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ABSTRACT

The class of optimization models which can be used as tools by the water
resource planner or manager is examined. Five models are described and dis-
cussed in terms of their mathematical structure, computational burden or cost
of solution, method of incorporating the stochastic nature of streamflows,
ability to identify general optimal operating policies, and ability to identify
optimal reservoir system designs. The five models are called: Multi-Year
Deterministic Linear Program, Multi-~Year Deterministic Dynamic Program,
Explicitly Stochastic Linear Program, Explicitly Stochastic Dynamic Program,
and Chance Constrained Stochastic Linear Program. The Explicitly Stochastic
Dynamic Program and The Chance Constrained Stochastic Linear Program are super-
ior to the other models in terms of general usefulness. The Chance Constrained
Stochastic Linear Program is the best of the models in most planning situationms.

Keywords: River Basin Planning*, Water Resources Management*, Systems
Engineering, Mathematical Programming*, Optimization*, Stochastic

Hydrology, Multiple Objective Programming, Decision Making, Yakima
River.
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1. INTRODUCTION AND THREE OPTIMIZATION MODELS

1.1 Outline of Chapters

Since 1962, when Maass, et al. first reported on water resources systems
analysis, many different mathematical models have been developed. Optimization
models which can be used to assist in managing and designing multi-purpose reser-
voir systems comprise one important subset of the mathematical models.

This report includes descriptions and comparisons of these optimization models.
Three of the models are briefly discussed in the remaining sections of this chap-
ter. The usefulness of each of these is limited by either immense computational
costs of solution or an inability to include explicitly the stochastic nature of
streamflows. Two other models, which are superior to those described in chapter
one, are discussed in chapters two and three. An explicitly stochastic, dynamic
program ié the subject of chapter two and a chance-constrained, explicitly stochas-
tic, linear program is the subject of chapter three. A summary of the previous
chapters and conclusions are included in chapter four. Finally, a brief descrip-
tion of the problems associated with data handling, data analysisvand model formu-

lation is included in a special appendix.

1.2 Three Optimization Models

The three optimization models described in sections 1.3, 1.4 and 1.5 are
called the Multi-Year Deterministic Linear Program, the Multi-Year Deterministic
Dynamic Program, and the Explicitly Stochastic Linear program. Each of these
models was formulated, constructed and solved (the Expliéitly Stochastic Linear
Program was not solved due to its prohibitively large solution cost) for a two re-
servoir system located in the Upper Yakima River Basin. The objective used for
each model was: maximize the water supply potential of the reservoir system. The
water supply potential is the ability of the reservoir system to provide consist-
ently, over a period of time, a volume of water for downstream use with a speci-

fied reliability. Because each of the models has a different structure, the method
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of incorporating this objective is different for each one.

Even though a single purpose for the reservoir system is examined, the limi-
tations of the models become apparent. The Multi-Year Deterministic Linear Pro-
gram does not explicitly incorporate the stochastic properties of streamflows,
does not directly generate general operating policies, and does become very expen-
sive or computationally impossible to solve when large systems are considered. The
Multi-Year Deterministic Dynamic Program exhibits these same characteristics and
cannot be used to identify optimal designs. The Explicitly Stochastic Linear
Program does explicitly incorporate the streamflow's stochastic properties and does
provide general operating rules. However, unless major, possibly distorting,
assumptions are made, this model's computational burden or cost of solution becomes

prohibitively large when any more than two reservoirs are considered.

1.3 Multi-Year Deterministic Linear Program

The Multi-Year Deterministic Linear Program (M-YDLP) was the first optimizatic
model examined during the course of this research project. The foundation of this
model was presented by Maass, et al. (1962) and its formulation is perhaps the simplest
of the optimization models. Watermeyer and Thomas (1962) described the continuity
equation - a simple statement that the change in reservoir storage equals the differ-
ence between inflow to and outflow from the reservoir. If the change in reservoir stot

age is measured over some time period, the continuity equation would take the form:

St+l - St = It - Rt ¥t (1.1)
where St = reservoir storage at the beginning of time period t
St+l = reservoir storage at the beginning of time period t+1
It = inflow to the reservoir during time period t
Rt = release from the reservoir during time period t

Rearrangement of the continuity equation so that all variables are on the left hanc
side yields the following:

St+l - St + Rt = It ¥t (1.2)
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Watermeyer and Thomas (1962) recognized that by choosing some representative

sequence of inflows (It for t = 1,...,T) the continuity equation could become a
portion of a linear program. By using a sequence of flows, several years long,
the variation and stochasticity of the streamflows are implicitly considered in
the M-YDLP model. Additional restrictions on the possible values for storage
are needed to assure a realistic solution to the problem. Each storage level,
St (for t = 1,...,T), is required not to exceed the dam capacity, V, and to re-
main non-negative. A similar non-negativity restriction is necessary for each
release, Rt (for t = 1,...T). The constraints stated thus far simply describe
the functioning of a simple reservoir for a specific sequence of flows.

The development of an objective function is the remaining requirement. The
definition of water supply potential that proved to be most suitable for the
M-YDLP model was the minimum flow below a system of dams which is met in all time
periods of interest or:

R, > MINR vt (1.3)
where MINR = release from the reservoir which can be met in all time periods.
The objective of the M-YDLP is to find the greatest value of this minimum re-
lease: hence, the objective function is Maximize MINR.

The area selected for testing the models discussed in this chapter was lo-
cated in the Upper Yakima River and consisted of two reservoir sites, Lake
Keechelus (site 1) and Lake Kachess (site 2). When multiple structures are con-
sidered, it is necessary to include the continuity equations for each potential
structural site in the model. When each structure is loéated so that the out-
flow from one does not subsequently enter another, it is only necessary to in-
clude constraint 1.2 for each time period and each site. Using the Upper Yakima
River as an example, it is possible to demonstrate the range of forms needed to
consider multiple sites.

By inserting an initial subscript s, which designates the appropriate site

number, the continuity equations for the area under study are:



A

Slt+1 - Slt + th = Ilt ¥t (1.4)

S + R, =1 ¥t (1.5)

2e41 ~ Sop T Ry T Do

The values of the inflows (IS ) or the sequence of flows which are used in

t
the model are of critical importance. The sequence should fully represent the
stochasticity of the actual streamflows but because only a limited number of time
periods can be included in the model, this is impossible. If extreme events are
included in the sequence, they may lead to reservoir operations which are based
on flow variability which is greater than actually occurs. The avoidance of ex-—
treme events in the sequence, however, may tend to produce the opposite result.
Possibly the best way to overcome these difficulties is to model as many years as
are economically or computationally feasible.

In addition to the continuity equations other restrictions on the variables
are needed. All of the variables must be restricted to non-negative values and

the storage at any time must not be allowed to exceed the dam capacity, Vs'

S1¢ < vy ¥t (1.6)

< .
S,0 2V, ¥t (1.7)
In order to assure that at the end of the time period modeled (end of period T),

the water resource is not in a better or worse condition than at the beginning of

time period one, another constraint can be added to the linear program.

Sll - SlT =0 (1.8)

§,9 = Syp =0 (1.9)
This assures that the storage at each site at the end of the last time period
equals the storage at the site at the beginning of period one. By setting t+l
equal to 1 when t = T in constraints 1.4 and 1.5, the desired result is obtained.

Finally, the combined releases of all sites must be equal to or greater than the

minimum release of the system of reservoirs in all time periods.

(R, + Ry,) — MINR > O ¥t (1.10)

The method of obtaining operating policies is described by Young (1967). The
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solution of the linear program designates the optimal releases from a system of
reservoirs for some length of time. Assuming that the stochasticity of the
streamflow process is implicit in the sequence of streamflows used in the model,
it is possible that a significant relationship can be found between the optimal
releases and the streamflows. In fact, a relationship may be found between the
optimal releases, past storage volumes, the season of the year, and streamflows.
Young (1967) recommends that the relationship be found through a regression
analysis where release is the dependent variable and previous streamflows, past
storages and season of the year are included in the set of independent variables.
This approach was instrumental in extending the power of the M-YDLP model even
though Young did not base his work on a linear program. He introduced the re-
gression method of obtaining operating rules from the solution of a multi-year
deterministic dynamic programming model.

The formulation of the M-YDLP may be summarized as follows:

Maximize MINR (1.11)
subject to: SSt+l - SSt + Rst = Ist Vs, ¥t ’ (1.12)
SSl - SST =.0 ¥s ©(1.13)
S.p < Vg ¥s, ¥Vt (1.14)
m
YR _-MINR >0 ¥yt (1.15)
s=1 st -

all variables > 0
The size of the M-YDLP model is sensitive to the number of sites and time
periods which are modeled. The number of constraints in the M-YDLP model (as
described above) is:

T* 2m+ 1) +m= (2L *Y)2 *m+ 1) +m

where m number of reservoir sites in the model
% = number of seasons per year

Y = number of years modeled

T = number of time periods used for model andlysis (& * Y)
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After experimenting with the various linear programming packages available at
the University of Washington Computer Center, it was found that MPOS (Multi-Purpose
Optimization System) offered the best software to solve the M-YDLP optimization model.
However, the maximum number of constraint equations which could be input to the pro-
gram was 250: this required the full amount of central memory availabe on the
CDC 6400 computer. (Other linear programming packages available at the University
of Washington were only able to accept a maximum of 100 constraint equatioms.)
Utilizing MPOS, it was found that equation 1.14 did not count in the constraint
set, but fell into a category called boundary equations for this particular soft-
ware package. Thus, under MPOS, the relationship which expresses the number of

constraints in the M-YDLP model becomes:

T* (m+1)4+m= QL *Y) (m+1) +m
Because 250 constraint equations were limiting for a 2-site M-YDLP analysis,
mathematical substitutions were used wherever possible to reduce the number of

constraint equations. For example, equation 1.10 can also be expressed as:

th + R2t = MINR + IRt ¥t (1.16)

where IRt = the amount by which the total reservoir release exceeds the safe
yield (MINR) for time period t.

This constraint equation can then be eliminated by solving for R ¢ and substitu-

1

ting the result into equation 1.4 yielding:

Slt+l - Slt + MINR + IRt - th = Ilt ¥t (1.17)

An attempt was also made to solve equation 1.17 for R2t and to substitute the re-
sult into equation 1.5 giving a further reduction in the number of constraint equa-
tions. However, performing this step was found to cause aviolation in continuity at
one of the reservoir sites because individual inflows at each site were also combined.
When the reservoir storage levels which were output from the M-YDLP were substituted
back into the continuity equations for each site to determine the recommended reser-

voir release, negative values were found to result. Thus, by performing simple mathe-

matical substitutions to reduce the number of constraint equations, the non-negativity
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required for the release variables was also eliminated. Therefore, the final

reduced form of the M-YDLP for a 2-site reservoir system is:

Maximize MINR (1.18)
subject to: Slt+l - S1t + MINR + IRt - th = Ilt ¥t (1.19)
SZt+l - S2t + th = I2t ¥t (1.20)
Sll - SlT =0 (1.21)
Sy1 = S2T =0 (1.22)
S;, SV ¥t (1.23)
S0 2V, ¥t (1.24)

all variables > 0
And the relationship which expresses the number of constraints in the M-YDLP
model is:
m* (T+ 1) =m*[(2 *Y) + 1]

The next problem addressed was the determination of the length of time
intervals to be used in the M-YDLP analysis. The reservoir sites studied in
the Upper Yakima River are used primarily for irrigation over a seven month
period from April to October. It was sought to achieve an operating policy
that is consistent with feasible management of the present system. Crucial
factors in attaining consistency are the length of the time interval and the de-
gree of knowledge of future hydrologic events. A 50-year historical record of
monthly flows provided by the Bureau of Reclamation was exémihed to determine
the length of the time interval which would yield the most meaningful results
from the optimization models. It was found, as a result of both the irrigation
usdge of the system and the seasonal variability of system inflows, that
monthly time intervals during the irrigation season offered the best hope for
meaningful results, The remaining five months were lumped into one time inter-
val in order to reduce the number of constraint equations required for the model

and because no irrigation demand exists on the system during this period. Hence,
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for a 2-site system and 8 seasons per year, the maximum number of years which could
be studied in any particular M-YDLP analysis using MPOS on the CDC 6400 computer
(250 constraint equations maximum) was found to be fifteen.

As stated previously, the sequence of inflows used in the model should fully re-
present the stochasticity of the actual streamflows. The computational limitations
of the M-YDLP model did not allow the luxury of analyzing a sequence of flows longer
than 15 years in any one run without making other sacrifices such as reducing the num-
ber of seasons per year. By using 15 year sequences, the existence of extreme events
in a particular trace could tend to lead to operating policies based on flow vari-
ability which is greater than actually occurs. For this particular study, the problem
could have been overcome for a 2-site reservoir systemwitha better linear program-
ming package on a larger computer (e.g., the IBM 370 Mathematical Programming System
can handle in excess of 1000 constraint equations). However, even with the best avail-
able computer technology, the computational burden on the M-YDLP becomes almost insur-
mountable as the number of reservoir sites under study is increased, as the length of

the period of analysis becomes greater, and as more reservoir functions are examined.

1.4 Multi-Year Deterministic Dynamic Program

The Multi-Year Deterministic Dynamic Programming (M-YDDP) model is useful
strictly as a policy model: it can be used to identify operating policies but not
system designs. It is assumed that the stochasticity of natural streamflows is im-
plicit in the sequence of flows used in the model. The output of the model is a set
of optimal decisions (releases) and a set of optimal storage levels associated with
the streamflow sequence input to the model. Operating rules can be obtained by
performing a regression analysis with the releases as the dependent variable and pre-
vious storage levels, streamflows, and.theseaéon<1fthe year as independent variables.

Young (1967) introduced the regression method of obtaining operating rules and
demonstrated its power. He also used the dynamic programming model whuch is here called
the M-YDDP but which he referred to as the forward-looking deterministic algorithm.

A Monte Carlo technique was employed by Young (1967) to obtain sufficient data
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for the regression analysis. A method of generating sequences of streamflows
which exhibited the same statistical properties as the historical streamflows
(operational or synthetic hydrology) was used to provide sets of flows each of
which was considered to be equally likely. The dynamic program was solved for
each set of flows and the results from all of the solutions were used in the re-
gression analysis.

Buras (1966), Hall and Dracup (1970), and Becker and Yeh (1974) provided
discussions on the use of dynamic programming models in the development of water
resources. In particular, they examined the dynamic program with deterministic
inputs for single and multiple dam sites. Mulfiple uses of the dam system were
also considered and possible methods for quantifying economic benefits and losses
associated with the dam system operations were discussed.

The bases of the dynamic program are the recursion relation and the return
function. The stages of the M-YDDP model are time periods (the same 8 seasons out-
lined in the discussion of the M-YDLP model for the Upper Yakima System) and the
states are storage volumes. The storage capacity at each dam in the system is
broken into as many discrete values as desired. The larger the number of discrete
storage volumes which are considered, the greater will be the accuracy of the model.
The state of the dam system is described by the discrete storage levels at all
sites. 1If SSt represents the potential discrete storage volumes at site s at the
beginning of time period t then (Slt, SZt""’ Sst) represents the state of the
system at the beginning of period t.

Movement from one system state at the beginning of period t to another system
state at the beginning of time period t+l is controlled by the continuity equation
used in the M-YDLP model. Continuity is a statement that the change in storage in
a reservoir over a time period equals the difference between inflow and outflow
during the time period. 1If RSt equals the release from site s during period t and

ISt equals the inflow to site s during period t, then the continuity equation is:

Rst = sst + Ist - Sst+l (1.25)
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Therefore, if inflow and beginning and ending storages for any time period are
known, the release can be determined.
The development of the cost function used in the recursion relation centered
on whether or not the target release, MINR, is met. The cost function, Cij’
equals the cost of moving from the discrete storage increment Si in time period t

to storage increment Sj in time period t+l.

It

0 if R,. S, +1I_ - S, > MINR
ij i t j =

cij = { (1.26)

1 4if R,. S, +I_ - S, < MINR
ij i t i

More simple stated, the cost function is the number of times the target release,
MINR, is missed. The function ft(si) equals the number of times the target release
has been missed during t time periods of operation when the storage at the begin-
ning of season t is Si' Thus, the recursion relation for the M~-YDDP becomes:

ft+l (sj) = min'{ cij + £, (si)} (1.27)

The boundary condition for the dynamic program is fo(si) equals zero for all stor-
age volumes Si' Solution of the recursion relation results in the minimization of
the number of times that the target release is not met.

Unlike the M-YDLP, it was found that the definition of water supply potential
used in the M-YDDP model could be expanded to be the minimum flow below a system of
dams which is met o percentage of the time; thus, introducing a system reliability
factor. For any value of MINR, find the ratio of the minimum number of misses in T
seasons and T. This ratioc is an estimate of the probability of missing the target.

Utilizing the M-YDDP to find the optimal operating policy assumed prior know-
ledge of the target release, MINR. To find an appropriate value for MINR, therefore,
required the use of a search procedure in addition to solving the recursion relation.
To use the M-YDDP to find the appropriate target release, a binary search technique
was employed. By performing five iterations of the search technique for each 50 year

sequence of inflows which was examined, 250r 32 increments or values of MINR could be

tested. The initial monthly target release, MINR, which was analyzed was determined
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by dividing the combined mean annual inflows to both Lake Keechélus and
Lake Kachess by the number of months the system was used for irrigation. To
determine the range over which the search would be performed, the coefficient

of variation which is a measure of dispersion was utilized. Let

combined mean annual flow

IT = initial target examined = no. of months irrigated
C,, = coefficient of variation= standard deviation
N mean annual flow

The range examined was IT i'(CV*IT). For all 50-year traces analyzed, the opti-
mum target for the M-YDDP model was found to fall within this range.

The flow chart on page 12 outlines the method by which the binary search was
utilized with the M-YDDP model to determine the water supply potential of the
2-site reservolr system.

The computational burden associated with the M-YDDP model is dependent on
the anber of dam sites, the number of discrete storage volume increments that
are considered for each reservoir, and the number of time periods. The number
of times that the recursion relation must be solved is approximately equal to the
number of stages multiplied by the square of the number of states. If £ is the
number of seasons per year, Y is the number of years, m is the number of dam sites
and d is the number of discrete storage levels at each dam. Then the recursion
relation must be solved d2m * 0 %Y times. As an example of how sensitive the
M-YDDP is to the number of sites with respect to required computer time for model
solution, for one-site (8 seasons per year, 50-years, 5 storage increments), the
recursion relation must be solved 10,000 times. All else held constant (8 sea-
sons per year, 50 years, 5 storage increments), the 2-site recursion relation
must be solved 250,000 times. Obviously, for a water resource system larger than
the two sites, use of the M~YDDP can lead to exorbitant costs.

Another aspect of the solution costs  -of the M-YDDP model is evident from the

recursion relation. 1In order to sequentially solve the recursion relation,

immense amounts of computer storage may be required. One method which can be used
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to retain the optimal solution is to store the values of ft(S) for all storage
volumes, for all time periods and for all sites. This means storing (d)m*k‘*Y
values and does not include the storage requirements of the model code or the
cost function. As an example of storage requirements with respect to the number
of sites, the l-site example outlined above requires 2000 words of central mem-
ory. The same 2-site case requires 20,000 words or ten times the amount of com-
puter storage. So the M-YDDP model increases in storage and computational costs
as the number of sites, the number of time periods and the number of discrete stor-
age volume increments increase.

In contast to the M-YDLP, ﬁhe M-YDDP allows more flexibility in the defini-
tion of water supply potential as well as providing the capability of examining
longer sequences of inflows which can lead to more meaningful results. However,
dividing each reservoir into discrete storage increments does lead to some loss
in accuracy. As with the M-YDLP, the largest drawbacks of the M-YDDP are the non-
explicit incorporation of the streamflows' stochastic properties, the indirect
method of obtaining general operating rules and the large computational burden and
storage requirements. It was found that mathematical substitutions and modulus
arithmetic could be utilized to reduce these needs, but the subsequent gains were
more than offset by the non-linear increase of the computer requirements for the

multi-site cases.

1.5 Explicitly Stochastic Linear Program

The Explicitly Stochastic Linear Programming (ESLP) model is a subset of a
nonlinear program that can be used as a design and/or a policy model and utilizes
a discrete Markov process as the explicit stochastic description of the streamflow.
The nonlinear program is structured in a special way so that if a partial design
is specified, the remaining variables and equations form a linear program which can
be used as a policy model. 1If a policy is specified, the remaining variables and
equations in the nonlinear program form a linear program which can be used as a

design model.
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The design and policy models can be used separately or in tandem. When the
models are used together, an iterative procedure is employed to find an approxi-
mation of the optimal solution of the nonlinear program. The procedure is to alter-
nate between solving each of the linear programs, using the solution of one as input
to the following one. Because the value of the objective for each model is non-
decreasing during this alternation process and the objectives are bounded, the pro-
cess terminates (no change in the objective function values) in a finite number of
iterations. The termination point may be the global optimum of the nonlinear pro-
gram in which case the optimal design and policy are found or the termination point
may be a local (non-global) optimum. There is no method to determine whether the
termination point is the global optimum or a local optimum. And if a local optimum
is obtained, there is no method of determining how far from the global optimum it is

The historical development as well as extensions and improvements of the ESLP
model are fully discussed by Loucks (1969), Gablinger and Loucks (1970), Loucks
and Falkson (1970), Jacoby and Loucks (1972), and Houck and Cohon (1977). Loucks
(1969) also pointed out two major difficulties of this type of model. As the com-
plexity and scale of the system of potential sites increase, the data available
become totally insufficient to estimate the parameters needed, and the size of the
model grows so large that the model is unsolvable by present computer methods.

A discrete Markov process is used in the ESLP to describe the.streamflow pro-
cess. This requires that the continuum of streamflows at each site be broken into
intervals and a characteristic flow for each interval be chosen to represent all
flows in the interval. This discretization process is performed for all seasons
of the year as well as for each site. For the Upper Yakima River System, the
cumulative distribution functions (CDF) defined by historical streamflow data
were broken into five intervals and the average flow within each interval of the
CDF was used to represent the characteristic flow of that interval,

The ranges associated with each characteristic flow are important in defining the

lag-one Markov process that will be used to describe explicitly the stochasticity
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of streamflows. It is necessary to determine the conditional probabilities
of transitions from each of the characteristic flows in one season to each
characteristic flow in the next season. The transition probability is a
measure of the likelihood that a flow will follow a given flow in the previous
season. It can be approximated by computing the relative frequency with which
this occurs in the historical data or by using the historical data to calibrate
a particular probability distribution function. For the Upper Yakima study, se-
quences of streamflows which exhibited the same statistical properties as the
50-year historical streamflows were generated from the data provided by the
Bureau of Reclamation. These generated flows as well as the historical data were

used to compute the relative frequencies.

sz will represent the probability of a transition to the jth characteristic
flow in season t+1, Ij t+1? from the ith characteristic flow in season t, Iit'
E ]

(sz = Prob [Ij If two dam sites are under consideration and one is

,t+1 I Iit])'

denoted by primed subscripts, then PF

.1..¢ represents the probability of a transi-
ii'jj!

tion to the characteristic flows I, and I., at both sites in season t+l
jyttl jl,t+l

from the characteristic flows, Iit and Ii't in season t.
Storage volume is also intervalized and characteristic storage volumes are

chosen to represent each interval or range of volumes. S and S

Kt k't will repre-
h

sent the kt and k'th characteristic storage volumes at the beginning of season t
at the two dam sites. Similarly, 2£(&') and m(m') will represent the characteri-
stic storage intervals at the beginning of seasons t+l and t+2 respectively.
Releases or drafts are broken into intervals based on beginning and ending stor-
ages of the period and flow during the period. Thus, there will be a release or
draft for each combination of possible beginning storage, possible ending storage,
and possible flow for each season t. The reservoir releases or drafts will be
represented by RkiZt which is the release in season t resulting from a beginning
storage Skt’ an ending storage SRt+l’ and a streamflow, Iit'

The formulation of the nonlinear program consists of continuity constraints,
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constraints which relate transition and marginal probabilities and which limit
the values of the probabilities, definitional constraints for the water supply
potential or minimum target release, constraints which define the allowable
values for storages, and an objective function. The development of the model is
presented in this order.

The continuity equation is a mass balance on water at each dam site.

¥ k,i,8,t (1.28)

s =S, +1I, -R
1

¢ PR ¥ k',i',2',t (1.29)

L', t+1 k't
This equation must hold for each initial and final storage volume, each stream-

flow, each season, and each site.

The drafts, Rkizt and Rk'i'l't’ are the important variables as far as the
water supply potential of the planning problem is concerned. The releases deter-
mine the extent to which the targets are met. 1In order to compute the minimum
release, MINR, the probability of each draft must be found. The tramsition pro-

ey t .
babilities, Pii'jj' are needed to define the values of Pkk'ii'll't’
ity that the release (Rkizt + Rk

the probabil-
'i'l't) occurs. Because streamflows from season
to season are related through the transition probabilities, and releases are func-

tions of streamflows, the release from season to season and the values of

Pkk'ii'zl't and Ehﬂjj'mm't+l (the probability that a total draft, Rg.

Jmt+l+-R2'j!m't+l

is made) are related.

I % I I P (p ) =L L P
k k' 4 4"  kk'ii'2f't ii'jj’ mm' 22'jj'mm't+l
ve,8',3,3',t (1.30)

The right hand side of equation 1.30 equals the probability that inflows

I. and I.,
jt

el occur during season t+l and the storages at the beginning of

+1

season t+1l are S and S

Qt+1 Ot e+l By summing over all storage levels k and k' on

the left hand side of equation 1.30, it becomes:
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LY Prob[S
ii!

*
and S and I, and Ii't]

2t+1 L2't+1 it

and I,

1 e | 1,, and I

Prob[I, it el
By summing over allvalues of i and i' the left hand side becomes the probability

of beginning season t+l with storage volumes of S and S

Qt+l o 4]’ and having in-

flows of Ijt+ ’and Ij't+l' Thus, equation 1.30 assures that the discrete, lag-one

1
Markov process is incorporated in the ESLP model.
Further constraints are necessary to restrict the set of joint probabilities.

It is necessary to assure that the probability of some combination of releases

occurring equals one in each season and that all probabilities are non-negative.

ITILZI P = 1.0 vt (1.31)
Kk'11'28'  kk'ii'2Q't
PRt 11000 ¢ >0 Ykk'ii'28't (1.32)

The water supply potential can be measured in several ways: one of these is
to assure that the minimum release or target release, MINR, is always met. 1In
other models, this restriction has been formulated by simply writing a constraint,
for each possible release, that specifies MINR is less than or equal to that re-
lease. 1t becomes necessary in the ESLP model to include also the probability of
occurrence of each possible release in these constraints. If the probability of
a particular release equals zero, it is not necessary for that release to exceed
or equal MINR.

* -
Pkk' ii'22't (Rkiﬂ,t + Rk'i',?,'t MINR) Z 0

¥k,k',i,i',8,8',t (1.33)

The final constraints which are necessary define the restrictions on storage
volumes. No storage may exceed the dam capacity and no storage may take on nega-
tive values. This is accomplished by restricting the storage levels to be non-
decreasing with increases in indices k ortk'. The largest storage is restricted
to values not greater than the dam capacity and all storage volumes are restricted

to values not less than zero.
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Sep 20 ¥ k,t (1.34)
Spre 20 ¥ k',t (1.35)
St Sk+1,t <0 k=1,2,...,K1 ¥t (1.36)
St Sk'+1,t <0 k' =1,2,...,K'-1 ¥t (1.37)
Sge ~ Vp 20wt (1.38)
SK't - V2 <0 ¥t (1.39)

The objective function is: Maximize MINR.

The nonlinear program consists of constraints 1.28 through 1.39, an objective
of Maximize MINR, and non-negativity restrictions on all variables. The linear
program which is the design model is formed by specifying values for Pkk'ii'l%'t
such that constraints 1.30, 1.31 and 1.32 are satisfied. The remaining constraints,
variables, and the objective function define a linear program.

The policy model, a linear program, is formed by specifying values of Rki2+’
Rk'i'R't and MINR as obtained by solution of the design model. The remaining con-
straints, variables and objective of the nonlinear program define a linear program.
Unfortunately, the objective value will not increase because MINR is assigned a
specific value. However, it is possible to obtain different values for the pro-

babilities by using an objective such as:

Maximize LZZ EZZZ X (k+k'+i+i'-2-4")P

| B IC | 1]
tkk'ii' 20" kk'11'28't

The result will be to maximize the sum of weighted probabilities, where the Qeights
favor large releases and penalize small releases. This particular objective is
only used as an example to demonstrate a method of obtaining a possibly superior
solution. With a different set of values for the probabilities, the next design
model may result in a higher value for MINR. (For a much more detailed discussion
of how the design and policy models can be formed and sequentially solved, see
Houck and Cohon (1977)).

The operating rules are conditional probabilities defined by the joint pro-
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babilities specified in the solution of either linear program. If the storages
at the beginning of season t are known and the streamflows for season t are known
or predicted, then the decisions to be made are how much water to release or what
storage volume to strive for at the beginning of the next season at each dam.
These decisions are equivalent because storage and release are related through the
continuity constraint. The probability of being in storage intervals £ and %' at
the beginning of season t+l given initial storage intervals k and k' and flow in
intervals i and i' for season t is a statement of the operating rule. This pro-

bability P[&2'| kk'ii't] is related to the release probabilities found in the

program by:
P | O | ]
PILL| kic'ii'e] = oL AL E (1.40)
YL kk'ii'28't

The cost of solution or the computational burden of the policy and design
models is large and can be estimated by the numbers of constraints in the linear
programs. The design model for the 2-site, Upper Yakima River System consists of
127,080 constraints. Many of these constraints can be eliminated because many of
the probabilities Pkk'ii'kl't will equal zero. If a particular set of them equals
zero then the events described in constraints 1.28, 1.29 and 1.33 may never occur:
hence, it is not necessary to include those constréints in the linear program. It
would be possible to reduce the number of constraints to 7000 or fewer. For a
three dam system the number of constraints is much higher. Assuming that as many
of the probabilities as possible equal zero, the number of constraints exceeds
100,000. The 3-site design model is unsolvable with current computer technology

and the 2-site model is at the limits of solvability. So even for very simple

planning problems the ESLP model has excessive computational requirements.



2. EXPLICITLY STOCHASTIC DYNAMIC PROGRAMMING MODEL

2.1 Introduction

In the course of this research project, the Explicitly Stochastic Dynamic
Programming Model which is discussed in this chapter was found to be superior in
several ways to the optimization models described in chapter 1. Therefore, more
testing was performed on this model than the previous ones. Moreover, an example
case study utilizing the dynamic program as well as multi-objective display tech-
niques was completed. The objective of the study was to determine the impacts of
increased hydroelectric energy production on overall reservoir system operation.

The objectives of this chapter are to describe the dynamic program structure,
and to show how multi-objective analysis can be used in a water resource planning
problem. A short review of the use of optimization modeling in the management of
reservoir systems will be presented along with a description of the Explicitly
Stochastic Dynamic Program. This will include a discussion of different uses of a
system and the management conflicts involved. A description of the example reser-
voir system's configuration, streamflow characteristics énd economic benefit and
loss functions will follow. Finally, a discussion of the impacts of increased
energy demands on the example reservoir system's operation will be presented.

The example reservoir system comprises two reservoirs situated on the Lehigh
River System‘in Pennsylvania. The reservoirs are multiple purpose in that they
are used for flood control, water supply and power production. This reservoir
system was chosen as the example because it is managed to meet multiple and con-
flicting demands, this system design was selected by a screening model (a chance
constrained linear programming model patterned on ReVelle, et al. (1969)) as the
optimal design for a reservoir system in this river basin, and substantial econo-
mic data on costs and benefits of all uses of the system are readily available

from Hufschmidt and Fiering (1966).

2.2 Related Work

Maass, et al. (1962) first reported on water resources systems analysis.
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They discussed the multiple uses of reservoir systems which include flood con-
trol, water supply for domestic, industrial and agricultural purposes, recreation,
and hydroelectric energy production, and the conflicts between the uses. For
example, if the purpose of a reservoir system is to provide a dependable supply of
water to a downstream site, then the optimal operating policy would be to keep the
reservoirs as filled as possible while releasing sufficient water to meet demand.
If the purpose of a reservoir system is to control downstream flooding, then the
optimal operating policy would be to keep the reservoirs as empty as possible so
that the maximum storage will be available for catching any flood that occurs.

Unlike the single uses of flood control and water supply which have obvious
optimal reservoir operating policies (at least for single reservoirs) hydroelectric
power production does not. Hydroelectric power production is a function of the
head acting on the turbines (depth of water above the turbines) and the rate of
flow through the turbines (Hufschmidt and Fiering (1966) and Doland (1954)).
Because the streamflows entering a reservoir vary over time it is necessary to vary
the head and release from the reservoir in order to meet a relatively constant
power demand. It is not obvious how this should be done to obtain a maximum power
output from the reservoir.

It is even less evident how a reservoir or system of reservoirs should be
operated if multiple uses of the system are demanded. Maass, et al. (1962) des-
cribed the first use of an optimization model, a linear program, to find the
optimal operating rules for a multipurpose reservoir. An economic benefit func-
tion was derived for each use of the reservoir and an objective function of maxi-
mization of net economic benefits was employed. The streamflow description was
similar to that used in the M~-YDLP model.

Since this first modeling effort, many optimization models for determining
both design and operating rules for multipurpose, multiple reservoir systems have
been proposed and discussed in the literature: three of these have already been

discussed in chapter one.
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The set of optimization models can be divided into two subsets: linear pro-
grams and dynamic programs. The linear programming models are restricted because
nonlinearities, especially the nonlinear relation of hydroelectric power produc—
tion to reservoir head and release, can be extremely expensive to approximate
within the linear programming format. Although the dynamic programs can easily
accomodate these nonlinearities they are constrained because certain management
decisions must be made before the model is solved (e.g., targeted demand levels
must be specified). Hence, there exists a tradeoff between the linear and dyna-
mic programming models.

Another categorization of the set of optimization models is defined by the
method used to incorporate the stochastic properties of the streamflows. Several
models use artificial or synthetic sequences of streamflow based on the historical
streamflow record (e.g., M-YDLP and M-YDDP). The model is solved for a particular
sequenée of streamflows so that the operating rules which are determined are
dependent on the streamflow sequence: no general operating rules are determined.

The remaining models incorporate the stochasticity of the streamflows by
directly using their probability distribution functions. Butcher (1971) and
Loucks (1969) explicitly use a discrete, lag-one, Markov process to describe
streamflows' stochasticity. ReVelle, et al., (1969) make direct use of the
cumulative distribution functions of seasonal streamflows in the 'Linear Decision
Rule" model. Because none of these models is based on a particular streamflow
sequence, each of them yields general operating rules for reservoir systems.

Hydroelectric power production cannot be examined without also considering
other forms of electric energy production. Approximately fifteen percent of this
nation's electric energy is currently supplied by hydropower; fossil fuel and
nuclear power plants supply most of the remaining eighty-five percent (Armstrong,
1976).

Energy Alternatives: A Comparative Analysis, prepared by The Science and

Public Policy Program of the University of Oklahoma in 1975, contains a detailed
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description of the potential energy sources and methods of electric energy pro-
duction which will be used in the foreseeable future. One important character-
istic of fossil fuel and nuclear power plants is that they operate most effi-
ciently at a constant output ievel. These plants cannot adjust their output
levels over short‘periods without significantly reducing efficiency. Hydro-
electric power production can, however, vary substantially without a significant
efficiency loss: each turbine can be turned on or off easily. Because electric
energy demands exhibit daily variations; hydroelectric, fossil fuel and nuclear
power plants can be operated systematically to great advantage. The thermal
plants operate at constant output levels at maximum efficiencies and the hydro-
electric power plants operate to supply all additional electric energy demands.

Caselton and Russell (1976) have explored the impact that a reservoir used
for hydroelectric energy production and a thermal power plant can have on each
other. They limited their investigation to a single thermal power plant and
one,single-use reservoir in an attempt to discover how the two facilities could
be used effectively fogether. No attempt was made to analyze the impacts which
reservoir operations would have on downstream flooding, recreation, water supply

or any other reservoir uses.

2.3 Optimization Model

The Explicitly Stochastic Dynamic Programming Model was originally presented
by Butcher (1971). The dynamic program's stages consist of seasonal time periods
(3 per year) and the states consist of a combination of storage volume at the
beginning of the period and streamflow during the period. Each state is defined

by S (kth storage interval at the beginning of season t at site s) and Is

skt it

. th
(1 streamflow interval during season t at site s).
The streamflow and storage volumes used are discrete values which are chosen
to approximate the continuous ranges of flows and storages. The range of stream-

flows passing each site has been divided into intervals and the mean of each
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interval has been used to represent the streamflows for that interval (Figure 2.1).
Similarly a particular set of discrete storage volumes is used to represent all
possible storage volumes for each reservoir.
A discrete, lag-one, Markov process is used to describe streamflows to the
system. This description is incorporated into the model with the use of a set

of conditional joint probabilities, P[IS ¥s], which represent the probability

jt+l
of a particular set of streamflows at all sites in season t+l conditioned on a
set of streamflows at all sites in season t. Several methods of estimating
these transition probabilities can be used. Assuming that a particular prob-
ability distribution governs the transitions, the available historical data can
be used to estimate the parameters of the distribution. They can also be approxi-
mated by the relative frequencies of events recorded in the data. It should be
noted that while the relative frequency approximated for a single transition from
a limited data base may not be accurate, the set of relative frequencies may
adequately represent the transition process because it is only used to find the
expected value of a series of benefits.

Movement from one stage to the next as defined by the recursion relation
(see below) is backward in time. Each transition is tested for feasibility using
the continuity equation and all combinations of streamflow and storage producing
negative releases are rejected. The label which is placed on each state,
fn(Isit’ SSkt ¥s), is the value of expected benefits obtainable from optimal
operation of the system over n time periods; where n equals the number of dynamic
program stages that have been considered when the label is assigned.

The return function, BENEFIT (S I ., ¥s) can be any function

skt’ Ss5Lt+l’ sit

that defines the value of expected benefits which accrue for a particular set of

releases D (release at site s for a transition with beginning storage, S

skift skt’

ending storage S and inflow ISit in season t). The return function used in

sft+l

this model combines the long and short term benefits (and disbenefits) gained from

a release as follows: 1long term benefits are defined in terms of the expected
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Season Interval Bear Creek Beltzville
1 1 624.4 182.8
2 887.3 233.0
3 1129.0 259.3
4 1344.7 335.2
5 1938.4 553.4
2 1 . 1455.6 373.9
2 1760.5 469.7
3 2035.4 540.6
4 2300.2 | 615.4
5 2643.8 786.9
3 1 287.8 86.5
2 435.1 135.9
3 626.8 204.6
4 868.0 271.9
5 1614.4 529.3

(A1l flows are in units of 100 acre-feet, Season 1:
Oct.~Jan., Season 2: Feb.-May, Season 3: June-Sept)

Figure 2.1 Discrete Streamflows
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annual value of meeting certain target levels of water supply availability,
and power production. Short term benefits (or disbenefits) are defined in
terms of penalties or rewards for falling short or exceeding the target
levels. 1In those cases where target levels are missed by large margins,

a disaster may be declared. Benefits from flood control are defined each
season as a function of the system freeboard. A detailed description of
the respective benefit functions is included below.

The operating policy designated by the model is a set of rules specifying
the storage levels at the beginning of the next season for each combination of
storage levels at the beginning of the present season and streamflows during
the season.

The recursion relation is used to find the optimal set of rules. An ini-
tial set of.rules is formed based on the immediate return obtained from those
operations. Subsequent solutions of the recursion relation find operating
policies which increase the value of expected economic benefits.

The recursion relation is:

maximu
fn(Isit’ Sskt,¥s) - SsSZ,t+l mVS { BENEFIT(Isit’ Sskt’ SsJLt+l ¥s) +
*
I PlLgyeyy ¥sl Tgpe ¥1 % £ 1 Ugiehn Sopen ¥ (2.1)

all possible streamflow
combinations in season

t+1, (Isjt+l ¥s)
The only feasible values of (Sslt+l ¥s) are those such that DSkilt = Sskt +
Isit - Slt+l-z 0 for all sites. BENEFIT, the probabilities and fn(-) have

already been defined. The subscript t is related to n by the following:
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t = (t*10° -n) (modulo T) + 1 (2.2)

g+l = (£%10% - £ - 0 + 1) (modulo T) + 1 (2.3)
where t equals the number of seasons per year.
The solution proceeds by solving the recursion relation for n equal to
1, 2, 3.... The procedure is continued until the same operating rules are
defined for each season for two succeeding years. At such a point the program

has converged on the optimal solution.

2.4 Example Reservoir System

The example reservoir system consists of two dams in a parallel configura-
tion in the Lehigh River Basin (Figure 2.2), Bear Creek reservoir has a capacity
of 200,000 acre-feet. In addition, the Beltzville Pipe has been constructed
to convey water from the Bear Creek reservoir to the Beltzville reservoir and
to generate power at the Beltzville Pipe power plant. The Beltzville Pipe
power plant and Beltzville power plant have capacities of 110 and 20 megawatts
respectively. (The actual design specifications of this system differ from
those described here.) For this example, three uses of the reservoir system
are considered: flood control, water supply, and hydroelectric power pro-
duction. All of the economic data used in this research were adapted from
Hufschmidt and Fiering (1966). The economic benefits associated with flood
control in each season are a function of the freeboard available at the two
dams. Three flood damage sites exist in the Lehigh River basin and the
economic benefit functions for each site are shown in Figures 2.3, 2.4, and
2.5.

The economic benefits associated with a change in the supply of water are
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Figure 2.2. Lehigh River Basin
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Expected Annual Flood Control Benefits
at Beltzville Dam

(5+10°)
1;
3.5p
3' 0 -
2.0p
1.0
Flood Control Storage
A . r . at Beltzville Dam
5 10 14 (103 acre-feet)

Figure 2.3. Flood Control Benefits Below Beltzville Dam
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Expected Annual Flood Control
Benefits at Walnutport
($*100)

4
9F

Flood Control Storage
_ Aboye Walnutport
* (103 acre-feet)

50 100 200

Figure 2.4, Flood Control Benefits at Walnutport



Expected Annual Flood Control
Benefits at Bethlehem

($*10°)
4

Flood Control Storage
Aboge Bethlehem
> acre-feet)

100 200 350

Figure 2.5. Flood Control Benefits at Bethlehem
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stated as a function of a target and deviations from the target. The target
represents an amount of water which can vary seasonally but which is anticipated
and expected by water demanders. Long term planning of water use is based on
the target and long term benefits are defined as a function of it (Figure 2.6).
During actual operations it is possible that quantities of water either greater
than or less than the target will be supplied to the water users. Short term
benefits and losses are functions of the deviations of the amount of water
supplied from the target. Figure 2.7 shows the short term loss per unit of
deficit, as a function of the water supply deficit expressed_as a percentage

of the target.

Hydroelectric power production benefits are also defined in terms of sea-
sonal targets and long term benefits, and deviations from the target and short
term losses and benefits. 'Figure 2.8 shows the long term economic benefits as a
function of an annual energy target. Hufschmidt and Fiering (1966) stated
that short term losses amount to fifteen dollars per megawatt of deficit for
any deficit up to twenty-five percent of the target. Deficits greater than
twenty-five percent were considered disasters.

In order to investigate the effects which increased demands for hydro-
electric energy production have on the management of the example reservoir
system, the optimization model was solved for 33 different combinations of
water supply target and energy production target. In the next section the

results of these solutions are presented and discussed.

2.5 Results
The Explicitly Stochastic Dynamic Program was solved for thirty-three

different combinations of water supply and energy production targets. The
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Expected Annual Long Term
Water Supply Benefits

($*106)
4

1.25

1.00

0.50

Target Increase
A s in peasonal Flow
40 80 120 (10° acre ft/4 mos)

Figure 2.6. Long Term Water Supply Benefits
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Expected Short Term Water Supply
Loss per Unit Deficit

($*106/acre-feet)

AT

.002

.001 F

Water Supply Deficit as
: : L » Percentage of Target

Figure 2.7. Water Supply Short Term Loss
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Expected Annual Long Term
Power Supply Benefits

($*106)

T

Target Annual Energy
s s Production
50 100 50 (103 Megawatt-hrs/year)

Figure 2.8. Long Term Energy Production Benefits
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solutions can be displayed in numerous ways, each of which conveys different
information to the obsefver and provides answers to different questions. Six
displays have been generated to demonstrate the technique of multiobjective
analysis.

Display 1. How do total net economic benefits vary as a function of the
energy production target and the demand pattern of the system? Obviously, as
the energy target changes there will be a change in the maximum total benefits
obtainable from operation of the reservoir system. The energy target however
does not indicate whether the power is generated at a relatively constant
level (base load) or at varying levels (peaking).

The load factor which equals the ratio of average to peak power produc-
tion can be used to indicate the variability of the power production. A load
factor of .2 indicates that the power plant is used for meeting peak demands:
the peak power production is five times the average. A load factor of .8
indicates that the power plant is being used to meet base loads: the peak
power production is only twenty-five percent higher than average production.

The capacity of a power plant must be great enough to allow the peak
production. Hence, for a fixed capacity power plant there are many possible
combinations of energy target and load factor.

Figure 2.9 shows the relationship between the energy production target
and the expected value of annual benefits obtainable from the reservoir system.
The water supply target is fixed at a level of 60*103 acre-feet/4 months. As
the load factor increases and the energy target decreases, the maximum
expected annual benefits vary.

Display 2. How do water supply benefits vary as a function of the energy

target? Because water supply and power production may be conflicting uses of
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Expected Annual Benefits
($ * 108

A
7.0-

5.0-

Energy Target [load factor]
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Figure 2.9. Expected Annual Benefits v. Energy Target
Water Supply Target = 60 * 103 acre-feet/4 months
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the reservoir system, it is expected that as the energy target increases a
decrease in expected annual water supply benefits would occur. Figure 2.10
shows the relationship between the energy target, water supply target and
water supply benefits.

Display 3. How do flood control benefits‘vary as a function of the
energy target? Figure 2.11 is similar to Figure 2.10 except that the vertical
axis represents expected annual flood control benefits. As the energy target
increases the benefits from flood control decrease because energy production
and flood control conflict in terms of reservoir system management.

Display 4. How do benefits from power production vary as a function of
the energy target? For a fixed water supply target it is expected that a
single energy target will provide the maximum power benefits. Figure 2.12
shows this relationship holds for several water supply targets.

Display 5. How do total benefits vary as a function of the energy
target and the water supply target? Figure 2.13 shows a family of contours
or isopleths representing equal tofal expected benefits over a wide range of

water supply and energy targets.

2.6 Conclusions

It is evident from these displays that fiood control is the dominant use
of this system. Both power production and water supply are much less benefi-
cial economically than flood control. Not until targets for energy production
and water supply are increased to levels significantly above the anticipated
levels do benefits from these uses approach flood control benefits.

Even though total economic benefits are dominated by flood control bene-
fits, the system displays expected characteristics. This is most evident in

Figure 2.13. As either the water supply target or energy production target
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Expected Annual Water Supply

Benefits
($ * 10°)
i
1.00
ET = 0 and 175,000
.75p
.50}
ET = 450,000
.25
Water Supply Target
= S = 7—(103 acre feet/4 months)

Figure 2.10. Expected Annual Water Supply Benefits v. Water Supply Target
ET = Energy Target (Megawatt-hours/year)
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Expected Annual Flood Control Benefits
($ * 10%)

ﬁ
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4.50
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Energy Target
» (Megawatt-hours/year)

150,000
300,000
450,000

Figure 2.11. Expected Annual Flood Control Benefits v. Energy Target
WT = Water Supply Target (103 acre feet/4 months)
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2.12. Expected Annual Power Benefits v. Energy Target

WT = Water Supply Target (103 acre-feet/4 months)



42

Water Supply Target
3
(10° acre-feet/4 months) EB = 5.5

120 |
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, Energy Target
* (Megawatt-hours/year)
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Figure 2.13. Expected Annual Benefit Isopleths
EB = Expected Annual Benefits ($ * 106)
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increases and the other is fixed, total benefits obtainable from the system '
increase and then decrease.

Future investigation must be undertaken to determine how management of
the system is affected by changes in the economic benefit functions.
Presumably as the demand for hydroelectric power production increases there
will be a concomitant increase in both long term benefits and short term
benefits and losses. Hence, anticipated increases in energy demand will have

a greater impact on optimal reservoir management than indicated here.



3. CHANCE CONSTRAINED STOCHASTIC LINEAR PROGRAMMING MODEL

3.1 Introduction

An examination of optimization models described in the preceding chapters
and used for the design and/or management of multiple purpose, multiple reser-
voir systems shows that those models which more accurately represent the system—-—
principally by explicitly incorporating the streamflows' stochasticities and by
allowing general operating rules to be determined -- become computationally
unsolvable when a moderately complex reservoir system is considered. 1In fact,
those models which have explicitly stochastic streamflow descriptors and do not
overly restrict the operating policy prior to solution cannot be used to consider
systems with more than two or three reservoirs without major limiting assumptions
being made. The other models which are less accurate are also less expensive to
solve although their costs rise as the complexity of the system increases. Hence,
there exists a tradeoff between computational burden and accuracy of the model
(see Houck and Cohon (1976)). Therefore, it is possible to construct a model for
a large scale system but the solution of the model may not provide any useful
information because the model does not accurately represent the system.

One of the optimization models which was introduced by ReVelle, Joeres, and
Kirby (1969) and discussed by many authors since then (for example: Eastman and
ReVelle (1973), Gundelach and ReVelle (1975), Houck (1975), Loucks and Dorfman
(1975), Joeres, et al., (1971)) can assist in design and/or management problems
for multiple reservoir systems. This model, the Linear Decision Rule (LDR)
model, does not explicitly incorporate the stochasticity of streamflows and it
does limit the operating policy prior to solution of the model. Although these
restrictions are significant, the LDR allows the formation of a very small
linear programming model for large complex reservoir systems (Houck, Cohon and
ReVelle (1977)). If methods can be found to incorporate the stochastic properties
of the streamflows, relax the restrictions on operating rules, and retain the

small computational burden of the model; the result may be an accurate,
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economically and computationally feasible, and generally applicable model.

Loucks and Dorfman (1975) demonstrated that an LDR model as proposed by
ReVelle, et al., (1969) is conservative, That is, the operating rules desig-
nated by the LDR model when tested in a simulation model result in a management
policy that exceeds the limitations specified in the LDR model. Loucks and
Dorfman (1975) propose the use of a different LDR to make the model less conser-
vative. Gundelach and ReVelle (1975) also propose an extended LDR which results
in a less conservative model. Neither of these efforts remedies the cause of the
conservative nature of the LDR model, however. They do not attempt to incorporate
conditional streamflow cumulati§e distribution functions (CDF) in the model, but
continue to use unconditioned CDFs in the chance constraints.

The next section of this paper deals with a simple method of remedying the
cause of the conservativeness of the LDR model; incorporating explicitly the
streamflows' stochasticities; and relaxing the restrictions on the operating
rules. All of these are accomplished by introducing multiple linear decision
rules, each conditioned on any desired seasons' streamflows, in the linear pro-
gram. Thé forms of either of the extended LDRs proposed by Gundelach and ReVelle
(1975) or Loucks and Dorfman (1975) éan be used in this method. Moreover, the
resulting linear program retains a relatively small computational burden even for

large reservoir systems.

3.2 Multiple Linear Decision Rules Model

. . . i
The LDR to be used in this model is: xtj = Si - bt .

th = release in season t conditioned on streamflows in
interval i in season t-1 and interval j in season
t-2
SJ = storage volume at the beginning of season t condi-
t . . . A
tioned on streamflow in interval j in season t-2
bt = decision parameter in season t conditioned on
streamflow in interval j in season t-1
i

R = streamflow in season t conditioned on streamflow
in interval i in season t-1
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The streamflow intervals in each season represent a portion of the con-

tinuum of possible streamflows and can be defined in any desired manner.

The continuity equation -- a mass balance on water in storage in
the reservoir -- is: Si = sj + Ri - xij. Substituting the LDR in
t+1 t t t
the continuity equation yields: Si = Ri + bi or Sj = Rj + bJ . Thus
Y 4 Y SRS T T e

both storage and release are defined in terms of the decision parameters and
previous streamflows. This also means that storage and release are
positively correlated and that in each season they are actually conditioned
on storage levels, releases and streamflows in previous seasons.

The chance constrained linear program can be formulated with the
usual physical restrictions. BAny performance requirements or economic
measures as described by Loucks and Dorfman (1975), Houck, et al., (1977), or
as described in chapter two can also be included in the linear program. The
simplest reservoir model which will be used as an example here includes restric-—
tions on minimum and maximum permissible storage levels and a minimum permiss=-
ible release level. The objective will be to minimize the capacity of the re-
servoir required to meet these restrictions.

The restriction on minimum permissible release will be used to demonstrate

the procedure required to formulate the constraints of the

linear program. The first step is to write a set of chance constraints
that defines the probability that each possible release in a season

exceeds the minimum allowable release.

interval j in season t-2

RSN = ol (3.2)

. . - .
3 J _wl s _ 1] ‘
PR _j*+bi ;- b2 Xmin_l % (3.3)

r;elease in season t conditicned on i3
P Lftreamflows in interval i in season t-1 and‘ixmin =o, (3.1)

p | R . <x - b3 +bl]=l-oti] (3.4)
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1f Rj 1 is a random variable, the left hand side of the equation is the
t-

cumulative distribution function of streamflows in season t-1 conditioned

on streamflows in the previous season occuring in interval j. This CDF can

be represented by th l(-) and equation 3.4 can be restated asv

J iy ij (3.5)
- + b =1 - .
Fie-1%min = Peo1 * BY) e
I1f Fft l(°) is the inverse conditional CDF then 3.4 can again be restated:
J—

j i -1
X by , + b, - F,

i3 .
- = ¥i,j,t (306)
min = “t-1 je-1 (b7 @) =0 Wi,] |

Finally, if the negative inverse CDF is convex, it can be piecewise linearly
approximated and the reqular SIMPLEX algorithm can be used to determine
a global optimal solution.

A normal restriction on release is that 95% of all releasesin each
season must exceed Xmin' Because Xij is the release conditioned on previous
streamflows in season t~1 and t-2 being in intervals i and j respectively,
it is possible to write a restriction eon aij. The probability of streamflows
in seasons t-1 and t-2 being in intervals i and j is represented by
Pij and can be estimated from historical streamflow data. The actual re-
liability with which release in season t exceeds Xmin is the expected
value of the aij s (left hand side of equation 3.7). And this reliability
must exceed o which may equal .9, .95, .99 or some other value.

Lzop’ o) >a wt (3.7)
i3

. e . ij
Equation 3.7 places restrictions on the possible values of atj and

therefore on the range over which-F;t 1

smallest possible value for any single Gij occurs when all other atj

(1 - atj) must be convex. The

take on values of one. Then the minimum possible value_of“atJ equals

[(@-1+20)/p 1. 1f a = .95 and an2 P} > .1, the smallest possible
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value for any th is .5. Because the minimum release would not normally

be met 100% of the time by all but one of the LDRs, the actual values
of atj would exceed, perhaps greatly exceed, the minimum value. Over

J or 0.0 to 0.5 for (1 - a;J), the negative

inverse conditional CDF of streamflows will usually be convex. Hence,

the range of 0.5 to 1.0 for ai

constraint 3.5 can be accomodated easily within a linear program.

The same procedure can be followed to assure a minimum storage

restriction.
[Storage at the beginning of season t - .
P |conditioned on streamflows in interwval > S = B.l (3.8)
. — "min
J in season t-2 t
3 > B = gd '
P St —'Smin Bt (3.9)
[ 3 3 - ]
+ > = . 3.10)
P _ft-l bt—l —-Smig_ Bt (
F., . (S b ) =1 - g
jt~1""min t-1" t (3.11)
s. -b _-Fl a-8))=0 wvi ¢ (3.12)
min t-1 jt-1 t

Again, if the negative inverse conditional CDF is convex it can be piecewise
linearly approximated and the regular SIMPLEX algorithm used. The probability
of storage Si occuring is the probability that in season t~2 the stream-

flow occured in interval j, Pi. The reliability with which storage exceeds the

minimum storage is B and egquation 3,13 specifies that this requirement is met.
z Pj Bj > B ¥t : : (3.13)
3 t "t —

So the minimum value for one Bi is (B - 1 + Pg)/Pz) or .5 if the minimum
value for any Pi is .1 and B equals .95. Over the range 0.0 to 0.5 for

(1 - Bz), the negative inverse conditional CDF is usually convex.
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The last restriction is on maximum storage levels.

—s-torage at the beginning of season t reservoir
P |conditionea on streamflow in interval j < storage =Y (3.14)
|in season t-2 capacity
o [s3 < CAE[ . (3.15
t — t T ’ : +13)
P R?C_l + bi_l _<_cm>l = yi (3.16)
p el zame -l | =] (3.17)
cap - p) - g7t (yj) =0 ¥j,t (3.18)
t-1 jt-=1" t ! o .
The reliability with which the storage must not exceed the dam
capacity is y and the requirement is defined in equation 3.19.
i i,
§ Pt-yt >y ¥t (3.19)
The minimum value for any yi is the same as the minimum possible value
of Bz. The range over which the negative conditional CDF must be examined

is .5 to 1.0 under the assumption stated above. Over this range the
negative conditional CDF is usually concave. However, this is the shape
for which piecewise linear approximation of the curve and the regular
SIMPLEX algorithm will produce a global optimum.

A linear program can be formed with an objective of MINIMIZE CAP;
constraints 3.6, 3.7, 3.12, 3.13, 3.18, and 3.19; and nommnegativity
restrictions on all variables except the LDR decision parameters. This
linear program can be solved using the regular SIMPLEX algorithm to obtain a
global optimum. The restrictions placed on operating rules prior to solution
are greatly reduced from previous LDR modelé. Although each potential rule
has the form of the original tinear decision rule, there are multiple rules
for each season. 'Thus the restrictiveness due to the form of the rule is re-

duced because as operating conditions change the operating rule can change.
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The multiple linear decision rule model has been developed in one
form; the releases hLave been conditioned on the previous two seasons'
streamflows and storages have been conditioned on the streamflow of
two months previous. There are many other ways to formulate this type
of model however. Both storage and release can be conditioned on the
previous two, three, four or more season's streamflows; on only the previous
season's streamflow; on the next season's streamflow and some set of
previous seasons' streamflows; or on some other combination of future -
and/or past seasons' streamflows. Because in each of these multiple

LDR models the storages and releases are functions of the same variables,

the releases and storages are actually functions of previous releases,
storages, and streamflows; and perhaps anticipated future releases, storages
and streamflows. The choice of which events to condition the releases and
storages on is dependent on how accurately future streamflow predictions
can be made, how accurately the model is required to represent the system,
and how large a computational burden can be supported.

The stochastic properties of the streamflows have been incorporated
in the linear program in the form of conditional CDFs as defined by the
multiple linear decision rules. The number of seasons of previous stream-
flow which are used to condition the current seasons streamflow, as well
as the accuracy of measurements of previous seasons' streamflows used for
conditioning, are controlled by the analyst.

The example model's computational burden is relatively small. The
number of constraints in this single site example is 386 if monthly
seasons are modeled and streamflows are broken into five intervals in each
season, The model can be reduced significantly if the operating rule in
season t is only conditioned on streamflows in the previous season. And,
in either case, the number of constraints does not increase exponentially

with the number of facilities considered.
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3.3 A Multiple Linear Decision Rules Model Example

The multiple LDR model developed in the previous section was constructed
and solved for a portion of the Yakima River System in eastern Washington. A
single dam site, the present location of Lake Kachess, was examined. The stream-
flow data used to generate the conditional cumulative distribution functions
(figures 3.1, 3.2, 3.3) were provided by the Yakima Project Office of the Bureau
of Reclamation. Each of the conditional CDFs was approximated in the model by
six linear pieces; three pieces for the 0 to 50 percentile portion and three
pieces for the 50 - 100 percentile portion.

Due to limited computing capabilities only three seasons were modeled
and the number of streamflow intervals (i or j) on which release and
storage were conditioned was two. The streamflow volumes that divided the
two intervals in each season are shown in Table 3.1. The values assigned to
the reliability levels for assuring the minimum release (o) , assuring the
minimum storage volume (B), and assuring the maximum storage volume (Y)
were all .90. The minimum storage level (Smin) was assigned a value of

24.67-* 106 m3 and the minimum seasonal release (Xmin) was assigned a

value of 30.84 * lO6 m3.

The linear program comprised 35 constraints and 87 variables, 72 of
which had finite upper bounds. Solution time was approximately 5 C.P.U.
seconds using the Multi-Purpose Optimization System resident on a CDC 6400
computer, The total cost per solution was less than one dollar.

‘The minimal dam capacity required to meet the specified restrictions

is 1.24 * 106 m3. Tables 3.2, 3.3, and 3.4 contain the values of the multiple

LDR parameters bi, and the release and storage reliabilities aij, Bi, Yt
designated in the solution of the linear program. From examination of
Table 3.3 it is evident that the minimum release is met with a reliability
exceeding .90 in all three seasons. Storage levels exceed the minimum

’
storage level with reliabilities equal to .90, .90, and .965 in seasons
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Streamflow Exceeded in

Season, t Months Included in Season t 50% of All Seasons t
1 October - January 67.84 * 106 m3
2 February - May 119.65 * 10% o’
3 June - September 59.82 * 10° o’

Table3.1 Relationship of Seasons to Months and Designation of

Streamflow Intervals.



56

it by

1 1 -9.905
2 1 -9.097
1 2 -38.462
2 2 -39.932
1 3 -0.698
2 3 +7.794

Table 3.2 Solution Values of bt (106 meter3)
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R N .
1 1 1 ..881 .31
2 1 1 .881 .20
1 2 1 .964 .18
2 2 1 ,964 .31
1 1 2 .997 .21
2 1 2 1.000 .27
1 2 2 .998 .29
2 2 2 1.000 .23
1 1 3 .964 .27
2 1 3 .960 .23
1 2 3 .961 .23
2 2 3 .940 .27

Table 3.3 Solution Values of ai’j and Coefficient Values of Pi‘j.
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i t 5 o

1 1 .851  .920
2 1 .949  .88C
1 2 .890  .93Y
2 2 .910  .880
1 3 .967 .873
2 3 .964 .933

Table 3.4 Solution Values of Bi and yz
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1, 2, and 3 respectively. The probabilities of not exceeding the release
specified by the 1linear decision rules,which also are the probabilities
of storage volumes not exceeding the dam capacity, have values between .90
and .91 for each season.

In this exercise, the most time consuming operation was the processing

of data. Historical. monthly streamflow data for a fifty year period were
readily available so that data collection was not a constraining factor. The

data were used to calibrate a synthetic streamflow generator (after Valencia
and Schaake (1973)) and either the original data or the synthetic data can
be used to estimate the conditional cumulative distribution functions, to
define the intervals designated by i and j, and to estimate the probabilities
of streamflows occuriné in those intervals. Following these time consuming
tasks, the relatively simple preparing and solving of the linear program

was undertaken.

3.4 Summary

A chance constrained linear programming model which employs multiple
linear decision rules has been devleoped. The model incorporates explicitly
the stochéstic nature of the streamflow process, can be used in design
and/or management situations, does not significantly restrict the operating
bolicy prior to solution, and is economically and computationally feasible.
A portion of the Yakima River system is modeled to demonstrate the use of

the multiple linear decision rules.



4, SUMMARY

During the course of fifteen months of investigation, the major optimization
models which have been discussed in the literature and which can be used as tools
in water resource planning have been examined. Descriptions of three of these
models ~- Multi-Year Deterministic Linear Program, Multi-Year Deterministic
Dynamic Program, and Explicitly Stochastic Linear Program —- are presented in
chapter one. Each has major limitations. They all have very large (or prohi-
bitively large) computational burdens when more than two or three reservoir
planning problems are examined. The deterministic models rely on one or several
streamflow sequences to represent the stochastic properties of the flows and do not
generate general operating rules directly. And although the Explictly Stochastic
Linear Program does not suffer from these two limitations, it is the most costly
to solve: even single site planning situations can be too expensive to examine.

A fourth optimization model, The Explicitly Stochastic Dynamic Program, is
described in chapter two. This model is superior to the previous three because
the stochastic properties of the streamflows are explicitly incorporated in the
model, a general operating policy is designated directly, most nonlinearities
can be accomodated within the model, and the model is computationally feasible
for one, two and three reservoir problems. It is still limited by a computation-
al cost that increases as the reservoir system size increases but not to the
extent that The Explicitly Stochastic Linear Program is. The dynamic program is
also limited because it cannot be used to identify optimal system designs.
However, chapter two includes a discussion of how multiobjective analysis can
be used with the dynamic program to generate tradeoff curves which can be used
to identify optimal designs.

Finally, a Chance Constrained Stochastic Linear Program is presented and
discussed in chapter three. This is a new model which is based on previous work,
principally by ReVelle. The model can be used to identify general optimal

operating policies as well as designs. It explicitly incorporates streamflows'
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stochasticities, and it is much less computationally burdensome than any of the
other models. Until additional testing can be performed, it appears to be

superior in every way to all of the other optimization models.
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Appendix - Data Analysis and Reduction

A crucial, yet often overlooked aspect of optimization modeling for
determining reservoir operating rules is the data reduction requirements
of the historical streamflow records. For both the M-YDLP and the M-YDDP
models, sequences of inflows are needed which fully represent the stoch-
asticity of the actual streamflows. For the stochastic models, the cumula-
tive distribution functions, as well as joint and transition probabilities
need to be estimated from the histdrical data through the yse of some
synthetic flow generation scheme. The success of these models is highly
dependent on how accurately the synthesized flows reflect the actual
statistical properties of the system which is modelled.

The first task undertaken was the analysis of both the arithmetic
and the logarithmic statistics of the monthly and annual flow records at
Lake Keechelus and Lake Kachess. The marginal distribution properties and
correlation structures at both sites were studied and the series was
examined for deterministic trends. The primary purpose of the exercise
was twofold. First, it provided information used in the determination of
the minimum time increment that was required for meaningful results from
the optimization models. As stated previously, this analysis showed that
there was a high degree of variability of system inflows throughout the
year. Consequently, monthly time increments were used during the irrigation
season. The second objective of this examination was to provide insight
into which synthetic flow generation scheme could best preserve the
statistical properties of the streamflow records. Because the output
of the streamflow generator was used to form inflow scenarios for the

deterministic models and to define the probability matrices for the
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stochastic models, it was necessary that the flow model selected retain
the mean, the standard deviation, the coefficient of skewness, as well as
the serial and cross correlations of the historical data.

The data provided by the Bureau of Reclamation expressed flows in
the Upper Yakima River system in terms of the end of month contents at
each reservoir site and in terms of the streamflows in the river immediately
below the dams. It was assumed that evaporation and seepage were neglibible
compared to the flow levels which passed through the system. Hence, know-
ing the change in reservoir storage and the outflow from the reservoir,
the net inflow to each reservoir site could be calculated from the continuity

equation, or

= -S, +R ¥ s,t .
Ist Sst+1 st st . ’ ; (4.1)
where ISt = inflow to reservoir s during time period t
‘ SSt+l = reservoir storage at site s at the beginning of time period t+1
Sst = reservoir storage at site s at the beginning of time period t
RSt = flow in river immediately below reservoir s during time period t.

The records used were monthly flows covering the time period from 1925
through the end of water.year 1974.

One minor adjustment of the raw data was required at Lake Kachess for
August and September of 1940. Using Equation A.l gave an inflow of 40,900
acre-feet for August and an inflow of -39,600 acre-feet for September which
obviously was an error. However, it was noted that the combined inflow

for these two months was 1300 acre-feet which fell within the range of
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flows observed during the other 49 years for the same period. Using the
monthly averages from the remaining historical record for August and
September (3490 acre-feet monthly average for August and 3070 acre-feet
monthly average for September), the 1300 acre-feet was divided between
August and September of 1940 based on the ratio of these monthly averages.
This gave an August, 1940 net inflow of 700 acre-feet and a September, 1940
net inflow of 600 acre-feet,

After making the necessary adjustments to the raw data, the monthly
statistics of the historical inflow records were examined to determine which
of these statistics (e.g. mean, standard deviation, skewness, and serial and
cross-correlation) warranted preserving in a synthetic flow generation scheme.
The next task undertaken was an analysis of the effects of long-term hydrologic
persistence at the reservoir sites. A statistic h, known as the Hurst coefficient,
is a measure of long-term hydrologic persistence, i.e., the tendency for high
flows to follow high flows and for low flows to follow low flows over long
periods of time. The correlation coefficient, p is a measure of short-term
persistence. If the generating process of streamflows belongs to the Brownian
domain of at£raction, which means thét h is approximately equal to one-half,
then p is a measure of the existing short term pefsistence and a Markov model
will generally be an adequate flow generator. If h # %, say in the range
of 0.7 or greater, then the use of a generating process characterized by
h = ) will yield synthetic sequences such that over-year storage require-
ments will be underestimated. In this case, the process lies outside of
the Brownian domain of attraction and a fractional noise model would represent
a better approach to the generation of synthetic streamflows. Analysis

of the historical records at Lake Keechelus and‘Lake Kachess revealed a
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Hurst coefficient, h = 0.57. Hence, the use of a Markov process for the
generation of synthetic streamflows appeared adequate.

In addition to the analyses described above, the use of histograms,
correlagrams, and time series plots also provided valuable visual informa-
tion that gave additional insight to the statistical nature of the flow
patterns at the sites under investigation. Based on the results of the
statistical analysis outlined and a review of the literature on synthetic
flow generation methods, it was felt that the disaggregation of annual
volumes to obtain seasonal flow volumes appeared to represent a practical
approach which avoided many of the problems of seasonal generation models.
Annual models which preserve both high frequency (low-lag) and low frequency
(high~lag) behavior are well documented and provide the input to disaggrega-
tion techniques. One advantage of the disaggregation method is to bypass
the issue of what generating mechanism to use for seasonal events. For
example, the use of a simple Markov model as a monthly generator does not
guarantee the preservation of the first two moments at the annual level,
while fhe disaggregation method can preserve the simple relationships between
monthly and annual events in terms of the first two moments. The flow
generation model used in this study was a multi-site disaggregation model
provided by Hoshi and Burges (1976) that was capable of preserving seasonal
skew as well as season-season and site-site correlation structures. Skewed
marginal distributions were represented by a three parameter log normal
(3 PLN) distribution.

Burges and Lettermaier (1975) have demonstrated, particularly for
systems experiencing low to medium water supply demand, that neglecting

to model the skewed form of a marginal distribution can have significant
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consequences for situations where high or low frequency flow persistence
structures are encountered. Smoothing outliers in raw data when building

a model designed to preserve skewness is crucial. A quantile (q-a) plot

was used as a visual aid to determine the adequacy of a particular 3 PLN

fit to the smoothed empirical data from the upper Yakima system. Particular
attention was paid to preserving the lower tail of the distribution because
this represents the low flow situation that presents some of the greatest
problemé for reservoir operation.

As with the optimization models described, multi-site disaggregation
is algebraically, relatively simple. Numerical computation is limited by
storage considerations as the number of sites m, and seasons t increase,
however. The model provided by Hoshi and Burges was a four season per year
program. It was subsequently modified to generate monthly flows, a task
that appeared relatively easy on paper, but became a demonstration of
computer acrobatics when trying to fit the program within the storage limits
of the machine. This same problem was encountered while developing the
coméuter software to calculate the joint and transition probabilities
required for the stochastic models. Hence, the computer limitations with
respect to storage and éxecution time that were demonstrated when extending
the optimization models to multiple sites, also poseva severe obstacle to
the data reduction requirements of the models. Effective usage of these
models for water resource systems may have to wait until the development
of optimization models with reduced storage requirements or until the advent
of more sophisticated computer technology which is both practical and

economical.






