of Y. in the pooled data vector X.
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The assumptions of the test are that the X, are independent with symmetric

i
(not necessarily identical) probability distributions and that the Xi are
continuous random variables (although a limited number of ties may be
handled as described in Conover (1971). Mann-Whitney's test is most

appropriate for testing against differences in central tendency in two

partitions of a data vector, such as a step trend.

A.1.2 Spearman's Rho Test

Given a data vector X = (Xl’ XZ’ ...), the two-tailed Spearman's Rho
test against trend tests the null hypothesis Ho that all the Xi are
identically distributed against the alternative hypothesis that the Xi
tend to increase or decrease with i. The test statistic is

n

T= & (R(X,) - i)2
=1 1

where R(Xi) is the rank of the i'th abservation Xi in the sample of size n.

The assumptions of this test are that the Xi are mutually independent and
that the random variables Xi are continuous. As in Mann-Whitney's test, a
limited number of ties are permissible. Spearman's rho test is most

appropriate for testing against continuous (e.g., linear) trends.
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A.2 Correction Factors for Rejection Levels of Spearman's Rho and Mann
Tests with Lag One Markov Noise

Critical levels of test statistics for Mann Whitney's (MW) and Spearman's
Rho (SR) tests described in Appendix A.l are commonly available in
statistical tables such as those given by Conover (1971). These tabulated

values are applicable to data of the form

Yt = Nt + g(t)
where Nt is independently (not necessarily identically) distributed random
variates with mean zero, and g(t) describes the mean level as a function of

time. When the Nt are dependent, E(NtN ) # 0, and the tabulated critical

t+k
values are not applicable. An analytical derivation of the distribution of
the test statistics, T in such cases would be quite difficult, however, if
certain assumptions regarding Nt are made, numerical experiments (Monte

Carlo sampling) on the computer will yield estimates of the correct rejec-

tion levels.

The assumption made here is that Nt is lag one Markov,

where €, is assumed to be independently normally distributed with mean

2
zero and variance l-p~, hence Nt has mean zero and variance one, and

E(NtNt+k) = pk. Choice of the zero mean unit variance process leads to
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no loss in generality, since the nonparametric tests make use of ranks,
rather than magnitudes, and the ranks are preserved under scaling and

translation of the noise.

A.2.1 Monte Carlo Tests

In order to estimate the test rejection levels, 500 traces each of leugih

n = 30, 50, 70, 100, 150, and 200 and p = .1, .2, .3 were generated from

a psuedo-random number generator. For the MW test, the ratio nl/n was

taken as .1(.1).5. For each set of parameters p, n, o, and nl/n, the 500
test statistics were calculated and ordered. Estimated critical levels were
calculated by interpolating at the p = o/2 probability levels from the
unbiased estimate of the sample percentiles, gp = Xﬁ’ where p = j/(n+l)

and the Xj have been ranked. Use was made of the symmetry of the test
statistic distributions by taking

z =1
Ry=3 [X +L, -X

> ]

1-p

where Lu is the upper bound of the test statistic. Ratios of the estimated
test statistics for the lower tails, ip to the tabulated (independent) test
statistics were computed as f(n, o, p) = }:\ip/Xp where X; is the test
statistic for independent data. For the MW test, estimated critical

level ratios were computed at several values of nl/n, however, the com-
puted values f(ﬁ, o, p) appeared to be independent of nl/n except at

n = 30, where for nl/n = .1, the ratio f(n, o, p) becomes greater than

one. However, this case corresponds to n., = 3, which is probably too

1

small for a meaningful test. Consequently, for the NW test the computed
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levels of f(n, @, p) are the average of the values for nl/n = ,1(.1).5,

except that for n = 30, they are the median value.

The results are given as Tables A.l1 and A.2. General trends are apparent,
for instance, the corrections are more substantial as o decreases (owing
to the increased effect of deviations of the tails from the assymptotic
normal distribution of the test statistics at small tail probabilities)
and (generally) as n decreases. Some anomolies appear, but are probably
attributable to the small (500 traces) number of runs made. The correc-

tion factors given may be copnsidered accurate to two decimal places.

A.2.2 Use of Tables A.l1 and A.2

To compute estimated rejection levels for given values of n, a, and p,

the appropriate value of f(n, o, ¢) is found in the tables or by interpo-

c

lation, if necessary. Upper and lower critical levels, TC and T for
L u
for the MW test)

independent statistics, corresponding to n, o, (and ny

are taken from the appropriate tables (e.g., Conover, 1971). Corrected

critical levels Té and Té are computed as
L u

]
O~
n

LQ + f(n, a, p)(TC - L

)
2 L *

]
-
i

L, * f(n, a, p)(TC - Lu)
u u

The o levels given are for a two-sided test, if a one-sided test is

desired at significance level o, the tables should be entered with a' = 2a.
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Table A.1 Estimated Mann Whitney's Test Rejection Level
Ratios for Lag One Markov Noise 1/

p = .10
n a = .01 a = .05 a = .1 a = .2
30 .903 938 .980 .975
50 .895 .910 .928 .944
70 .912 .942 . 945 .964
100 . 885 . 945 .963 .9/4
150 .968 .968 .963 .974
200 .942 .971 .973 .977
p = .20
n a = .01 a = .05 a = .1 a = .2
30 .715 .876 .882 .903
50 .781 .854 .587 .916
70 . 839 . 889 .906 .924
100 .851 .897 .923 .942
150 . 856 .938 .953 .968
200 .898 .928 .944 .959
p = .30
n a = .01 a = .05 a = .10 a = .20
30 .688 . 769 . 790 .847
50 .714 . 787 .828 .874
70 L7124 .828 .876 .898
100 . 815 . .863 .878 .907
150 . 846 .883 .918 .941
200 .871 . 899 .913 .933

1/ Values given are f(n, o, p) and are averages of five estimates for
nl/n = .1(.1).5, except for n = 30 where given is median estimate.
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Table A.2 Estimated Spearman's Rho Rejection Level Ratios

g=

30
50
70
100
150
200

|=

30
50
70
100
150
200

}=1

30
50
70
100
150
200

for Lag One Markov Noise

.923
.925
.972
. 944
.930
.956

. 786
. 869
. 887
.954
.928
.928

.785
777
.876
.874
.884
.898

p

Q

.930
.929
. 994
. 954
.976
.977

.854
.895
.914
.941
. 945
.961

.10

.05

.20

.05

.939
.939
.989
.970
.979
.982

.875
.911
.926
.942
.962
.967

.830
.857
.912
.923
.934
.952

.926
.953
.976
.976
.988
.987

.906
.926
. 947
.961
.979
.972

.870
.901
.937
.935
.951
.960
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APPENDIX B

TREND Program Documentation and Listing

B.1 FProgram Documentation

B.1l.1 Overview

TREND is a Fortran IV program capable of performing a number of analyses

on time series aimed at testing against the existence of underlying trends.
Twelve program options are available, including time series plots, cumula-
tive sum and quantile-quantile plots, and Mann-Whitney's and Spearman's rho
test statistic computation discussed in the main text of the report. With
the exception of the plotting routines, which utilize softwear available
only at the University of Washington CDC 6400 installation, the program is

transportable.

A program flow chart is given in Figure B-1 below. The basic structural
elements of the program are data channels and channel options. Six data
channels ar; available, with twelve channel options. Initially, the raw
data supplied to the program is read into channel 1. The program then
proceeds to the first channel option, where any necessary data is read in.
The input channel for the first channel option must always be channel 1,
the output channel is specified by the user. After the desired data
manipulation has been performed, the program proceeds to the second channel
option, which has input and output channels specified by the user. This
procedure continues until all the channel options for the first parameter have
been performed, the analysis is then performed for the second parameter,
which has its own set of channels and channel options read in. This

format is particularly convenient because it allows storage of data on

which various manipulations have been performed for future analysis; the
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Read sequence length, number
Start of variables, plot option,
variable formats

Read data according to
variable format and
echo print

— 2]

Read channel options,
input and output
channels

Read required chan-
nel option data,
if any

Perform selected
channel option

no

Channel opt-
tions comp-

no

Figure B.1 TREND Program Flowchart
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the output data are not destroyed by subsequent operations unless the user
desires to store data in a previously used channel, in which case the
original data are lost. The program keeps track of the number of data in
each channel, for instance some operations such as differencing and
computation of residuals from a moving average result in loss of one or

more data at the beginning or end of the record.

B.1.2 Program Input Requirements

In addition to the program itself, the user must submit a control card

record at the beginning of the deck and an input data record at the end

of the deck. The control card record simply contains the job control
language necessary to tell the computer where to look for the program, store
plot information, etc. The control card records given here are those
required by the CDC 6400 computer, other installations will have different

control card requirements.

Control card records sufficient to compile and store the program on CDC
permanent file are given, this option avoids the necessity of having to
read in the program itself each time multiple runs are performed. Note
that CDC control cards are always punched beginning in column 1, for

input data the required formats are given below for each card.
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Control Card Setups

Option 1: To compile and store program on permanent file:

Card No. Notes
1 Job Cardl Use CM 50000
2 Account Card
3 REQUEST (TAPE, *PF)
4 FORTRAN. Period is essential
5 EDITLIB.
6 CATALOG(TAPE, TREND, ID=1fn,RP=14) 1fn may be any desired

3-letter identification
code, file is retained
14 days beyond last use

7 789 multiple punch column 1

8-N+8 program deck first card should be
PROGRAM MAIN( ... ), last
card should be END

N+9 789 multiple punch colmn 1

N+10 LIBRARY (TAPE, NEW)

N+11 ADD(*,LGO,AL=1)

N+12 FINISH. period essential

N+13 ENDRUN. "

N+14 6789 multiple punch colmn 1

Option 2a: To run program stored on permanent file TREND--No Calcomp
plots requested.

Card No. Notes
1 Job Cardl use CM 50000
2 Account Card
3 ATTACH(TREND, ID=1fn)
4 LDSET (LIB=TREND)
5 MAIN, period essential
6 789 multiple punch colmn 1
7 - M+7 data deck see below
M+8 6789 multiple punch colmn 1

Option 2b: To run program stored on permanent file TREND--Calcomp Plots

requested
Card no. Notes
1 Job Cardl Use CM 75000
2 Account Card
3 ATTACH(TREND, ID=1fn)
4 PUBLIC (GRAFIX)
5 DISPOSE(TAPE99, *CC)
6 LDSET (LIB=TREND/GRAFIX)
7 MAIN. period essential
8 789 multiple punch colmn 1
9 - M+9 data deck see below

M+10 6789 multiple punch colmn 1
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Option 3a: To run program from source deck--No Calcomp plots requested.

Card No. Notes
1 Job Cardl Use CM 50000
2 Account Card
3 FORTRAN. period essential
4 LGO. "
5 789 multiple punch column 1
6 - 64N Program source deck- first

card PROGRAM MAIN( ... )
last card END

N+7 ' 789 multiple punch column 1
N+8 - N+M+8 data deck see below
N+M+9 6789 multiple punch column 1

Option 3b: To run program from source deck--Calcomp plots requested.

Card No. Notes
1 Job Cardl Use CM 75000
2 Account Card
3 PUBLIC(GRAFIX)
4 DISPOSE(TAPE99, *CC)
5 FORTRAN. period essential
6 LDSET (LIB=GRAFIX)
7 LGO. period essential
8 789 multiple punch column 1
9 - 94N program source deck First card PROGRAM MAIN

( ... ), last card END
104N - 10+N+HM data deck (see below)
11+N+M 6789 multiple punch column 1

1/ See University of Washington CDC 6400 User's guide.

Data Deck Setup

The first 6+N cards are always required, subsequent cards depend on the
channel options desired and the sequence in which they are called. These

optional cards are described below with the channel option descriptionms.

Card No. Variables Read Format Description
1 NCHAN,N 1615 Number of parameters, length
of data record
2 (NAME (J,K) ,K=1,8), 8A10 Identifier for each parameter
J=1,NCHAN) (1 card per parameter, all 80

columns may be used)
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Card No. Variables Read Format Description
3 (FMT1(J),J=1,4) 4A10 Variable read format for data,

use first 40 columns of card
only, must include parentheses

4 (FMT2(J),J=1,4) 4A10 Variable read format for missing
data code (XMD) use first 40
columns only, must include
parentheses

5 (FMT3(J),J=1,4) 4A10 Variable write format for
echo print of input data--use
first 40 columns only, must
include parentheses

6 XMDAT FMT2 Missing data code2

7 - 74N data FMT1 Data read in according to given
variable format, only require-
ment is that all NPAR values at
given time be located on one
card

N+8 (IAR1(J), IAR2(J), 16(212,1X) Channel option input and output
JV1,16) channels, if less than 16
options used leave remainder
blank

N+9 (IcomMp(J), J=1,16) 1615 Channel options--if less than

16 options leave remainder
blank

Data Channel Option Descriptions

Option 1: Data transformation--This option performs either a natural
logarithmic or a power transformation on the data, e.g., XS = ln(Xj) or
POW
X! = (X,) 7.
J J
Data Read: ITRANS, POW (transformation option, 1 = natural log, 2 - power,

and power POW if ITRANS = 2, leave blank otherwise).

Format: 110, F10.0
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Option 2: Seasonal mean removal--This option subtracts from the data the
corresponding seasonal mean, for instance if monthly seasons are used,

each January datum is computed as the difference between the original value
and the mean of all January data available.

Data read: NGP, NYR (number of data grouped for each season, number of
data per year). For instance, if monthly data are given and the seasons
are months, NGP = 1, NYR = 12,

Format: 1615

Option 3: Data Differencing--This option computes a new data set as the
differences of the input data, e.g., X! = X, _ X .

: 337 %4 np1F
Data Read: NDIF (number of data points lagged in differencing).

Format: 1615

Option 4: Quantile-Quantile plot--Data are ordered without respect to
time, sample quantiles computed and plotted against theoretical quantiles
of the normal distribution. Plot is lineprinter plot, no CalComp plot
available. Output data channel is same as input channel, no manipulation
on data is performed, hence specified output channel is ignored.

Data Read: None.

Option 5: Time eries plot of data--Data in given input channel are plotted
versus time. CalComp and lineprinter plots are available (must use

control card deck 2b or 3b) if CalComp desired, preferable (but not
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Output channel is ignored.

are read if lineprinter plots chosen.

Data Read:
Card No. Variable(s)
1 NBP
2 NPER, NYR, IPER, IYR
3 XMIN, XMAX, YMIN, YMAX
4 XLSZ1, XLSZ2, XLSZ3
5 (TEXTB(J), J=1,8)
6 (TEXTL(J), J=1,8)
7. (XTIT(J), J=1,8)
Option 6:

Data Read: None.

Format

1615

1615

8F10.0

8F10.0

8A10

8A10

8A10

No data

Comment

Bypass option--NBP = 0 with
CalComp option, reads cards 2-7
(must set NBP = Q0 on first
parameter run if CalComp plots
desired). NBP = 1 eliminates
need for cards 2-5, uses pre-
viously suppled values. If
NBP = 0, do not supply cards
2-7.

Number of data collected per
year, number of years data
(round up), initial period for
first data point, initial year
number.

Location in inches of X-axis,
end of X-axis, Y-axis, end of

_ Y-axis from arbitrarily defined

plotter origin. Suggested
values are 1.0, 9.0, 1.5, 7.0.

Lettering size for axis incre-
ments, axis plots and labels,
plot title. Suggested values
are .098, .114, .140.

X-axis label, any alphameric
information up to 80 characters.

Y-axis label, any alphameric
information up to 80 characters.

Plot label, any alphameric
information up to 80 characters.

Data transfer—-Transfers data from input to output channel.
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Option 7: Time series model identification--Computes summary statistics,
correlation and partial autocorrelation functions and plots (lineprinter
only). Suggested procedure is to use output from data option 10 as input
to remove nonstationarity.

Data Read: NLAG, JCHAN (maximum number of lags for which autocorrelation
computed), channel from which mean estimated for calculating summary
statistics (need not be same as input channel).

Format: 1615

Option 8: CUSUM plot--Plots cumulative sum of data (see main text for
description). Plot is lineprinter only.

Data Read: NDP, final point from which pre-intervention mean computed.
Must be certain that some data occur prior to t = NDP.

Format: 1615

Option 9: Data censoring--Censors given data, treating as if given
point(s) were missing. Maximum of 16 points per pass.

Data Read: (N1(J), J=1,16) (sequence numbers of data censored, if less
than 16, leave remainder blank). Input and output channels are same--if
original data is to be saved, must first store in alternate channels
using option 6.

Format: 1615

Option 10: Residuals from moving average-—Computes new time series as
residuals of input channels data from moving average of data in specified

channel. At each time, average of NAV points surrounding J (J is central
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point if NAV odd; if NAV is even, NAV/2 of points to be averaged precede J)
is computed. Output time series is computed as difference between raw
data and moving average at each time. This option is particularly useful
for removing trends prior to estimating correlation and autocorrelation
functions via Option 7.

Data Read: NAV, KCHAN (number of data points averaged, channel from

which moving average is computed--need not be same as input channel).

Option 11: Nonparametric tests--Given necessary beginning and ending data
indices, Mann-Whitney's or Spearman's rho test statistic is computed from
data. Number of data points in first (and, for Mann-Whitney's test,
second) partition of data are computed and written, ignoring missing data,
for use in computing critical levels.

Data Read: NTEST, IS1, IF1, IS2, IF2 (test option, 1 for Mann-Whitney's,
2 for Spearman's rho, initial and final points of first and second data
partition--leave 1S2, IF2 bland for Spearman's rho).

Format: 1615

Option 12: Computes step or linear changes in estimated mean level via
least squares and estimated standard deviation of change. Also plots
estimated step and linear trends if desired. Variance is computed on
basis of effective independent sample size for lag one Markov process.
Data Read: KSL, KPL, IS1, IFl, IS2, IF2, ILOOP, RO, KGAP. KSL is trend
type, 1 for step, 2 for linear; KPL is plot option--0 gives no plot,

1 gives lineprinter, 2 gives CalComp. IS1, IFl, IS2, IF2 are same as for
Option 11. 1ILOOP is multiple loop parameter when it is desired to plot

more than one estimated trend on same time series plot-—use 1 for start
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of multiple loop, O for single iteration only, -1 for continuation of
multiple loop, -2 for end of multiple loop. If KPL = 2, plot data must

be read in exactly as for Option 5, but plot data are read in only when

ILOOP = 0 or 1. RO is daily lag one correlation coefficient, KGAP is

sampling interval in days (eg. for monthly data KGAP = 30). Suggested
value for RO is 0.85 in absence of data-based estimate.

Format: 715, ¥5.0, 15
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