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ABSTRACT

The literature for the broad subject area of seasonal snowmelt runoff
volume forecasting was examined to determine what methods of forecasting
show the most promise for providing data for improving reservoir operations.
The forecasting approaches can be classified as regression methods, pseudo
water balance methods, and water balance methods; different approaches have
different data demands and different forecast accuracies. While forecasts
of runoff volumes in a particular time interval (e.g., one month) may not
be very accurate, the total seasonal forecast is relatively accurate. Con-
sequently the major effort of this report focused on disaggregating predicted
total seasonal runoff volumes to yield conditional probability distributions
of flow in each month of the total forecast period. These conditional dis-
tributions were used as principal input data to a reservoir operation model.

Forecasts of total snowmelt seasonal runoff volumes were used to deter-
mine operating rules for hypothetical reservoirs to determine the relative
advantage of using forecasted flow over the unconditional flow state. Compari-
sons were made using chaﬁde constrained linear programming (CCLP) formulations
for the operation of a single mgltiple purpose reservoir (flood mitigation,
water supply, and hydropower generation) with and without snowmelt runoff
forecasts. Two reservoir sizes, one approximately 20% and the other 1007%
of the mean annual flow volume of a river K were examined. Flow data from the
Cedar River, Washington, were used to reflect runoff patterns typical of much
of‘the Pacific Northwest region.

Conditional streamflow distributions for months March~August were developed
for given total March-August runoff volume amounts. These conditional

distributions were used to develop Linear Decision Rules (LDR's) for the release



from the reservoir. LDR's were also developed for the maximum ignorance
state. Economic benefits were computed for maximum ignorance operating

rules (Type A), Type A operating rules with conditional inflows (Type B)

and LDR's and benefits based on the conditional flows (Type C). Generally,
under Type C operation there was less uncertainty in the cumulative distri-
butions of water supply and reservoir freeboard (surrogate for flood control)
than when Type A operation was used. Explicit inclusion of the total
seasonal runoff forecast into reservoir operation reduces physical opera-
ting uncertainty, as well as generates larger benefits than are determined
by operating under circumstances of maximum ignorance, i.e., when only uncon-

ditional streamflow distributions are available.

Keywords: Snowmelt; Stochastic Hydrology; Optimization; Reservoir Operation
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CHAPTER 1: INTRODUCTION

This report examines some potential advantages of using total melt
season runoff forecasts explicitly in reservoir operations. Operators of
reservoirs that receive much of their supply from snowmelt have long recog-
nized the importance of accurate estimates of meltable snow pack in
tributary catchments. Numerous techniques exist for estimating the melt
season runoff volume and these estimates are used with varying degrees of
formalism depending on the size and scope of the reservoir or reservoir
system. Most forecasts are still incorporated into empirically derived
operating procedures which reflect the accumulated skills, experience, and
judgment of the system operators. The major purpose of the current work
was to investigate various forecasting schemes and to determine how a
reliable forecast could be incorporated formally into reservoir operationms.
The formalization of system operations was explored for a single facility;
the techniques used were deQeloped with the clear understanding that they
must also be practiqable for multiple facilities.

Methods for forecasting snowmelt runoff volumes are investigated and
discussed in Chapter 2. Two particular types of forecasting methods, those
usingdeterministic precipitation-runoff mocdels, and those using a storage
balance accounting methods are examined in detail in a secornd report
(Lettenmaier and Waddle, 1978).

The most reliable forecasts appear to be those that estimate total
melt season runoff volume rather than, say , monthly flow volumes during
the melt season. The covariance structure between monthly flows and the
total snowmelt runoff volume (typically March to August in the Northwest

of the U.S.) provides an opportunity to disaggregate total season forecast
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runoff to conditional flow distributions for the months included in the melt
period. Monthly time increments are not sacred; they are convenient and suit-
able, however, for many systems.

Chapter 3 gives details of a procedure which was developed for disaggre-
gating the total melt season forecast. Conditional distributions obtained via
this approach incorporate monthly marginal distributions which are represented
by three parameter log normal (3PLN) distributions. A principal components
technique is used to ensure that relevant conditional marginal distributions
are obtained.

There have been numerous efforts to determine the worth of a forecast. The
greatest difficulty in such efforts is to determine the baseline for compari-
sons. Clyde (1951) and Nelson (1969) have estimated benefits for irrigation
when forecasts are used. Hamon (1972) investigated the benefits to power
generation -and irrigated agriculture from improved forecasts in the Columbia
River System. Fiering (1969) provided a formalism for using forecasts of
varying reliability to determine system operating rules while he gave parti-
cglar attention to the importance of explicit incorporation of economic bene-
fits. Few generalizations could be made. While his approach might be
suitable for evaluating the worth of a forecast, we elected to follow another
broad path. Rather than attempt a iarge—scalé evaluation of the type previously
done, we decided to examine a hypothetical single multiple-purpose reservoir
and compare expected benefits with and without a forecast. This
approach necessitated selection of operating rules. Rules were developed
using the Linear Decision Rule (LDR) approach, which was introduced to the
water resources field by ReVelle et al. (1969). The approach used draws

heavily upon developments of the LDR method may by Houck (1975).



The worth of a forecast issue is explored in Chapter 4. The comparisons
indicate where less than average expected benefits are obtained as well as
circumstances where greater financial return results. The importance of the
approach is that contracts for water supply and power might be renegotiated
because the forecast is available sufficiently early in the season to permit
alternative purchases and sales to be made. This would perhaps be one of the
greatest benefits of this type of forecast; different types of contracts for
sale and purchase of power (and in some cases, water) than those currently in
use would need to be explored.

Conclusions from this work and suggestions for future work are also
given in Chapter 4, A listing of the computer code used to obtain the dis-
aggregated conditional flow distributions is included in Appendix 1. Some of
the subroutines make calls to the IMSL routines available at the University
of Washington Academic Computer Center. Equivalent code may be substituted;
many computer centers have access to IMSL routines, however. Details of
IMSL code can be obtained from International Mathematical and Statistical
Libraries, Iﬁc., 7500 Bellaire Blvd., Sixth Floor, GNB Bldg., Houston,

Texas 77036. Computer code for the chance constrained linear program (CCLP)

operation model is not included because it is LP software dependent.



CHAPTER 2: METHODS FOR FORECASTING SEASONAL

SNOWMELT RUNOFF VOLUMES

2.1 Introduction

Indirect evidence of the need for improved forecasts of snowmelt runoff
volumes is provided by the increase in technical publications on this subject

in recent years. For example, the Proceedings on the Role of Snow and Ice in

Hydrology (1972) contains 22 papers that directly address the forecast prob-
lem, .The top priority of forecasters is to improve the
accuracy of seasonal volume forecasts, while at the same time working towards
the goal of forecasting the complete hydrograph on as short a time increment
as six hours to one day. Seasonal volume forecasts may be obtained by a
single time period (total runoff season) analysis or by summing forecasts of
shorter time periods. While forecasts of individual days may be éreatly in
error, the aggregation of these forecasts may yield quite satisfactory total
seasonal forecasts, particularly'if a moisture budget type of model is used.
The reason for the search for more accurate forecasts is, of course,
improved managemeﬁt of water resources. Planning for agriculture, municipal
water supply, energy generation, recreation, navigation, flood, and pollution
control, all benefit from accurate foreéasts. Actual relationships between
forecast accuracy and monetary benefits are not well defined; attempts to re-
late the wvalue of forecasts in terms of dollars have been made, however.
Clyde and Houston (1951) estimated that an additional $3.50 per acre
(1950 dollars) was realized on farms that included, indeed depended, on the
water supply forecast as a critical element in crop planning and water manage-
ment. Nelson (1969) calculated that an additional $10 per acre (1968 dollar)
can be realized by using water supply forecasts for planning purposes. He

further estimated that the total benefit realized, considering the 13 million



irrigated acres in the west (excluding Bureau of Reclamation projects), is
between 32.5 million and 65 million dollars. He claims that these figures
are conservative estimates of the total economic value of water supfly fore-
casts to western agriculture. Hamon (1972) calculated the effects of an
improvement in the January 1 flow forecast for the Columbia River at The
Dalles, Oregon, on power production and irrigated agriculture. His calcula-
tions produced an additional return of 6.2 million dollars (1971 dollars)
annually for a 1 percent improvement in the forecast.

More recently, Schramm, et al. (1974), using a probabilistic linear
programming (LP) model which maximized the expected income.of plantings
associated with various forecasts, estimated gross benefits ranging from a
few cents up to $6.00 per acre, depending on the economic values in the use
area. The second portion of this same study fopused on the effects of more
accurate forecasts on the efficiency of multi-purpose reservoir operation.
Results indicate that, in general, improved water supply forecasts will
result in more efficient reservoir operations and larger dollar and public
good benefits. (A general probaEilistic LP which uses stochastically dependent
seasonal flow volumes, conditioned on a seasonal forecast, is developed and

discussed here in Chapter 4.)

2.2 Seasonal Water Supply Forecasts

The oldest and most widely used approach to seasonal water supply fore-
casting in areas of seasonal snow cover is embodied in a linear model of the
form

Y=a+ BIX]. + B2X2 o o .Ban (2.1)

where ¥ is the runoff volume for a specific forecast period, Xj through Xy

are runoff index variables, a is a fitting coefficient, and B; through Bn are



weighting factors for each runoff index variable. 3asically, the procedure
involves the correlation of the historical runoff record with the index vari-
ables. The most significant of the index variables is snow water equivalent
of the snowpack, as measured at one or several snow courses. In many western
U.S. river basins, the snow water equivalent parameter explains between 60
and 90 percent of the variance in runoff volume during the snowmelt season.
This type of model can suffer from problems of colinearity if too many runoff
index variables are used and they are not mathematically orthogonal;

The Soil Conservation Service National Engineering Handbook (1970),

identifies the index variables in use, or those of potential use, as: snow
water equivalent, antecedent streamflow, baseflow, soil moisture, precipita—‘
tion (fall, winter, and spring), temperature, wind, solar radiation, and
relative humidity. This is also in general agreement with a similar list

published by the U.S. Army Corps of Engineers in Snow Hydrology (1956). 1In

both publications, the suggested method of calculating weights to apply to
the index variables and determining the fitting coefficient is the use of
multiple linear regression techniques, with some emphasis placed on graphical
correlation. In practice, weights for the index variables were often deter-
mined subjectively or through trial and_error methods; the current trend is
to use statistical methods (Coulson, 1970; Schermerhorn and Barton, 1968).
Marsden and Davis (1968) recognized the previous incorrect uses of mul-
tiple regression and used a principal components approach to orthogonalize
their multiple regression to calculate relevant weights for principal compon-
ents based on the usual runoff index variables. They demonstrated improved
forecast accuracy for the Yakima Basin, Washington. (A better approach would
be to perform a stepwise regression on the runoff index variables and then use

those selected variables in a principal component regression model.) Zuzel et



al. (1975) and Zuzel and Ondrechen (1975) used a patternvsearch optimization
technique to produce more accurate forecasts than the methods then currently
in use for the Boise River in Idaho. In this method, snow water equivalent
and/or precipitation weights are constrained so that the forecast equation is
forced to conform to a general water balance equation and snow water equiva-
lent at the snow course is expressed as a depth-~area function. This allows
average snow water equivalent to be related directly to runoff volume for any
forecast period.

The question of which variables to use in any forecast model has been a
subject of much discussion, but in the final analysis, is probably dependent
on the topographic, climatic, geologic, soils, and vegetative characteristics
of each basin. The most commonly employed runoff index variables are snow
water equivalent, measured at a snow course site, and precipitation, measured
at a snow course sgite or at a valley station. These two parameters are com-
mon to nearly all seasonal streamflow models.

Although not a recent innovation, the use of aerial photography to esti-
mate snow cover has assumed more importance since the advent of satellite
photography. Rango and Salomonson (1975), and Rango et al. (1977) used
LANDSAT-I imagery to determine snow cover over the upper Indus Basin, Pakis-
tan; and the Wind River Mountains of Wyoming.‘ Using these data and seasonal
étreamflow, regression equations were developed which produced remarkably
high correlation coefficients between snow cover and seasonal runoff. (For
the Indus River; 1969-1973, r?2 = 0,82, and for the Kabul River, 1967-1973,

r? ; 0.89).

An evaluation of aerial photography by image-analyzing computer has been

explored by Martinec (1972). Leaf (1969) developed a depletion-runoff rela-

tionship, based on snow cover, calculated from aerial photographs. The major



objections to either satellite or aircraft photography are the excessive turn-
around time for photo processing the large number of cloud-covered days and
the inability of photointerpreters and image analyzing computers to definitely
distinguish between clouds and snow.

Fletcher (1966) discussed the importance of soil moisture data for inclu-
sion among the index variables. However, the difficulties of obtaining
rputine soil moisture measurements have never really been overcome. Resist~-
ance and capacitance measurements have a tendency to change calibration with
time and neutron moderation equipment is simply too expensive and delicate
for‘routine use. As a result of these measurement difficulties, soil moisture
data are not commonly used in forecasting.

A procedure for correcting snow water equivalent measurements for evapo-
sublimation was introduced by Peak (1969). Using wind, solar radiation, and
temperature data, he succeeded in reducing the forecast error for several
Wyoming watersheds. However, during the same year, Doty and Johnston (1969),
in a research study conducted in Utah, reported that the amount of winter
evapo-sublimation was compensated for by the amount of condensation and that
the net effect of the two processes was essentially zero. Also, while temper-
ature measurements are collected routinely at most remote sites, wind and
solar radiation are not and valley stations must be used for obtaining these
parameters. consequently, forecast methods, using these index variables, are
not in common use. It would also appear that while solar radiation provides
the heat source necessary for evapo-sublimation and wind is a good indicator
of the degree of turbulent transfer occurring, the most important parameter,
the direction and magnitude of the vapor pressure gradient, has been overlooked.

Antecedent streamflow and/or baseflow are incorporated into forecast

models much more frequently, because streamflow does effectively index the soil



moisture conditions on some watersheds (Snow Hydrology, 1956; George, 1970;

Warnick and Brockway, 1974). Another index method is the coastal stream in-
dex. In this method, the winter runoff of low elevation streams is related
to the spring snowmelt runoff. Precipitation at valley stations is sometimes
included as an additional index variable. The method is reported to be as
accurate as those that use snow water equivalent and precipitation data, and

is fully described in Snow Hydrology (1956). A recent modification of this

method and application to some Western Washington watersheds is described by
Tangborn and Raémussen (1976). The coastal index procedure is also confined
to use in areas that have a common moisture source, such as the coastal basins
of Washington and Oregon.

Index forecasting methods have probably reached the point where large
increases in accuracy are not possible; slight improvements in accuracy may
be obtained, however. Wilson (1966) suggests that more accurate forecasts
can be obtained by using point samples of snow water equivalent, which are
highly correlated with runoff, rather than snow course average snow water
equivalent. It has also been sﬁggested that accuracy can be improved by
adjusting the calculated forecast on the basis of "feel," since the fore-
caster is in possession of certain facts, such as "no snow on south slopes"
or "snow line elevation higher than other years'" (Malsor, 1967). (This kind

of adjustment is also suggested in Section 22 of the Soil Conservation Serv-’

ice National Engineering Handbook.) This form of art is user depéndent and

is seldom transferable to other locations.

The success or failure of computer-based watershed models is not readily
apparent from the literature. Pearson (1974) used the Streamf low synthesis
and Reservoir Regulétioﬁ (SSARR) model, developed by the U.S. Army Corps of

Engineers, to simulate inflows to Hungry Horse reservoir in Montana.
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He states that the model can be used in volumetric forecasting, based on the
agreement between cumulative values of simulated versus actual inflows over
the forecast period. A'computer—based water budget model, reported by Quick
and Pipes (1972), has been successfully used in forecasting both daily and
seasonal runoff volumes. In this model, long-term forecasts require a knowl-
edge of antecedent conditions, as well as snow water equivalent data. A
desirable feature of this model is the ability to input weather data from
previous years and create various scenarios so that upper and lowervbounds
canbbe attached to the snowmelt runoff forecast.

Numerous references to snowmelt runoff simulation can be found in the
literature (Riley, et al., 1971; Anderson, 1973), but reports on the opera-
tional use of these models are almost completely lacking. Simulation models,
while used extensively in California (principally thréugh the efforts of
R. Burnash and colleagues at the National Weather Service River Forecast
Center, Sacramento, California) have not displaced the older- index techniques

that are entrenched in other forecasting agencies.

2.3 Short-Term Forecasting

Short-term rorecasts are congidered here to be for daily, weekly, and
monthly snowmelt runoff volumés. The most important.issue is the accurate
estimation of temporal and spatial snow pack properties and snowmelt volumes.
Use of a good precipitation-runoff continuous simulation model with these
estimates can provide accurate streamflow forecasts;‘ Usually a model of the
form of the basic Stanford Watershed Model (Crawford and Linsley, 1966) or
the Sacramento Model which is used by the National Weather Service (Burnash
et al., 1973) is needed for this purpose. The most difficult part of the
forecasting effort is to estimate water supply delivered from precipitation and

melt to soil storages and the channel system. Lack of data on direct causes of
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snowmelt has necessitated use of surrogate measures.

In established procedures asurrogate index is used to relate snowmelt
directly to streamflow. More recent efforts, however, separate snowmelt
dynamics from soil-water-stream dynamics. The established approaches usually
relate air temperature at an index site to daily streamflow and, from this
relationship, predict daily streamflow volumes one to several days in advance
(Zimmerman, 1972). The objection to this procedure is that, while temperature
is the best single index to snowmelt and thus runoff, it largely ignores the
energy inputs required for the melting of the snow pack.

| Zuzel and Cox (1975) found that in a 100 percent snow cover situation,
more than 60 percent of the snowmelt is the direct result of net allwave radi-
ation. These daFa support findings of Dewalle and Meiman (1971), who obtained
similar values although their data were collected over a 2-day period only.

As the melt season progresses, and more and more soil and vegetative
surfaces lose their snow cover, advected sensible heat contribures more to the

‘melt process, and ﬁay become the dominant heat sourceI(Gray and 0'Neill,

1973; Cox an& Zuzel, 1976). The relationship between the various heat sources
aﬂd snowmelt is, therefore, a changing one and snowmelt can be calculated pre-
cisely only by approximating these heat sources for varying situationms.
Anderson (1976), in comparing the energy balance approach with the temperature
indéx method, concluded that the energy balance method does enable one to cal-
culate snowmelt more precisely. The strongest objection to using the energy
balance method is the difficulty of measuring the required variables at remote
sites.- fhe objection is a valid one, although more rugged and reliable in-
strumentation is becoming available. Alternatively, energy balance parameters
CAn'be approxiﬁated, at least grossly, from the more readily available data,

obtained from valley stations, and then corrected for elevation and exposure,
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Snowmelt can also be measured at several index sites on a watershed by
using snow pillows, isotopic snow gages, Or snowmelt lysimeters, in conjunc-
tion with a telemetry system. Pysklywec, et al, (1968) and Haupt (1969)
suggested that melt plots‘and/or lysimeters_arevgfficient methods .for measur-
ing point snowmeltvat;indexvsites._ queyer, snow pillow and snowmelt collec-
tors can be unreliable in measuring diurnal changesvin snow water equivalent
(Cox, 1971). »Also operational isotopic snow gages are insensitive to small
changes in snow water equivalents.

Considering the above arguments, thewpqpential advantage of determinis-
tic watershed models for short-term forgcasging becomes apparent. Varied
climatological sequences can be used as input, alopg with known snow water
equivalent and other angecgdent variables,_ From this, short—germ forecasts
can be stated in probabilisticAratber than‘deperministic terms. The routine
use of such modgls wil; probaply not come about until more reliable methods
of computing or measuringvsnowmglt are perfected.

An important activity is to update models with directly measurable data
as the data becpme available. It is well known that the accuraéyfof repre-
sentation‘of the snow pack is essgntial for.accurate forecasting.‘ Carroll
(1978) reported the current apprgach:used by the National Weather Service to
update their deterministic model to have the estimated snow pack agree with
snow course data as the data become available. This‘;s a.precursor of future
efforts in state-estimation modeling represenpatiqnsiof snowmelt runoff.

While such short term modeling activities are important for many aspects of
water resources management, their_major significance in tﬁe work reported here
is for their abaility to yield accurate aggregate volumes typically over six
months. Directiqns in water supply fprecasting are well summarized by Tarble

and Burnash (1971).
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2.4 Summa;x

The forecast models discussed in Sections 2.2 and 2.3 use basic inputs
of snow water equivalent, precipitation, and temperature. They can be class-
ified as regression methods, pseudo water balance methods (pattern search
optimization and coastal index) and water balance methods. Data requirements
necessary for estimates of streamflow volume increase as one proceeds from
the simple linear regression to the complete watershed model. The most strin-
gent d;fa requirements are associated with the watershed model since all
hydrologic and meteorologic inputs and processes must be measured or estimated.

The cost of data acquisition must be considered when choosing a model for
a particular basin, although this might be minimal in comparison to the bene-
fits associated with an improved forecast. .If, for example, the same forecast
accuracy can be obtained using precipitation data as opposed to snow course
data, it would be well to use only precipitation data due to the large differ-
ence in the acquisition costs. (For example, on the Boise River in Southwest
Idaho, five snow courses are measured every two weeks by helicopter. Data
col;ection costs are approximately $10,000 for a snow season of six months.
This figure does not include data processing costs, or site maintenance
(Wilson, 1977).

. On the other hand, Tangborn and Rasmussen (1976) using only precipitation
and runoff data have demonstrated some improvement in forecasting the Baker,
Skagit, and Stehekin river flows in the Northern Cascades. The basic Tangborn
approach does not neqessarily remove the need for snowcourse data. For exam-
ple, Lettenﬁaier (19785, using stepwise regression and principal components
techniques, found some situations wheré snow course data were more useful than

precipitation data in the basic Taﬁgborn type of model.
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Despite the limitations of forecasting, seasonal runoff volumes can be -
estimated (with varying accuracy) by one of the mefhods discussed here. This
forecast can be used, together with its uncertainty, in many water résource
management applications. An approach for demonstrating the worth of a fore-
cast is given in Chapter 4. Other broader scale approaches have been used,
e.g., to show the value of snow survey data to water supply forecasting
(Elliot, 1977). The remainder of this report emphasizes how forecasts, re-
gardless of how they are made, can be incorporated explicitly into reservoir
operating rules. We have not taken operating\conStraints typically imposed
under Federal Power licensing agreements as binding.  Rather, we have examined

what might be achieved given the tools that are now available.
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CHAPTER 3: DISAGGREGATION OF FORECASTED

TOTAL SEASONAL RUNOFF VOLUMES

3.1 Introduction

A versatile family of time series models of the ARIMA type proposed by
Box and Jenkins (1970) can be used for streamflow forecasts; applications of
this approach have been discussed by McKerchar and Delleur (1974). These
techniques are limited, however, to short~term applications, typically, of
the order of several months, because no advantage is achieved when the fore-
casted conditional probability distribution of flow in a future time period
coincides with the historical unconditional probability distribution for that
period. Using an autoregressive model, Burges and Johnson (1973) have indi-
cated that useful forecasts up to about four time periods ahead from the last
observed period can be achieVed for situations where interperiod correlations
are greater than 0.5.

When a lafge fraction of spring and summer funoff results from release
of water from a snow pack, forecasts for a longer time horizon can be made. While
numerous methods for forecasting total seasonal runoff are available, most are
of the multiple-regression type (see Chapter 2) and incorporate snow course
information, soil moisture, and antecedent precipitation among other variables.
While the forecasted quantity ié not known witﬁ precision, considerable infor-
mation results from the forecast. Rasmussen and Tangborn (1976), and Tangborn
and Rasmussen (1976) among others, have developed some effective fore-
casting methods which are physically based. Tﬁese forecasts can be used to
obtain conditional flows. Disaggregation of a given forecasted seésonal vol-~
ume into, typically, monthly flow volumes provides conditional streamflow

information (different from the unconditional historical monthly flows) which
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can be used with appropriate reservoir operation algorithms.

The disaggregation‘scheme deveibped here takes advantage of the flow co-
variance structure. Skewed monthly marginal distributions are modeled using
three parameter log normal distributions (3PLN's) (Aitchison and Brown, 1957;
Fiering and Jackson, 1971; Burges et al., 1975) that are force-fitted to the
data. The conditional distribution procedure is developed for a single site
application where typically » conditional flow distributions are sogght.
Usually, n < 6 months, hence matrices have dimension nxn (6x6). Extension to

k sites would require use of matrices smaller than (6kx6k).

3.2 Conditional First Three Moments

Let @ be a random variable representing forecasted total melt season run-
off volume. (Here this is the cumulative volume of runoff forecasted for
n = 6 months from March to August.) Let @ be a particular value of @, and let
Rt be a random variable describing runoff volume in the tth month of the fore-
cast period. The first two conditional moments for flow in time period ¢

given @=¢Q, are

O’R .
me = ER_[Q0) =y + pge 0—(:_(620 “ug) ¥t (3.1)
and |
Vey = COV(Rt,RjIQo) = %R, oRj (Pey = PqtPqy) ¥ t,J (3.2)

where E(R£|Qo) is the conditional mean of flow R ; Cov(Rt,Rj|Qo) is the con-

ditional covariance between Rt and Rj; L and u. are the unconditional means

Q

of Rt and §, respectively; o, and o, are the unconditional standard devia-

R, Q

tions of Rt and ¢, respectively; p N is the unconditional correlation coeffi-

Q

cient between ¢ and Rt; and pt is the unconditional correlation coefficient

3

betweenXRt and ij
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Equation (3.2), with t=j yields the conditional variance of Rt:

Vi - Var(RtIQo) = cﬁt(l - pat) ¥t (3.3)
Equation (3.3) is a well-known linear regression result for two variables;
no account has been taken of the covariance information between the several
Rt. Equations (3.2) and (3.3) show that the conditional covariance is indepen-
dent of @p and that the conditional variances are identical with the second
moments of the independent random error terms in linear regression models.

The conditional skew coefficient is the normalized third moment of these

error terms. For homoscedastic (constant variance) error terms, the condi-

tional skew coefficient of Rt, Yo becomes

- A3
GRt QtGQ
Y. = — % ¥t (3.4)
a - th)
where GR and GQ are the unconditional skew coefficients of Rt and ¢, respec-
t

tively. Equation (3.4) shows that Y is zero whenARt and ¢ are symmetrically
distributed. In hydrologic modeling this results when Rt and ¢ are normally
distributed. Y becomes numerically larger than GRt,in compensating for re-
duction in the forecast error (i.e., smaller conditional variance). This is
evident because of the form of the denominator in (3.4). \ does not neces-
sarily have the same sign as GRt (which is usually positive for streamflow

data). Equation 3.4 has been widely used in synthetic streamflow models to

model skewed marginal distributions [see, e.g., Fiering and Jackson (1971)].

3.3 Non-Normally Distributed Seasonal and Forecasted Flows

In equations (3.1) to (3.4) no assumptions were made about the probability
density functions of Bt and ¢. However, if quantitative probability statements

of the forecast inflow in month ¢ are to be made, appropriate distributions
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have to be used. Transformation of non-normally distributed forecasted flow

inflow volumes, Z having the first three conditional moments mt, V2

¢ and Yt’

to normally distributed quantities, Y,is necessary when the conditional dis-
tribution of forecasted inflow in a particular forecast time period ¢ is
required. In most cases, streamflow data can be approximated by force fitting
a 3PLN distribution to them. While the overall fit may not be satisfactory,
it is usually possible to fit the portion (low or high flows) of critical con-
cern quite well. This general distriubtion is used because it is possible

to approximate Gaussian [see, e.g., Burges and Hoshi (1978)] as well as skewed
distributions with one general transformation. This is most important when
mixed distributions are encountered. The convenience of the 3PLN distribution
lies in the fact that there exist theoretical relationships between statisti-

cal parameters in the untransformed and transformed domains.

3.3.1 Ye Positive
Let Zt and Yt be the forecasted inflow (untransformed) and normally dis-

tributed (transformed) inflow in period ¢. Summary statistics m

¢ th, and

Ye for the conditional mean, covariance (months ¢ and j) and positive skew,

respectively, transform under the 3PLN relationships to

m, = a, + exp(dt + U%/Z) ¥t (3.5)
2 2y . 2
Ve = [exp(Ut) 1]exp(2dt + Ut) ¥t (3.6)

exp(BUE) - 3exp(U§) + 2 ,
y. = vt 3.7)
£ e - 11%

3 3

Veg = [exp(U ) - Llexp(d, + d, + UZ/2 + U3/2) (3.8)

where dt’ U%, a,, and Utj are the conditional mean, variance, third parameter,

t

and covariance (periods ¢ and j) of the normally distributed quantities, Yt
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The transformation relationship is

Yt = 1n(Zt - at) ¥t (3.9

3.3.2 Ye Negative

The conditional covariance defined by (3.8) is determined when both fore-
casted flows, Zt and Zj’ are 3PLN distributed with positive skewness coeffi-
cients., In situations where the conditional skewness Ye is negative, the
transformation

Yy = ln(at -7

¢ ) (3.9a)

t
produces normally distributed quantities, Yt.

The conditional mean relationships become:

= - 2
m, at exp(dt + Ut/Z) ¥t (3.5a)

The conditional variance (3.6) is independent of the sign of e When Ye is
negative ]ytl is used in (3.7) to compute U.» When both y_ and Y are nega-
tive [i.e., (3.9a) is used to effect transformation], (3.8) is used to compute

Utj' When Ye and yj have different signs, —th is used in (3.8) to compute

Utj'

3.3.3 Computational Considerations

The conditional mean, variance, and covariance dt, UE, and Utj in the
transformed normal domain and the third parameter, a,, can be determined
using equations (3.5)-(3.8) for the given values of m s V%, Yo and‘th,
depending on the specified value of Q = @,. As stated above, however, the
conditional covariance and skewness are independent of ¢3. The only variables
in (3.5) to (3.8) that are influenced by Qo are a, and dt.

If the above approach is not followed exactly it will not be possible to

preserve the distribution-free conditional means and variances for each, t,
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defined by (3.1) and (3.2), because of the nonlinear transformations involved.
Moreover, the conditional skew coefficients cannot be preserved unless this

approach is followed.

3.4 Determination of Conditional Marginal Distributions

Sections 3.2 and 3.3 discussed relationships between moments, but not
those between the Yt. Transformations are effected to yield normally dis-
tributed quantities; the existence of the conditional covariance structure
means that Yt is drawn from a multivariate normal distribution. The remainder
of this chapter describes how relevant conditional marginal distributions are
obtained; the conditional covariance structure is important and must not he
overlooked.

To incorporate the conditional covariance into probability statements of
the forecasted inflows in period ¢, the following theorem (Feller, 1971) is
introduced:

There exists an orthogonal matrix C with determinant 1 (rotation

matrix) such that a column vector Y is decomposed into a mutually

independent normal columm vector G with transformation of

Y=0C¢ (3.10)
where Y' = [y, 4,--- Yporo yn] (3.10a)
¢ = 9,9, gpee- 9] (3.10b)

C is an (nxn) coefficient matrix; n is the number of months in the forecast
time period. Let Y be distributed as jointly normal with a column vector of
conditional means (dt, ¥ t) and a square matrix of conditional covariances

w ¥ t,j7), i.e.,

tj’

T
dy = ldy dy...d,...d] (3.11)

n
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where dY is a mean vector and UY is a covariance matrix.

Taking expectations in (3.10) yields
d, = E() = ¢ B@) = C 4 (3.13)

where EF(+) is the expectation operator and dG is a column vector whose ele-
ments are the mean values given in (3.10b).

Subtracting (3.13) from (3.10) yields

Yy - dY = (G - dG) (3.14)

It is clear that both the vectors (¥ - dY) and (G - dG) have zero mean ele-

ments. Postmultiplying (3.14) by (¥ - dY)T and taking expectations gives

Uy = BL - d)(y - g7

T, T _ T
= (C E[(G - dG)(G - dG) ]¢ =¢ DG c (3.15)

where DG is the (nxn) covariance matrix of G. From the above theorem it

follows that DG has to be a diagonal matrix whose components consist of the

variances of variable ge- Specifically,

F"Oz e
g1
(3.16)
D, = o2 0
G gg
)
i 0 cgna
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Using the relationship given by (3.16), (3.15) reduces to

Uy = [C,Dé@][c Dé5} =C, Cy (3.15a)

1
where DG/2 is a diagonal matrix whose components are the standard deviations of

variable ges and

y
Cy=C DG2 (3.17)

Equation (3.15a) is frequently encountered in multivariate stochastic
generation models in which the solution for C, can be effected by the method
of principal components. As a result, the elements of diagonal matrix, DG’
are given by the eigenvalues of the symmetric matrik, UY; the rotation matrix,

C, is derived from a matrix whose columns are eigenvectors corresponding to

each eigenvalue of UY’ The rotation matrix, ¢, has the important property

that
¢t = ¢! (3.18)
and
T 1LE=7) ¥tJ
ctcj = (3.19)
0 (t# ) ¥ t,g

where ct is the tth column vector of (.

Using (3.13) and (3.18), the mean vector of variable G is given by
d, =ct (3.20)
G dy :

Because the elements of the column vector, G, are mutually indepen-
dent, the element, gt, is distributéd as univariate normal with mean dgt’
determined from (3.20), and variance Oét (equivalent to an eigenvalue of UY)'
Physical inflow volumes corresponding to cumulative probability, p,(0 <p < 1),

(in the G domain) that flow is less than or equal to a specified flow can be
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easily computed from

(9, = dg, +t, og, vt (3.21)

where (gt)p is the pthpercentile flow of Ge» and tp is the standard normal
variate corresponding to the probability level, p.
The pth percentile of Yt (in the Y domain) is determined by using the

rotation matrix to be

n
(r) = 1 e (g, vt (3.22)

where (yt)p is the pth percentile flow of Yp» and c . is the (t,j)th element

t]
of rotation matrix, C.
Finally, the 3PLN distributed forecast inflow volume corresponding to the

cumulative probability, p, is inverse transformed to yield

(zt)p =a, + exp[(yt)p] ¥t

Yy 2 0 . (3.23)
and

(zt)p =a, - exp[(yt)p] ¥t

Yt <0 (3.23a)

where (zt)p is the pth percentile flow in the untransformed domain.

The complete conditional distribution (given § = ®y) 1s obtained by sub-
stituting into (3.21)-(3.23) for several values of p. As shown in Figures 1
and 2 (Chapter 4), nine values of p sufficed to compute the distributions of

interest.
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A FORTRAN program suitable for computing conditional distributions is given
in Appendix 1. This program was implemented on a CDC 6400 digital computer at
the University of Washington Academic Computer Center. Machine dependent routine
CLOCK was used for triggering the CDC uniform random number generator RANF,
Normal random deviates were obtained from the uniform random numbers. Calls are
made to IMSL supplied subroutines. Users at other installations would need to
substitute equivalent routines if IMSL routines are not available. The code is
listed here for other interested persons; too fe& comments are included to make

the program fully understandable to the general reader.

3.5 Summary

Conditional distributions of streamflow volume for a sub-interval {month)
within an overall forecast interval (snowmelt runoff season) can be obtained by
following the mathematically defined procedures in this chapter. It is important
to reemphasize here that the information contained in the conditional variance
structure must be included when computing conditional marginal flow distributionms.
The nonlinear transformations introduced by approximating untransformed flow data

with 3PLN distributions necessitate use of the exact moment relationships used here.
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CHAPTER 4: USE OF FLOW FORECAST

IN RESERVOIR MANAGEMENT

4.1 Introduction

There are many well-known problems associated with operating single mul-
tiple purpose storage reservoirs. In the past 10 years many investigators
have developed different methods for determining operating rules. Of all the
attempts made so far, it appears from both practical considerations (concern-
ing how well a given system may be represented) and computability that linear
programming formulations have much to offer. In particular, Linear Programming
(LP) formulations that use Linear Decision Rules (LDR's) offer many advantages.

While much as been done with LDR formulations, they have suffered from
the limited ways that stochasticity of streamflow has been incorporated;
unconditional marginal flow distributions have been used to determine chance
constraints. A further limitation stems from the fact that rules are devel-
oped for statistically average future scenarios rather than forecasted flow
scenarios. Long-term forecasting (many years) is currently not feasible. It
is feasible, however, to make seasonal forecasts, -e.g., forecasts of total
snowmelt (spring and summer) runoff volumes.,

The principal emphasis here is to show how the operation of a single mul-
tiple purpose reservolr can be formulated as a chance constrained LP with
LDR's developed for conditionally distributed monthly flows which are based
upon a specific seasonal runoff forecast. The method is based upon work by
Houck (1975) which permits computation of both reservoir release rules as well
as the expected annual benefit which results from the forecast. The method
extends earlier LDR formulations in that conditional flow distributions are

explicitly used. Flow data from the Cedar River, Washington, were used to



26

reflect floﬁ statistics represzntative of much of the Northwest region of the
United States.

Two hypothetical reservoirs were examined, one had capacity equal to the
mean annual flow volume, u, and the other had a capacity of 0.2 u. Optimal
facility operation was the objective, hence all capital costs were assumed to
be sunk costs. Benefits.were derived from sale of hydroelectric power, flood
mitigation damage reduction, and from water supply. Because comparisons were
to be made between benefits computed with and without the benefit of a fore-
cast, operation and maintenance costs were not included. It was further
assumed that flood benefits could be indexed to reservoir freeboard; all con-
trolled releases and generated power were assumed to be purchased at constant
prices. 1In this example penalty functions were not included.

While the resultant objective function was simplistic, it did provide an
opportunity to explore the relative utility of a forecast as well as to deter-
mine the feasibility of developing operating rules when conditional flow dis-
tributions were explicitly included. An extremely important part of the
entire analysis effort involved determining these conditional distributions.
Monthly distributions of flow conditioned upon a forecasted cumulated flow
volume for the next »n months could be determined in a relatively straight-
forward fashion if the conditional distributions were unskewed. This, unfor-
tunately, is rarely the case; forecasted flows were therefore disaggregated
using the method of Chapter 3. The method is again summarized here for com-
pleteness so that it will be clear how forecasted flows are incorporated into
the optimization model which is used to show some relative advantages of flow

forecasts when developing reservoir release policies.
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4.2 Probabilistic Flow Forecasts

Properties of conditionally distributed flows are illustrated using flow
data for the Cedar River, Washington. (All flow data reported here are for
the Cedar River.) The forecast period under study was the 6 months from
March to August. All relevant model parameters were obtained from a 55-year
(1914 - 1969) flow record. Normal or 3PLN distributions were force fitted to
raw data of monthly and seasonal flow sequences via quantile-quantile plots
(Wilk and Gnanadesikan, 1968) to remove the effects of a few large monthly
flows on sample skews. The unconditional first three moments of mean, covari-
ance, and skew were calculated for the smoothed data. Smoothed sample skews
wefe modified using bias correction factors developed by Wallis et al. (1974),
and Bobée and Robitaille (1975). Table 1 shows summary statistics of the
first three moments for these smoothed historical data. Flow volumes in
months April and May were approximately normally distributed. Table 2 shows
the conditional first three moments of monthiy flows resulting from a speci-
fied seasonal flow forecast. It is clear that flow forecasts provide a reduc-
tion in monthly variances. Forvexample, considerable variance reduction
(48.4%) is seen in June. Table 3 shows an unconditional correlation matrix
between monthly flows, and monthly and seasonal flows. Inspection of this
correlation matrix indicates thatlthe correlations between monthly and total
seasonal flows (showﬁ in the second to last column of Table 3) are larger than
the intermonth correlations because of positive correlations between monthly
flows. If a forecast was to be made by a time series approach (for example,
autoregressive methods) at the end of February, the forecasted distributions
a few months ahead approach the unconditional distributions because the product
of intermonth correlations rapidly tends to be zero. Disaggregation of fore-

casted volumes is suited to the situations where correlation structures between
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Table 1. Unconditional First Three Moments
of Flow, Cedar River, Washington

Mean | St.De
(AF) (AF)

- March 50622 | 11940 | 0.697
April 55295 | 11537 | 0.000
May 58553 | 14933 | 0.000
June 45678 | 18850 | 0.814
July 24691 9840 | 1.311
August| 16796 4931 | 0.023
Total | 251636 | 52115 | 0.279

Month Skew

Table 2. Conditional First Three Moments of Monthly Flows
(March-August), Cedar River, Washington, When
the Total Seasonal Runoff is Specified

Mean (AF) St.De

(AF)

Month *
30th 70th 90th

March | 47770 | 53474 | 57622 | 10615 | 0.954
April | 51019 | 59571 | 5789 | 8119 | -0.303
May 52154 | 64952 | 74256 | 8517 | -0.864
June | 37258 | 54099 | 66343 | 9733 | 4.637
July | 20768 | 28614 | 34318 | 6345 | 4.423
August| 15481 | 18111 | 20023 | 4238 | -0.022
Total | 224450°| 278821 | 318351

Skew

* TForecasted flow is equal to the 30th percentile of the
distribution of total seasonal (March-August) flow
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Unconditional Flow Correlation Coefficient Matrix,
Cedar River, Washington

Mar. Apr. May Jun. Jul. Aug. Total
1.000 0.412 0.182 0.101 0.194 0.131 0.458 |March
‘ 1.000 0.635 0.380 0.296 0.208 0.711 |April
1.000 0.666 0.449 0.286 0.821 |May
1.000 0.807 0.467 0.856 |June
March | 1.000 1.000 0.474 0.764 |July
April | 0.138 1.000 1.000 0.511 | August
May -0.384 0.127 1.000 1.000 | Total
June | -0.634 -0.630 -0.127 1.000
July- | -0.272 -0.544 -0.486 0.459 1.000
August| -0.135 -0.256 -0.273 0.067 0.151 1.000
Mar. Apr. May Jun.  Jul.  Aug.
Table 4.

Conditional Flow Correlation Coefficient Matrix,
Cedar River, Washington
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monthly and éeasonal flows reduce conditional variances. Table 4 contains the

conditional correlation-matrix between monthly forecasted flow volumes. The

magnitudes of these conditional correlations are relatively large. Failure to
incorporate these conditional correlations into a procedure for estimating
conditional flow distributions is tantamount to throwing out valuable informa-
tion. The method used herein incorporates this information.

The procedures followed to obtain conditional flow distributions for
months March to August are briefly described.

1. Force fit normal or 3PLN distributions to the total seasonal flow volume
and flow volume in each month.

2. Compute conditional means, covariances, and skews in the untransformed
domain and transform them to the Gaussian domain using the approach given
by Matalas (1967). Data from Tables 2 and 4 are used here.

3. Correlated transformed (i.e., normally distributed) variables are decom-
posed into mutually independent normal variables via the method of prin-
cipal components.

4. Specific percentile values of these independent normal variables are in-

verse transformed to yield conditional disaggregated flow distributions.

We have tested the above procedure, described in mathematical detail in
Chapter 3 and have found it to be quite satisfactory in practice. There are,
of course, many pitfalls awaiting the neophyte who ventures into transformed
domains. FORTRAN code (implementable on a CDC 6400 with IMSL software support)
for effecting conditional disaggregation is given in Appendix 1.

Two examples of prbability distributions with and without forecasting are
given in Figures 1 and 2. The numbers in these figures indicate the percen-
tiles of the March-August flow forecast. Flow volumes corresponding to each

percentile are shown in Tables 1 and 2. It is readily seen in Figures 1 and 2
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Figure 1. Cumulative Probability Distributions of Flow in May
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Figure 2. Cumulative Probability Distributions of Flow in June
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that the range of forecasted inflows to a reservoir to be anticipated is re-

markably less than that of the maximum ignorance (i.e., no forecast) case.

4.3 Worth of Flow Forecasts

Most water resource system operators can make use of information about
future inflows to reservoirs. Total seasonal runoff volume forecasts made
available sufficiently early in a year can be extremely useful for planning
water allocation to potential users and uses. Forecasts have their greatest
utility when the forecasted amount is less than what users have become accus-
t;med to using. It is not clear how the true economic worth of a flow fore-
cast can be evaluated. With sufficient notice, target releases from a
reservoir can be modified, power contracts renegotiated, and the amount and
types of crops to be irrigated can be appropriately planned. Some forms.of
insurance against supply shortfalls might be purchased by system users.

Estimation of the economic value of a forecast for a particular system
would provide a very limited amount of information about the generai utility
of forecasting. Coﬁsequeﬁtly, we elected to approach the issue by using a
hypothetical single, multiple-purpose reservoir and examine theoretical opera-
tion policies for it. Operation policies were developed for both forecast'and
no forecast cases, all other parameters being held constant. Water supply,
hydroelectric power generation, and flood mitigation benefits were considered.
The difference in benefits computed for no forecast and forecast cases pro-
vides a measure of the worth of the forecast. The same benefit functions are
used for both cases. Benefits from advance warnings of supply shortfall or
surplus resulting from seasonal runoff forecasts were not calculated.

The pﬁrpose of this work is not to develop optimization models, but to
assess the impact.of improved forecast of streamflows on the operating policy

of a single reservoir in the framework of economic benefits and losses.
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The Linear Decision Rule (LDR) model proposed by Revelle et al. (1969), and
extended by Houck (1975), was used to incorpqrate economic tradeoffs between
flood control, water supply, and power production benefits. We do not advo-
cate use of LDR's to operate a reservoir; they do, however, provide consider-
able information to assist with system operation. The advantages of the LDR
approach, which led to adoption of the method for the comparisons made herein,
are many. The LDR method is flexible and makes use of readily available
linear programming (LP) software packages. The probabilistic nature of monthly
streamflow is explicitly incorporated. (In the current work, Houck's method
was extended to incorporate flow stochasticity.) The LDR is able to accommo-
date conflicting objectives, e.g., power generation, water supply, flood miti-
gation, etc. Finally, the LDR approach encodes risk‘preference explicitly and

is within computational feasibility even for multiple-reservoir systems.

4,3.1 Chance Constrained LDR Formulation

The mathemétical development given below basically follows .Houck's (1975)
approach. The equations are fully developed here for completeness. The fun-
damental premise in the LDR operating policy, originally developed by ReVelle
et al. (1969), is that release Xt during period ¢ is given by the difference

between the initial storage St-l and the decision variable Bt’ i,e.,
X =S5 - B ¥t (4.1)

The continuity equation is

S5,=8,, +B - X, ¥t : ‘ (4.2)

where Rt is the inflow for period t.
Substitution of (4.1) into (4.2) gives

St = Rt + Bt ¥t (4.3)
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By substituting the value of St—l from (4.3) into (4.1), the release, Xt,is

Xt = Rt—l + Bt—l - Bt ¥t ’ (4.4)

Equations (4.3) and (4.4) express storage at the end of any period and release
during any period in terms of the decision variables, Bt’ and the random vari-
ables of inflow, Rt, whose probability distributions are known. A set of

requirements is imposed by probabilistic statements concerning the performance

of reservoir functions.

Physical Constraints -- Two constraints limit the permissible range of reser-

voir storage volumes. The first is that the storage content will be no more
than the reservoir capacity, C, with at least probability a;, i.e.,

P[S, < Cl > oy ¥t (4.5)
Substituting (4.3) into (4.5) yields

¢ - B, >F 1) ¥t (4.5a)

where F;l(al) is the inverse of the cumulative distribution function of inflow,
Rt’ during period t corresponding to the cuﬁulative probability level a;
(i.e., the 100x0] percentile).

The second constraint requires that storage will always exceed a minimum

value, S , with a probability of at least ay in each period t

min
P[St z Smin] Z %2 ¥ ) (4.6)

The "deterministic" equivalent of (4.6) reduces to

- ~1(1-
S .- B, < Fil(l-ap) vt (4.6a)

Flood Control Benefit -- A valuable improvement in the LDR model proposed by

Houck (1975) is the incorporation of economic benefits for flood control,

water supply, and hydroelectric energy production.
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A probabilistic formulation of the freeboard constraint is given by

_ 17 _ 4
PEJ—St zFBt:l = o ¥t (4.7)
or
i_ -4
C-B. -FB =F, [as) ¥t (4.7a)

wherefii is a variable freeboard which is available lOO*a% percent of the time
during period ¢. Total freboard is broken into [ increments. This is done to
permit computation of expected flood mitigation benefit. The set of a%

(<=1, 2,...., L) must satisfy the fqllowing requirements.

i-1
oy < o (4.8)
3
L
i i-1

2 [(!3 - (13 ] = 1 (4-9)
i=1

ad = 0, o =1 (4.10)

5 .

The average freeboard available in the range between FB:_1 and FBi can be approx-
imated by %Bt-l + FBt]/Z with a probability of [az - a%—l}’ so that the

expected benefit of flood control (BFCt) in period t can be described by

L
BFC, = § [a§ - ajg'll xn *{FBt_l + FB:]/Z vt (4.11)
1 ' |

i=
where n is the benefit per unit volume of freeboard, and

L
0 = =
FBt c, FBt 0 (4.12)

The benefit function is assumed to be a linear function of freeboard volume;
nonlinearities can, however, be incorporated into the model by piecewise
linearization. Equation (4.12) indicates that the freeboard available 0 per-

cent of the time in period ¢ equals the storage capacity; freeboard which is
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available 100 percent of the time is zero since the dam has a finite capacity

and can spill water.

Water Supply Benefit -- The constraint on water supply can be expressed as

1] _ 4
pl}t > WSt:[ = o, ¥t (4.13)

Using (4.4), the "deterministic" equivalent of (4.13) reduces to

i_ _ o1 [qod
WSy - B__ +B, Ft_l[l a“} ¥t (4.13a)

where WSt is a variable water supply which is available 100*ai percent of the

time in period ¢¥. The probability levels of ai (z

1, 2,..., M), analogous

to a§ for flood control, must satisfy the following requirements.

ai—lf “i (4.14)
M . .
) [ai - al’l] -1 (4.15) -
. y N
1=1
M.

0 = = 4,16
au 0, a, 1 ( )

[ai - ot g *{Wsi‘l + wsi)/z vt 4.17)
1 L L t t

where 8 is the net benefit per unit volume of water supply, and
WSO = F_ wsr -0 (4.18)
Equation (4.18) states that the water supply available O percent of the time

in period ¢ must equal the maximum allowable release (Fmax) and water supply

available 100 percent of the time is zero.
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Power Production Benefit -- Hydropower production is a quadratic function

(head multiplied by release through the turbines). This nonlinear relation~
ship poses significant programming difficulties within the LDR formulation.
To render the problem tractable in the LDR method, Houck (1975) introduced an

approximate scheme for the expected value of power produced in period ¢

E(PR) = c » E(H__, * X)) vt (4.19)

1 t

where E(-) denotes the expectation operator, PRt is electric energy produced
in Kw-hr, ¢ is the product of a conversion factor (CF) and the total efficiency
of the power plant (e), Ht__1 is head in feet, and Xt is release-in acre-feet (AF).
If head is assumed to be a linear function of storage volume (in many reser-
voirs this is a good approximation over usually experienced operating heads),

the expected value of head and release is

EH, _, * X) = o, _, * cxt + B _ ) * E(X) (4.20)
where
B omaxS, +b (4.21)
OHpoq = a % op (4.22)
t-1
9%, = R, _, (4.23)
E(Ht_l) =q % E(Rt-l) +a *xB _, * b | (4.24)
E(X,) = B(R__) + B, - b, (4.25)

where a, is the standard deviation of variable z. When the linear relation-
ship of (4.21) is assumed, the correlation coefficient between Ht_1 and Xt

becomes unity. Equation (4.20) is still a nonlinear function of E(Ht-l) and
E(X¢). An approximate solution of (4.19), without destroying the linearity

of the constraint, is given by
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E’(PR ) - |:c *E(H )/2] *E'(Xt) - E *E(Xt)/{[ *E'(Ht_l)

—ec* g * g ¥t (4.19a)
Ht— 1 Xt

The LDR formulation therefore requires iterative procedures; assumed initial

values of E(Ht-l) and E(Xt) whose expressions are similar to (4.24) and (4.25)
are required. However, in several experiments conducted by the authors, the
initial assumptions proved satisfactory, the LDR solution converged on the
first iteration (i.e., the decision variables Bt derived from the first iter-
ation were identical with those from the second iteration). With different
relative benefits for the various reservoir uses, this fortunate approximation
may not result--more than one iteration may be required. Hydroelectric power

production (BPPt) in period t is
BPP_ = X * E(PR)) ¥t (4.26)

where A is the benefif per unit of hydroelectric power produced. A more com-

plicated power sales (benefit) structure was not needed in this work.

Objective Funétion -- The objective function is to maximize the economic bene-

fits resulting from flood control, water supply, and power production, i.e.,

n .
Maximize Z = ] BFC,_+ 2 BHS + 2 BPP, (4.27)
t=1 t=1 t=1

where n is the number of months under consideration. Benefits for the months

of the year where flow forecasts were not made were not included in (4.27).

4.3.2 Physical Parameters Used in the LDR Formulation
Potential improvements in economic benefit from operation of a given
reservoir for a given level of improvement in inflow forecasts clearly depend

in the reservoir size and its uses. Most reservoirs in use in the United
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States, particularly those supplied by snowmelt runoff, are designed to smooth
out seasonal flow fluctuations and can be categorized as within-year flow
buffering facilities. Reservoirs whose capacity exceeds the mean annual flow
(e.g., the major reservoirs on the Lower Colorado River) are able to provide
flow buffering over several years. Improved forecast accuracy is usually of
greater significance in less resilient systems, i.e., in systems having small
capacity relative to the mean annual flow.

Based upon flow data from the Cedar River, Washington, two hypéthetical
reservoirs are examined, one having capacity approximately equal to 20% of the
mean annual flow volume, and the other having a capacity approximately equal
to the mean annual flow volume. Numerous cases were tested to determine the
importance of facility capacity, initial storage, and the forecasted flow mag-

nitude. Physical parameters used in the LDR solution are summarized below.

Reservoir Capacity —— C = 100,000 AF (20% of mean annual flow volume),
required minimum storage: Smin = 20,000 AF, initial storage: (i)

Sog = 30,000 AF; " (11) S = 80,000 AF, ~ linear relationship between
head (Ht; feet) and storage (St; AF): a =103 and b = 50.

Reservoir Capacity -- C = 500,000 AF (mean annual flow volume),

required minimum storage: Smin = 200,000 AF, initial storage: Sg = 450,000 AF,

linear relationship between head (Ht; feet) and storage (St; AF)+

3

a=5%*10 " and b = 50.

Other Parameters —- Maximum allowable release: Fmax = 90,000 AF,

coefficient of power production function: ¢ = 0.72.
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Probability Levels —-- The probability levels used in the LDR formulation are

arbitrarily chosen to reflect the system owner's risk preference. Operating
results are influenced by the choice of the several a's. It has been pointed
out by Loucks and Dorfman (1975) that the setting of fixed chance constraint
levels is conservative. Hence, if say a 95% level was set in the model, a

99% level might be realized when the system is operated under the derived
LDR's for simulated inflow scenarios. This results from modeling probabilis-
tic and not stochastic inflow. Despite these criticisms the following prob-
ability levels were used; reservoir capacity constraint: a; = 0.90, minimum
storage constraint: a; = 0.90, variable freeboard and water supply constraints
(L =M=6):

i | 0 1 2 3 4 5 6
0.0 0.1 0.3 0.5 0.7 0.9 1.0

Benefit Functions -- Benefit for freeboard: n = $2/AF, benefit for water

supply: 6 = $10/AF, benefit for hydroelectirc power production: A = $0.02/Kw-hr.
Parameters, probability levels, and benefit functions described above are

identical in the LDR formulation for both reservoir capacities (0.2 u and

1.0 u) examined.

4.4 Numerical Results from Chance Constrained Reservoir Operation

Formulation

In all cases the chance constrained LP's were solved using MPOS (Multiple
Purpose Optimization System) software packages implemented on a CDC 6400 digi—
tal computer at the University of Washington, Academic Computer Center. The
formulations for the six-month period of interest (March to August) required
104 variables and 106 constraints. Benefits were computed in three different

ways; for convenience they are referred to as Types A, B, and C defined below.
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Type A: LDR algorithmwas solved using unconditional marginal distributions of

monthly inflow volumes and the benefits associated with flood control,
water supply, and power production were computed. [This 1s the

approach taken by Houck (1975).]

Type B: Economic returns resulting from flood control, water supply, and power
production were computed using decision variables based on uncondi-
tional flow distributions, i.e., LDR's were determined as for Type A
benefits; actual benefits were, however, computed using conditional

flows while the reservoir was operated with these LDR's.

Type C: LDR's were developed by solving the formulation for conditional (i.e.,

forecasted) inflows and the resulting benefits determined.

Forcast volumes ranging between the 30th and 90th percentiles of March-August
total runoff volume were used to compute Type C benefits. (Tables 1 and 2

show the magnitudes of these flow volumes.)

4.4.1 Reservoir Capacity 20% of Mean Annual Flow Volume

Table 5 shows optimal values of the decision variables Bt depending on
knowledge of inflow volumes for a reservoir capacity of 100,000 AF;
different initial storage conditions of 30,000 AF and 80,000 AF were
used. 1In Table 5a, for instance, LDR's for unconditional flows are given in
the third row, indicated as scheme A. The LDR's given in the fourth‘row,
indicated as scheme C(30), are those rules determined by solving the problem
with flows conditioned by a forecast flow at the 30th percentile of total sea-
son runoff. Notice that for June the value of Bt changes from -3806 AF for
the normally formulated LDR problem to -11949 AF when the forecast is at the

30th percentile level, to -41033 AF when the 90th percentile of total runoff
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Table 5. Decision Variables, B, (acre feet) Computed From
Chance Constrained Formulation of Reservoir
Operation Using Conditional and Unconditional
Monthly Flows; Reservoir Capacity: ¢ = 100,000
acre feet

(a) So = 30,000 acre feet (AF)
Decision Variable (AF)

Scheme
March Ppril May June July | August

A# -16530 -20526 =19437 -3806 5882 9504

C(30) * -17491 -10526 -18634 -11949 4267 4775

C(50) -20343 -14803 -25033 -20369 344 3460

C(70) -23195 —19079 -31431 -28789 -3579 2145

C(90).' -27342 -25296 -40736 -41033 -9283 233

(b) 5, = 80,000 acre feet (AF)
Decision Variable (AF)

Scheme March April May June July | August

A# 20000 -20526 =19437 -3806 5882 9504

C(30)* 20000 -10526 -18634 -11949 4267 4775

C(50) 20000 -14803 -25033 -20369 344 3640

C(70) 20000 -19079 -31431 -28789 -3579 2145

C(90) 20000 -25296 -40736 -41033 -9283 233

#

*

Unconditional distribution

Conditional distribution when the 30th percentile of
the distribution of total seasonal flow is specified




44

is forecasted. Note that fbr the same inflow information, different initial
storages yleld identical release decision variables except in March. (When
the LDR follows a regular cyclic pattern in a year, 12 monthly decision vari-

ables are the same from year to year and therefore are independent of the

initial storage employed. The initial storage was specified in the LDR formu
lation here because the forecast time period was for 6 months of the year.)
While the release rules are virtually independent of the initial storage, the
benefits (Table 6) are influenced by the initial state.

Figures 3 and 4 show the computed freeboards (FBi) corresponding to each
reliability level, a§ , in May and June, respectively, for a reservoir capa-
city of 100,000 AF and initial storages of 30,000 AF and 80,000 AF. It is
clear from these figures that Type C (forecast diséribution) operation gives
rise to larger freeboards at every probability level than does Type A (uncon-
ditional distribution). From a practical viewpoint, it is important to know
the freeboard available at the higher reliability level. For example, the
difference of freeboards between Type C and Type A operation at the 90% reli-
ability level is 13,800 AF in May. This increased amount yielded from Type C
operation indicates that 30% more storage is used for flood mitigation than is
used under Type A operation. For the month of June, the difference between
the two types of operation yields 40,200 AF. It is important to state here
that the freeboard available at each probability level in Type C is the same
even when changing the percentile levels of the March-August flow forecast.

' This characteristic is explained by the fact that the difference between two
decision variables for different forecast levels of seasonal runoff is identi-
cal with that between the corresponding conditional means in each month. For
example, in May the difference in decision variables between C(50) and C(30)

[or C(70) and C(50)] is 6,400 AF, which is identical to the differences
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between the conditional means in May (Tables 1 and 2). As shown in Figures 1
and 2, any desired conditional distribution in a given month'ié derived by
displacing any of the conditional distribution curves downward or upward by
the difference between two conditional means. Hence, thé freeboard [FBi) ex-
pressed in (4.7a) is constant with respect to (¢ - [Bt + le (a%)] for differ-
ent forecasted levels of March-August flow. A similar observation can be made
in the freeboard curves resulting from Type B operation in Figures 3 and 4.

A particular freeboard curve is translated downward or upward by the differ-
ence between the conditional means. Flow/operation condition B(30) corres-
ponds with the time of low flow volumes to be anticipated in which the LDR
solutions were based upon unconditional flows, but economic returns were
evaluated for conditional inflows using the 30th percentile forecast of the
total seasonal runoff. Type B tends to yield larger freeboards at relatively
high reliabilities than Type A even when high inflow volumes [B(70)] are to be
expected. It is of interest to compare Figures 2 and 4. The smaller range of
forecast probability distribution than that of the unconditional marginal flow
distribution in Figure 2 gives rise to a smaller range of freeboard curves for
Type B and Type C operation than for Type A operation. Figures 1 and 3 yield
similar observations.

Figure 5 shows cumulative distributions of water supply for a reservoir
having capacity of 100,000 AF, 53 = 30,000 and 80,000 AF. Larger water sup-
plies can be satisfied under Type C operation than for Type A operation, re-
flecting lesser uncertainty in the range of flow in each month when forecasts
are made. A 347 larger supply can be made in June at the 90% reliability
level when Type C [C(30)] instead of Type A operation is used. Similar obser-
vations were made in other monfhs in the March-August period. Note that C(30)

reflects a lower-flow state than average runoff volume, yet increased supply
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above the no forecast case can be made. Water supply curves of Type B and
Type C in Figure 5 are parallel with each other as for freeboard curves in
Figures 3 and 4; the difference between two Type C water supply curves is
identical with that between two conditional means in June (Tables 1 and 2).
Similarly, the difference between two Type B water supply curves in

Figure 5 is identical with that between two conditional means in May, by
(4.13a). As shown in Table 5, the decision variables in May and June, respec-
tively, are the same for identical probability distributions of flow regard-
less of the initial storage levels; the freeboard and water supply curves in
these two months are independent of the initial storages assumed. While not
shown, freeboard curves in March, and water supply curves in March and April,
are influenced by the initial storage state.

Table 6 shows quantitatively the conflicting nature of the demands placed
upon a multiple-purpose réservoir; the economic significance of the total sea-
sonal forecast is clear. The following comparisons serve to emphasize these
conflicté.i B(30) and C(30) represent inflow volumes below normal (uncondi-
tional means). Hence, it is expected that bénefits from flood control for
Type B and Type C operation are larger than those for Type A operation, while
benefits from water supply and power prodﬁction are smaller. The total bene-
fit for 6 months becomes larger as high inflow volumes are to be anticipated.
For exampie, if C(70) and an initial storage of 30,000 AF occurred, the con-
ditional operation.rule yields an 117% increase in total benefit compared with
the average chance constrained Type A operation. A 23% increase occurs for
C(90). Types B and C operations use identical conditionally distributed
flows; Type B operation uses Type A derived LDR's, however. It is clear from
Table 6 that Type C economic benefits yield larger total benefits than econ-

omic returns of Type B. An important observation in Table 6 is that for a
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Table 6. Benefits From Reservoir Operation Using Conditional
and Unconditional Flows and Operating Rules;
Reservoir Capacity:C = 100,000 acre feet

(a) S_ = 30,000 acre feet (AF)
o

Scheme [F19%0  ($) *;gy(s) e oy |Total (8)
A 771282 2302692 326739 3400714
B(30) 823075 2055366 273155 3151596
B(50) 774141 2288201 318608 3380950
B(70) 725208 2521033 368488 3614729
B(90) 654054 2859592 448913 3962559
C(30) 831436 2098888 283885 3214208
C(50) ) 831437 2346410 316252 3494099
C(70) 831435 2593929 348624 3773987
C(90) 831433 2953843 395693 4180969
(b) So = 80,000 acre feet (AF)
Scheme |F1000 () [gaoot () |Goeion(s) |TOEAL (9)
A 705528 2766162 477639 -{ 3949329
B(30) 757321 2518836 421054 3697211
B(50) 708387 2751671 469507 3929565
B(70) 659454 2984503 522388 4166345
B(90) 588300 | 3323062 607177 4518539
C(30) 763952 2561397 427105 3752454
C(50) 758819 2806067 466841 4031728
c(70) 753684 3050734 507166 4311583
C(90) 746218 3406501 566845 4719564
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small initial storage of 30,000 AF, Type C benefits from flood control are
nearly constant, thus affording inflows to be stored. On the other hand, for
a larger initial storage of 80,000 AF, benefits from flood control, as expec-

ted, decrease as inflow volumes are larger and the dam spills water,

4.4.2 Reservoir Capacity Equal to Mean Annual Flow Volume

Another experiment was made to examine the importance of reservoir capa-
city. The results for a reservoir having capacity of 500,000 AF (approxi-
mately the mean annual flow) and an initial storage of 450,000 AF are shown
below. Table 7 gives the decision variables for both unconditional marginal
and conditional probability distributions of inflow volumes. The decision
rules in Table 5 (Capacity = 100,000 AF) are mainly negative. The decision
rules in Table 7 are all positive (Capacity = 500,000 AF), reflecting vastly
different operating strategies for large and small reservoirs subject to the
same patterns of inflow; equation (4.3) emphasizes the role of reservoir stor-
age.

Figure 6 shows freeboard-reliability curves in May, and Figure 7 shows
water supply-reliability curves in June. The behavior of these probability
distributions for a capacity of 500,000 AF bears out similar conclusions for
a capaéity of 500,000 AF; the conditional LDR based on improved forecasts of
inflow volumes (Type C) yields a much larger freeboard ana water supply vol-
ume, pafticularly at higher reliability levels than the unconditional LDR's
(Type A and Type B) do. For example, in Figure 6 the freeboard available 90%
of the time can be increased by 5.3% in Type C, relative to Type A operation.
Even though C(50) has the same mean flow as the unconditional mean, it is
shown in Figure 7 that changing from Type A to Typé C operation increases the
water supply volume by 69.6% at the 90% probability level in June. Figure 7

shows a range of water supply for C(50) between about 42,000 and 65,000 AF,
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The same range for Type A operation is between about 23,000 and 63,000 AF.
The latter situation necessitates less efficient allocation of resources. The
flatter the curves in Figures 6 and 7 in each month, the easier it is ‘to oper-
ate the system efficiently. Freeboard and water supply probability distribu-
tions determined in the above manner allow system operators to examine
conflicting system performances explicitly, while attempting to meet a given
operating schedule at a prescribed reliability level,

Table 8 shows benefits computed for a capacity of 500,000 AF and an ini-
tial storage of 450,000 AF, It is of interest to compare the results shown
in Table 8 with those in Table 6b. Both cases have large initial storage rel-
ative to the reservoir capacity. Benefits accruing from flood damage mitiga-
tion under Type C operation for the larger capacity reservoir are almost
identical for different forecast levels. In Table 6b, Type B economic re-
turns are larger for power production than Type C benefits for the same flow
conditions. In contrast, in Table 8, Type C operation yields larger benefits
for power production as well as for flood damage mitigation and water supply
than does Type B operation. Compared with Type A operafion, Type C(70) opera-
tion yields a 4.5% increase in benefits in terms of the total benefit (9.2%
in Table 6b), while C(90) achieves an increase of 9.5% (19.5% in Table 6b).
Reservoir size, relative to the flow of a river, is important when determining
the relative improvement in operation resulting from' incorporation of a fore-

cast of total seasonal runoff volume.

4.5 Summary and Conclusions

There are presently three basic ways to operate a multiple-purpose reser-
voir. The first utilizes fully the operator's experience and judgment. The
second makes use of optimization methods and assumed streamflow and demand

methods. The most useful approach, despite some criticisms that can be made,



55

Table 7. Decision Variables, B, (acre feet), Computed from
Chance Constrained Formulation of Reservoir
Operation Using Conditional and Unconditional
Monthly Flows; Reservoir Capacity:C = 500,000
acre feet, So = 450,000 acre feet (AF)
Decision Variable (AF)
Scheme
March April May June July August
A# 390000 | 159395 | 160436 | 176194 | 185882 | 189504
C(50)* | 390000 | 165197 | 154967 | 159631 | 180344 | 183460
C(70) 390000 | 160921 | 148569 | 151211 | 176421 | 182145
C(90) -390000 | 154704 | 139264 | 138967 | 170717 | 180233

# Unconditional distribution
* Conditional distribution when the 50th percentile of
the distribution of total seasonal flow is specified

Table 8. Benefits from Reservoir Operation Using Conditional
and Unconditional Flows and Operating Rules;
Reservoir Capacity:C = 500,000 acre feet,

SO = 450,000 acre feet (AF)
Flood Water Power Pro-
Scheme | v (9 Supply(s) duction($) Total ($)
A 2980085 4475231 1690850 9146166
B(50) 2982758 4461671 1686784 9131213
B(70) 2933824 4694503 1763859 9392187
B(90) 2862671 5033062 1879882 9775615
C(50) 3032819 4516067 1687577 9236463
C(70) 3027684 4760734 1766411 9554829
C(90) 3020218 5116501 1881567 10018286
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is a chance constrained linear programming (CCLP) formulation of system opera-
tion. Here the experience and judgment of the operator can be incorporated
explicitly via the chance constraints that are chosen. The CCLP is particu-
larly suited for smaller reservoirs that are used for within-year flow buffer-
ing; it was the obvious choice to combine with seasonal runoff volume forecasts
for snowmelt-fed rivers. While CCLP models have been used to develop linear
decision rules (LDR's) for reservoir release, they have not been used previ-
ously with other than unconditional probabilitydistributions of flow. 1t is
possible, as shown here, to formulate the problem using flow distributions
conditioned on the total forecasted amounts.

Using the CCLP formulation and conditional flow distributions, it was
possible to show the general utility of incorpotating the forecast explicitly
into the operating procedure. While a limited situation was examined, and

only one level of chance constraints was used, it appears that this type of

forecast is extremely useful. There is, of course, great difficulty in index
ing flood mitigation damage benefits to reservoir freeboard; however, the
relative worth of operating with and without forecasts of future inflow is
clear. A further advantage of this approach is that for a given reservoir
capacity, chance constraints, and benefit functions, the problem need only be
solved for one forecast condition. The cumulative distributions of freeboard
and water supply can be readily determined for any other forecast by simply
diéplacing the curves in each time period by an amount equal to the change in
the conditional mean given the new forecast.

The method can be extended to multiple sites with the number of variables
and constraints increasing approximately linearly with the number of sites.
Obviously, considerable effort must be expended at a given location to deter-

mine the benefit function for each use of the system. 1In special situations,
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e.g., drought, more emphasis might be placed on one particular use. Here it

would be possible to obtain very useful operating rules; the benefits would be

crisply defined.
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APPENDIX 1: LISTING OF FORTRAN IV PROGRAM
USED TO COMPUTE CONDITIONAL FLOW MARGINAL

PROBABILITY DISTRIBUTIONS



C#x
C**
C**
C*

CH*
Can

77¢C1

7703

10001

7842
Crian
Coe
C*
Cas
T
Coe
Coe
CHx
Cer
Cas
res
Ces
Ca*
Cas
Coe
Cose
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PROGRAM SUMSEA(INPUTSNUTPUTskUNCHy TAPFS=INPUT, TAPEE=OUTPUT, TAPF72P
1UNC H)

FCRECAST OF MONTHMLY FLOW AT LANDSGUPH IN THE CEDAR RIVER
FORECAST 8Y DISAGGREGATION MCDEL FRCM MARCH TN BAULGUST
INPUT DATA = CUBIC FEET PER SEC. DAYS

HISTORICAL DATA AVATLARLE FROM OfT 1914 TO SFP 1969 (55 YRC)
DIMENSION NFLW(13,65)9AVER(13)5STAN(13),SKFW(13),CNRRE(12512)>
1PCNE(12,12)9BINV(12+12)5A3(12512)sFLOW(Y13565), XNAME(1353),
2SEASON(30),AVLOG(23),STLOG(13)),AALDE(13)

NIMENSTON A4({205,20)0A5(2C520)sCAVE(L13)»GSTNIL2)sSKWIL3),
1CPVAR(12512)»ATN(65)9DIFF(12912)sRHS(A5)

DIMENSICN CUMPROCIS),YINT(10),COFXULIS)oPFLOW(LI3,15),C0ML113),
1PDTIS(135,15),PERCET(15),0RAV(13),NRST(13)

DIMENSINN PRT({12+12)»8COF{12)»TITLE(20)o11'(13),LUO(23)
DIMENSTON AAB(T7B8)»Z(12912)sWK{(O0)sRANT(I2V,FIAEN(12)
DIMFENSION ICDER(£5)

DIMENSIDON Y(2000)sSEFLOW(E, 2000)
TFINSIM = 1) Y{2000)+SEFLDW(6,2000) ARE REQUTRED

DIMENSTON Y(100),SEFLNW(6,100)

REAL NFLW

FYTERNAL VIPDS

READ(S5,770C) MLASToNDATASNFLAGSMPROyNLNG, NCARD,, NSTM
OFAD(55770C) NNIN

READ(S59101) (UMPPN(T)sIslsNPRD)

READ(5s101) (YINI(I),Isl,NNTN)

READ(S,7705) (TITLE(TI)}»I=1,2C)

NMON=2NLAS T4

NSONsNLAST-]

NHAF=NPR[/2

NHAF1sNHAF+1

DN 7701 I=1,NlAST

READ(5,7702) (NFLW(Tsd)»J=1,NDATA)

DO 7703 Is1yNMPN

READ(557704) (XMAME(T,J),yl=],3)

IF(NSTM,EQ,0} GO TO 100C1

READ(5,770C) NTFST,NNATSH

CONTINUF

IF(NFLAGGNELT) GO TN 7842

WRITE(6y6250) (TITLE(I)»I=1y20)

WRITE(6,6193) MLOSG

CONTINUE
$RAARAREERES

NLAST = NO., OF SEASONS
NDATA = NO, OF CRSFRVATIONS
IF(NFLAG = 1) PRINT THE RFSULTS
NPRO s NOo OF PRORARILITY LEVFLS IN THE DISTRYIBUTICN
IF(NLNG = O) NORMAL NTSTRJRUTION
IF(NLDG = 1) 3PLM DTSTRIRUTION
TF(NCARD = 1) CARD PRINT
IF(NSIM = 1) GFNFRATE SFASPNAL FLOWS WHEN CONDITICONAL MEAN
ANN CNNDITIONAL VARTANFE-FAVARIANCE ARE GIVEM
NNIN = N0, OF INITTAL VALUES IN AGGRFGATF FLNW
CUMPRN(1) s PPORARILITY LEVELS (P05, 0,105 Coe20p==>-= »0s9050.95)
YINT(I) = PRNBABILITY LEVEL NF INITTAL VALUE IN AGRREGATFE FLCW
(0e?709 =~===,0,80)
NFLOW(IsJ) = ORSERVED SEASONAL FLOWS
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Ca» XNAMF(TyJ) = SFASNN NAMF
C#*» NTEST = NLAST
C** KNNATB = CFSIRFND MUMBER QOF GEMERATEN SFASCNAL FLOWS
Ck#* NDAT2 = 2000
Cressttr sttt
Che
Co» COMPUTF THF FYRST THREE MOMENTS Of NRSFRVED “ANTHLY FLMWS
KCH=0
CALL MOMENT(NLAST)NDATASNFLW, AVER,STANySKEWIKCH)
Coe* COPRFCT THF CUTLIERS IN BOTH TATLS 3Y SETTING THFY EQUAL Tr THT

e THRESHHOLD VALUE (=MEAN PLUS AND MINUS 2 ,4#STINDARPD DFVTATINN)
A0 7850 IsToNLAST
BeAVFER(I)42.64STAN(T)
D 7351 J=1,NDATA
AzNFLW(TyJ)
IF(A.LT,B) GN TN 7844
MELW(IeJ)=P
GN TN 7881
7P44 CONTINUE
7851 COMTINIE
7RE€0 COMTINUE
NEFLW(1s2)=NFLW(1r1R)=43]121
C#* CPNVERT FLOWS TN ACRF - FT (1,.,98)
D2 7952 I=]yNLASTT
B0 7353 Js]1,NDATA
NELWIT»J) =], Q9B8*NFLW( Ty J)
7253 CONTTNUE
7852 CONTINUE .
Css CNMPUTE THF ARGREGATFE FLMPW FRNM CCRREATED MANTHLY FLNWS
D3 7300 Js1sNDBTA
S0,
NC 7871 I=1eNLAST
7301 SeS#NFLW(T,J)
NELWINMOM, J) =S
7300 CONTIMNUE
DO 7720 T=1,NMAN
DfF 7720 J=1,NDATA
FLAW(TsJd¥eNFLW(TI» )
7720 CONTINUE
C** COMPUTE THF FIRST THREE MOMENTS NF CNRRFATED AND
Cax AGGREGATF FLNWS
CALL MOMENT(NMONsNDATASFLOWSAVFR,STAM, SKEWyNELAR)
ANNAV=AVER (NMPAN)
AN 7322 TslyNMPN
IF(SKEW(I)LELOWN) GO TO 732)
LU(r)=1
. €0 TO 7322
7321 LU(T1)=0
7322 CONTINUE
Cexr COMPUTFE A CORRELATINN MATRIX 0OF MONTHLY AND AGGRAGATE FLAWS
Ce IN THE REAL DNMAIN
CALL SFCOR(NMPNNDATASNFLWsCOVAR)
IF(NFLAG.NE.1) GO TO 7802
WRITE(69»6105)
DO 7805 Tsil,NMPN
7805 WRITE(65205) (COVAR(IsJd)ydml,sl)
7903 CONTINUE
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C*% SKEWED FLOWS ARE NDRMALIZED RY THE 3PLN DISTRYRUTIOM
CALL TRANS(NMAN sNDATASAVERsSTANSSKEW,FLOWSAVLOG,STLOGsAA NGWNFLAL

1
C*x%x
C** SKEWED FLOWS APE FQOPCFC TN RF DISTRIRYUTEDN AS THE 3°PLN DTSTROT,
C*#* PY USING THENRETICAL FIRST TwO MOMENTS IN THE NOOMAL DNYAIN
C**

XNNsNDATA+]

DO 7308 LL=1,NDATA

XTN=LL
D1=1.=XTN/¥NN

CALL PRNLELIND]1,STNRM)
RHS(LL)=STNRM
7308 CONTINUE
DO 7310 Is1,NLAST
JP=LU(T)
DD 7312 JI=1,NDATA
7312 AUTO(J)=NFLWIT,J)
CALL ORDFR(NNATA,AUTN.INDER)
Nr 7314 K=1,MNATA
JN=100FQ (K}
D1l=RHS (K}
IF(JP.£C,0) GG TN 7311
S=STLOG(TI)#0D1+4AVLAG(T)
S=EXP(S)+AALNGILD)
Gr TO 7313
7311 CONTINUF
S=STAN(1)*D1+AVER(])
7313 CONTTINUF
IF(S«LTL0.0) <=0,
NFLW(TydN)=S
7314 CONTINUE
7310 CONTINUE
nn 7316 J=1,NNATA
S0,
0N 731R I=31eNLAST
7319 S=SaNFLW(I,J)
NFLWI(NMONy J) =S
7316 CONTINUF
00 7317 Isl,NMON
DO 7317 J=1,NDATA
SaNFLW(TIsJ)
FLOW(IsJ)=S
7317 CONTINUE
C*%
Chx
C** COMPUTE THE FIRST THREF MPMENTS
CALL MOMENT(NMONsNDATASNFLWsAVER,STANsSKEWNF{ AG)
0N 9971 IslsNMAN
TF(SKEW(I),LE,0,0) GO TO ©Q72
LU(I)=1
G0 TO 9971
9972 LU(I)=O
9971 CONTINUE
ANNAV=AVER(NMON)
Cx* COMPUTE A CORRFLATION MATRYY
CALL SECOR(NMONSNDATASNFLW,COVAR)
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IF(NFLAG.NE.1) GO TO 7380
WRITE(656195)
DO 7320 1I=1yNMON
7320 WPITE(69205) (COVAR(I»J)»Jdsl, 1)
73R0 CONTINUE
1F(NLOG.EQ.,0) GO T 7110
C*s CHECK THE STATISTICS OF 3PLN DISTRIBUTFD FLOWS
K@=
CALL TRANS(NMONsNDATA, AVER, STAN,SKEWSNFLW,AVLOGs STLPGyAALNG,KR)
CALL SECNR(NMONyNDATAsNFLW,CNRRE)
DN 3050 J=1sNLAST
Ksj+1
Jx=LU(Jd) .
DN 3050 IsKyNMPN
IX=sLu(I)
S=sCORRE(I»J)
KKsJX+1IX
IF{KK,EQ.,1) GN TO 3052
CNRRE(TyJ) =S
G0 TO 3050
3052 CONTINUE
Ss=¢
CORRE(TI»J}s=S
3050 CNNTINUE
IF(NFLAG.NE.,1) GO TO 3030
WPITE(65€195)
DO 3032 T=1,NMPCN
3032 WRITE(65205) (CORRE(TyJ)sd=l,y1)
3030 CONTINUE
7110 CONTINUE
C*+ COMPUTE PROPARILITY LEVFL NF DISTRIRUTION FUNCTION FOR EAFH MONTH
DD 211 TI=1,NPRC
DsCUMPRO(T)
CALL PPOLEL(Ds STNRM)
COFX{I)sSTNRM
211 CONTINUE
D0 212 Is1pNPRD
212 PERCET(I)=100.*CUMPRO(I)
TFI(NFLAG.NE.1) GO TN 291
WRITE(65252) (PERCET(1),1=1,NPRO)
WRITE(65,6248) (COFX(1)»1Is1,NPRO)
WRITE( b9 62640)
WRITE(65252) (PERCET(T)»1=1,NPRD)
291 CONTINUE :
DO 7685 Is1,NMON
TF(NLOG.NE,1) GO TO 7113
JPsLU(I)
NREVeNPRO+1
7113 CONTINUE
00 213 JK=1,NPRN
AsCDFY(JK)
IF(NLOG.EQ.O) GN TO 7112
SsSTLOG(I)*A+AVLOG(T)
IF(JP.EQ.0) GO TN 7115
SeEXP(S)+ABLOG(I)
IF(S.LTL0.,0) S=0,
PFLOW(I»dK)=S
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G0 Tn 213
7115 S=AALOG(I)=EXP(S)
NJsNREV=JK
!F(SILTDOOO) S=0,
PFLOW(I,NJ)=S
60 TO 213
7112 CONTINUE
S=STAN(T)*ASAVER(T)
IF(SOLECOQO‘ S=0,0
PFLOW(IsJdK)=S
213 CONTINUE
IF(NFLAG.NE.1) GO TO 292
WRITE(65252) XNAME(T 1) (PFLOW(I»J)sd=1sNPRO)
292 CONTINUE
7685 CONTINUE
DO 7252 1=)yNLAST
DO 7252 J=1,1
BRT(I,J)sSTANCTI#STAN(J)*{COVAR(T,J)=COVAR(NMPN,T)*COVAR(NMON,J))
IF(I.NE.J) GN TO 7252
ORST(I)=SQRT(RRT(1,1))
ACOE(1)=COVARINMNAN, 1)
SsSORT(1.=-ACOFE(1)1%#%2)
GSKW(I)m (SKEW(I)=ACOE(T)##3%SKFWINMONY)/(S**3)
7252 CNNTINUE
C*x* CONDITIONAL CCRRELATION MATRIX IN THE ORJGINAL DOMAIN
DN 223 T=1,NLAST
DO 223 Js=1,1
AG(I»J)eBBT(I,J)/(ORST(I)#0ORST(JI))
223 CONTINUE
WRTITE(6,6210)
DO 225 Is1yNLAST
WRITE(65205) (Pe(I5J)pd=ls])
225 CONTINUE
IF(NLOG.EQC.0) GO TO 3701
DO 3002 1s=1,NLAST
SKEW(I)=GSKW(I)
3002 CONTINUF
Cex COMPUTE CONDITINNAL COVARIANCE IN THE NORMAL DOMAIN
DO 3036 1=1,NLAST
S=STLOG(T)
DO 3036 Jelsl
S1sSTLOG ()
BAT(IpJ)sS*S1#(CORRE(T,J)=CORRE(NMONs TI#CORPE(NMON»J))
IF(I.NEsJ) GO TO 3036 :
CNMLCII=SORT(BIBT(I,I))
3036 CONTINUE
C*» CONDITIONAL CORRELATION MATRIX IN THE NORMAL DOMALIN
DO 3038 I=1,NLAST
00 3038 J=1,1
A3(T5J)uBRT(T»J)I/Z(COMLITI®COML(J))
3038 CONTINUE
IF(NFLAGJNE.1) GO TO 3037
WRITE(656210)
DO 3040 IslyNLAST
2040 WRITE(65205) (A3(Isd)edslsrI)
3037 CONTINUE
3701 CONTINUE
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Cosnans

Cs

Ces
Cos

302
C**

220

7752

8107
8117

CALL CLOCK(MI,MJ,MK)

L=MI+100%MJ+10000%MK

L=L~L/7100000%100000

XN=2¢( 4]

TEMP=RANF (XN)

START FORECAST 0OFf FLOWS BY ULYSAGGREGATION MODFL

IF(NFLAG.NE.1) GO TD 302
WRITE(656250) (TITLE(I)sI=1,20)
WRITE(E5,6193) NLNG
CONTINUE
SET INITIAL VALUE NF AN AGGRFGATFE FLNW
DD 9989 LL=1,NNIN
S=sYINT(LL)
A=S
Ash
XINI=100,#S
CALL PROLFL(B, STNRM)
D2sSTAN(NMON) #STNRM4AVER (NMON)
S=02
IF(S«LE+040) S=0,
PROFWsS
A=100.%A
WRITE(6s260) A, PROFW
S1=0.
DN 220 T=s1,NLAST
DsACNE(T)I*STANCI)/STAN(NMON)
D=AVER(I)4D*(D2~AVER(NMON)})
NOAV(I)=D
S1sS5140RAV(])
D1=1.-ACOE(I)*#2
N1sSQRT(D1)
ORST(IV=sSTAN(T)*D1
CCONTINUE
WRITE(656214)
DO 7752 1=1,NLAST
WRITE(659981) XNAME(I,1),0RAV(T)»00ST(I)sSKEW(T)
WRTTE(699981) XNAMF(NMON»1),S1
IF(NCARD.NE.1) GO TO B117
D= XINTY
DO 8107 Is=1,NLAST
WRITE(753) NINGsDsXNAME(I»1)s0RAV(IIORSTIT )y SKEW(T)
WRITE(753) NLOGsDsXNAME (NMONs1)sS1
CONTINUE
IF(NLOG.EQ.0) GO TN 7180
DO 7132 T=1,NLAST
D=0RAVI(I)
D1sORST(I)
D2=SKEW(T)
TF(D2.LE.040) GO TO 7133
LUtI) =1
CALL LOGNOR(D»D15D2+AV1»ST1, THIRD)
ORAV(I)=AV1
ORST(1)=ST1
AALOG(I) =THIRD
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60 TN 7132
7133 CONTINUE
D2s=D2
IF(D2.LT.0,005) D2=0,005
LU(I)s=O
CALL LOGNNR(D,D1sD2»AVY,ST1, THI®D)
SsEXP(AV1+40,5%5T1%%2)
THIRDsD+S
ORAV(T)=AV]
ORST(T)sST}
AALOG(TI)sTHIRD
7132 CONTINUE
IF(NFLAG.NE«1) GO TN 7218
WRITE(65310)
DO 511 1=1,NLAST
511 WRITE(&5255) XNAME(Is11,0RAV(I),ORST(I)»AALNG(T)
7218 CONTINUE
7160 CONTINUE
Chex
Cex%
IF{LL.GT.1) GN TO 9997
IF(NLOG.EQ.0) €0 TO 3705
C*» THENRETICAL CONODITIONAL COVARTANCE MATPTX IN THE L0OG DOMAIN
00 7136 TIs1,NLAST
S=EXP(ORST(T)*%2)-1,
SsSQRT(S)
DN 7134 J=1,1
S1=EXP(DRST(J)*#2)~1,
S1=SQRT(S1)
D=l.4A4(T,J)#545])
DIFF(IsJ)sALOG(D)
DIFF(JsI)=DIFF(TI,sJ)
7134 CONTINUE
DO 3054 T=1sNLAST
D0 3054 J=1,1
AG(I»J)sDIFF(I,J)/(DRSTII)*OPST(J))
3054 CONTINUE
IF(NFLAG.NE.1) GO TO 75
WRITE(6s 6263)
DO 3044 Is1,NLAST
3044 WRITE(65206) (DIFF(Tsd)sd=ls])
WRITE(656263)
DO 3056 1=1,NLAST
3056 WRITE(65205) (A4(1,J)rdelr])
75 CONTINUE
DN 3042 I=1,NLAST
D0 3042 J=1,1
BBT(IsJ)=A3(Iy J)*DRST(II#ORST(J)
3042 CONTINUE
3705 CONTINUE
DD 3007 I=1,NLAST
DO 3007 J=1,1
DIFF(I,J)=BBT(I,J)
3007 CONTINUE
IF(NFLAG,NE.1) GO TN 7214
WRITE(6,6210)
DD 7254 1=1,NLAST
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72564 WRITE(65206) (RBT(IsJ)rJds=l, 1)
7214 CONTINUE
TF(NLDG.5C.1) GO TO 3046
NCHsNLAST
NLAST=NSON
3046 CONTINUE
KOT=0
DO 70 T=1,NLAST
DO 70 J=1,1
KOT=KNT+1
AAR(KOT)=RRT(T,J)
70 CONTINUF
C*é
Cax SYMMETRTYC MATRIX (= BST ) IS DIAGNNMALIZFD RY THE EIRENVALUES AND
C*» ETGENVECTORS (=BCOE) :
NC=12
1J0OR=2
CALL EIGRS(AAR,NLAST,»IJDBIRCOT»ZsNQsWKyTER)
WRITE(6,201) TER
WRITE(A5203) (FNOT(T),I=1,NLAST)
DO 7730 I=1,NLAST
S=ROOT(T)
IF(S.LT.0.C) GO TN 9999
EIGCEN(T)=SORT(S)
7730 CONTINUE
DD 7731 TI=1,NLAST
DO 7731 Js=s1,NLAST
BCOE(I»J)=Z(Ty )
BINV(JrI¥sPCOE(TsJ)
7731 CONTINUE
C** COMPUTF THE DETERMINANT OF AN ETGENVECTDOR MATRIX
"CALL DECOM({ZyNOySNLAST,AAB, WK, DT1,VIPHA)
DET=DT1
DO 72 TIs1,NLAST
72 DET=DET*Z(1,1)
WRITE(6,208) DET
TF(DETGT,0,0) GN TO 74
DO 7736 Isl,NLAST
7736 BrOFE(I,1)==8COF(Is1)
DO 7732 T=1,NLAST
D0 7732 J=1yNLAST
BINV(JsI)=BCOE(I»J)
7732 CONTINUE
74 CONTINUE
IF(NLOG.EC.1) GO TOD 3048
NLAST=NCH
DO 6020 I=1,NLAST
DO 6020 J=]1,1
6020 BRT(I+sJ)=DIFF(I,J)
D1=B3T(NLASTsNLAST)
DN 6000 Is1yNSON
S=0,
D0 6001 Ke=1,NSON
6001 S=S+BINV(IsK)*BRT(NLAST,K)
SaS/(EIGEN(IY*FIGEN(TI))
BCOE(NLAST,I)=S
BCOE(IsNLAST)=O,
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D1=D1=(BCOF(NLAST,I)#FIGEN(T))##?
€000 CONTTNUE
IF(DLleLT.0,0) D1=1,0E=16
01=SQRT(D1)
EYGEN(NLAST)=D1
Dls=1,
BCOE(NLAST)NLAST)=D1
D1=1,/01
BINV(NLAST,NLAST)=D1
DO 4340 I=1,NSON
S=0.
DN 4341 K=)yNSON
4341 S=S+8COE(NLASTsK)I*BINV(K, 1)
Ss=D1%*S
BINVINLAST»I)=S
BINV(I,NLAST)=C,
4340 CONTINUE
3048 CONTINUE
IF(NFLAG,NF.1) 60 TN R112
C*x CHECK NF INVERSE MATRIX OF ROTATION MATRIX
KCH=2
CALL CHECK(NLAST,RINV,BCOESKCH) .
8112 CONTINUE
Cte CHECK THF VARTIANCES USING ROTATINN MATRIX AND ETGENVALUES
DO 7256 1=1,NLAST
DN 7256 J=1,1
S=0,
DO 7257 K=1oNLAST
7257 S=S+{BCOECIsKI#BCOE(JIpK)IREIGEN(K) %2
A3(TyJd)=S
IF(I1.NEsJ) GO TD 7256
Y(I)=S
GSTN(I)=SORT(S)
7256 CONTINUE
STLAST=Y(NLAST)
IF(NFLAG.NEL,1) GO T 7814
WRITE(654362)
WRITE(65206) (EIGEN(IN»I=1loNLAST)
WRITE(Hs62%54)
DN 4343 1=1,NLAST
4343 WRITE(65206) (A3(15J)sJslyT)
WRITE(6s6243) (GSTN(J)sJdmlsNLAST)
7814 CONTINUE
IFINFLAGLNE,1) GO TO 7216
WRITE(65209)
PO 7734 Ts=1,NLAST
7734 WRITE(65,206) (RCOF(I»J)rJdslyNLAST)
7216 CONTINUE
9997 CONTINUE

CHrse

Ceens

C#* FONDTITINNAL MARGINAL DISTRIBUTTON (%+ CONPITTINNAL MEAN AND
Cex VARIANCE #*%) :

IF(NFLAG.NE.1) GO TC 318

WRITE(6s6245)

WRITE(6y252) (PERCET(KK) »KK=1,NPRC)
318 CNNTINUE
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D0 321 Ts],NLAST
TFINLOG.NE,1) GN Tn 302¢
JPsLU(T)
NREVeNPR(O+]
3025 CCONTINUE
PREAVSORAV(T)
PREST=0RST(I)
D0 323 JKs]1,NPRD
STNRMsCOFX(JK)
SsPREAV+STNRM*PREST
. IF(NLOR,EQ,0) GO TO 320
IF(JP,EQ,O0) GO TN 3017
SsEXP(S)+AALOGLT)
IF(S«LT+N.0) S=0,
Y(JK)=S
6N TN 3213
3017 CONTINUE
NJsNREV=JXK
S=AALOG(I)=EXP(S)
I€(S.LT,0.C) S=0,
Y(NJ)=S
, 60 TN 323
320 CONTINUE
TF(S«eLE«O.0) S=0.
Y(JK)=S
323 CNNTINUF
IF(NFLAG,NE.1) GO TO 324
~ WRITE(65253) XNAME(Is1)s(Y(K)pKalyNPRD)
324 CONTINUE
. TF(NCARD,ME.1l) GO TO 221
- Ds¥YINT
WRITE(792) MLOGDs XNAME(T»1) s (Y(K)sK=ly NHAF)
WRITE(752) NLOG»Ds XNAME(T91 )9 (Y(K)sKeNHAF1, NPRQO)
321 CONTINUE

Casbbtsttadns

Crs CONDITIONAL DISTRYBUTION (%% CNNDITIONAL MFAN AND

Ca» VARTANC E=COVARIANCE MATRIX ##) ‘

C*s RESULTS OF DRTHOGONAL TRANSFORMATION RY PRINCTPAL COMPONENTS METH

IF(NFLAG.NF,1) GO TN 295
WRITE(696246)
WRITE(69252) (PFRCET(KK)yKKmlgNPON)

295 CONTINUE

ras CNMPUTE PROBABILYTY LEVEL PF FPRECAST FLNW

DO 227 1s1,NLAST
PREST =» EIGEN(T)
DO 228 JX=1sNPRAN
STNRMsCDFX(J4K)
SePREST#S TNRM
A4 (19 JK)sS

22R CONTINUE

227 CONTINUE
DO 7755 T=lyNLAST
IF(NLOG.NE.1) GN TO 3020
JPelU(T)

3029 CONTINUE
00 7757 J=1,NPRD
$=0,



1756

3019
7124

7128

298

7130
73

29¢
7755

8105

8106
2115

74

N0 7756 Ks1,NLAST

SeS4RCOE( 1K) *44(K»J)

S=S40RAVI(I)

IF(NLDOG.EQ.,O) GO TO 7124

IF(JP,E0.0) GO TO 3019

S=EXP(S)+AALOG(T)

G0 TO 7124

S=AALOG(I)=EXP(S)

CONTINUE

IF(S.LE.0.0) S=0.

Y{(J)=S

CONTINUF

ReY (1)

C=Y(NPRO)

1F(B,LT.C) GO TN 298

NREV=NPRO+]

DO 7128 Jel,NPRO

NJ=NREV=J

POTIS(IsNJ)I=Y(J)

CANTINUE

60 T0O 73

CONTINUE

DO 7130 J=1,NPRO

POIS(I,3)=Y(J)

CONTINUE

CONTINUE

IF(NFLAG.NE.1) GO TO 296

WRITE(65253) XNAME(I,1)s (PDIS(IsKL)s»KL=1, NPRDO)

CONTINUE .

CONTINUE

IF(NCARD.NE.1) GO TN R115

DuXINI

DO 8105 1s1sNLAST _ : :
WRITE(792) NLOGsD» XNAME(T91)p (PDIS(TIsKLIsKL=LpNHAF)

DD 8106 Is1,NLAST '
WRITF(7,2) NLOG»Ds XNAME(T,1)s (PDIS(IsKL)sKLuNHAFI,NPRO)

CONTINUE

Chesensr
Cresins

Crs
Chx

6259

640
346
Cs

TF(NSIM.EQ,0) GO TN 10000
SET DUT MONTE CARLN EXPERIMENTS WHEN CNNDITIONAL MEAN AND
VARIANCFE=COVARIANCE MATRICES ARE GIVEN

ND10=290

WRITE(6,6250) (TITLE(1)»I=1,20)

WRITE(656193) NLDG

WRITE(6,6259) NDATA

FORMAT(1HOs 10Xy #€8S 44+ MONTE CARLO SIMULATION OF CONDYTIONAL PROPR

18ILITY FLOW +4438$#/1H0,10%, *NUMBER OF GENERATED FLOWS =4, I5)

IF(NCARD.NE.1) GO TO 346
WRITE(75,640) NLOGsND10,XINY
FORMAT(BXs#L0G %9 T3,% DATA s#,15,% 1INI =4sFR,0)
CONTINUE
START NORMAL AND 3PLN GENERATORS
DN 8710 JJ=1,NDATS
DO 8712 I1e1,NLAST
CALL NARDEVI(STNRM)
WK(1)=STNRM*ETCEN(I)



8712

3709

8715

9991

3711
el

8714
8710

A748
8754
CHe

8740

8756

Cas
C**

-

75

CONTINUE
DO 8714 Is1,NLAST
IF(NLOG.NE.1) GO TN 3709
JPsLU(T)
CONTINUE
$S=0,
00 6715 K=1,NLAST
SaS+BCOE(T,K)*WK({K)
IFINLOG.NE.1) GO TO 3711
S=QRAV(I}+S
IF(JP,EQ.0) GO TO 9991
SsEXP(S)+AALDG(I)
GO TO 81
CONTINUE
S=AALOG(TI)=~FXP(S)
60 TO £1
S=PRAV(I)+S
CONTINUE
IF(SelLTe040) S=0,
SEFLOW(T,JJ)sS
CONTINUE
CONTINUE
IF(NLOG.EQ.O0) GD TN 8754
DO 8748 Is]1,NTEST
LUCTI) =]
CONTINUE
CONTINUE
COMPUTE THF FIRST THRFE CONDITIONAL MOMENTS
DsXINT
S1s=0,
DO 8739 I=],NTFEST
DO 8740 J=1,NDATS
Y{J)aSEFLOW(1,J)
CoLL QKRSRT(Y,NDATR)
CALL MOMENTI(NDATBs»Y»AVZ)ySTZsSKZ)
IF(NLOG.EQ,0) GD TO 8756
IF(SKZ.LT.0.0) LU(T)=0
CONTINUE
GAVE(T)=aAV2Z
GSTN(IV=STZ
GSKW(I)sSKZ
S1=S1+AVZ
PICK UP PERCENTILE VALUES OF CONDITIONAL MARCINAL NISTRIRUTION
CORRESPONDING TO CUMULATIVE PROBABILITY LEVELS
DO 8724 1Jal,NPRO
NR=CUMPRO(IJ)I®NDATA
WK{TJ)=Y(NR)

€724 CONTINUE

WRITE(65252) (PERCET(KK)sKK=1,NPRD)

WRITE(69253) XNAME(I»1)s (WK(KK)yKKs]l,NPRD)
TFINCARD.NE,1) GO TN AR?71%

WPITE(T92) NLNGHDsXNAME(I51 ) (WK(KK)sKK=]1,NHAF)
WRITE(752) NLOGsDsXNAMF( 1510y (WKIKK)sKKesNHAF]1,NPRD)

8716 CONTINUE

Cee
Ca#

WRITE(6,215)
0F 2000 GENERATFO SEASONAL FLOWS» 290 DATA (120 TN THE LOWER TaTL
AND 50 IN THE MIDDLE AND 120 IN THF UPPER TAIL) ARE SELECTED
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DN 641 J=1,ND1O
IF(J.GT.120) GO TO 643
IR=s145%(J~-1)
S=Y({IR)
Y(J)=S
G TO 6641
643 TF(J.6T.170) GO TO 645
IR=600+16%(J=-120)
SsY(IR)
Y{J)sS
GO TO 641
645 IR=1400+5%(J~-170)
SsY(IR)
Y(J)=S
641 CONTINUE
WRITE(69632) (Y(J)yJIs1,yND1O)
632 FORMAT(1H ,10X,10F10,0)
TF(NCARD,NE,1) GN TN A723
WRITE(72634) (Y(J)sJ=1pND10O)
534 FORMAT(10FE,0)
8723 CONTINUE
8739 CONTINDE
WRITF(656214)
DN S09 I=1,NLAST
509 WRITE(659981) XNAME(Is1)sGAVE(I)sGSTN(T)»GSKWII)
WRITE(699981) XNAMF(NMON,1),S1
IF(NCARD.NF,1) GO TN #7713
DN 513 Isl,NTEST .
513 WRITE(753) NLDGeDsXNAME(TI»1)sGAVE(I)sGSTN(T)»G KW ()
WRITF(753) NLOG»OD»s XNAME(NMDON,1),S1 .
8713 CONTINUE ’
Cx» COMPUTE CONDITYONAL CORRELATION MATRTX OF GENERATFD DATA
XDATB=NDATR
WRITE(656210)
DN 8742 K=1,NTEST
DD RT742 U=]1,X
S=0,
DN 8743 L=1,NDATR
8743 SeS+(SEFLOWIKs L)=GAVE(K))I*®(SEFLOWLJI»L)=GAVE(]))
S«S/(XDATR=1,)
S1eS/(GSTN(K)}*#GSTN(S))
A4 (Ky 3 )=S]
R742 CONTINUE
IF(NLOG.EQ,0) GO TO R758
DD 8750 J=1,NSOM
Ksd+l
JX=sLU(J)
DO B750 IsKyNLAST
IxeslU(I)
SsA&(1,4)
KKsdX+1X
IF(KK,EQ.1) GO TO 8752
AG(Tpd)eS
GO TO 8750
e752 CONTINUE
$sa=§
AG(19J)sS
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8750 CONTINUE
8758 CONTINUE
DO 8735 K=1,NTFST
WRITE(69205) (A4(Ksd)reJs=1,K)
IF(NCARD.NE.1) GO TO 735
WRITE(79s4) XNAME(Ks1)r(AG(KsJd)sJd=1yrK)
8735 CONTINUE

C** FINISH NNRMAL AND 3PLN GENERATNRS
10000 CONTINUE
9989 CONTINUE
Costdss
CHrbtkR
2 FORMAT(IB)F&,0s4XsA4y5F10,0N)
3 FORMAT(IB)F4,094XyA492F10,0,F10,.3)
4 FORMAT(10X,A4,7F8,3)

101 FORMAT(16F5.2)

103 FORMAT(BF10,3)

€191 FORMAT(1H »120,F13,2,F15,3)

6193 FORMAT(1HO»10X»*ASSUMED DISTRIRUTION NF FLCWS AT FACH TIMFE PERICD*
1/1H05 10X, #IF(NLOG = 0) NORMAL DISTRTIRUTINN TE(NLOG = 1) 3PLN DTSY
2RTRUTION®/1HO0, 10X, *NLOG =#%,13)

6195 FORMAT(1HO»20X,*CORRELATION FATRIX OF INOUT DATA%/)

6200 FORMAT(1HO»20Xs*#VARIANCF=COVARIANFE MATRIX#*/)

6204 FORMAT(IH »T19,E12.35E16.3)

6210 FORMAT(1HO»20X,#CONDITIONAL VARTIANCE AND COVARIANCF MATRIX*/)

€212 FORMAT(1HO»20X,*MEAN AND STANDARD DEVIATION NF FORECAST FLOW*/1HO,
124X ,* MEAN STe DEot/) ’

€214 FORMAT(1HO,10X,* ONDTTIONAL MEAN AND STANDARD DEVIATION ANN SKEWNE
1SS IN THE REAL DOMAINR/)

215 FORMAT(1HO)

2C1 FORMAT(YHO»10X»#PERFNRMANCE INDEX =3,17)

203 FORMAT(1HO»1O0X»*EIGENVALUES*/1H0»10Xs12F10,.3)

205 FORMAT(1H »Fl4.3,11F5.3)

206 FORMAT(IM ,11F12.4)

208 FORMAT(1HC» 10X, *DETERMINANT OF AN FIGENVFCTORS MATRIX =#,£20,.5)

209 FORMAT(1HO»10X,*ROTATION MATRIX®/)

7700 FNRMAT(1615)

7702 FORMAT(14X511F6,0)

7704 FORMAT(3A4)

7705 FORMAT(204A4)

252 FORMAT(1HO»BXsF3,0s*TH PER*,F5,09%TH PER*,)FS,0,)*TH OFRS,FE,D,#TH P
LER*,F5,09%TH PFR#,F5,0,%TH PFR3,F5,002TH PER¥,F5,0,%TH PER#,F5,0,%
2TH PER%/)

253 FPRMAT(1H »4X»A&4»F9.0,9F11,0)

254 FORMAT(IH »20XpA4»F9,054F11,0)

255 FORMAT(1H 920XsA49E14.492E15.4)

256 FORMAT(1H »20X,149Elb4eb4yELS,.4)

260 FORMAT(1HO»10Ys*#INITIAL VALUE =#,F3,0,*TH PERCENTILE FLNW =*F9,0/)

6240 FORMAT(1HO»20X,#PERCENTILE FLOWS OF UNCONDITIONAL (NO=~FORECASY) DI
1STRIBUTION FUNCTION®/)

6243 FORMAT(1HO»20X»*REPRNDUCED CONPITIONAL STYANDARD OEVIATION IN THEF N
10RMAL DOMAIN#/1HO»12E11,3) .

6245 FORMAT(1HOs 10X, #CONDYTTIONAL MARGINAL OISTRIBUTION (INCORPORATION O
1F CONDITIDNAL FEAN AND VARIANCE)*/)

6246 FORMAT(1HO»10Xs®CONDITIONAL DISTRIBUTION (INCCRPORATION OFf FONDITI
10NAL MEAN AND VARIANCE~COVARIANCE*/)

6248 FORMAT(1IH »8X5F9,.35,10F11,.3)
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FORMAT(1H1,10X,20A4)

6254 FORMAT(1HO»10X»*REPRONUCFD CONDITIONAL VAPI-CNVAR MATRIX#/)
6263 FORMAT(1HO»10X,*THENRFTICAL CONDITIONAL COVARIANCE MATRTX IN THE L

9981

106G DOMAIN (3PLN)#*/)
FORMAT(1H »10X,A492F10.0,F10,2)

310 FORMAT(1HO» 10Xy *CONDITIONAL MFAN AND ST, DEVIATION IN LDR DOMAIN A
IND THIRD PARAMETER*/)
4362 FORMAT(1HO,10X,#STANDARD DFVIATION OF ORTHOGONAL COMPONFNTS*/)

5102 FORMAT(1HO»10X, #MODIFIED CORRELATION CREFFICYENTS#*/)

9999

10

11

12

29
31
41

30
32

CONTINUE
sToP
END

SUBRNUTINE MNMENT(NS2sND11sRRsAVSDsSKeKK)

DIMENSION RR(13,65)2AV(13),SD(13),SK(13),CV(13),SR(13)

XD11=ND11

DD 11 I=1,NS2

SUMaSUM2=SUM30,0

00 10 J=1,ND11

SUM=sSUM+RR(I,J)
SUM2sSUM24PR(1,J)2RO (1, )
SUM3sSUM34RR(T,J)*RR (1, J)I*RR(1,J)
AV{IY=SUM/XD11

SUM3eSUM3/XD11

SUM3aSUM3=3#AV(T)#(SUM2/XD11)42.%AV(T)#2%3,

SO(I) =Yo7 (XD11=1,)%(SUM2=XD11*AV(T)I#AV(I))

SB(I)=SD(I)#*(XD11-1.)/XD11
SO(I)=SQRT(SD(I))

SR(IV=SQRT(SR(T))
SK(I)=SUM3/(SB(1)#%4%3,)

TIF(KK.NE.1) GN TO 31

00 12 I=1,NS2

CV(I)=SDIX)/AV(T)

WRITE(6532)

DO 29 I=1,NS2

WRITE(6530) IoAV(T)IsSD(T)sCVIT)oSK(T)
G0 TO 42

IF(KK.NE.,2) G0 TO &2

WRITE(6540)

DO 41 1=1,NS2

WRITE(H,30) I,AV(I),SD(T),»SK(I)
FORMAT(IH »117sF11.25%15.3,F17,42F15,4)
FORMAT(1HO» 20X, * MEAN STANDARD DE.,
1 COe*s7)

40 FORMAT(1HO,20Xs* MEAN STANDARD DE.

42

RETURN
END

COe VARIATION SKFWNESS

SKEWNESS

COE«*,/)
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SURROUTINE TRANS(NsNDsAVSTySWsXLOWsAVY»STY,PA3,KKY)
DIMENSION AV(13),ST(13)oSW(T2),oXLOW(13,65)9AVY(13),STY(13),PA2(13)
DIMENSION AVW(13),STW(13),SWY(13)
DO 7721 1=1,N
D=sAV(I)
D1=ST(I)
D2=SW(I)
IF(D2.LE.0,0) GO TO 7722
JP=1
CALL SKEWLOG(ND,D2)
SW(I)=D2
CALL LOGNOR(Ds»D1sD25AVY,ST1, THYRD)
AVY (1) =AV]
STYI1)sSTY
PA3(I)=THIRD
¢n 7O 7723

7722 CONTINUE
IF(KKX(NE,5) 60O TO 12
N2s=D?
IF(D2,LT.0,005) D2=20,005
JP=0
CALL SKEWLOGIND,D2)
SW(I)==D2
CALL LOGNCR(D»D15D2,AV1sST1,THIRD)
SsEXP(AV140,5¢ST1%#2)
THIRD=D+S
AVY(1)=aV]
STY(I)=sS5T1
PA3(I)=THIRD
6N 1O 7723

12 CONTINUE

Sw(l)=n2
AVY(I)=O,
STY(I)=0,
PA3{1I)=0.
G0 70 7721

7723 CONTINUE
D0 7724 J=1,yND
IF(JP.EQ.O0) GD TO 5513
pDR=XLOW(TsJd)=THIPD
60 10 555

553 CONTINUF
ODsTHIRD=XLOW(T,3)

555 CONTINUE
IF(DD.LE.,O0.,0) GO TO 859
DD=ALOG(DD)
XLOW(I»J)sDD
G TO 7724

859 00=0.
XLOW(I»J)eDD

7724 CONTINUE

7721 CONTINUE
IF(KKX+EQ.Q) GO TD 33
WRITE(65900)
DO 901 1=1,N

901 WRITE(65902) IsAVY(T)sSTY(I)»PAI(I)»SWIT)
WRITE(6»903)
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23 CONTINVE
CALL MOMENT(NsNDs XLOWsAVW» STWs SWYpKKX)

900 FORMAT(1HO, 20X, *THENRETICAL MEAN AND STANDARD DEVIATION AND THIPD
1PARAMETER®/, 20X, * MEAN STANNARD DE, THIPD PARAMETEP CORREC
2TED SKEW*/)

902 FORMAT(1H 5115,4E15.6)

903 FORMAT(1HO,20Xe*#THE FIRST THREF MOMENTS OF LAGIX = A)*)

RETURN
END

SUBROUTINE CORMAT(N1,N,FLOW,COR)
DIMENSION FLOW(2s65)5AV(2)5ST(2)
AN=N

DO 10 I=1,N1

SUMsSUM220,C

nn 11 Jsi,N

SUMSSUM+FLOW(I,J)

11 SUM2sSUM2+FLOWCI»JI*FLOW(T )
SUMSUM/ XN
SUM281,/(XN=1,)*(SUM2=XN*SUM*SUM)
SUM2eSQRT(SUM?)

AV(T)=SUM

10 ST(I)=SUM2
COR=0,0
DO 12 J=s1,N

12 COR=COR+({FLOW(2sJ)=AV(2) )% (FLOW(1,J)=AV(1))
CNR=COR/ (XN=1,)
CORsCOR/(ST(1)#ST(2))

RETURN
END

SURROUTINE SKEWLOG(N,BIAS)
XN=N
An1,0147,01/XN+14,6567(XN&XN)
Bel 69/7XN+T4.66/ {XN*XN)
BIASsBIAS*(A+B*RIASH*3,)

RE TURN

END
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SUBRDUTINE SECPR(NLsNDy SFLOWs CORR)
DIMENSTION SFLNW(135£5)CNRREL12912)»BLG(?5F%)
NlsNL~=1
DO 4114 Ts]l,NL
4114 CORR(I,1)=1.0
DO 4115 Jsl, N}
Jdsd+l
DN 4116 K=1,ND
€116 BLG(2sK)sSFLOW(JyK)
DN 4117 IsJJdeNL
D0 4118 K=1,ND
4118 BLG(lyK)=SFLOW(I»K)
NMs 2
CALL CORMAT(NM;ND»BLGsA)
CORR(I,J)=2
CORR(JI»I)sCORR(I»J)
4117 CONTINUE
411% CONTINUE
RFTURN
END

SUBROQUTINE LOGNOR(AV,STsSKsAVYsSTY,ACNN)
Ces COMPUTE MEAN AND STANDARD DEVIATION IN THE LOG DOMAIN AND
C#* ° THIRD PARAMETER BY THE 3PLN DISTRIRUTION

A=l +SK*SK/2,

ARsSQRT(A%%2~1,)

AC=A+AR

ADsA=-AR

APLUS=AC#%0,3233333

AMINUSsAD#40,32333233

YEXP=APLUS+AMINUS~-1,

VAYsALBG(YEXP)

STYsSQRT(VAY)

YEXP=YEXP~]1,

FeST#ST/YEXP

F=ALOG(F)

AVY=0,5%(=VAY+F)

ACON=Q.5%VAY+AVY

ACONSEXP(ACON)

ACON=AV=-ACON

RETURN

END
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SURRDUTINE OKRSRT(NA,JY)

DIMENSION NA(JJISNLT(120)sNUT(120)
LOGICAL LE2,G6E2

REAL NASNT,NX

QUICKERSORT IS A WAY NF SORTING FLEMENTS TN AN ARRAY INTH
ASCENDING ORDER, THE ARRAY IS CNANTINUALLY SPLIT INTO
PARTS SUCH THAT THE ELFMENTS OF NNE PART ARE LESS THAN
ALL ELEMENYS OF THE OTHER, WITH A THIRD PART IN THE
MIDDLE CONSISTING DOF A SINGLE ELFMENT. THIS METHOD IS
CONSTDERABLY FASTER THAN THE STANDARD COMPARISON-TRANS-
POSITION METHOD WHFRF THE NUMFER OF COMPARISONS IS ON
THE ORDER OF N2ZARPAY SIZE* SQUARED. QUICKERSORT RECUIRES
ONLY 20N THE CROFR OF%* N * 106G N CNMPARISONS,
THE CALL IS @ CALL OKRSRT2NApN?®
WHERE NAY ARRAY NAME

N? ARPAY LENGTH,
IN THIS VERSION THERE IS ESSENTIALLY NO LIMTT TO THE
LENGTH DF THE SORTED ARRAY, 2THE ARSNLUTE LIMIT IS F TO
THF 13,84 1.E. LARGFR THAN ANY INTERNALLY STOPED ARPAY

_IN THE GE 635.% ANY SORT DOF ALPHANUMERTIC DATA IN THE

ARRAY WILL BE SCRTED,

OUTICKERSORT IS ALGORITHM = 271, CCLLFCTED ALGORITHMS
FROM CACM,

Jd=JJ

1=1

M=1

I1=1+1

IF(J.LE.T1) GN TN QO
NP=(J+1)/72

NTsNA(NP)
NA(NP)sNA(I)

NO = J

Ks]

KK+l

IF(K.GT,NQ) GO TO 50
IFINA(K)JLELNT) GO TO 15
NQ=NQ+1

NO=aNQ-1

IF(NQ.LT.K) GO TO 30
TF(NACNQ) +GE.NT) GO TO 20
NX=sNA(K)

NA(K) = NA(NQ)
NA(NQ)=sNX

NQ=NQ-1

GO TO 15

NQ=K=1

NA(I)=sNA(NQ)
NA(NQ)=NT
IF(2*N0=1=J) 70970560
NLT(M)=]

NUT(M)=NO=-1

TaNQ+ld

6N 10 8O

NLT(M)=NQ+1
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NUT (M)=)
J=NQ~-1
RO MaMe]

a0 10 10

90 IF(TI.GE.J) GN TN 100
IFINA(I).LELNAC(J)) GO TO 100
NX=NA(I)
NACTI)=NA(J)
NA{J)sNX

100 Msp=-]
IF(Me.EQsO) RETURN
I=NLT (M)
JeNUT(M)
G0 7D 10
END

SUBROUTINE CHECK(Ns YCHKy XCHK 9 KK )
CHECK PROGRAM DF TRANSPOSE DR TNVERSE MATRIX PF B
DIMENSION YCHK(12512)sXCHK(12512)507(12512)
DO 171 IsleN
00 171 J=1,1
$S=0.0
DO 172 K=l,N
172 SeS+YCHK(T»KI4XCHK(K»J)
171 D7(IsJ)seS
IF(KK.NEL1) GO TN 175
WRITE(6,350)
PO 173 I=1,N
173 WRITE(65335) (D7(1sd)sd=l,1)
335 FORMAT(IH »12F11.3)
6N 19 179
175 WRITE(6535))
DO 176 1s]1,N
176 WRITE(65,332) (DZ(1sJ)rJels])
332 FORMAT(1H »Flé.4511F9.4)
350 FORMAT(1HO,20X,*TEST OF BAT*/)
351 FORMAT(1HCs20Xs#TEST OF INVERSE MATRIX NF B#*,/)
179 RETURN
END
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SUBROUTINE NOROFVI(ANDRM)
Cas GENERATE STANDARD NORMAL DEVIATE (N(Os1)) AFTER HASTINGS

START=0.0
TEMPsRANF(START)
FAC=~-1,
IF(TEMP,LT.0.5) GO TO 70
FACs1,
TEMP=l,-TEMP

70 ARG=1,/TEMP/TEMP
ARG=ALDG(ARE)
TXx=sSQRT(ARG)
ANUMS2,5155174TX*(0,6N7285340,010320*TX)
DENS1,41,432788%TY+TX4#TX#{0.,1R926940,00130R*Tx)
ANGRM= (TX=ANUM/DENI*FAC
RETURN
END

SURROUTINE MOMENTL(ND11,RR»AV,»SDs»SK)

Ce» CNMPUTE THE FIRST THREE MOMENTS OF FLOWS
DIMENSION RR(ND11) : ’
XD11=ND11
SUMsSUM2sSUM3=0,

DO 10 J=1,ND11
SUMeSUM+RR(J)
SUM2aSUM24RR(J ) *RR(J)

10 SUM3aSUM3I4RR(JI*RR(JI*RR(J)
AVsSUM/XD11
SUM3sSUM3/XD11
SUF3asSUM3=3,#AV*(SUM2/XD11)42,.%AVE+3,
SPal,/(XD11=1.)%(SUM2=XD11%AV#AYV)
SBeSD*(XD11~-1,)/%D11
SD=SQRT(SD)
SB=SART(SH)
SKaSUM3/(SR*#3,)
RETURN
END



Ce*

650
750

730

710

740

70
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SUBRAOUTINE ORDER(Ny XsNODER)
DESCENDING ORDER NBSERVATIDONS
DIMENSION X{N),NQDER(N)

DO 650 I=1,N

NNDER(T)=T

J=l

I=J+1

XU=x(J)

IF(X(1),LELXUY GO TO 710
XU=X(T)

K=l

K1=NDDER(I)

I=T+1

TF(I.LE.N) GO TD 730
IF(X(J)EQXU) GO TO 740
XY=X(J)

IX=NODER(J)

X(Jry=Xy

NODER(J)=K]

X(K)=XxY

-NODER(K)=sTX

Ja g+l

IF(J.LT.N) GO TO 750
RETURN

END

SURRDUTINF PRCLEL(TEMP,ANNRM)
FAC=~-1,

IF(TFMP,LT,0,5) GO TO 70
FAC=1,

TEMP=1l,~TEMP

ARGu)l o /TEMP/TEMP

ARGsALOG (ARG)

TX=SQRT(ARG)

ANUM=22 ,3075340.,27061#TX

DEN=]l ,4TX*({0.9922940,04481%TX)
ANOPM=(TX-ANUM/DEN)*FAC
RETURN

END






