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ABSTRACT

Consideration of qualitative relationships between precipitation
and atmospheric circulation over the west coast of North America
suggests that inter-station precipitation relationships are nonlinear
with higher cross correlations during drought than normal or wet
periods. This indicates that current multi-site stochastic models,
which assume linear inter-station relationships, may underestimate the

areal extent of drought.

The presence of nonlinear inter-station relationships is confirmed
by analysis of monthly precipitation data. Evaluation of the perfor-
mance of a simple multi-site stochastic model shows that current
methods may seriously distort spatial drought characteristics. These
difficulties occur in the synthesis of data both at widely separated
sites (separation > 1000 km) and in high dimensionality problems (seven

sites) where the maximum separation is less than 400 km,

The nature of the nonlinearities suggests that precipitation data
may be modeled better using mixture models with precipitation during
wet and dry periods drawn from different statistical distributions.
Drought conditions are associated with meridional atmospheric circula-
tion and wet conditions with zonal flow suggesting that atmospheric
pressure data may be useful for classifying precipitation into wet and
dry populations. Unfortunately, analysis of pressure and precipitation
data failed to reveal useful quantitative relationships, and no

objective method was found to classify precipitation data.

An investigation of univariate mixture models was undertaken
including a study of the small sample properties of maximum likelihood
parameter estimates for a mixture of two normal distributions. This

study showed that while the parameters estimated from small



unclassified samples are unreliable, the estimated quantiles compare
favorably with those estimated using classified data. Thus the ability
to classify data from a mixture distribution is not necessarily impor-

tant for hydrologic applications.

Analysis of long rainfall records from southern British Columbia
showed that while mixture distributions fitted the data well, they are

too complex to be justified for single-site precipitation modeling.

The use of multi-variate mixture distributions for multi-site
precipitation modeling was explored. Such models are capable of
preserving the marginal distributions and cross correlation structure
of data which could not be modeled adequately using conventional
models. Multi-variate mixture models also allow explicit recognition
of the widespread nature of drought.
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1.0 INTRODUCTION

One of the major determinants in the design and operation of water
resource systems is the frequency and severity of drought. Histori-
cally, engineers and hydrologists have used observed streamflow
sequences for design purposes. The observed sequences, however, are
unlikely to be repeated in the future life of the system. Moreover,
the short records available are unlikely to characterize adequately the
infrequent drought events which control system design to such a large

extent.

In response to these problems, hydrologists have developed or
adapted a nubber of mathematical techniqueé for creating equally likely
artificial streamflow sequences which they hope are representative of
future flows., These techniques generally assume that the historic
record is a sample from a time series which is stationary over the
period of interest . (i.e., from the beginning of the historic record to
the end of the economic life of the project in question.) Sample
statistics from the historic record are used to estimate the true
parameters of the time series. For most practical purposes this has
meant assuming either that the historic record gives the true param-
eters directly or that the true parameters may be obtained by simply
correcting the sample statistics for small sample bias.

The methods for creating artificial streamflow sequences have been
the subject of considerable research in the past decade, and the field
of "stochastic hydrology" has risen to some prominence in the study of
water resources. However, the techniques developed thus far have a
number of shortcomings. I believe that the most significant of these
is that the techniques are purely statistical with little or no
physical basis and with no appeal to those mechanisms which control the
natural generation of streamflow. A second area of concern is that

most work until recently has been directed toward single-site



applications, i.e., generation of data at a point. Despite such
problems, these techniques are being used to model drought, a regional
phenomenon, which can often be related to anomalies in the regional or

even global atmospheric circulation.

The physical linkages between drought and atmospheric circulation
are particularly clear in the Pacific Northwest. There high pressure
ridges can act to prevent frontal systems from entering the area,
steering them, as in the drought of 1977, to the north. The result is
a pronounced rainfall deficit which can affect an extensive region as
in 1977 from southern Alaska to southern California.

Although our ultimate interest may be in streamflow, there are
obviously numerous important situations where the ability to synthesize
rainfall data is of interest, e.g., in regional planning for
irrigation. Moreover, deterministic simulation techniques exist for
transforming rainfall into streamflow. Thus, the more general case of
rainfall generation has been used as a surrogate for streamflow

synthesis here.

The purpose of the research presented here is to explore
techniques for using our knowledge of large-scale atmospheric circu-
lation to improve the methods available for generating seasonal or
annual synthetic rainfall sequences. The work considers conditions
only on the western seaboard of North America, from southern California
to the Gulf of Alaska, with particular emphasis on the Pacific
Northwest, i.e., the state of Washington and southern British Columbia.

Past and present developments in the field of stochastic hydrology
are reviewed in Chapter 2. Chapter 3 discusses the role of the étmos-
pheric sciences in water resources planning and reviews observational
studies relating precipitation to various features of the large-scale

atmospheric circulation. The known qualitative relationships between



precipitation and patterns of atmospheric circulation suggest that
inter-station precipitation relationships are nonlinear with higher
cross correlations during drought than during wet or normal periods.
This indicates that current multi-site stochastic models which assume
linear inter-station relationships may under estimate the areal extent
of severe drought, particularly in applications involving large spatial

scales.

An analysis of multi-site precipipation data is carried out in
Chapter 4 and the performance of a simple multi-site stochastic model
is evaluated. The results of this evaluation confirm that current
multi-site models may seriously distort the spatial characteristics of
droughts, and an alternative modeling approach based on sampling from

mixed distributions is suggested.

The use of mixed distributions implies a classification of the
data into two or more populations. One potentially attractive approach
is to classify precipitation data into wet and dry populations based on
the prevailing type of atmospheric circulation., An analysis of con-
current precipitation and atmospheric pressure data is presented in
Chapter 5. The results of Chapter 5 demonstrate some weak relation-
ships between precipitation and various indices of atmospheric circula-
tion, but no method was found to permit an objective classification of

the precipitation data based on the pressure data.

The parameters of simple mixture models can, however, be estimated
in the absence of exogenous information suitable for classifying the
data. In Chapter 6 the characteristics of simple univariate mixture
models are explored with particular emphasis on the small sample
properties of the maximum likelihood estimates of the parameters. For
the record lengths generally available in the water resources field,
the maximum likelihood estimates are shown to be unreliable, and no

conclusive evidence is found to justify the use of mixtures in
single-site applications.



A simple multivariate mixture model is discussed in Chapter 7. A
method of parameter estimation based on a subjective classification of

the precipitation data is suggested, and the performance of the model

is explored in a number of situations. Finally, concluding remarks and

recommendations for addiﬁional work are given in Chaper 8.



2.0 REVIEW OF STOCHASTIC HYDROLOGY

In this chapter I will discuss the philosophy of artificial data
generation and recent developments in the field as they affect this
research., The discussion is restricted to seasonal or annual models
as shorter time interval models are not considered suitable for the
problems addressed here. It should be noted that the great emphasis
in research thus far has been placed on (1) development of models
which replicate the moments and correlation structure of the historic
time series and (2) statistical concerns such as estimation of small
sample bias and evaluation of estimators. Physical considerations or
attempts to understand further the natural generation mechanisms have
been limited.

2.1 Model Development

Truly optimal design and operation.of water resources systems
could be readily achieved if the future streamflows were known with
certainty. Since we will probably never be able to predict future
flows accurately over an extended period of time, the question arises

as to what flows should be used for design and operational purposes.

It is clear that the historic flow sequence at a site is only one
of infinitely many possible and plausible sequences, and that use of
the historic flows for design may be quite inappropriate. However,
let us assume that the historic sequence is a sample from a stationary
time series. The historic data may be used to estimate the parameters
of the underlying stochastic process. A data generation scheme which
preserves these parameters can then be used to create many equally
likely streamflow sequences. Use of many such sequences in design
enables us to determine, for example, the optimal project configur-

ation. This is usually taken to be that configuration which maximizes
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some measure of expected economic return. Such sequences also allow
us to make statements about the reliability of the system, the distri-

bution of expected benefits and so on.

The first computer based data generation scheme was a single-
site, lag-one, Markov model now known in the water resources field as .
the Thomas-Fiering model (Thomas and Fiering 1962). Subsequent
development of this approach led to a multi-season, multi-site, lag-
one, Markov model which was designed to preserve the mean, variance,
skew, and lag-zero and lag-one autocorrelation and cross correlations
of the observed data (Matalas 1967).

From a practical standpoint this basic technique was not improved
upon until recently. However, it was recognized that Markov models
may not adequately characterize the low frequency effects of natural
time series (Burges and Lettenmaier 1977). That is, the low flows
synthesized by Markov models do not exhibit the long-term persistence
of natural streamflows and many other natural time series including
rainfall. Such long-term persistence was the subject of intensive
study by Hurst (1951) who found that the rescaled range of natural
time series is proportional to the length of the record raised to a

power greater than 0.5.

- h
R,/S, = (n/2)" ;0.5 <h <1

where = range of cumulative departures from the mean

R
S = standard deviation
n = record length

h

= exponent (Hurst coefficient)
The rescaled range can be regarded as a measure of the length of

runs for which a time series is above or below some reference level.

Analysis of a great number of natural time series gave a mean value



for the Hurst coefficient of 0.72 with standard deviation of 0.09.
Markov models in contrast give a coefficient which tends asymptoti-
cally to 0.5.

The first model which preserved the Hurst coefficient was the
Fractional Gaussian Noise Model developed by Mandelbrot and Van Ness
(1968) and Mandelbrot and Wallis (1969). Further development of this
model led to the computationally more efficient Fast Fractional
Gaussian Noise (FFGN) model (Mandelbrot 1971). This is a single-site
‘model which is expensive to run and is unable to preserve certain
practical combinations of lag-one correlation and Hurst coefficient
(Lettenmaier and Burges 1977).

Comparison of Markov models and the FFGN model using Monte Carlo
simulation (Wallis and Matalas 1972, Burges and Lettenmaier 1977)
demonstrated that for a given reliability level, the FFGN leads to
larger reservoir design storages than the corresponding Markov model.
The differences in storage, determined using the two models, become
increasingly large as demand levels are increased and as the specified
reliability is increased. The practical significance of these
findings is, however, in doubt. As will be discussed in the next
section, estimation of the Hurst coefficient from the short records
available is unreliable, and the justification for using long-term
persistence models such as FFGN is open to question. Moreover,
although Markov models have a Hurst coefficient which tends
asymptotically to 0.5, for short record lengths expected values of the
Hurst coefficient have been found in the range of 0.7 (Hipel 1975).

The Fractional Gaussian Noise model implies a process with
infinite memory, and for some time infinite memory was put forward as
an explanation of the Hurst phenomenon. Since then, two other classes
of models have been shown to preserve Hurst coefficients. These are
the Broken Line model of Mejia, et al. (1972, 1974) and more signifi-



cantly, the class of ARMA models (O'Connell 1971). The ARMA models
are of particular interest in that they are the subject of an exten-
sive literature (Box and Jenkins 1976) and in that there has been some
success in application to multi-site problems (e.g. Ledolter 1978 and
Lettenmaier 1980).

A variety of other approaches to data generation have been
developed though none have met with universal approbation. Useful
reviews of the subject matter are given by Fiering and Jackson (1971)
and more recently by Jackson (1975a) and Lawrance and Kottegoda
(1977).

2.2 Parameter Estimation and Model Evaluation

The models described in the previous section have been used to
maintain the low-order moments (mean, variance, skew), low-order
correlations (primarily lag-one) and in some cases the Hurst coeffi-
cient of the underlying hydrologic series. The topic of parameter
estimation has received a great deal of attention in the literature.

There are several well-recognized problems.

First and foremost, the parameters we wish to preserve are not
those of the historic record but those of the future flow series. A
convenient escape from this problem is to assume that the series is
stationary, at least from the start of the historic record to the end
of the project's economic life. This historic record is then simply a
sample with a typical length of less than 50 years from some
underlying stationary series.

The difficulties in parameter estimation are now reduced to the
slightly more tractable problems of sampling error. The simplest
approach to the problem is to assume that the statistics of the



underlying stochastic process are those of the short historic record.
However, the statistics of a short sample from a stochastic process
are known, in general, to be biased. The cumulative distribution
functions of the mean, variance, and skew of independent samples of
various lengths and from various underlying distributions have been
obtained through Monte Carlo simulation by Wallis et al. (1974). This
work allows one to estimate the small sample bias of statistics
obtained by sampling from most of the important probability distri-
butions used in hydrology. The small sample bias of the lag-oné
correlation has also been investigated by Monte Carlo sampling from a
Markov model with Gaussian marginal distributions (Wallis and
0'Connell 1972).

Correction of the historic statistics for small sample bias has
been suggested by a number of researchers. However, recent work by
Stedinger (1980) shows that a correction for bias increases the mean
square error of estimation of certain parameters. This suggests that
use of the biased historic statistics may result in more reliable

parameter estimates.

Small sample considerations are also of importance in evaluating
synthetic traces. The models discussed in the previous section only
maintain the historic statistics in'synthetic series of infinite
length. For applications in water resources planning, synthetic
traces of from 30-50 years in length are of interest. As before, the
statistics from these short synthetic traces are, in general, biased.
This again suggests that the parameters of the generation scheme
should be adjusted to produce unbiased statistics from the synthetic

traces.

Within the limits discussed above, the models developed do
preserve the moments and correlations they were intended to preserve.
Restrictions on the ranges of applicability of some of the models have
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been reported, however. For example, as noted earlier the computa-
tionally useful form of FGN, Fast Fractional Gaussian Noise (FFGN)
cannot preserve certain combinations of Hurst coefficient and lag-one
correlation. There are similar restrictions on ARMA models
(Lettenmaier and Burges 1977).

Another important question raised in the literature is which
statistics to preserve for water resources analyses and under what
conditions. It is generally agreed that the mean, variance, skewness,

and lag-~one correlations should be preserved.

However, as indicated earlier, there is continuing controversy as
to whether the Hurst coefficient should or should not be preserved for
streamflow generation. Burges and Lettenmaier (1977) used FFGN
and Markov models to study the effects of parameter uncertainty on
the non-failure sizing of storage reservoirs for a variety of demand
conditions. Their results indicated that although correct modeling of
the Hurst coefficient may be important for high demand levels, for a
wide range of practical storage problems, accurate modeling of the

Hurst effect is not important.

Klemes et al. (1981) made a preliminary evaluation of the role of
the Hurst effect in reservoir design by comparing the differences in
expected reservoir reliability achieved using synthetic traces gener-
ated by a Markov model and by a Broken Line model. The differences
were found to be very small in comparison to the uncertainties that
might be expected in the reliability estimates arising from either
short historic records (parameter uncertainty) or from uncertainties
in model identification. A similar but more extensive investigation
by Burges and Lettenmaier (1982) served to confirm these findings. In
fact, estimation of the Hurst coefficient from streamflow records of
the lengths typically available is inherently unreliable. Wallis and
0'Connell (1973) state that "in many regions of the world there is
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entirely insufficient hydrological data to make a reliable estimate of

long~-term persistence."

Two schools of thought appear to be arising with regard to
modeling long-term persistence. In one school are those who feel that
long-term persistence is of such potential import in the behavior or
operation of water resources systems that it should be accounted for
in analysis even though parameter estimates are uncertain and models
maintaining long-term persistence are complex and expensive to use.
The other school appears to be of the opinion that because of the
modeling and estimation difficulties outlined above, long-term
persistence should not be included in data generation but may more
appropriately be accounted for in project design by use of some
unspecified safety factor.

While these two approaches address the practical difficulties of
reservoir design, it should be recognized that the potential import-
ance of long-term persistence has not yet received detailed study in a
wide variety of other planning situations or in other fields related
to the hydrologic sciences (e.g., regional planning for dry-land agri-
culture). The more academic problem of explaining the Hurst effect in
terms of some causal mechanism (discussed in Section 2.3) also remains
unsolved. Thus it seems prudent to at least recognize that some of
the current data generation schemes do not exhibit the long-term
correlation structure thought to exist in natural time series.

Although emphasis has been placed on preserving the moments and
correlation structure of the underlying distribution, it should be
recognized that the ultimate .purpose of stochastic hydrology is to
create streamflow sequences which will preserve those features of the
time series controlling the variables of interest (e.g., reservoir
reliability). For reservoir design this suggests that stochastic

hydrology should place greater emphasis on accurate replication of the
low flow features of the time series.
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Hirsch (1979) compared reservoir reliabilities predicted using a
variety of Markov and ARMA models. One result was that for the time
series under study, models correctly preserving the moments of the
distributions did not perform as well as those models which only pre-
served the logs of the moments. The latter group of models apparently
better preserved the low flow portion of the cumulative distribution

function of the time series.

Model evaluation on the basis of replication of features such as
reservoir reliability has received comparatively little attention in
the literature, and conclusions regarding the true efficacy of the
various models cannot yet be made. However, from Hirsch's work there
is an indication that the more popular models currently available may
notvadequately characterize low-flow features irrespective of their
abilities to preserve long-term persistence. It appears that more
attention needs to be paid to preserving the full marginal cumulative
distribution function of the historic data.

To summarize the present situation, parameter estimation and
model identification remain difficult problems for all classes of
models. In particular, estimates of the correlation and Hurst
coefficients are unreliable for the short instrument records currently
available. The necessity for preserving the Hurst coefficient in
modeling remains a controversial question, and it may be that more
appropriate measures of the correlation structure and long-term

persistence should be developed.

2.3 Physical Considerations

With the exception of appeals to infinite memory, the above

mentioned models are prescriptive, that is, they attempt to preserve
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features of the geometry of the time series without considering the
physical mechanisms which give rise to the structure of the time

series.

Klemes (1974) brought fresh insights to the field by demon-
strating that the Hurst phenomenon is not necessarily an indication of
infinite memory. 1In particular, Klemes used numerical experiments to
show that the Hurst phenomenon can also be caused by non-stationarity
of the mean and by random walks with one absorbing barrier. (The
latter case is used as an analog for flow from a semi-infinite storage
reservoir.) The idea of non-stationarity of the mean as a cause of
the Hurst phenomenon was supported by analysis of long precipitation
records from the east coast of the United States (Potter 1976).

Potter mentions (for the first time in the water resources liter-
ature that I am aware of) the possibility that long-term persistence
in the precipitation records could be related to long-term persistence
in atmospheric circulation. Subsequent reanalysis of these data
(Potter 1979), however, showed that much of the non-stationarity could
be ascribed to non-homogeneities in the record caused by shifts in the
location of the recording station. So despite the obvious possibil-
ities, it has thus far not been possible to establish a correspondence
between the Hurst phenomenon and non-stationarities in recorded data

or indeed to find any other causal mechanism.

Subsequent to Klemes' work, Boes and Salas (1978) prdposed a
general mixture model for shifting means. They showed that Klemes'
shifting mean model was a special case of the more general model and
they also demonstrated that Klemes' model and the ARMA(1,1) process
"have identical correlation structures. The shifting mean models of
both Klemes and Boes and Salas are unfortunately quite complex, and it
is unlikely that they will ever be used in other than theoretical
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studies because of the difficulties of model identification and

parameter estimation using observed time series.

In attempts to improve the low flow characteristics of synthetic
streamflows at a single site, Jackson (1975b) investigated the use of
Markov mixture models to control explicitly the lengths of the syn-
thetic low flow periods. While this model is still prescriptive in
that it attempts to reproduce the geometry of the time series without
appealing to any physical mechanism, it does recognize that low and
high flows do not necessarily come from the same distribution.
Although this approach may be an improvement from a conceptual view-
point, it suffers from parameter estimation problems. The simplest
model considered by Jackson made use of six parameters in comparison

to three parameters for a comparable Thomas-Fiering model.

In a related paper Jackson (1975c¢c) investigated the use of
birth-death models to introduce differential persistence (i.e., the
observed feature that streamflows are more highly correlated at low
flows than at high flows) in the synthetic traces. Jackson's approach
was based on a simple phenomenological model displaying differential
persistence which related streamflow to groundwater storage. The
reasoning used in the model was that in periods of low flows, with a
relatively empty aquifer, a larger proportion of rainfall goes into
groundwater storage than in high-flow periods with a relatively full
aquifer. Groundwater storage thus has a more pronounced buffering
effect at low flows than at high flows giving rise to differential

persistence,

Although the above models do attempt to introduce some physical
basis to synthetic generation, they assume that the correlation
structure of the flows arises solely from the dynamics of the ground-
water storage or the catchment. Rainfall data are treated simply as

serially independent random variables and the possible role of atmos-
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pheric processes in determining correlation structure is not

addressed.

An alternative approach to introducing the dynamics of the
catchment into stochastic hydrology is through the use of rainfall-
runoff models. A rainfall-runoff model is any mathematical technique
for transforming rainfall over a river catchment to streamflow at
points within the catchment. A wide variety of such models exist,
varying in complexity from a simple mass balance model such as that
used by Jackson (1975¢) to complex deterministic conceptual models
such as descendents of the Stanford Watershed Model (e.g., Hydrocomp
1976).

The rainfall-runoff model acts as a complex filter and integrator
of the rainfall events occurring over the basin. The more complex
models purport to represent the physical processes, or properties
which control streamflow in the catchment. Thus in principle they
should be able to represent accurately the role of the catchment in
streamflow generation even under severe conditions. The accuracy of
transformation in these models depends to a large extent on the
climate of the area under study, and on the adequacy of the input
data. For example, in an area with great spatial variation in rain-
fall, agreement between simulated and recorded flows may be poor.
Simulation i3 also often poor in areas where snowmelt is a major
component of the streamflow. Experience in a number of other climatic
regimes (e.g., Mediterranean and temperate maritime) shows that
simulation can be very accurate, particularly on a seasonal basis.
This is especially true for simulation of low-flow conditions even
when these conditions are more severe than those experienced during
the calibration period (Hydrocomp 1978). The accumulated experience
does suggest that rainfall-runoff models can accurately reproduce the
low flow characteristics of streamflow though there appears to be
little formal quantitative evidence to support this.
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Use of a rainfall-runoff model in synthetic flow generation
simply involves the generation of synthetic rainfall traces followed
by application of the model to complete the rainfall-runoff trans-
formation., Although in principle this process is straightforward, it
does require a considerably greater investment of effort than direct
streamflow generation. Rainfall-runoff modeling frequently requires
considerable input of both personnel and computational resources in
" data collection and validation, calibration of the model against
historic data, verification of the calibration and, of course, in the
production runs themselves. The most serious economic argument
against the approach is in the additional labor involved. Although
computational time is also dramatically increased, the continuing drop
in computational costs, especially on mini-computers indicates that
this will be a less important consideration in the future,

The rainfall-runoff approach to streamflow generation has been
used in a small number of studies thus far. Hydrocomp (1978) used a
multi-site, Markov model to generate monthly rainfall at seven sites
in the Rio Paranaiba catchment in Minas Gerais, Brazil. The rainfall
was transformed to streamflow using a previously calibrated model of
the catchment; the resulting streamflow was to be used in reservoir
operation studies where the primary concern was in low flow condi-
tions. A comparison of the pro's and con's of direct streamflow
generation against rainfall generation followed by a rainfall-runoff
transformation is given by Leytham and Franz (1980). This work, based
on the previously cited study by Hydrocomp indicated that one of the
principal problems in the latter approach is the difficulty of assess-
ing the accuracy of the transformation. Although the conceptual
catchment model may be beneficial in introducing some physical aspects
of flow generation, it is not clear what magnitude of model errors or
rainfall input errors can be allowed before direct streamflow

generation becomes the better approach. Another problem not mentioned
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by Leytham and Franz is the difficulty of preserving long-term
persistence in the multi-site rainfall generation. As discussed
earlier, this is of potential significance in both reservoir design
and operation studies. Severe drought is a manifestation of an
anomaly in atmospheric circulation and the structure of the multi-site
Markov model (Matalas 1967) may not be able to represent the true
temporal or spatial nature of drought. .

Another application of rainfall generation followed by a
rainfall-runoff transformation is presented by Wilson, et al. (1979).
The principal purpose of this work was to investigate the influence
that the spatial distribution of storm rainfall has on the outflow
hydrograph (specifically the peak flow and flood volume) from a small
catchment. The synthetic rainfall was generated using a model
developed by Bras and Rodriguez-Iturbe (1976). This model departs
radically from those discussed earlier in Section 2.1. It was
developed from earlier work by Mejia and Rodriguez-Iturbe (1974b) in
which rainfall synthesis is based on the addition of harmonics of
random frequencies sampled from the radial spectral density function
of the rainfall time series. The model and its subsequent development
is designed to synthesize storm events. It considers the direction
and speed of storm movement and also permits inclusion of a radially
symmetric spatial correlation function appropriate for the class of
storm being synthesized, e.g., cyclonic or convective storms. Time
between storms and storm durations are assumed to follow exponential
- distributions.

Although approaches such as that of Bras and Rodriguez-Iturbe
have attempted to introduce some simple physical concepts into the
generation of synthetic storm rainfall events, and their corresponding
storm hydrographs, no parallel work appears to have been done in rela-
tion to data generation at larger time intervals for drought events.

It is well established that droughts are the results of large scale



18

anomalies in the atmospheric circulation and consideration of such
circulation in data generation would appear to be a logical and

necessary step toward improving the currently available tools.



3.0 ATMOSPHERIC DYNAMICS IN WATER RESOURCES PLANNING

The review in Chapter 2 has identified a number of deficiencies
in current techniques in stochastic hydrology. For drought studies
the principal difficulties lie in accurate characterization and syn-
thesis of severe drought. Traditionally, synthetic data generation of
either rainfall or streamflow has relied almost exclusively on param-—
eter estimation from the historic rainfall and streamflow instrument
records. The parameter estimation problems are exemplified by the
large sampling variability of both the lag-one autocorrelation (Wallis
and O'Connell 1972) and the Hurst coefficient (Wallis and Matalas
1970). The generation techniques currently employed also suffer from
a number of problems. These include the continuing problems of pre-
serving the low-lag correlation and Hurst coefficient in multi-site
generation, the apparent inability of models to preserve appropriate
low flow characteristics, and the difficulties of ensuring that syn-

thetic low frequency events are plausible.

The stochastic methods currently employed are little more than
"black boxes." The techniques are blind to our knowledge of both the
processes giving rise to the time series of interest and the known
physical limits on the processes. As a simple example, many sto-
chastic methods (e.g., the Thomas-Fiering model) can generate negative
rainfall amounts or excessively large rainfall amounts which are phys-
ically unreasonable. The question I wish to answer in this research
is whether or not our knowledge of the atmospheric processes con-
trolling precipitation can be used to better define the probability

distribution of precipitation and so aid in the planning process.

3.1 Related Cross-Disciplinary Research

Researchers in water resources and the atmospheric sciences do

not have a strong tradition of co-operation even though it is clear
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that much work in the atmospheric sciences may have profound impli-
cations for water resources planning. Only in one area, the study of
severe storms, has there been a reasonable transfer of knowledge
leading to the development of hydrometeorology as a specialty field
for such problems as spillway design. Other areas of concern in the
atmospheric sciences, such as climate reconstruction and theories of
atmospheric circulation, may have received recognition by hydrologists
and water resources planners, but little has been done to incorporate
this knowledge in practice. The apparent assumption inherent in the
majority of work by hydrologists is that the historic instrument
record contains all necessary information pertaining to the relevant
meteorological variables.

Increased use of the atmospheric sciences in water resources
planning has recently been advocated in a seminal paper by Kilmartin
(1980). Kilmartin drew attention to the anomalous period of instru-
ment record on which many water resources projects are based. He
pointed out that the streamflow record over much of the world is
rarely more than 60 years in length, and commonly the record is less
than 20 years. The last 80-100 years in many parts of the northern
hemisphere have been, however, among the warmest and wettest in the
past 1000 years with a temperature maximum in about 1940, Much of the
available streamflow record may therefore have been affected by what

appear to be unusual climatic conditions.

While climate change of this nature is not the concern of this
research, the fact that the recent climate may not be representative
of the future has serious implications in water resources planning.
For stochastic hydrology, the implication is that historic streamflow
and rainfall are by themselves inadequate indicators of future
conditions. Kilmartin reviewed possible tools and techniques that
could be useful in incorporating climatic fluctuations into water

resources planning and emphasized the importance of considering the
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atmospheric processes that might give rise to such fluctuations. In
particular he stressed that severe low streamflow events must stem
from severe precipitation deficits, which in turn are related to and

maintained by "severe, persistent_anomalous behavior in regional, if
not global, atmospheric circulation."

Kilmartin proceeded to review a number of potential relationships
between global circulation patterns and descriptors of climate, such
as rainfall, with emphasis on techniques for back-extension of hydro-
meteorologic records, Of particular interest is Kilmartin's reference
to unpublished work in which regression relationships between monthly
rainfall in Indonesia and surface pressures at Darwin, Honolulu and
Taiwan were used for the back extension of rainfall data and the
fill-in of missing data. Rainfall in Indonesia is influenced by the
Southern Oscillation which, in the cited study, was characterized by
surface pressures at the stations mentioned. Unfortunately, a

detailed description of this work is not available.

Kilmartin's paper appears to be the only detailed discussion in
the water resources literature of the potential role of atmospheric
dynamics in water resources planning. The paper was a review and was,
of necessity, qualitative in nature. It should, however, provide
considerable stimulus to researchers in water resources as it points

out a number of areas of valuable cross-disciplinary research in water

resources and the atmospheric sciences.

3.2 Atmospheric Circulation and Drought

Numerous methods for describing the onset and severity of drought
are available in the water resources field ranging from indices of
s0il moisture deficits to measures of inability to meet water demands

(Yevjevich, et al. 1978). Many definitions are dependent on the use
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to which the water resource is put and quite often are area specific;
clearly a drought in Arizona is hardly comparable to drought in the
Pacific Northwest. For the purpose of this study the term drought
will be used loosely. The main aim is to derive better measures for
the lower tail of the probability distributions of spatial and
temporal rainfall fields. In principle all other measures of drought

can be derived from this information, and the difficulty of a general
definition of drought is avoided.

The mechanisms and patterns of atmospheric circulation which give
rise to drought are area specific. The principal features of the
atmospheric circulation in the mid-latitudes are the circum-polar
westerly flow and the associated large amplitude synoptic scale
disturbances which manifest themselves in the ridges and troughs in
the atmospheric pressure fields. The planetary circulation is highly
asymmetric with the highest winds and the largest temperature and
pressure gradients occurring along a fairly narrow band in the
vicinity of the tropospheric jet stream. The path taken by the jet
stream varies from day to day and from season to season. The ridges
and troughs form a circum-planetary system of waves which generally
move in an easterly direction but may remain stationary or may move
more slowly in a westerly direction. The wave lengths of the
circulation are externally forced by topographic barriers such as the

Rockies and by large thermal gradients such as occur along the sea-ice
boundaries in the high latitudes.

Synoptic scale disturbances, with which frontal type rain storms
are associated, develop as a result of instabilities in the jet stream
flow and are steered by the jet stream. Thus the track of the jet
stream, which can be inferred from contour maps of geopotential height
in the upper atmosphere, gives an indication of the areas most likely
to receive frontal rainfall. More significantly from the point of
view of this study, the location of ridges of high pressure in the

upper atmosphere and at the surface, indicate areas around which the
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major frontal systems are steered. A basic introduction to atmos-

pheric dynamics is given in texts such as Wallace and Hobbs (1977) and
Holton (1979).

A number of observational studies have been made relating preci-
pitation patterns to the position of the jet stream. In one of the
earliest such studies, Starrett (1949) analysed precipitation patterns
over the United States relative to the position of the geostrophic
west wind maxima at 300 mb, Starrett's analysis, covering the period
October 1946 to May 1947, demonstrated that the position of the preci-
pitation maxima tends to coincide with the position of the 300 mb wind
speed maxima. This work also indicates that the influence of the jet
stream on précipitation extends at least 5 degrees latitude (about 500
km) either side of the wind speed maxima. This figure is in reason-
able agreement with both the width of the core of greatest wind speeds

in the jet stream and with the scale of typical frontal storm systems.

Since the 1940's understanding of both the jet stream and its
relationship to synoptic-scale disturbances has greatly improved. An
excellent description of the structure and development of synoptic
scale disturbances is given by Palmen and Newton (1969). Observations
of mid-latitude cyclonic storms show that they generally develop as
frontal waves on the equatorward side of the jet stream later crossing
under the jet stream to the poleward side. The fully developed dis-
turbances reaching the west coast of the U.S.A. from the Pacific are

thus generally slightly poleward of the jet- stream.

The relationship between regional patterns of precipitation and
atmospheric circulation is well illustrated by a comparison of condi-
tions on the west coast of the United States for the months December
1960 (Gelhard 1961) and February 1961 (Stark 1961). Figure 3.1 shows

the mean 700 mb height contours over the western hemisphere north of
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20 degrees north and the departures from normal of precipitation at
selected sites along the west coast of the United States for December

1960, Figure 3.2 shows the comparable conditions for February 1961.

Although the jet stréam cannot be identified at the 700 mb level,
December 1960 (Figure 3.1) saw the development of a strong ridge of
high pressure along the west coast with meridional flow and a
persistent northerly jet stream track steering cyclonic storms into
the Gulf of Alaska. As a consequence precipitation along the south

coast of Alaska was substantially above normal whereas the Pacific
Northwest was much drier than normal.

In contrast to December 1960, February 1961 (Figure 3.2) had
strong zonal flow with a persistent jet stream track somewhat to the
south of its mean position. This resulted in a succession of frontal
systems crossing the Pacific Northwest bringing near record precipi-

tation to the area. Precipitation in Alaska and California remained

near normal.

The climate and weather of the mid-latitudes is thus associated
to a large extent with the position of the jet stream track and with
the position, movement and amplitude of the troughs and ridges in the
atmospheric pressure field. Anomalous conditions in the atmospheric
circulation are reflected in anomalous climatic or weather conditions.
It is the persistence in departures from the normal pattern of circu-

lation which are the primary cause of drought and which are thus of

primary interest in water resource planning.

For a detailed study of the relationships between circulation and
precipitation, I will concentrate on conditions along the west coast
of North America with particular emphasis on drought in the Pacific
Northwest, i.e., from northern Oregon to southwest Alaska. This
region was chosen for a number of reasons. Firstly, from a technical

point of view, the climate of the area and its relation to atmospheric
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circulation is well understood in a qualitative sense. The climate is
also relatively homogeneous, i.e., probably more than 95 percent of
the precipitation in the region is associated with frontal systems,
and the flow is predominately westerly from a single source of mois-
ture. Finally, relatively high quality precipitation data are avail-
able in the area. This is particularly true of southern British

Columbia where a number of long (90 year), high quality rainfall
records are available,

In considering drought on the west coast, it is instructive to
examine historic events. Of particular interest are analyses of
recent drought years by Namias (1978a, 1978b) and Edmon (1980).
Namias' principal interest in his papers is in attempting to relate
anomalies in sea-surface temperatures to climatic anomalies. Although
complex global interactions between ocean and climate probably exist,
findings thus far are controversial and must be regarded as tentative.
However, Namias' papers demonstrate the qualitative relationships
between drought and atmospheric circulation. Namias (1978b) analyzes
the 700 mb geopotential height field for the winter of 1975-1976 and
shows the expected relationship between a high pressure ridge over the
California coast and substantial rainfall deficits in California. The
winter 1975-1976 drought extended from about Los Angeles to Southern
Oregon. Rainfall in Washington, British Columbia, and southern Alaska

were somewhat above normal indicating a persistent northerly Jjet
stream track.

Edmon (1980) undertakes an extensive analysis and comparison of
the structure of climatic anomalies over the northern hemisphere
during the winters 1976-1977 and 1977-1978. On the west coast of the
U.S.A. the precipitation patterns during the two winters différed
markedly. During 1976-1977, drought extended from southern California
to southern British Columbia, and wetter and warmer than normal condi-
tions prevailed over northern British Columbia and southern Alaska.

In comparison, the winter of 1977-1978 had unusually heavy rainfall in
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California and extremely dry conditions from southern Washington to
the Gulf of Alaska. Edmon again shows the relationship between the
conditions described above and the track of the jet stream. During
the winter of 1976~1977 the jet stream persistently followed a
northerly track causing drought in the U.S.A. and during the winter of
1977-1978, it followed a southerly track. Thus as pointed out
earlier, persistent deviations of the jet stream from its normal
position and the dynamics of high pressure blocks are crucial in

determining climatic fluctuations on the west coast.

Meteorologists have recognized for some time that certain
patterns of weather tend to exhibit persistence or tend to recur.
This has led to the development of classifications of weather types
such as that presented for North America by Elliott (1951). The
reasons for the establishment and persistence of particular circu-
lation patterns are of course of great interest since the ability to
forecast circulation for some months ahead, even qualitatively, would

be of considerable value in long~-range weather forecasting.

The high pressure blocks that recur over the central and east
north Pacific and north Atlantic Oceans are of particular interest in
this respect. Rex (1950, 1951) undertook an extensive study of
blocking situations over the Atlantic and Pacific using approximately
14 years of data. For blocks over the Atlantic, Rex gave estimates
for the duration of blocking action, for seasonal variation in
blocking activity and for the location of blocks. The analyses showed
an average duration of a block as about 17 days with an extreme
duration of 41 days., These figures are however, highly dependent on
the exact definition used for a block. They do not necessarily give a
good indication of the duration of dry periods particularly since Rex
did not consider the time interval between blocks. Rex compared
precipitation patterns over Europe during periods of blocking with
precipitation patterns obtained for periods of strong zonal flow, and

as we would expect from the earlier discussion, showed rainfall
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substantially below normal downstream of a block and substantially

above normal in regions subject to strong zonal flow.

A similar study of blocking activity over the cental north
Pacific has been carried out by White and Clark (1975) using 20 years
of monthly mean 700 mb data. They showed blocking activity with
durations in extreme cases of about three months but again did not
explicitly consider the interval between blocks.

Various mechanisms have been suggested to explain the initiation
and maintenance of blocks. For example Rex (1950) attempted to use a
mechanism similar to a hydraulic jump as an analogy in explaining the
development of blocks. In a more general sense several decades of
work in the atmospheric sciences (e.g. Namias 1975) show complex
global interactions between sea surface temperatures and planetary
circulation, but the true cause/effect relationships between sea
surface temperatures and features such as blocks are still unknown,

and the present prognosis for accurate long-range forecasting is poor
(Newell 1979).

3.3 Atmospheric Dynamics and Stochastic Hydrology

The qualitative relationships between atmospheric circulation and
patterns of precipitation discussed in Section 3.2 have a number of
implications for stochastic hydrology, particularly in terms of
characterizing inter-station precipitation relationships. As noted
earlier drought over a particular region implies a persistent jet
stream track steering frontal systems around the area affected by
drought‘and bringing unusually heavy precipitation to some other
distant region. Thus physical considerations indicate negative cross
correlations at large distance, at least for the severe events of most

interest in water resources planning.
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The inter-station relationships are complicated both by the time
scales of interest and by the extent of the region under study. It is
clear that drought is a much larger scale phenomenon than the frontal
sSystems which bring rain to the west coast. It is also clear that
drought is a much more persistent phenomenon than the transitory
frontal systems. We should therefore expect inter-station cross
correlations to be higher during‘periods of drought than during normal
or wet periods. This is perhaps obvious for 5-day precipitation
depths at stations 100 km apart, for example; but it is not obvious

for the monthly or annual intervals of principal interest in sto-
chastic hydrology.

Consideration of the qualitative precipitation/circulation
relationsips may also provide a subjective tool for assessing the
reasonableness of synthetic multi-site precipitation sequences. We
must be able to assign a plausible circulation pattern to any syn-
thetic sequence. If this is not possible, then there seems to be no

Justification for using such a sequence for design purposes.

The reasons for the onset and maintenance of the anomalous
atmospheric conditions associated with drought are clearly beyond the
scope of this research. The concept of multiple equilibria states,
however, currently under investigation in the atmospheric sciences
provides a potentially attractive framework for incorporating

consideration of atmospheric dynamics into water resources planning.

In attempts to explain the observed persistence of weather
patterns, such as droughts, meteorologists have suggested that the
atmosphere may exist in one of a number of possible equilibrium or
quasi-stationary states. Numerical experiments by Charney and DeVore
(1979) show that topographic forcing (i.e. interactions between
atmospheric circulation and the earth's topography) may produce two
possible equilibrium states, one a predominantly meridional flow with

a strong wave component and a relatively weaker zonal component; the
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other a predominantly zonal flow with a weak wave component. It is
hypothesized that the atmosphere exists in one of its possible
multiple-equilibria states until large enough changes occur in

external forcing (e.g., thermal gradients) to flip the circulation
into another state.

The previous discussions have already shown that zonal flow is
associated with wet conditions and meridional flow with dry condi-
tions. There is thus an indication that rainfall over the Pacific
Northwest may be represented as coming from two distributions condi-
tioned on the state of the atmospheric circulation; wet conditions
prevailing with zonal flow and dry conditions with meridional flow.
This scenarid together with the conjectured nonlinearities in the
cross correlation structure therefore suggests that point and regional

rainfall may be modeled better by sampling from mixed distributions.

The following chapters attempt to put the qualitative arguments
of this section on a more quantitative basis. In the next chapter,
the cross correlation structure of precipitation along the west coast
is investigated in detail and in Chapter 5 quantitative relationships
between atmospheric circulation and precipitation are explored. The

use and characteristics of mixture models are discussed in Chapters 6
and 7.



4.0 ANALYSIS OF MULTI-SITE PRECIPITATION DATA AND EVALUATION OF
CURRENT MULTI-SITE STOCHASTIC MODELS

One of the primary motivations for this work is my belief that
the current generation of stochastic models is unable to represent the
true spatial nature of drought especially over large regions. These
difficulties can be attributed directly to the inadequacy of the

linear cross correlation as a measure of inter-station relationships.

An unquestioning belief in the value of the cross correlation
coefficient for expressing inter-station relationships seems to have
developed in the water resources field. Whereas considerable effort
has been expénded in studying the autocorrelation function for single
hydrologic time series, particularly in relation to the Hurst
phenomenon, little work has been done in assessing the adequacy of the
traditional cross correlation coefficients for annual or monthly time

series where inter-station distances are large (in excess of 200 km).

It is fairly well established that the cross correlation of
rainfall depths in convective and cyclonic storms can be represented
by some kind of symmetric function which decays exponentially with
distance from the storm center (e.g. Eagleson 1967). Similar
assumptions have been made for annual and monthly rainfall depths. An
extensive analysis of inter-station correlations for annual rainfall
has been made by Caffey (1965) for stations in the U,S.A and Canada up
to 2000 km apart. Caffey's analyses show the cross correlation
decaying to zero with distance and "fluctuating randomly about zero
beyond some distance."” The impression given in this and other work is
that negative correlations have no physical meaning in rainfall data;
they are simply an outcome of sampling variability. Indeed there is a
tendency, based on sample size considerations, to regard negative or
small positive (<0.3) correlations as indicative of independence.
Certainly the statistical tests available indicate that such corre-

lations are generally not significantly different from zero. For
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example, with a sample size of 100 from a bivariate normal distri-
bution, a correlation coefficient of *0.3 is not significantly
different from zero at the 10 percent level. However, as will be
shown in this chapter, small or negative correlations may be indic-
ative of a more complicated nonlinear structure which may be related

qualitatively to features of the large-scale atmospheric circulation.

4.1 Analysis of Multi-site Annual and Monthly Precipitation Data

) Monthly and annual precipitation data from seventeen stations
along the west coast from southern California to the Gulf of Alaska
were obtained for analysis. The stations are listed in Table 4.1 and
their locations are shown on Figures 4.1 and 4.2, In all cases a
record length of 32 years was used from October 1947 through September
1978. This period was chosen to cover a whole number of water years
and to coincide with the available 500 mb geopotential height data
used in Chapter 5.

Basic statistics for the monthly data from selected stations are
shown in Table 4.2 and the monthly cross correlation coefficients are
shown in Table 4.3. The variation of cross correlation with distance
from selected base stations is shown for January data in Figure 4.3.
Basic statistics for the annual (water year) data are shown in Table
4.4 and the annual cross correlation coefficients are shown in Table
4.5. The variation of annual cross correlation with distance is shown
in Figure 4.4 for selected stations.

The cross correlations at both monthly and annual time intervals
show a consistent pattern of variation with distance as typified by
Figures 4.3 and 4.4. The most notable feature of these figures is the
consistent negative correlation at large distances. Negative
correlations along the west coast may be explained by considering the

large scale circulation patterns discussed in the previous chapter.
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For example, very dry conditions at Eureka are generally associated

with a persistent northerly jet stream track and hence unusually wet
conditions in the Gulf of Alaska. Thus negative correlations have a
physical basis and are not necessarily a feature of sampling

variability.

Another aspect of interest in Table 4.3 is comparison of cross
correlations in winter and summeftmonths. For example a comparison of
January and July cross correlations shows that in general cross
correlations in July are weaker than those in January and the
variation of cross correlation with distance does not show the same
degree of consistency. This is particularly true for cross
correlations with stations in California. Again this feature can be
explained qualitatively by considering the large scale atmospheric
circulation for the winter and summer months. Circulation in summer
is generally much weaker than in the winter months; zonal upper-level
winds are weaker; rainfall is associated with small frontal systems
and the exit region for the jet stream is ill-defined. A further
complicating feature, especially for the California stations, is the

large proportion of months with no rainfall.

Returning to the January data we have noted that negative cross
correlations at large distances are physically reasonable. However,
as pointed out earlier, the inter-station relationships may have a
complex nonlinear structure and the simple cross correlation may not
be an appropriate measure of dependence. This problem is illustrated
in scatterplots for the January and the annual data shown in Figures
4,5 and 4.6.

Figure 4.5a shows the scatterplot of January data for Port Hardy
vs. Eureka (separation 1300 km). The cross correlation is 0.10.
However, this value is greatly influenced by the widespread droughts
of January 1949, 1963, and 1977 which appear as a cluster of points in
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the bottom left of the plot. Elimination of these points would give a

slightly negative cross correlation.

A similar feature, though not as pronounced, is apparent in the
scatterplot for Vancouver vs. Eureka (separation 1000 km) in Figure
4.5b. As the separation between stations decreases the assumption of
linearity between rainfall depths at the two stations improves.

Figure U4.5c shows the scatterplot for Centralia vs. Eureka and at this

4

separation (700 km) the assumption of linearity would seem reasonable.

It is evident in Figures 4.5a to 4.5c¢c that the scale of
meteorologic phenomenona is important in determining the nature of
inter-statioh relationships. Frontal systems on the west coast may
affect stations up to 500 km apart whereas drought may affect stations
up to 2000 km apart. In Figure 4.5a (station separation 1300 km)
rainfall depths during normal or wet conditions at either station are
essentially uncorrelated at the monthly interval. This is because (1)
station separation is large in comparison to the size of frontal
systems. (2) Frontal systems pass through the region in three to
five days thus the rainfall in one month may be made up of contri-
butions from a number of storms. (3) Apparently random fluctuations
in the position of the jet stream track can move frontal systems
several hundred kilometers north or south of the mean monthly position
without greatly affecting the predominant pattern of circulation. In
contrast, severe drought often extends from central California to
southern Alaska and thus drought conditions may be expected to occur

simultaneously at both Eureka and Port Hardy.

The inter-station relationships appear to become even more
complicated as station separation is further increased. Figure 4.5d
shows the January scatterplot for Sitka vs. Eureka (separation 2200
km). In this case, as discussed in Chapter 3, drought in California is
associated with a persistent northerly jet stream track and wet

conditions in the Gulf of Alaska. Similarly a persistent southerly
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jet stream track brings wet conditions to the Pacific Northwest and
northern California and predominantly dry conditions in the Gulf of
Alaska. Thus extreme wet or dry conditions are negatively correlated
but it appears that normal conditions are essentially uncorrelated.
Very similar phenomena appear in the annual (water year) scatterplots
for Eugene vs. Cordova (Figure 4,6a, separation 2500 km) and Vancouver
vs. Cordova (Figure 4.6b, separation 1900 km).

The scatterplots shown here demonstrate nonlinearities in the
inter-station rainfall relationships, which can be attributed
qualitatively to features of the large scale atmospheric circulation.

The significance of these nonlinearities in stochastic hydrology is,
however, unclear and is explored in the next section.

4.2 Scale and Dimensionality Problems in Multi-site Stochastiec
Precipitation Models

As indicated earlier, all current multisite stochastic models use
the simple linear cross correlation to express interstation
dependence. A typical approach to multi-site data generation is to
transform the historic data at individual sites such that the
distributions of the transformed data are normal. It is then assumed
that the transformed data are in fact from a multivariate normal
probability distribution and an appropriate scheme is adopted to
sample from the multivariate population maintaining a suitable serial
correlation structure. The inverse transform is then applied to the

synthetic data at the individual sites to return to the natural
distributions.

Irrespective of the details of the generation scheme, I suggest
that the models currently in use for monthly or annual multi-site
rainfall generation may suffer from two possible deficiencies. Iwill

term these the "scale" effect and the "dimensionality" effect.
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The scale effect was illustrated in Section 4.1. The term refers
to the problems of modeling drought at widely separated points where
joint occurrences of drought are to be expected but where normal or
wet conditions are essentially independent. The averaging of the
correlation structure in wet and dry periods will result in synthetic

drought sequences which are less severe than those found in nature.

The problem of dimensionality is also related to the large areal
extent characteristic of drought, and is concerned with the diffi-
culties of ensuring that severe synthetic droughts occur concurrently
at all necessary points in the study area. The problem is perhaps

best illustrated by means of a rather artificial example.

Suppose that we are interested in generating data at a number of
sites in a relatively small region such as western Washington.
Further, suppose for simplicity that all sites have zero cross corre-
lation. Now define a severe drought as a situation where rainfall is
more than one standard deviation below the mean at any site. We are
interested in the joint probability of severe drought at 2, 3, 4,...,n

sites, Assuming a multivariate normal distribution we have:

P(drought at 1 site) = 0.16
P(drought at 2 sites) = 0.16% ~ 0.026
P(drought at 3 sites) = 0.163 ~ 0.004

P(drought at n sites) = 0.16"

In this situation the probability of joint occurrences of drought
at multiple sites rapidly becomes extremely small, whereas we know
that drought frequently affects large regions, and the probability of

Jjoint low events at many sites in such a region should not be negli-
gible.
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This example is clearly unrealistic in that I have assumed zero
cross correlations. This assumption was made because of the diffi-
culty of calculating the required joint probabilities for more realis-
tic correlation matrices. However, the point I wish to make is that
even given a realistic correlation structure, there is no mechanism in
current models to ensure that drought occurs concurrently at multiple
points. I conjecture that this again results in synthetic drought
sequences which are less severe in areal extent than those found in

nature.

The purpose of this section is to evaluate the multi-site
characteristics of synthetic drought sequences by comparing synthetic
with historic data and to determine the extent and- severity of the

scale and dimensionality problems referred to above.

4.2.1 Evaluation of Scale Effects

Evaluation of the scale effect in multi-site modeling was
undertaken using the January monthly precipitation record of 32
observations from Eureka and Port Hardy. The location of these sites

was shown in Figure 4.1,

January data alone were used to simplify the evaluation and also
because the primary concern in the study is in winter precipitation.
Most major water resource facilities on the west coast rely heavily on
snowmelt from winter precipitation and thus deficits in winter pre-
cipitation are of principal interest. The basic statistics for the
January data at Port Hardy and Eureka were shown in Tables 4.2 and 4.3
and a scatterplot of the data was shown in Figure 4.5a. The serial
correlation for the January data at the two sites is also of interest
and this is shown for lags of 1 through 4 in Table 4.6.
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Table 4.6 January Serial-correlations at Port Hardy and Eureka

Lag
Site 1 2 3 y
Port Hardy 0.185 -0.053 -0.004 -0.135
Eureka 0.189 0.351 0.140 0.096

The serial-correlations for both the January data and annual data
are small. Note that the lag two January correlation at Eureka of
0.351 is probably the result of sampling variability as there is no
obvious reason why the lag two correlation should be greater than the
lag one correlation. Moreover, our principal interest is in the
spatial characteristics of the synthetic series in expectation. Thus
the January data, after suitable transformation, will be assumed to be

independent samples from a bivariate normal population.

Cumulative distribution functions for the Port Hardy and Eureka
data are shown in Figure 4.7 along with fitted three parameter log
normal (LN3) distributions. The LN3 parameters were chosen to provide
a good fit over the lower quantiles to ensure that low events at the
individual sites would be represented properly in the synthetic data.
The LN3 were fitted by the mixed maximum likelihood/quantile method
suggested by Stedinger (1980) with some adjustment of the sample

quantiles by eye. The parameters of the fitted distributions are
given in Table 4.7.

Table 4.7 LN3 Parameters for January Precipitation Data
at Port Hardy and Eureka

Station Transformation uy oy a
Port Hardy y = log(x - a) 7.784 0.0436 -2187
Eureka y = log(x - a) 7.314 0.0676 -1317
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The LN3 distributions give a reasonable fit to the data at both
sités, thus the transformations

y = log(x-a) (4.1)

where

<
n

transformed data N(uy.oy)

[+
[[]

shift parameter

td
"

raw data LN3 (ux.cx.a)

allow the data to be treated as samples from a bivariate normal. The
correlation coefficient of 0.1 was estimated by moments from the raw
data (Table 4.3). The correction to the cross correlation to account
for the log ﬁransformation (Mejia and Rodriguez-Iturbe 1974a) was
found to be negligible.

Since the serial correlation structure is of no interest, the
generation scheme in the log domain can take the particularly simple
form (Matalas 1967):

Y. =B + By (4.2)
where ¥, = (n x 1) matrix containing synthesized data in the
transformed domain at time t with the normal distribution
N(“y'oy)
u = (n x 1) matrix containing the means of the series in the
- transformed domain
&, = (n x 1) matrix whose elements are independent identically
distributed samples from the normal N(0,1) distribution
B = (n x n) matrix such that
B8 = M
M = lag-zero covariance matrix in the transformed domain
n = number of sites
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The matrix B was found from the relationship EE?

= M using a
Choleski decomposition (Pinder and Gray 1977). The inverse transform

applied to xt returns synthetic data to the natural domain.

The procedure used for evaluating the multi-site characteristics
of the above model was through Monte Carlo simulation. For Port Hardy
and Eureka 3200 years of synthetic January data were generated. This
corresponds to one hundred 32-year sequences (recall that the historie
record was 32 years in length). The 10, 15, 20, 25,... 50 percent
quantiles for the two synthetic sequences were determined and then
joint occurrences were counted in which both sites had rainfall less
than or equal to their respective 10, 15, 20... 50 percent quantiles.
These counts were divided by 100 to give an estimate of the expected
number of joint occurrences in a period of 32 years. These data and
the corresponding data from the 32 year historic record are shown in
Figure 4.8.

12
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Figure 4.8 Occurrences of joint low events at Port
Hardy and Eureka for historic and
synthetic January data
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The dotted line in the figure shows the expected number of syn-
thetic events‘in 32 years plus one standard deviation and gives an
indication of the variability in the number of synthetic joint occurr-
ences in a 32-year period. Since the distribution of the number of
joint events in 32-year periods of synthetic data is highly skewed at
the low quantiles, the standard deviation as a measure of variability
is somewhat misleading. Consequently, the actual numbers of joint
events in the one hundred 32-year periods comprising the synthetic
record are given in Table 4.8 for various quantile levels. For ex-
ample, the table shows that of the one hundred 32-year periods in the
synthetic sequences there were 60 periods with no events in which
rainfall at both sites was concurrently below the 10 percent quantile

and 37 periods in which there was one such event.

Table 4.8 Occurrences of Joint Low Events in January
Synthetic Record for Port Hardy and Eureka

Number of 32-year Synthetic Sequences Having n Joint

Percentile Events Less Than or Equal to Quantiles qp
p n 0 1 2 3 by 5 6 7 8
10 60 37 3
15 36 41 20 2 1
20 18 34 30 13 3 2
25 10 22 24 26 12 2 3 0 1
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For comparative purposes Figure 4.9 shows a similar plot for
joint occurrences where both sites had rainfall greater than their
respective 10, 15, 20,..., 50 percent quantiles. The sensitivity of
the result in Figure 4.8 to changes in the cross correlation coeffic-
ient was investigated by repeating the experiment with values of the
cross correlation of 0.2 and 0.4, The results of these experiments

are shown in Figure 4.10.

Figures 4.8 and 4.10 demonstrate, as expected, that the model
used cannot produce droughts as severe in areal extent as those found
in the historic record from Port Hardy and Eureka. The statistical
significance of these results is very difficult to determine in view
of the low power of statistical tests, the short record available to
us, and possible errors in fitting the marginal distributions.
However, in expectation we would like the synthetic data to replicate
reasonably closely the joint characteristics of the historic data.

The model clearly fails to meet this goal. A useful measure of the
lack of fit is the return period of severe joint events. The historic
data indicates that joint events less than the 10 percent quantile
have a return period of approximately 16 years. The synthetic data in
contrast indicates a return period of T4 years. This is a major
discrepancy from any viewpoint and could clearly have an important
effect on projects with inter-connected components separated by large
distances (> 1000 km). This of course raises the question of the
practical significance of the result. Water and hydro power transfers
currently take place between northern and southern California
involving distances in excess of 1000 km. Hydropower transfers along
the Pacific Intertie between Washington and southern California
involve distances in excess of 1800 km. Similar hydropower transfers
between southern Alaska and the lower states of the U.S.A. will become
feasible in the future. Thus the results presented here have a future

practical significance for the design of large projects.
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4.2.2 Evaluation of Dimensionality Effects

Evaluation of the conjectured dimensionality effect in multi-site
modeling was again undertaken using 32 years of monthly January data
from a network of seven sites in western Washington and southern
British Columbia. These sites were Victoria, Vancouver, Sedro Woolley,
Snoqualmie Falls, Longmire, Kid Valley and Centralia. The locations
of the sites are shown in Figure 4.2. The basic statistics for the
January data are given in Table 4.9 and the January cross correlation
matrix is shown in Table 4.10. Inspection of Table 4.10 and Figure
4,2 shows that at this scale, there is no consistent variation of
cross correlation with distance except that stations very close to-
gether (e.g. Centralia and Kid Valley) have much higher cross corre-
lations than other stations. Scatterplots for selected pairs of
stations are shown in Figures 4.11. These, in common with scatter-
plots for the other stations, show no obvious patterns of nonlinear-
ity. The January serial correlations for the seven sites are all
small (between -0.1 and +0.1) and thus, as in Section 4.2.1 the
January data, after suitable transformation, will be assumed to be

independent samples from a multivariate normal population.

Cumulative distribution functions for the seven sites are shown
in Figure 4.12 along with fitted three parameter log normal (LN3) dis-
tributions. As in Section 4.2.1 the LN3 distributions were fitted
using the mixed maximum likelihood/quantile method (Stedinger 1980).
The parameters of the fitted distributions are given in Table 4.11.

After the appropriate LN3 transformation the data may be assumed

to be samples from a multivariate normal and the serial independence
of the data again allows use of the simple generation scheme:

lt = E-Et +-Ey
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Table 4.9 Basic Statistics for January Precipitation Data (in mm)
at Seven Sites in the Pacific Northwest 1947-1978

Station Mean St. Dev. Skew Maximum Minimum
Victoria 112.4 54,4 1.07 293.0 20.4
Vancouver 152.1 57.6 -0.33 260.7 18.3
Sedro Woolley 151.0 73.8 1.1 401.3 17.5
Snoq. Falls 231.0 102.0 0.28 496.1 50.5
Longmire 346.4 176.6 0.24 681.5 59.7
Kid Valley 220.6 110.3 0.13 usT7.7 32.5
Centralia 186.3 86.7 -0.10 352.8 25.9

Table 4.10 Cross Correlations for January Precipitation Data
at Seven Sites in the Pacific Northwest 1947-1978

>
[}
~ )]
Laal — >
1% o) ~ v _2
3 2 g S : 3 £
~ = o o] 3]
o) o) o] . = = j
4 (3} — o to f)
o £ ) o o 3 £
s S 3 & 3 v 3
Victoria 1.00 .66 .53 .83 .75 .75 LT7
Vancouver 66 1.00 .59 .69 .53 .61 .63
Sedro Woolley .53 .59 1.00 .62 .12 .62 .60
Snoq. Falls .83 .69 .62 1.00 .90 .92 .91
Longmire .75 .53 .72 .90 1,00 .91 .89
Kid Valley .75 .61 .62 .92 .91 1.00 .96
Centralia L7 .63 .60 .91 .89 .96 1.00

Table 4,11 LN3 Parameter for January Precipitation Data
at Seven Sites in the Pacific Northwest

Station Transformation uy Oy a
Victoria y = log(x - a) 5.305 0.252 -95.5
Vancouver y = log(a - x) 5.852 0.163 504.7
Sedro Woolley y = log(x - a) 5.661 0.239  -144.7
Snoqualmie Falls y = log(x - a) 7.089 0.045 -971.6
Longmire y = log(x - a) 7.314 0.116 -1165
Kid Valley y = log(x - a) 7.951 0.0388 -2620
Centralia y = log(a - x) 8.419 0.0191 4719
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where the symbols are as defined in Section 4.2.1. Corrections to the
cross correlation matrix to account for the log transformation were

again found to be small with the largest correction being 0.024.

The Monte Carlo procedure for evaluating the "dimensionality"
effect was very similar to that described in Section 4.2.1. For the
seven sites 3200 years of synthetic January data were generated. The
10, 15, 20, 25,..., and 50 percent quantiles for the synthetic
sequences at the individual sites were determined and then joint
occurences were counted in which all seven sites had synthetic
rainfall less than or equal to their respective 10, 15, 20,..., 50
percent quantiles. These counts were divided by 100 to give an
estimate of the expected number of joint ocurrences in a period of 32
years. These data and the corresponding data from the historic record
are shown in Figure 4.13. The actual count of the number of joint
events in the one hundred 32-year periods comprising the synthetic
record is also given in Table 4.12. The dotted line in Figure 4.13
shows the expected number of synthetic events in 32 years plus one
standard deviation and gives an indication of the variability in the
number of synthetic joint occurrences in a 32-year period.

Table 4.12 Occurrences of Joint Low Events in January Synthetic
Record for Seven Sites in the Pacific Northwest

Number of 32-year Synthetic Sequences Having n Joint

Percentile Events Less Than or Equal to Quantiles q
p n 0 1 2 3 y 5 6 7
10 63 32 y. 0 1
15 37 4y 15 2 2
20 21 38 22 12 5 0 0 1
25 10 18 33 25 8 3 2
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Figure U4.14 shows a similar plot for joint occurrences where all
sites had rainfall greater than their respective 10, 15, 20,... 50
percent quantiles. Figure u.13rshows that the model used does not, in
expectation, produce droughts as severe as those encountered in
practice. However, the significance of the result is again very
difficult to assess particularly because of the high dimensionality of
the problem and the short historic record.

The occurrence of joint low events at the 21 possible combin-
ations of two sites is shown for the historic and synthetic data in
Table 4.13. The data show an under simulation of joint low events at
approximately 80 percent of the pogsible combinations of sites.

Although the under simulation for combinations of two sites is
slight, the degree of under simulation increases as the number of
sites in the analysis is increased. It is however unclear whether the
increase in under simulation is a direct result of inabilities to
reproduce correctly joint events at each pair of sites, or whether the
hypothesized dimensionality effect does in fact occur.

The sensitivity of the result in Figure 4.13 to changes in the
cross correlation matrix was investigated by increasing all cross
correlations less than 0.75 to 0.75 and repeating the experiments.

The results are shown in Figure 4.15. Even these relatively large
increases in values of the cross correlation coefficients failed to
rectify completely the problem of under simulation either at pairs of
sites or at all seven sites. As may be noted from Figure 4.14, such
adjustments to the correlation matrix must be treated with caution
since they further detract from the model's ability to reproduce joint
high events.

The practical implications of these results are again difficult
to assess but would appear to depend on a number of features including

the dimensionality of the problem, the values of the cross correlation
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coefficients and the degree of development of the water resource.
Thus the problems outlined in this section may have little or no
effect on a study of say seven sites on the Skagit River but could
have serious implications for a study of seven widely separated sites

in the Columbia basin.

The most disturbing feature of the results presented here is that
very few of the synthetic sequences contained more joint drought
occurrences than the historic sequence. For example, Figure 4.13 and
Table Y4.12 show that at the 20 percent quantile, only 6 percent of the
synthetic sequences had more occurences of joint low events than the
historic data. This could result in either a substantial underdesign
of water resource facilities, or equivalently a substantial over-
estimate of the reliability of existing facilities. A true assessment
of these difficulties can only be made by studying the design or
operation of actual water resource systems. This task is beyond the

scope of the current research.

4,3 Concluding Remarks

Consideration of large scale atmospheric circulation patterns and
analysis of a limited amount of historic data both tend to support the
contention that inter-station precipitation relationships are
nonlinear and that the current suite of stochastic models do not
adequately represent the spatial characteristics of drought. It will
be recalled that the analyses are based on only 32 years of January
data from a limited number of sites. Thus it could be argued that
little has been shown other than that the spatial characteristics of
the selected data were not reproduced by the simple multi-site
generation scheme. From a statistical viewpoint, the hypothesis that
the selected data come from the model in Equation 4.2, probably could
not be rejected at any reasonable significance level. However, this

ignores three important considerations:
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(1) Standard statistical tests cannot make use of the
qualitative information relating atmospheric conditions to

nonlinearities in the interstation relationships.

(2) Statistical tests are notoriously weak in conditions such

as those encountered in this work.

(3) The results of this work indicate that use of the
conventional linear models may lead to underdesign of water

resource facilities.

It is clear at least for the two site case of Port Hardy and
Eureka that currently available models seriously under simulate joint
drought occurrences. The principal difficulty with existing models is
that there is no mechanism to control directly the areal extent of
drought. As mentioned in Chapter 3 one possible approach to overcome
this problem is through the use of multivariate mixture models with
conditioning on the state of atmospheric circulation. The possibility
of using atmospheric pressure data for this purpose is explored in the

next chapter.



5.0 RELATIONSHIPS BETWEEN PRECIPITATION AND ATMOSPHERIC CIRCULATION

In the previous chapters I have made use of known qualitative
relationships between precipitation and patterns of atmospheric
circulation. In this chapter I attempt to put these relationships on
a more quantitative footing by analyzing concurrent precipitation and
500 mb geopotential height data. In particular, I wish to determine
if evidence exists to support the hypothesis that precipitation has a
mixed distribution which may be conditioned on the state of the

atmospheric circulation (i.e. zonal or meridional circulation).

As in the previous chapters I will restrict my attention to the
west coast of the U.S.A. with particular emphasis on conditions in the
Pacific Northwest. The analysis will consider relationships between
atmospheric circulation and precipitation both at a point and over an

extensive area along the west coast.

5.1 Data Requirements and Data Sources

Two types of data are of interest--precipitation data and atmos-
pheric pressure data. The latter are appropriate for inferring the

nature of atmospheric circulation in the mid-latitudes.

5.1.1 Precipitation Data

The precipitation data obtained for this study were described in
Chapter U4, Although the analyses in Chapter 4 were restricted to
monthly and annual data, daily data were obtained on magnetic tape for
a number of the stations. This allows analysis at shorter intervals

such as daily or 5-day as is deemed necessary.
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5.1.2 Pressure Data

Basic meteorologic data comprising temperature, pressure, rela-
tive humidity, etc., are collected and processed by the National
Meteorologic Center (NMC) and the National Center for Atmospheric
Research (NCAR). Data are obtained from a wide variety of sources
including upper air soundings, shipping, aircraft, and satellites.
The data series available from NMC and NCAR are summarized by Jenne
(1975).

It is clear from basic meteorological theory and observations
that the atmospheric circulation is driven by and can be inferred from
the three dimensional pressure gradient fields in the atmosphere (see
for example, Wallace and Hobbs 1977 and Holton 1979). NMC uses
models of the atmospheric circulation with the observed meteorologic
data to produce best estimates of pressure data at various levels on
an octagonal grid of 1977 points covering the whole of the northern
hemisphere, north of about 15 degrees north. The octagonal NMC grid
is shown in Figure 5.1. Pressure data available include surface
pressure (mb) and the geopotential height on constant pressure
surfaces at 1000 mb, 850 mb, 700 mb, 500 mb, 100 mb and at other
levels. The data are thus available to describe the complete three

dimensional structure of the atmospheric pressure field.

For a study of this nature such detail is not necessary. As
discussed in Section 3.2 the features of primary interest are the
track of the jet stream and the general pattern of circulation as it
affects conditions at the ground. Surface pressures and the direction
and magnitude of surface winds are both influenced by surface friction
and topography. Moreover, surface pressure distributions cannot be
used to detect the jet stream except perhaps by following the movement
of frontal systems. The jet stream is generally at about the 300 mb
level and at that level the track follows the line of maximum geo-

potential height gradient on that pressure surface. Unfortunately at
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300 mb the pattern of important surface features is lost, and it
becomes difficult or impossible, for example, to follow the movement
of frontal systems. A suitable compromise is the frequently used 500
mb data, i.e. data giving the geopotential heightAof the 500 mb
pressure surface. This can be used both to infer the approximate
position of the jet stream and to track the movement of major
disturbances. Thus the 500 mb data are probably the single most
useful data series for indicating the general pattern of atmospheric
circulation; these data series have been used extensively in
meteorological research. Additionally, the 500 mb series is the
longest upper level pressure series available with continuous records

dating from January 1946.

Analysis of 500 mb, 1000 mb and surface pressures by Blackmon, et
al. (1979) has shown that the atmosphere over the Pacific coast of
North America is generally equivalent barotropic. This in essence
means that pressure perturbations in the ubper atmosphere are in phase
with those at the surface, e.g., a high pressure (low pressure) area
at the 500 mb level overlies a high pressure (low pressure) area over
the ground. This is significant for this project since it confirms
that conditions in the upper atmosphere at 500 mb are indeed a good
indication of what is happening at the surface vertically below. In
other parts of North America. for example the Midwest, disturbances at
the earth's surface are more loosely coupled to disturbances in the
upper atmosphere so that the conditions at 500 mb may not accurately

reflect conditions at the surface.

A second significant feature displayed by Blackmon et al. is the
high correlation between the mean monthly 500 mb height and the mean
monthly 1000-500 mb thicknéss over the west coast. In most areas of
interest for this work the correlation coefficient exceeds 0.9. The
difference in geopotential height between two pressure surfaces,
referred to as the thickness, is directly related to the mean

temperature of that layer. Thus the 500 mb height may turn out to be
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a useful indicator of the nature of precipitation (i.e., rain or snow)

in addition to indicating the pattern of circulation.

The observed barotropic structure of the atmosphere largely
eliminates the need for considering the three dimensional structure of
the pressure field in assessing the circulation pattern. Data at a
single level, above the influence of surface friction, such as the 500

mb level, provide adequate information for this study.

The 500 mb data set obtained for this study starts in January
1946 and runs through February 1979. The data are at a daily interval
for the first nine years changing to twice daily in 1955. The data
series is essentially complete with little missing data. The few data
that are missing were filled in by linearly interpolating between data
on succeeding and preceding days at the same grid point. The twice
daily data were then averaged to produce a daily series with 33 years
of data. The data actually used for analysis are from October 1946
through September 1978, i.e., 32 complete water years of data
concurrent with the available precipitation data.

Obviously data for the entire hemisphere are not necessary in
this study. The height of the 500 mb surface is only used to infer
the nature of atmospheric circulation directly affecting the climate
of the Pacifiec Nbrthwest. Accordingly, only a small number of
stations from the NMC grid were chosen for detailed analysis. Basic
statistics for mean monthly 500 mb geopotential height data from
selected stations are shown in Table 5.1 and monthly cross corre-

lations for selected stations are shown in Table 5.2.

(text continues on p.103)
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Table 5.2 Cross Correlations for Mean Monthly 500 mb

97

Geopotential Height Data

MONTHLY CORRELATION MATRIX

(13,15)
{14,16)
(15,17)
(16,18)
(16,19)
(16,20)
(16,21)
(16,22)
(16,23)
(15,24)

(14,14)

'.3‘

(13,12)

MONTHLY CORRELATION NATRIX

(13,1%)
(14,16)
(15,12)
(16,18)
(16,19)
(16,20)
(16,21)
(16,22)
(16,23)
(15,24)

(13,15)

€14,16)

24
1.00
92
N
.69
37
«36
.02
-.30
-.46

(15,17)

3
.92

90
.80
37
.20
-,20
.43

ocTY

(16,18)

22
44
.92

4
.81
«63
«43
«30
.07

(16,19)

«02
<43

.74

1.00

.73
.84
70
.s‘
34

(16,19)

37
.69
.90

1.00
97
.83
<49
0?7

-.27

(16,20)

'.13
«21
38

93
1.00
96
87
76
36

(14,21)

.02
«3?

<84
.96
1.00
97
90
73

(16,21)

.11
36
37
72
.83
94
1.00
.80
%1
.22

97
1.00
N

1.00
.89
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Table 5.2 Continued

MONTHLY CORRELATION MATRIX DEC

(16,21)
’
?
(13,24)

(13,1%)
(14,16)
(15,17)
(16,18)
(16,19)
(16,20)

(13,19 1.00 .95 .87 .80 .73 .41 .43 .21 -.01 -.30
(14,16) 95 1.00 .97 .%0 .88 .72 .52 .28 -.01 -.33
(13,17 .87 .97 1.00 .97 .93 .82 .82 .33 .04 -.32
(16,18) .80 .90 .97 t.00 .98 .88 .48 .38 .0Y -.33
(16,19) 23 .83 .93 .98 1,00 .96 .81 .35 .27 ~-.18
(16,20) A1 72 .82 .88 .96 1.00 .94 .75 .49 .02
(16,21) A3 .52 .62 .68 .81 .94 1,00 .93 .74 .30
(14,22) 21 .28 .33 .38 .85 .25 .93 1.00 .94 59
(14,23) .01 =01 .04 .09 .27 .49 .74 .94 1,00 .80
(15,2‘) -.30 -.33 =32 -.33 -.18 .02 «30 39 .80 1.00

MONTHLY CORRELATION MATRIX JAN

(13,19
(14,16)
(15,17)
(16,18)
(16,19)
(16,20
(14,21)
(18,22
(16,23)

(13,19 1.00 .91 .48 .43 .25 .03 -.19 -.34 -.41 -.43
(14,18) A1 1,00 .92 .75 W61 A0 16 =06 -.22 .40
(13,12) A8 .92 1.00 .94 .86 .69 .43 .18 -.04 -.34
(‘6',8) -‘3 075 74 l.°° .76 083 .60 .33 .08 -.29
(16,19) 25 61 .86 .96 1.00 .95 .78 .55 .30 -.09
(16,20) 03 .40 .49 .83 .95 1.00 .94 .78 .37 .19
(16,21) 19 .16 A3 60 .78 .94 1,00 .95 .81 .48
(14,22) .34 -.06 .18 .33 .55 .78 .93 1,00 .95 .72
(16,23) -4t -,22 -.04 .08 .30 .57 .81 .95 1.00 .88
(13,24) - 43 -.40 ~-.34 -.29 -.09 .19 .48 .72 .88 1.00
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Table 5.2 Continued

MONTHLY CORRELATION RATRIX FED

(13,15)
(14,16)
(15,17)
(16,18)
(16,19)
(14,20)
(16,21)
(16,22)
(16,23)
(15,24)

(14,14)

-.36

MONTHLY CORRELATION WATRIX

(13,15)
(14,16)
(15,17)
(16,18)
(16,19)
(16,20)
(16,21)
(16,22)
(16,23)
(15,24)

- €13,19)

1.00
.92
.39
17

~.04

-.21

-.36

-.48

-.33

-35‘

(14,16)

.92
1.00
.84
A7
.28
.09
-.07
~.24
.33
-.30

(15,12)

37
.84
1.00
.83
72
«34
«39
17
.03
-.12

(16,18)

36
73
A
1.00
.93
.82
.63
- 41
o21
.12

NAR

(16,18)

(16,19)

40
57
79
93
'Ioo
93
.82
64

07

~ &
3 3
=05 =.25
11 -.12
36 12
43 M
82 .44
75 .82
1.00 .93
95 1.00
82 .9
A9 .68
& W
33
-, 36 -.48
-.09 -02‘
35 .12
46 30
.86 .72
97 .87
1.00 .9
96 1.00
.88 .97
67 .80

1.00

(13,24)
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Table 5.2 Continued

MONTHLY CORRELATION NATRIX APR

(13,185)
(14,18)
(15,17)

]

’

'
(16,21)
(16,22
(16,23)

'

“3"5) 1.00 73 .83 33 32 .08 A2 -.22 -.2% -.27
(14,16) «9 1.00 95 2 50 .25 .02 -.12 -.21 =-.2¢9
(13,17) .83 .95 1.00 .88 .7t .47 .20 .02 -.12 -.2%
(16,18) G371 .88 1,00 94 74 2 26 .08 -.14
(16,19) 32 W30 7t 94 1,00 .92 .73 .83 .33 .07
(16,20) 08 2 .47 74 .92 1,00 .93 .80 .62 .36
(16,21) =12 .02 .20 47 .73 .93 1.00 .98 .84 .42
‘16,22) -.22 -.'2 «02 .26 .33 80 95 1.00 %6 «80
(16'23’ -2 =21 =-,12 .08 «33 42 -84 6 1.00 .72
(13,24) “e27 =29 -.23 -.14 .07 .36 .62 .80 .92 1.00

MONTHLY CORRELATION MATRIX NAY

(13,13)
(14,16)
(15,12)
(14,18)
(16,19)
(16,20)

(16,21)
(16,22)
(16,23)
(13,24

(13,13) 1.00 .91 .84 .24 11 -.03 -.13 -5 -.09 -.14
(14,14) 91 1,00 .87 .51 .35 .16 -.03 -.14 -,18 -.22
(13,17) 44 .87 1.00 .85 .72 .52 .22 .04 -.1t -.20
(16,18) .24 .31 8% 1,00 .96 .81 .58 .32 .08 -.09
(16,19) A1 35 72 .96 1,00 94 D6 31 .25 .04
(146,20) .03 .16 .32 .81 .94 1,00 .93 .75 .50 .27
(16,21) .13 -.03 .27 .38 .76 .93 1.00 .93 .74 .32
(16,22) =13 =14 .04 .32 .31 .75 .93 1.00 .93 .73
(16,23) -.0? -.18 -.11 .08 .25 .50 .74 .93 1.00 .88
(13,24) .14 -.22 -,20 -.09 .04 .27 .52 .73 .88 1.00
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Table 5.2 Continued

MONTHLY CORRELATION MATRIX

(13,15)
(14,148)
(15,17)
(16,18)
(16,19)
(16,20)
(16,21)
(16,22)
(16,23)
(15,24)

(14,16)

(15,17)

.78
1.00

.47

MONTHLY CORRELATION MATRIX

(13,15)
(14,18)
(15,17)
(16,18)
(16,19)
(16,20)
(16,21)
(16,22)
(16,23)
(15,24)

(13,13)

.31
14

(14,14)

94

-89
54

(13,17

JUN

(16,18)

-.09
«33
.83

1.00
94
.83
+ 49
32
3
.03

JuL

(16,18)

.3‘
« 34
.87
1.00
93
73
57
37
I
-.03

1.00
.76
.87
72
A9
o146

(16,19)

l“
«34
49
93
1.00
.93
79
81

07

€14,20)

-.31
'003
47

.96
1.00
97
.86
66
31

(16,20)

Io‘
21
.48
73
.93

8 £
78
44
17

(14,21)

-3
13
31
+6?
.87
97
1.00

.96

.81

47

(14,21)

.04
07
.29
57
79
93
1.00
.92
44
32

(14,22)

.26
-.18
o3
« 32
72
«86
96
1.00
74
+ 43

1.00
36

€14,23)

-.14
-.14
.02
31
49
b6
.81
94
1.00
.83

4

1.00
79

(13,24)

.03
-.0?
-.09

A6
«31
47
«63
.83
1.00

(13,24)

07

1.00
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Table 5.2 Continued

MONTHLY CORRELATION MATRIX AUS

(13,13)
(14,14)

(16,18)
(16,19)
(16,20)

('3,'3) ‘.00 «92 067 «31 05 =17 -.30 .36 -.19 -.37
(14,14) T .92 1.00 .89 54 .22 -,07 -.24 -.32 -.36 -.47
('5,|7) N Y4 .87 1.00 .84 81 24 02 -,12 -.20 -.44
(16,18) 31 54 .84 1,00 .87 .62 .37 21 .06 -.26
(16,19 0% .22 88 .87 1.00 .92 .73 .38 .41 .08
(14,20) =17 =07 .24 .62 .92 1.00 .95 .83 .48 .39
(16,21) .30 -.2¢ 02 .37 .75 .95 1.00 .%% .88 .40
(16,22) .36 -.32 -.12 .21 .58 .83 .96 1.00 .9 .75
(16,23) .37 -.36 -.20 .06 .41 .40 .88 .94 1.00 .83
(13,24) '|37 -0‘7 - 44 '.26 .0. ,3, .‘0 075 o°3 ‘.00

MONTHLY CORRELATION MATRIX SEP

(13,13)
(14,14)
(13,12)

’

’
(16,21)
(16,22)

’
(15,24)

(13,19) 1.00 .72 .48 .27 .18 .04 ~-.0? -.19 -,23 -.21
(""‘) 77 1.00 .70 70 39 .33 40 -,08 -.21 =-.3%
(13,17) 48 .90 .00 .93 .80 .37 .3t .10 -.08 -.31
(16,18) 279 .70 .93 1,00 .93 .72 .46 24 046 -.21
(16,19) 8 .33 .80 .73 t.00 .92 .73 .37 .39 .11
(16,20) 04 33 .57 .72 .92 1.00 .94 .83 .49 .43
(16,21) -.0? 10 31 46 73 94 1,00 .97 .87 .68
(16,22) -.1? -.08 .10 .24 .57 .83 .97 t1.00 .97 .80
(16,23) .23 -.21 -.08 086 .3Y .49 .87 .97 1.00 .90
‘15’2‘) --2‘ --35 -.3' -02‘ 1 A3 o“ .00 090 '-00
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5.2 Precipitation at a Point and Atmospheric Circulation

The analyses in this section are aimed at exploring relationships
between precipitatidn at a point and simple characteristics of the
pressure field. The data used for analysis were daily precipitation
data from Gonzales Heights, Victoria, British Columbia and Snoqualmie
Falls, Washington and pressure data at a small number of points on the
NMC grid surrounding Victoria. The locations of precipitation and
pressure stations are shown in Figure 5.2. Victoria and Snoqualmie
Falls were chosen for this analyis because of the high quality and
reliability of their records. In particular the Snoqualmie Falls data
are known to be representative of regional conditions over parts of
the Cascade range (Rasmussen and Tangborn 1976). The pressure
stations were chosen to allow a reasonable description of the upper
level circulation affecting the area. Note that the pressure stations

are referred to by their coordinates (I,J) .on the NMC grid of Figure
5.1.

The time scale of analysis is a matter of some concern. Since
the primary interest is in low frequency effects, viz., long periods
of the order of months with below normal rainfall, analysis of daily
data is probably not appropriate. As mentioned in Chapter 3, blocking
highs have a mean duration of about 15 days and frontal systems pass
through the Pacific Northwest at approximately 5-day intervals. Thus

analysis of mean 5-day or monthly data may be more appropriate.

The most obvious relationship to investigate at the outset is
that between the precipitation depth at a station and the geopotential
height of the 500 mb surface at that site. Higher than normal
pressures are generally associated with dry weather so it is expected

that a weak inverse relationship may be present.
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Figure 5.3 shows a scatterplot of 5-day January precipitation
depths at Victoria against the mean 5-day 500 mb geopotential height
at Victoria estimated by linear interpolation between data at grid
points (16,17) and (15,18) as:

0.7%Z(16,17) + 0.3%Z(15,18)

where Z(I,J) = geopotential height on the 500 mb surface at NMC grid
point (I,J)

The information in the scatterplot has been summarized by also
plotting on Figure 5.3 estimates of the moving midmeans, moving lower
semi-midmeans and moving upper semi-midmeans. Use of these moving
statistics to summarize scatterplots was introduced by Cleveland and
Kleiner (1975). The midmean is defined as the average of all obser-
vations between the quartiles and is a robust estimate of the mean.
The lower semi-midmean is the midmean of all observations below the
median and the upper semi-midmean is the midmean of all observations
above the median. The semi-midmeans give an indication of the vari-
ability of the data.

The moving statistic curves were obtained using the procedures of
Cleveland and Kleiner as follows: Given Xpeo Yo k=1,...,n, let X,
xm(k)+r to be the r
values of the abscissa which are closest to Xy in terms of absolute

be in increasing order and define xm(k)+l""’

deviation.

Define X, = (xm(k)+1""'xm(k)+r)

Y = Unyer Ymk)er)

Let Sgk) = midmean (?k)
Sz(k) = midmean (yk)
YA =

K YV - Sz(k)
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Define z = (z

Kk m(k)+1""'zm(k)+r)

Let S1(k) = lower semi-midmean (Ek) + S2(k)
83(k) = upper semi-midmean (Ek) + Sz(k)

Then the curves on Figure 5.3 are plots of
S1(k) vs So(k) - moving lower semi-midmean
Sz(k) vs So(k) - moving midmean
Sz(k) vs So(k) - moving upper semi-midmean

The smoothness of the curves depends on the value of r. 1In
Figure 5.3 a value of r = 29 was used. A higher value would have
resulted in smoother curves but would not have changed their general
form. The moving statistics on Figure 5.3 show that for 500 mb
geopotential heights less than 5500 m there is no relationship between
pressure and precipitation. Above 5500 m, however, there does appear

to be a slight inverse relationship with lower rainfall associated
with higher pressures.

Figures 5.4a and 5.4b show scatterplots of monthly precipitation
depths at Victoria against the mean monthly 500 mb geopotential height
at Victoria for January and July respectively. As with the 5-day
plots the geopotential height at Victoria is estimated as:

0.7T%Z(16,17) + 0.3%Z(15,18)
where Z(I,J) = 500 mb geopotential height at (I,J)

The scatterplots show that in January (Figure 5.4a) there is
essentially no relationship between precipitation and geopotential

height, while in July (Figure 5.4b) there is a weak inverse
relationship.
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Cross correlations of monthly data for Victoria precibitation
against geopotential height (0.7%#Z(16,17) + 0.3*Z(15,18)) and
Snoqualmie Falls precipitation against geopotential height 2(16,17)
are shown in columns 1 and 3 of Table 5.3 (see Figure 5.2 for station
locations). The data indicate somewhat stronger inverse relationships
for the Snoqualmie Falls data than for the Victoria data. This effect
may be a result of the position of the Victoria site in the rainshadow
of the Olympic Mountains. A second factor may be the linear inter-
polation used to estimate the 500 mb height at Victoria. The 500 mb A
surface is known, however, to be quite smooth and the method of inter-
polation is not believed to be particularly important. Another
feature apparent from Table 5.3 is that correlations between precipi-
tation and pressure are consistently higher in the summer and fall
months (May through November) than in the months December through

April. One possible explanation for this feature will become apparent
later in this section.

The relationship between precipitation and pressure is clearly
quite weak in this instance particularly in the important winter
months. This is probably because the pressure at a point or the
average pressure over a number of grid points does not indicate the
nature of the atmospheric circulation. A better approach may be to
assume that winds at the 500 mb level are geostrophic and are repre-
sentative of the circulation in the troposphere. The approximate
horizontal equations of motion for an air parcel can be written using
Newton's Second Law (e.g. Wallace and Hobbs 1977):

da . __13p
dt fv p 9x + Fx

(5.1)
dv 13 +F

dt p dy
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where x = eastward distance , measured along a latitude circle
y = northward distance measured along a longitude circle
u = horizontal'velocity in x-direction
v = horizontal velocity in y~direction
f = Coriolis parameter = 20 sin ¢
where §! = angular velocity of earths rotation
¢ = latitude
P = density
p = pressure

F = frictional forces

For synoptic scale systems'the acceleration terms are generally small
compared with the other terms in the above expressions. Also at the
500 mb level, frictional terms are sufficiently small that they may be
neglected leaving the geostrophic wind equation in isobaric coordi-
nates at 500 mb is:

10939 _goz
Ve © f ox

(5.2)

where Vg' ug the northward and eastward components of geostrophic

wind along the 500 mb pressure surface

o
[

the geopotential on the constant pressure surface
geopotential height on the 500 mb pressure surface

N
H

Thus to a first approximation the gradient of geopotential height at
500 mb gives the direction and magnitude of winds at the 500 mb level.

The geostrophic approximations suggest a number of relationships

worth investigation. An east-west zonal flow or a weak west-east
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zonal flow over the Pacific Northwest is generally associated with dry
conditions and a strong zonal (i.e. west-east) flow with wet condi-
tions. Thus a relationship might be expected between the north-south
geopotential gradient 3¢/9y and precipitation. Large negative values
of 00/dy indicating strong west-east flow should be associated with
heavy precipitation and small negative or positive values of 3% /3y

with dry conditions.

Figure 5.5 shows a scatterplot of 5-day January precipitation
depths at Victoria against the mean 5-day 500 mb geopotential height
gradient at Victoria represented by the difference between geo-
potential heights Z(15,17) - Z2(16,18).

As before, the information in the scatterplot is summarized in
Figure 5.5 by plotting estimates of the moving midmeans and upper and
lower semi-midmeans. The scatterplot shows an increase of precipi-
tation depth with increasing geopotential height difference, but the

scatter about the moving midmean curve is very large.

Figures 5.6a and 5.6b show scatterplots of monthly precipitation
depths at Victoria against the mean monthly geopotential height
difference (Z(15,17) - Z(16,18)) for January and July respectively.
The scatterplots show that in January (Figure 5.6a) there is a weak
relationship between precipitation and geopotential height difference
while in July (Figure 5.6b) there is no apparent relationship.

Cross correlations of the monthly data for Victoria precipitation
against the geopotential height difference (Z(15,17) ~ Z(16,18)) and
Snoqualmie Falls precipitation against geopotential height difference
(2(15,16) - Z(16,17)) are shown in columns 2 and 4 of Table 5.3. The
monthly cross correlations for Snoqualmie Falls precipitation against
the geopotential height difference (Z(15,17) - 2(16,18)) are also
shown in column 5 of Table 5.3.
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These data show a correlation coefficient of about 0.6 for the
months September through March. In April there is a very sharp drop
in the correlation coefficient and there is apparently no relationship
between precipitation and geopotential height difference from April
through August.

It appears that in the winter months the strength of zonal circu-
lation is more important in determining precipitation depths than the
actual geopotential height. In the summer months, however, the geopo-
tential gradient is a poor indicator of precipitation depth. This is
probably a result of the general weakening of zonal circulation in the
northern hemisphere summer. Summer rainfall depths appear to be tied

more closely to the presence or absence of high pressure cells.

The information presented so far fails to demonstrate any strong
relationship between precipitation and features of the pressure field.
Since my principal interest is in use of the pressure data to differ-
entiate between "wet" and "dry" periods, a more reasonable approach to
analysis might be to compare characteristics of the pressure field

during wet and dry periods in the historic rainfall data.

A "dry" period is defined here as any period of 5 days or more
during which no more than 2 mm of rainfall fell on any one day. Any
period of days not meeting these requirements is defined as a "wet"
period. These definitions are by necessity somewhat arbitrary. The
definition of the "dry" period is intended to identify periods of time
during which the meteorologic mechanisms are such as to promote dry
weather. Clearly a period of one or two dry days between the passage
of frontal systems could easily occur during strong zonal flow when in

principal at least there is no reason to expect dry conditions.

Since my principal interest is in winter precipitation, the daily
precipitation data from Victoria for each year from November 15 to

March 15 were split into dry and wet periods according to the above



116

definition. Various characteristics of the geopotential height field

concurrent with the wet and dry periods were then investigated.

For example, the mean geopotential height difference (Z(15,17) -
2(16,18)) for each wet or dry period in the winter record was
determined. Histograms of the mean geopotential height differences
during wet and dry periods are shown in Figure 5.7. The histograms
show that in general dry periods are associated with lower geopo-
tential height differences. There is, however,considerable overlap in
the histograms and the inverse problem of identifying dry periods
given data on the geopotential height difference could clearly not be
solved with any degree of confidence.

Figure 5.7 gives no indication of the length of dry periods, only
their occurrence. However, there is no apparent relationship between
length of dry period and mean geopotential gradient. For example, dry
periods of 5 days were associated with mean geopotential differences
ranging between -3.5 m and 176.1 m and the two longest dry periods of

30 and 28 days had mean geopotential differences of 35.2 and 73.9 m
respectively.

A more direct differentiation of zonal and meridional circulation
is provided by the index:

_12(14,18) - 215,17 | + |2(15,17) - 7(16,16) |

' 2 [2(15,17) - 2(16,18) ] (5.3)

The location of these geopotential sites are shown in Figure 5.2. It
can be seen that a strong zonal flow would have large values of
(Z(15,17) - 2(16,18)) (west-east flow component) and small values of

|z¢14,18) - 2(15,17)| and |2(15,17) - 2(16,16)| (north-south flow
components).
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The index values for flows with strong meridional components
depend to a large extent on the exact form and position of the wave.
However, in general, the numerator in the index would be relatively
large and the denominator small in comparison to conditions prevailing
during zonal flow. Strong meridional flows would thus tend to have
large index values. A number of possible configurations for the

geopotential height contours over the network of sites are sketched in

Figure 5.8.

Using the earlier definitions of wet and dry periods, values of
the index I were determined for each wet or dry period in the winter
record. Histograms of the index value during wet and dry periods are
shown in Figure 5.9. As in Figure 5.7 the histograms for the wet and
dry periods show considerable overlap. Extremely high index values,

however, are always associated with dry periods.

Again Figure 5.9 gives no indication of the length of dry
periods. However, there is no apparent relationship between dry

period length and the index value.

Examination of concurrent monthly precipitation data at Victoria
and mean monthly index values was disappointing. The monthly scatter-
plots showed little of the expected structure. The strongest rela-
tionship was found for the January data whose scatterplot is shown in
Figure 5.10. The January data show that higher index values tend to
be associated with lower rainfall but little else can be inferred from
the data. Scatterplots for other winter months show very little

structure at all.
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Figure 5.8 Hypothetical configurations of geopotential
height contours over the Pacific Northwest
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Figure 5.10 Monthly precipitation at Victoria vs. mean
monthly index I (Equation 5.3) for
January data

A number of other indices were investigated for differentiating
between zonal and meridional flow. However, none performed better
than the index described above. The main difficulty in using this or
any other index is that in nature there is a continuum of flow condi-
tions. Strong zonal and strong meridional flows can be easily distin-
guished but in the many intermediate cases it is clear that a simple
zonal/meridional classification scheme is of little value. Moreover,
circulation patterns are often too complex to be summarized by a
simple index based on the geopotential at only three or four grid
points. Both the daily analysis of Figure 5.9 and the monthly
analysis confirm what is already well known, i.e., that strong zonal
flow is generally associated with wet conditions and strong meridional
flow with dry conditions. However, this analysis, in common with the
other work presented in this section, fails to indicate a suitable
approach for making reliable huantitative statements about pressure/
precipitation relationships.
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5.3 Regional Precipitation and Atmospheric Circulation

The analysis in this section is aimed at exploring relationships
between regional precipitation patterns along the west coast from
central California to the Gulf of Alaska and atmospheric circulation.
The data used for analysis were monthly precipitation data from 12
sites along the west coast and mean monthly 500 mb geopotential height
data from 10 sites just off the west coast. The pressure and preci-
pitation stations used are shown in Figure 5.11. Again the pressure
stations are referred to by their coordinates on the NMC grid (Figure
5.1). The precipitation stations shown on Figure 5.11 were all
previously used in the analyses of Chapter 4 and basic statistics from
data at these sites are shown in Tables 4.1 through 4.5.

The relationships between pressure and precipitation during
severe drought are illustrated in the monthly pressure and precipi-
tation profiles of Figures 5.12 through 5.14. The pressure profiles
were constructed by plotting the pressure at a site against the
distance from site (13,15) measured along the series of chords connec-
ting the pressure grid points. The precipitation profiles were ob-
tained by plotting the standardized monthly precipitation against the
distance between site (13,15) and the perpendicular dropped from the

precipitation station to the nearest chord joining two pressure
stations.

Widespread drought affected the Pacific Northwest during the
winters of 1949, 1963, and 1977. The pressure-precipitation profile
for January 1977 (Figure 5.13) shows below normal precipitation from
Davis to Annette Island (approximately 2300 km) and above normal
precipitation from Yakutat to Homer. The region of above normal
precipitation can be seen to be associated with pressure gradients
which are much steeper than those over the area affected by drought.
The inference, as discussed in Chapter 3, is that the jet stream is

taking a persistent northerly track into the Gulf of Alaska steering
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Figure 5.13 Precipitation and pressure profiles for January 1977
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frontal systems over the Yakutat-Homer region and leaving the west
coast south of Sitka unusually dry.

Unfortunately profiles for other periods are not as revealing as
the January 1977 profiles. Figure 5.12 shows pressure and
precipitation profiles for January 1963, a month with strong blocking
in the eastern Pacific. The pressure profile in this instance is not
an accurate reflection of the overall pressure pattern. O0'Connor
(1963) shows strong blocking between latitudes 35 and 55 degrees north
in the eastern Pacific with the jet stream split into two branches;
one branch flowing north over the eastern Aleutians (west of Homer)
and the other branch flowing west to east over northern Mexico at
about 25 degrees north. The profile in Figure 5.12 thus misses some
of the important features of the actual pressure pattern even though
~the figure covers points up to 3600 km apart.

Figure 5.14 shows profiles for January 1978 which was similar in
a number of respects to January 1963. As in January 1963 there was
strong blocking for at least part of the month over the eastern
Pacific with two distinct axes of wind speed maxima. One branch as in
January 1963 flowed north into the Gulf of Alaska passing just west of
Homer. The other axis followed a west-east track over southern
Oregon. These conditions are reflected in Figure 5.14, The pressure
profiles show a slight S-shape with flat gradients from Centralia to
Sitka and relatively steeper gradients south of Centralia and north of
Sitka. The precipitation profile shows dry conditions between
Centralia and Sitka, near hormal conditions north of Sitka and wet

conditions south of Eureka.

The pressure/precipitation profiles such as Figures 5.12 to 5}1u
could usually.be interpreted with the assistance of the northern
hemisphere geopotential height contour maps published in Monthly
Weather Review. However, by themselves the profiles provide little

useful qualitative or quantitative information.
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The problems of interpreting the profiles are exacerbated by use
of the monthly mean data. Figure 5,15 shows the pressure and
precipitation profiles for January 1964. One possible interpretation
of this figure is that strong zonal flow affected the entire coast
from Davis to Yakutat with unusually heavy precipitation from Eugene
to Annette Island. In fact the monthly weather report by Wagner
(1978) shows that at the start of the month a high pressure ridge
along the west coast forced storms into Alaska. Examination of the
daily precipitation records shows that Sitka and Annette experienced
heavy precipitation during the first 15 days of the month while Eugene
and Eureka were fairly dry. Toward the middle of the month the ridge
weakened and the storm track moved south. The latter part of the
month saw heavy rainfall at Eugene and Eureka with relatively dry
conditions in southern Alaska. Thus the mean monthly circulation in
this, and a number of other instances, is a poor indication of the
conditions actually prevailing during the month, and obviously limits
the use of mean monthly data.

5.4 Concluding Remarks

The analyses of concurrent precipitation and geopotential height
data presented in this chapter have demonstrated some weak relation-
ships between precipitation depths and simple characteristics of the
pressure field. These relationships tend to follow the known quali-
tative relationships between precipitation fields and the pressure
patterns but are too weak to be of use in any quantitative setting.
It is evident that the distinction between zonal and meridional flow
is quite subjective and no simple characteristic of the pressure field
has been found which would allow accurate classification of all data
into zonal and meridional types. Only under extreme conditions is it
possible to make a distinction between zonal and meridional

circulation.
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Attempts to relate precipitation depth to various indices of
meridional flow were unsuccessful. However, the profiles of Figures
5.12 to 5.14 illustrate quite well the great north-south extent of
drought associated with meridional flow over the Pacific Northwest.
For example, the drought of 1977 extended at least 2400 km from
southern California to southern Alaska. In contrast, many of the
wettest months on record are associated with conditions affecting a
very limited area. For example, the wettest January at Vancouver
(January 1958) saw near normal conditions at the neighboring stations
of Victoria, Centralia and Port Hardy. As has been shown in Figure
5.15, however, wet conditions can extend, on a monthly basis, over
large areas but such conditions seem to be caused by changes in the

latitude of the storm track during the month and are not a reflection
of concurrent wet conditions on a daily basis.

It seems that at present there is no Jjustification for using 500
mb geopotential data in a quantitative sense in stochastic hydrology.
It may be possible to use pressure data to fill in missing rainfall
records in regions with a very sparse network of rain gages (as has
been done by Kilmartin 1980) but this consideration does not apply to
the United States or Canada. Consideration of the qualitative aspects
of atmospheric circulation does, however, seem to provide some poten-
tial for improving the tools currently in use. Certainly, as has been
shown in Chapter 4, such considerations lead to the conclusion that
inter—station precipitation relationships are nonlinear. Futhermore,
an understanding of the qualitative relationships between precipi-
tation patterns and atmospheric circulation allows a subjective
assessment to be made of the plausibility of multi-site synthetic
Sequences, and as will be seen in the subsequent chapters, still

provides a framework for what may be more realistic approaches to

precipitation modeling.
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Attempts to find a simple objective technique for separating
precipitation data into dry and wet populations based on the state of
atmospheric circulation were unsuccessful. This however, does not
necessarily imbly that precipitation data does not come from a mixed
distribution. The lack of exogenous information for classifying the
data into component populations greatly increases the difficulties of
both identifying mixtures and estimating their parameters. Techniques
for applying mixture distributions to unclassified data have been

developed, however, and are discussed in the next chapter.



6.0 UNIVARIATE MIXTURE MODELS

Mixture models have been used in a number of fields in the past
including genetics, telephone engineering, fisheries and water re-
sources (see for example Fowlkes 1977). The basic concept underlying
the development of mixture models is that a set of n observations
y = (y1.y2....yn) are sampled from a finite set of m distributions,
where the distribution from which each yi is sampled may or may not

have been observed and where the value m may or may not be known.

Most practical applications of mixture models have involved
samples from a mixture of two normal, lognormal or possibly expo-
nential distributions, where samples from either distribution can be
associated with one of two physical states or phenomena. For example,
Hosmer (1973a) used a mixture of two normal distributions to represent
the lengths of 11 year old halibut. For any given age, it is known
that the female halibut is on average larger than the male, thus
lengths of 11-year old female and male halibut can be considered to be
samples from two different distributions differentiated by sex. When
a sample of halibut is obtained which cannot be classified by sex,
then the lengths can be represented by a mixture model. The main
points to note here are that there is a physical basis for using a
mixture model and that objective exogenous information exists (i.e.

sex) which, if observed, can be used to classify the sample
accurately.

Another example of mixtures, discussed by Fowlkes (1977,
concerns the distribution of the lengths of WATS telephong calls. 1In
this case it was found that the data could be well represented as a
mixture of two 2-parameter log-normal distributions. However, there
Wwas no objective exogenous information which could be used to classify
the data. Since there is no objective physical basis for using
mixtures in this case, it seems that application of a mixture model

may be simply viewed as a curve fitting exercise, which could equally
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well have employed some other flexible multi-parameter distribution
such as the Wakeby (Houghton 1978).

Mixed distributions have had limited application in the water
resources field. Some examples of applications in hydrology are given
by Hawkins (1974) and by Singh (1974). Hawkins demonstrated the use
of a mixture of two normal distributions to represent the frequency
curve of annual flood peaks. The justification for using a mixture
model for representing flood peaks in certain geographical areas was
that floods may be generated by a number of different meteorological
phenomena such as spring snowmelt or hurricanes. It has been
presumed, but not rigorously demonstrated, that floods arising from
different hydrometeorological causes can be treated as samples from
different distributions. In this particular example reasonably
reliable exogenous information exists to classify data, but it seems
that such data have not yet been used rigorously either to justify the

model selection or to estimate model parameters.

Interest in the use of mixture models for water resources plan-
ning was aroused when Klemes (1974) and Potter (1976) demonstrated
that time series exhibiting the Hurst phenomenon could be created by
sampling from certain classes of mixture models. It is evident from
this work that non-stationarity in the mean could provide an explan-
ation for the long-term persistence which naturally occuring values of
the Hurst coefficient imply. The use of mixture models by Klemes and
Potter can be thought of either as a means for mimicking a particular
autocorrelation structure or as tentative evidence that non-station-
arity of the mean provides a physical explanation of the Hurst effect,
depending on one's viewpoint. In later work Boes and Salas (1978)
developed a general mixture model for shifting means. They demon-
strated by use of numerical experiments that such models not only
mimic the Hurst phenomenon but also have a correlation structure iden-
tical to an ARMA (1,1) process {(Box and Jenkins 1976), as used by
O'Connell (1971, 1974) to model the Hurst effect.
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The principal reason for interest in replicating the Hurst effect
in synthetic streamflows was the observation that the early Markov or
autoregressive order one AR(1) models did not produce droughts as
Severe as those encountered in natural time series. Jackson (1975b)
used a two state Markov mixture model to explicitly control the
distribution of synthetic low flow periods. The justification for
using a mixture model was the observation that low and high mean
annual flows do not necessarily come from the same distribution. 1In
this case the distinction between low and high flows is subjective and
exogenous information for classifying the data do not exist. Thus
Jackson's application may again be viewed largely as a curve fitting
exercise in which the parameters of the Markov mixture model are
chosen so that the generated data replicate certain statistics of
observed drought sequences. Jackson did not investigate in any detail

the marginal distributions of her mixture model.

One purpose of this introductory review was to establish that
applications of mixture models can range from curve-fitting exercises
to situations where there is a strong physical basis for using
mixtures and where objective exogenous information exists for accur-
ately classifying the data. As demonstrated by Hosmer (1973b), the
availability of exogenous information to classify even a small part of

a mixed sample may be of considerable value in estimating model
parameters.

As was discussed in Chapter 3, there is tentative evidence
suggesting that precipitation comes from a mixed distribution. Unfor-
tunately, attempts to classify precipitation data into wet and dry
distributions using features of the atmospheric circulation were
unsuccessful. The analyses in this chapter investigate the possi-
bility of using mixture models for single-site modeling of precipita-

tion in the absence of exogenous information for classifying the data.
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The remainder of this chapter explores the characteristics and
use of mixture models in detail. Section 6.1 discusses the population
characteristics of mixture models and demonstrates their great flexi-
bility. Section 6.2 discusses techniques for identifying mixtures.
Section 6.3 discusses methods of parameter estimation with emphasis on
the use of maximum likelihood estimates. Section 6.4 explores the
small sample characteristics of maximum likelihood parameter estimates
and the chapter finishes with examples of the application of mixture
models to represent annual and monthly rainfall data in the Pacific

Northwest.

6.1 Characteristics of Mixture Distributions

Mixture models form a vast class of distributions. In this study
I will be concerned exclusively with mixtures of two univariate normal
distributions. As will be seen, even with this restriction, we have a

large and flexible family of distributions.

6.1.1 Independent Mixture Models

Suppose we have a sequence of n observations y = (y1.y2.....yn)
where each Yy is associated with one of two unobserved states. Let
the sequence of states associated with y be represented by the outcome
of n identical and independent Bernoulli trials such that the
probabilities:

P(yi is associated with state 1)
P(yi is associated with state 2)

Py
p2 = (1—91)

Further assume that the yi given the associated state are condi-
tionally independent with normal densities:
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2.-% 2 2
g(ylstate 1) = £,(y) = @2moy) ° expl-(y-u,) /201] 6.1)
-1 2 2
gl state 2) = £,(5) = (2moP7* ew[-(y-u,)°/203]
Then the unconditional marginal density of the yi is the mixed
distribution:
f(y) = p1f1(y) + p2f2(y)
(6.2)

p1f1(y) + (1-p1)f2(y)

Denoting the overall mean and variance of the mixed distribution by U

and 02 respectively, the overall mean is:

2
H=E(y) = :E:E(ylstate i)P(state 1)
i=1
(6.3)
and the overall variance is:
2
0% = E(v2) = (E(yN?
E(Yz) = :E: E(y2|state i) P(state i)
i=]1
_ 2 2 2 2
=pylo] +up) + (1-p) (0, + 13)
which gives
2 _ 2 2 _ 2 2 2
o =py(0) +up + (A-p)(0; + 1) - (6.4)

Expressions for higher moments are given by Cohen (1967). It is a
simple exercise to show that the serial correlation coefficient for

this model is zero for all lags.
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6.1.2 Markov Mixture Models

In the independent mixture model of the previous section, the
sequence of states was chosen by using Bernoulli trials, A wide
variety of other techniques may be used for selecting states. One
particularly attractive option is to represent changes of state by’
means of a two-state Markov chain. Models of this type have been
studied in some detail by Jackson (1975b).

The single-step transition matrix for the two-state chain of
Figure 6.1 is: '

l-a a
P = < b l—b) (6.5)

where a = probability of transition from state 1 to state 2
in a single step.
b = probability of transition from state 2 to state 1

in a single step.

b

Figure 6.1 Two-state Markov chain
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Use of this model requires specification of an initial or
starting state. The probability of being in a particular state at
successive steps or intervals can then be found by repeated appli-
cations of the transition matrix. After a large number of steps, the

long-run or invariant distribution u is given (Feller 1968) by:

u = Pu (6.6)

where u = (u1 u2)

u

i
£

long run probability of being in state i
1

Substituting for u and P in (6.6) gives:

1-a a
(u) uy) ( b l—b) = (u; u))

_ _ b a
hence = (u1 u2) = (;;S- -;;E)

(p1 l-pl) (6.7)

Thus the transition probabilities of the Markov chain are related to
the state probabilities of the independent mixture model by:

_ b
P1 = am (6.8)

Given a particular state i, the observations yi may be sampled in the
same manner as for the independent mixture model, in which case the
marginal densities of the observations for the two model types are

identical.

The overall lag-one serial correlation for the model may be

derived as follows:
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random variable representing observation in interval i

[
(]
ct
td
(]

transition from state r in interval i to state s in

éf,

interval j

The expectation

2 2
E(xyx; ) =Z=:1 ;1 E(xyxy g ltgnws y) Plry~ws )

2

+ 12 (1-p) (1-b) (6.9)

and the-lag one autocorrelation

2
E(x.x,,.) M
i7i+
o(1) = = (6.10)
ag
where u2 is given by Equation 6.3 and 02 by Equation 6.4.

The lag-two autocorrelation can be found in a similar manner by

making use of the two-step transition matrix

p2 = 1-a a 1-a a
. b 1-b b 1-b

) ( (1-2)% + ab (1-a)a + a(l—b))

b(l-a) + b(1-b) ab + (1-b)2 (6.11)

Then

2. 2
E(x%549) =Z1r= ;1 E(xyXiyp|Timrsyyp) Plrgmrsyyy)

= u% pl[(l-a)z + ab] + uluzpl[(l-a)a + a(l‘b)] +

Uzul(l—pl)[b(l—a) + b(l-b)] + ug(l-pl)[ab + (1—b)2] (6.12)
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with the lag-two autocorrelation

2
E(x.X,,,) - U
0(2) = xlxl"gz (6.13)

o

Autocorrelations for higher 1égs can be found in a similar fashion.
Note that the autocorrelation is a function of the transition
probabilities a and b, and that once the lag one auto correlation is
chosen, the remainder of the correlation function is fixed. Figure
6.2 shows the autocorrelation function for Markov mixture models with
1 1= 1.0, u2 = 1,0. 02 = 1.0 and
values of the transition probability a = 0.1, 0.2, 0.3. (Note that
once a and b1 are fixed b is given by the relationship Py = b/(a+b)).
For comparative purposes, the correlation function for an AR(1) model
with (1) = 0.39 is also shown (for a = 0.1 the mixture model has P (1)
= 0.39 ). Note that for the parameter sets used in Figure 6.2, the

parameters p1 = 0.3, U, = =-1.0, ©

correlation function of the mixture model drops off much more slowly

than that of the AR(1) model.

A wide variety of other approaches to mixture modeling are
possible. Jackson (1975b), for example, suggests a Markov mixture model
in which the observations in a given state are not independent but are
represented by an AR(1) structure. The practicality of such complex
models is doubtful, however, especially when one considers the diffi-
culties encountered in model identification and parameter estimation

for the independent mixture model.

6.2 Detection of Mixtures

The ease with which mixtures can be detected depends largely on
the (unknown) parameters of the distribution and on the sample size
available. Where the components of the mixture are widely separated

the distribution function will generally be multi-modal and the detec-
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Markov mixture model
(py= 0.3,uF-1.0,0,=1.0,
u,=1.0,0,=1.0, a varies)

- = = —  AR(1) mode! p(1)=0.39

Lag k

Figure 6.2 Autocorrelation functions for Markov

mixture models
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tion of mixtures presents no difficulty. However, if the components
are not widely separated, the detection of mixtures and estimation of
their parameters pose severe problems which increase with the com-

plexity of the model.

Detection of mixtures of two normal distributions has been °
investigated in considerable detail by Fowlkes (1977, 1979). One
useful diagnostic tool is the quantile-quantile (Q-Q) plot (Wilk and
Gnanadesikan 1968), The theoretical Q-Q plot of the mixture quan-
tiles plotted against standard normal quantiles is generally S-shaped,
but the variety of such shapes ranges from a barely perceptible kink,
in what is otherwise a straight line, to greatly transmogrified
S-shapes, depending on the parameters of the mixture. Fowlkes (1977)
shows the full variety of possible shapes in a compendium of Q-Q plots

covering a wide range of parameter values.

The approximate shape of a mixture's Q-Q plot can be deduced by
recognizing that at either extreme the plot is asymptotic to a
straight line representing the Q-Q plot of the component distri-
butions. This feature is useful for making initial parameter esti-

mates as discussed by Fowlkes and as demonstrated in Section 6.5.

Theoretical Q-Q plots for two different mixtures and their
component distributions are shown in Figures 6.3 and 6.4. (The

parameter sets used for these examples were obtained from the rainfall

data analyzed in Section 6.5).

One can expect sample Q-Q plots to closely resemble the theore-
tical Q-Q plots only when sample sizes are large (perhaps more than
500 observations for a subtle mixture). For small samples, the
sampling variability of mixtures is known in general to be large, and
sample Q-Q plots may not resemble the theoretical plots. 1In fact the
sample Q-Q plot may not indicate the presence of a mixture. This is

illustrated in Figure 6.5 which shows the Q-Q plot for a set of 81
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observations sampled from the mixture of Figure 6.3. The method of
sampling is described in Section 6.5. A sample size of 81 was used
because this was the maximum length of the annual rainfall series
obtained for use in this study.

12.0 LJ L) Aj L) LE

10-0"

8.0

N(4.62,2.17) —_

N(0,1) )

THEORETICAL. MIXTURE QUANTILES

Il Y ] s 1
4'—%.0 2.0 -1.0 0 1.0 2.0 3.0

NORMAL N{D,1) QUANTILES
Figure 6.3 Theoretical Q-Q plot for a mixture of two

normal distributions with parameters
(0.14, 0.0, 1.0, 4.62, 2.17)
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Figure 6.5 Sample Q-Q plot for a sample of size 81 from a
mixture of two normal distributions with
parameters (0.14, 0.0, 1.0, 4.62, 2.17)
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Fowlkes (1977, 1979) presents another diagnostic tool which may
be useful for detecting mixtures. This is a variant of the percen-
tile-percentile plot named by Fowlkes, the ¢-p versus Q plot. For the
sake of brevity this will be referred to here as a P-Q plot. The
procedure for constructing the P-Q plot adapted from Fowlkes is as
follows. Let ‘

Yy $ ¥y =oo< Yy

be ordered quantiles of a sample of size n. Then usihg the plotting
formula of Cunane (1978) the corresponding sample percentiles are:

_i-20.4
Py "0 + 0.2

Let ? and sy represent the sample mean and sample standard deviation.
The x coordinates of the P-Q plot are taken as X, = (y(i) - 37)/3y and
the y coordinates are:

where N(xi[0.1) is the cumulative distribution function for the normal
N(0,1) distribution evaluated at Xs. The P-Q plot is thus a plot of
the standard normal percentiles minus sample percentiles versus the

standardized sample quantiles.

The P-Q plot is designed to be sensitive to departures from
normality in the middle quantiles. The theoretical P-Q plot for a
normal distribution is simply a horizontal line passing through zero.
Theoretical P-Q plots for the two mixtures of Figures-6.3 and 6.4 are
shown in Figures 6.6 and 6.7. The principal feature of the theore-
tical plot for the mixtures is the oscillation of the line about the
zero ordinate in the middle quantiles and convergence of the line to

zero for large positive and negative values of the abscissa.



146

.10 T T T T T
.08} y
.06} .

N(0,1) PERCENTILES - MIXTURE PERCENTILES

B0 Z.o -1.00 0 1.00 2.00 3.00
MIXTURE QUANTILES
Figure 6.6 Theoretical P-Q plot for a mixture of two normal

distributions with parameters
(0.14, 0.0, 1.0, 4.62, 2.17)

.10 T T T T T

081 .
.06 -
04 -

-.06f 1

N{0,1) PERCENTILES - MIXTURE PERCENTILES

l
(=]
Q

T
1

-.10 1 i 1 t 1
-3 -00 _2 000 "1 AOO 0 1-00 2000 3-00
MIXTURE QUANTILES

Figure 6.7 Theoretical P-Q plot for a mixture of two normal
distributions with parameters
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Fowlkes (1977) explored the characteristics of both theoretical
and sample P-Q plots in considerable detail, and demonstrated that,
for large sample sizes, P-Q plots can identify successfully quite
subtle mixtures. However, for the small samples usually available
from hydrologic records, P-Q plots like the Q-Q plots, can exhibit
pronounced variability. Again this is illustrated in Figure 6.8 for
the set of 81 observations used to construct the Q-Q plot of Figure
6.5. The theoretical P-Q plot of the mixture from which this sample
was taken is shown in Figure 6.6. The sample P-Q plot bears little
_resemblance to its theoretical counterpart, nor does it resemble any
of the theoretical P-Q plots presented by Fowlkes for a variety of
other distributions.

It is clear from this brief examination that Q-Q and P-Q plots
are of limited value in detecting mixtures when sample sizes are
small. It appears that for small samples, the assumption of a mixed
distribution must be based on physical rather than statistical
grounds. However, even if strong physical and/or statistical evidence
exists for justifying the use of a mixture, estimation of the mixture
parameters presents great difficulties. 1In the next section I discuss
various approaches to parameter estimation and in Section 6.4 derive

estimates for characterizing sampling variability.
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6.3 Parameter Estimation

Four principal methods for estimating the parameters of mixtures

appear in the literature. These are:

(1) graphical techniques (Fowlkes 1977, 1979)

(2) method of moments (Cohen 1967)

(3) moment generating function method, MGF (Quandt and Ramsey
1978)

(4) maximum likelihood method (Hasselblad 1966, 1969;
Hosmer 1973a; Dempster, et al. 1977)

Because of the computational difficulties involved much of the
early work in estimating mixture parameters was devoted to graphical
techniques. With improvements in computational facilities it became
feasible to use moment estimators and maximum likelihood estimators
and more recently researchers have suggested estimators based on fits
to the theoretical moment generating function or characteristic
function, A brief review of developments in the estimation of mixture

parameters is provided by Fowlkes (1977).

This section briefly describes two methods for parameter estima-
tion; a graphical method and the moment generating function method of
Quandt and Ramsey (1978). The maximum likelihood approach is also
discussed in detail. Work by Tan and Chang (1970) and others has
demonstrated that the method of maximum likelihood is superior to the
method of moments. Consequently, the method of moments will not be

discussed.

6.3.1 Graphical Techniques

Graphical methods were the main tool for early work in estimating

mixture parameters. The principal function of graphical techniques
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today, however, is to provide reasonable initial estimates of
parameters for use with more powerful estimation techniques such as
maximum likelihood.

The most successful graphical method for parameter estimation for
mixtures of two normal distributions is based on the Q-Q plot of the
sample quantiles plotted against standard normal quantiles. The idea
behind this technique was hinted at in Section 6.2, Figures 6.3 and
6.4 showed theoretical Q-Q plots of mixture quantiles plotted against
standard normal quantiles. The figures also showed the Q-Q plots of
the component distributions of the mixture. As pointed out earlier
the upper and lower limbs of the S-shaped Q-Q plot of a mixture are
asymptotic to the straight Q-Q plots of its normal components. Given
a sample from an unknown mixture, the means and variances of the
constituent distributions can thus be estimated by fitting straight
line asymptotes to the upper and lower limbs of the sample Q-Q plot.

The means and variances are of course found from the slope and
intercept of those lines.

The mixing proportion P, remains to be estimated from the sample.
An approximate value for p, can be found by first determining the
x-coordinate of the point of inflection of the sample Q-Q plot. It
Wwill be recalled that the x-coordinate is a standard N(O0,1) quantile.
The mixing proportion P, is then estimated by the value of the N(0,1)

cumulative distribution function corresponding to that quantile.

It has been pointed out by Fowlkes (1977) that the above estimate
of p1 is generally biased with both the sign and magnitude of the bias
being a function of the mixture parameters. The estimate is only

unbiased for P, = 0.5 and 04 = Oy although the bias remains small for

0.3 {p;£0.Tando, =0

1 2"

A variety of methods exist for fitting asymptotes to the sample

Q-Q plot and for determining the point of inflection of the plot.
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Rough estimates of the parameters can be obtained by simply fitting by
eye; this is the method used in Section 6.5. Fowlkes (1977), however,
has investigated the graphical approach to parameter estimation in
great detail and presents a rather sophisticated technique which
involves fitting a logistic distribution to the sample Q-Q plot. The

reader is referred to Fowlkes for details of that method.

6.3.2 Moment Generating Function Estimators

The moment generating function estimator for mixture parameters
was introduced by Quandt and Ramsey (1978) as an alternative to the
maximum likelihood and moment estimators. The basis of the method is
to determine that set of parameters which minimizes the sum of squares
of differences between the theoretical and sample moment generating

function. For the mixture distribution:

£(y) = pl(ZvOi)-% exp[-(y-ul)2/20§]

1
“3

2 2 2 :
+ (1-p;) (2103) * exp[-(y-U,)"/20,] (6.14)
The moment generating function (MGF) is:
Oy 2.2
E(e’) = p, exp(u,0 + 058°/2)
1 1 1
2,2

+ (l—pl) exp(uze + 026 /2) (6.15)
The MGF method from Quandt and Ramsey (1978) is as follows: Given a
sample y = (y1,y2,...yn) choose k values of 6,61

interval (a,b), a<0<b. For any value of e.ej. the value of the moment

generating function may be estimated by:

,92,...6kin a small

n
Be® ) =22 exp(8,7,) (6.16)
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The parameters of the mixture are then estimated by the set of

parameters (pl,ul, Oys UZ,GZ) which minimizes:

k n
S (6) =E (—11; Z exp(ejyi))- Py exp(ulej + 0§9§/2)
j=1 '

i=1
2
- (1-p,) exp(u,0, + 0262/2) (6.17)
1 273 273

Choice of k and the values 91. 6?"'ek present difficulties in
application of the MGF method. As general guidelines Quandt and
Ramsey recommend using a value k>5. The choice of ej' however,
appears to be quite important and sensitive to the data being used.

If the Gj are too small the function to be mimimized (Equation 6.17)
is quite flat causing difficulties in the precise determination of the
minimum. If the Gj are too large, then computational overflows can
occur in the exponential terms of Equation 6.17. Optimal values for
the Gj are not currently available. Moreover, it should be noted from
Equation 6.17 that the optimal ej will depend on the values of the

data used to estimate the generating function.

Quandt and Ramsey performed a Monte Carlo study to compare the
small sample properties of the MGF estimator and method of moments.
The MGF estimator was shown to be superior to the method of moments,
but as yet no equivalent comparison has been made with the maximum
likelihood estimators which, as noted earlier, are also superior to
the moment estimators. The MGF method was implemented for testing on
an HP3000 Series III mini computer using the simplicial minimization
technique presented by Nelder and Mead (1965). The method was tested
on samples of size 100 taken from a relatively tractable mixture with
population parameters (0.5, 0,1,4,1) for k=5 and © values of -0.2,
-0.1, 0.1, 0.2, 0.3. The starting parameters for minimizing Equation
6.17 were taken to be either the population parameters or some

arbitrary set of parameters close to the population parameters.
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Difficulties were encountered in a number of respects. Among the
problems was a tendency for the search technique to converge
occasionally on infeasible parameter values such as negative values
for p1. The objective function surface was also found to be almost
horizontal in some instances, causing premature termination of the
search procedure. In view of these difficulties and the absence of
optimél values for 8 and k, use of the MGF method was discontinued in

favor of the better understood maximum likelihood method.

6.3.3 Maximum Likelihood Estimators

The maximum likelihood estimates for mixture parameters can be

found by means of the iterative algorithm presented by Hasselblad
(1966, 1969) and others as follows:

Let y = (y1, y2,...,yn) be a sample of n independent observations
from the mixture distribution

{CADES R ARSI NCAL) (6.18)
where 0 < Py <15 P, = 1_p1

_ 2,4 e 1 V27042 .
£,(;10) = (@mo™% expl-(y;-u /2051 55=1,2

¢ = (pl’ul’cl’UZ’OZ)

1 . u1 » 9, . HZ(V). 02(V)) be parameter

estimates at iteration v with ¢(0) being a set of

Let ¢(v) = (p (v) (v) 4 (v)

initial parameter estimates

At iteration v define weights

pMe (v.160)

v) _
le =

P : (6.19)



154

then the parameter estimates at iteration (v+1) are:

S 1 Z (v)
i

TR Zw(")yi/z 51,2 (6.21)

=1 1J

3i=1,2 (6.20)

-
M

n
o§v+1)= (Z S)(l (") 2) Z (") ;3=1,2  (6.22)

i=1

Iterative calculations are continued until some suitable convergence

criteria are met.

Although the algorithm presented above always converges to a
maximum on the likelihood surface, Hasselblad was unable to prove such
convergence. More recently, however, Dempster, Laird, and Rubin
(1977), herein referred to as DLR, proved that Hasselblad's iterative
algorithm is an EM (expectation-maximization) algorithm and, as such,
is guaranteed to converge to at least a local maxima. A detailed
derivation of the above MLE's in terms of an EM algorithm has not, to
my knowledge, appeared in either the statistics or water resources
literature. Consequently, a detailed development of the MLE's is
given in Appendix A. (It should be noted that DLR's work on the EM
algorithms has wide applicability for computing maximum likelihood
estimates from incomplete data, and its application to the estimation

of mixture parameters is only one of many possible uses.)
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The EM algorithm has a number of attractive features:

(1) The algorithm is guaranteed to converge to a local if not a
global maximum. The speed of convergence is however a
function of the separation of the mixture components and for
components which are close together, the convergence may be
extremely slow. DLR suggest a number of approaches for

increasing the rate of convergence.

(2) Every iteration of the algorithm is guaranteed to increase
the log-likelihood.

(3) The iterative estimates always yield valid parameter values,
i.e., positive variance and mixing proportion between zero

and one.

In addition, the iterative estimates have the usual attractive
asymptotic properties of all MLE's. For further details and proofs
associated with the EM algorithm the reader is referred to Appendix A
and Dempster, Laird and Rubin (1977).

Potential problems in the use of MLE's are:

(1) The presence of singularities on the likelihood surface. In
some situations the iterative algorithm will converge to
parameter values associated with a singularity. (The
variance and mixing proportion of one component goes to
zero.) Although this may be a problem from a mathematical
point of view, it has been found that in practice
singularities do not present serious difficulties and valid
MLE's generally can be found. The Monte Carlo experiments of
Section 6.4 showed that difficulties with singularities
increase as the sample size decreases and as the separation

of components decreases. However, even with a sample size of
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50 and with sampling from a relatively subtle mixture with
parameters (0.3, 0, 1, 2, 1) it was found that singularities
presented no serious difficulties. As pointed out by a
number of investigators (e.g., Hosmer in the discussion of
Quandt and Ramsey 1978), it appears that the problem of
singularities on the likelihood surface has been exaggerated

in the past.

Like all other currently available estimation procedures, the
EM algorithm does not guarantee convergence to a global
maximum. A global maximum can only be ensured by an

exhaustive search of the five dimensional likelihood surface.

Little is known about the small sample properties of the
MLE's. Since hydrometeorologic records are generally less
than 50 years in length, the small sample properties of
estimators are of great concern. Consequently, the small
sample properties of the maximum likelihood estimates are
investigated in the Monte Carlo study described in Section
6.4.

6.4 Small Sample Properties of the Maximum Likelihood Estimates of

Mixture Parameters

In Section 6.3, I discussed the iteratiye EM algorithm for the

maximum likelihood estimates of a mixture of two normal distributions.
Although MLE's have attractive large sample properties, their small

sample properties for mixtures have received comparatively little

attention.
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Hosmer (1973a, 1973b) conducted limited simulation studies of the
small sample properties of MLE's. He reported pessimistic results
indicating that parameter estimates are probably unreliable for sample

sizes less than 300 and for parameter sets such that

Hosmer's results were based on Monte Carlo experiments with only ten
samples of size 100 for each parameter set studied. 1In view of the
large sampling variabilities reported by Hosmer, this sample is far
too small to allow reliable estimates of the mean or variance of the
mixture parameters. Accordingly this section presents the methods and
results for a more extensive Monte Carlo study of the small sample
parameter estimates. The work was done using a CDC CYBER 170-750

computer.

The parameter sets and sample sizes used in the Monte Carlo study
are shown in Table 6.1. For each parameter set and sample size, 200
samples were generated as follows: For a sample of size n, n
independent uniform pseudo-random numbers on the interval [0,1) were
generated using the CDC RANF random number generator. These were then
converted to normal N(0,1) independent pseudo-random numbers using the
Box-Muller transformation (Box and Muller 1959) as presented by
Forsythe, et al. (1972). For each N(0,1) random number, a further
uniform random number was generated using RANF. If this uniform
random number was greater than parameter Pqs the N(0,1) variate was
converted to an N(UZ.GZ) variate, otherwise it was left as an N(0,1)
variate. We have thus created a sample of size n from the mixture

distribution:
f(xi) = p, f1(xi) + (1 - p1)f2(xi)

where f1'~ N(0,1)
£, ~ N(Hy,09)
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This approach to sampling from a mixture distribution allows one
to keep track of the component distribution from which each observa-
tion originated. For each sample we can thus determine the exact
proportion of observations sampled from each distribution and estimate
directly the mean and variance of the component distributions. This
is equivalent to the situation in practical applications where
reliable exogenous information exists to classify the data. Where
such information exists, I will refer to the data as fully classified

data, and to the estimated statistics as fully classified statistics.

The mixture parameters for the unclassified samples were
estimated using the iterative maximum likelihood EM algorithm

discussed in Section 6.3.3. The procedure adopted was as follows:

(1) Make an initial estimate of the parameter set
o _ ) (0 _(0) () _(0)
q) = (pl ’ 111 s Ul ’ 112 ’ 02 )
For this study the population parameters were used for the

initial parameter estimates.

(2) At iteration v of the procedure the parameter estimates are

found as follows:

Define weights

G p§V)fj(yi|¢(V)) ;3=1,2 and i=1,...,n




then
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n
nm M

L) _ Z <v) /Z .4=1,2

1.
2

n
2 ( )
o) <z=:1 wg.’)(yi - (V) ) Z M s3=1,2

Repeat step 2 until one of the following conditions occurs:

(n

(2)

P1(v)' pz(V), 01(V) or OZ(V) drop below a value of 0.01. It is

known (see e.g. Fowlkes 1977) that the likelihood surface
contains singularities and in some instances the MLE's will
converée to parameter values associated with those singular-
ities. When this occurs, either the mixing proportion (p1 or
p2) or one of the component variances (012 or g 2) will tend to
zero. In such cases, in this simulation study, the sample was
rejected and another sample generated. No attempt was made to
repeat the estimation procedure for the rejected sample from
another starting point. 1In the experiments conducted here,

fewer than 5 percent of the samples were rejected for this

reason.

The parameter values converge. The iterative calculations were
stopped if the absolute change in each parameter value in the
previous iteration was less than 0.001, and if the absolute
change in the log likelihood was less than 0.001. These



161

conditions are somewhat more stringent than those used by

Hosmer (1973a), whose stopping condition was based solely on
changes in the log likelihood. It was found in examining the
log likelihood surface in one instance that flat local areas
(shoulders) existed which were not high points or maxima on the
likelihood surface. The.more stringent stopping rule ensured

that computations did not stop under such conditions.

(3) One thousand iterations have been performed. If convergence
did not take place after 1000 iterations, the final parameter
set was taken to be the parameter set at 1000 iterations.
Again under the worst conditions encountered in these
experiments, this situation arose in fewer than 5 percent of
the samples. Since every iteration of the algorithm is
guaranteed to increase the log-likelihood, it is believed that
the final parameter set will be near optimal in most situations
of this kind. There is, however, the bossibility that the
algorithm may have converged on a singularity if the iterations

had been continued.

The results of the simulation study are summarized in Table 6.2,
which shows the means and standard deviations of the parameters esti-
mated from 200 samples. For comparative purposes, the means and
standard deviations of the parameters estimated from the fully

classified data are also shown. The population parameters are taken
from Table 6.1, '

The results in Table 6.2 show that in most instances, both the
absolute bias and the variance of the parameter estimates increase as
the sample size is decreased and as the separation of the component
distributions is decreased. It should also be noted that the parameter
estimates for the fully classified data are much more reliable than the
parameters estimated from the unclassified mixture. For the sample

sizes and parameter sets studied here, the variances of the parameters
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estimated from the unclassified mixture are so large that the parameter

estimates are probably of limited practical value.

In most water resources applications, it is not the small sample
properties of the parameter estimates that are of most concern, but the
properties of the quantile estimates. Of particular importance are the
quantiles for the tails of the distribution.

Given estimates of the mixture parameters, the quantiles of the
mixture can be computed by means of an iterative scheme illustrated in
Figure 6.9. The approach for determining the mixture quantile

corresponding to a percentile P is as follows (see Figure 6.9):

@ Mixture

b= Py, 4,0y, H,, 0
< Q, 1.1 05 Hp003)
=

o

o

G-

£ 1Q,+Q,)

5 NCy;, G;)
3

5 Q ’/////

] 1

o

-

Q, Q'q Q
N(0, 1) guantile
Figure 6.9 Iterative estimation of mixture quantiles
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(1) Find the N(0,1) quantile Q' corresponding to P.

(2) Find the quantiles Q1 and Q2 of component normals N(U1.01)
and N(uz,oz) corresponding to the N(0,1) quantile Q'. The

required mixture quantile is now bounded by Q1 and Q2.

(3) For the mixture quantiles Q1 and 02 determine the percentiles
P1 and P2 and hence the corresponding N(0,1) quantiles Q1'
]
and Q2 .

(4) For the mixture quantile 03 = 1/72(Q, + 02) find the percen-
tile P3 and the corresponding N(0,1) quantile Q
bounded by either 03' and 01' or 03' and Q2'.

'. Q' is now

3

(5) For the case of Figure 6.9 Q' is bounded by 03' and Q1' and
3 and 01.
Hence determine Qu = 1/2(01 + 03) and repeat steps (4) and

thus the required mixture quantile is bounded by Q

(5) until convergence on Q' has been achieved.

Using this scheme quantiles were calculated for the mixture
parameters estimated from both the fully classified and unclassified
samples used in experiments 1 and 3 of Table 6.1. Quantiles at various
percentile levels were calculated for all 200 samples used in these

experiments., The means and variances of the quantile estimates are
shown in Table 6.3.

Table 6.3 shows that quantiles estimated using fully classified
samples have both a smaller bias and lower variance than those
estimated using unclassified samples. However, the differences in the
quantile estimates for the two types of sample are considerably smaller
than the corresponding differences in the parameter estimates. This
indicates that the MLE parameter estimates provide good fits to the
sample distributions even though actual parameter estimates are quite

variable. This feature may be explained by examining the parameter
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Table 6.3 Properties of Quantile Estimates for Samples
from a Mixture of Two Normal Distributions

Quantiles from Parameters Quantiles from Parameters
Estimated from Unclassified Estimated from Fully
Population Sample Classified Sample
Percentile Quantiles Mean St. Dev. Mean St. Dev.
Expt 1 (0.3, 0, 1,3,1)*
0.01 -1.7939 -1.6995 0.3681 -1.7502 0.3354
0.05 -0.9610 -0.9123 0.2696 -0.9333 0.2617
0.10 -0.4311 -0.4060 0.2571 -0.4114 0.2500
0.20 0.4080 0.4237 0.3344 0.4179 0.3189
0.30 1.2935 1.2572 0.3632 1.2633 0.3652
0.40 1.9795 1.9491 0.2834 1.9525 0.2782
0.50 2.u424 2.4338 0.2152 2.4328 0.2007
0.60 2.8219 2.8238 0.1772 2.8195 0.1619
0.70 3.1805 3.1857 0.1556 3.1818 0.1432
0.80 3.5646 3.5684 0.1442 3.5683 0.1375
0.90 4,0588 4,0551 0.1490 4, 0642 0.1459
0.95 4.4436 4,4330 0.1715 4.4499 0.1606
0.99 5.1257 5.1054 0.2371 5.1329 0.1977
Expt 3 (0.3, 0, 1, 2, 1*
0.01 =1.7947 ~-1.6070 0.4342 -1.7689 0.4454
0.05 -0.9694 ~-0,9496 0.3453 -0.9792 0.3357
0.10 -0.4640 -0,5082 0.3294 -0.4939 0.2965
0.20 .~ 0.2188 0.1511 0.3033 0.1729 0.2787
0.30 0.7296 0.6861 0.2858 0.6935 0.2615
0.40 1.1474 1.1273 0.2596 1.1307 0.2352
0.50 1.5120 1.5151 0.2337 1.5088 0.2147
0.60 1.8516 1.8733 0.2156 1.8558 0.2022
0.70 2.1928 2.2201 0.2110 2.2002 0.1975
0.80 2.5693 2.5872 0.2179 2.5773 0.2025
0.90 3.0602 3.0456 0.2337 3.0667 0.2238
0.95 3.441 3.3963 0.2594 3.4489 0.2480
0.99 4,1257 4.0185 0.3441 4,1268 0.3046

#3ee Table 6.1 for full details of experiment,
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correlation matrices for the parameters estimated from the fully
classified and unclassified samples of experiment 1 (Table 6.4). The
correlations for the classified data are essentially zero, whereas the
correlations for the unclassified data are relatively large. This
indicates a much lower information content in the unclassified sample.
It is clear that if a small change is made in the value of one
parameter from the unclassified data, compensating changes can be made
in the values of other parameters without greatly affecting the
adequacy of the fitted distribution.

The results shown in Tables 6.2 and 6.3 indicate that while the
ability to fully classify a sample is crucial for the estimation of

parameters, it is of lesser significance when considering the overall
fit of the distribution.

Before leaving this section a few comments should be made
concerning the validity of the Monte Carlo experiments just described.
The essential goal of the Monte Carlo method used here is to replicate
the conditions and procedures used in estimating mixture parameters
from a natural rather than synthetic data set. The prinecipal problem
is that, in general, the likelihood surface has multiple maxima (see
e.g. Fowlkes 1977) and néither the EM algorithm nor any other algorithm
currently available can guarantee convergence to the global maximum.
(As pointed out in Section 6.3, however, the EM algorithm does ensure
convergence to a local maxima, which may or may not correspond to the
global maximum.) In a practical application the analyst will generally
make strenuous efforts to ensure that the final parameter estimates
correspond to the global maximum. This would involve a detailed
exploration of the likelihood surface and several applications of the

estimation procedure from different starting points.

In using the Monte Carlo method to characterize the small sample
properties such detailed investigation for each sample is not possible.

Instead an implicit assumption is made that the population parameters
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Table 6.4 Cross Correlations of Small Sample Parameter
Estimates of Experiment 1

Unclassified Samples
P 31 9 Hy 9

1

P 1.0 0.849 0.743 0.774 -0.684
Uy 0.849 1.0 0.728 0.805 -0.716
oy 0.7u3 0.728 1.0 0.621 -0.502
Py 0.7TH 0.805 0.621 1.0 -0.766
op -0.684  -0.716 0.502  -0.766 1.0

Classified Samples

pl ul o']_ u2 02
p; 1.0 -0.060  -0.004  -0.086 0.0u4
Hy -0.060 1.0 -0.049 0.014 0.033
01 -0.004 -0.049 1.0 -0.058 0.087
Uo -0.086 0.014 -0.058 1.0 -0.080

0y 0.0uY 0.033 0.087 -0.080 1.0
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represent a good starting point for the estimation procedure and that
the final parameter estimates are in some sense good estimates. This
however is not necessarily true. It is quite conceivable that a search
starting from the population parameters may lead only to a local
optimum and may result in quite unrealistic parameter estimates. Such
difficulties will inflate the variance of the parameter estimates and

the Monte Carlo study may give an overly pessimistic view of small
sample variability.

Despite this problem, it is felt that the results of Tables 6.2
and 6.3 give a reasonable indication of the difficulties involved in

estimating mixture parameters from small samples.

6.5 Representation of Annual and Monthly Precipitation Data by Means

of Mixture Models

In this section, I present examples of the use of the techniques
described in Section 6.2 and 6.3 in fitting mixture models to annual
and monthly rainfall data. The examples here assume that no exogenous
information exists to classify the data by state. However, it is
assumed here that there is at least a qualitative justification for

using mixture models based on the discussions in Chapters 3 and 4,

The discussions in Chapter 3 suggested that inter-station
precipitation relationships are nonlinear. This was confirmed for
widely separated stations in the work described in Chapter 4. It
appears that cross correlations are higher during drought than during
Wwet or normal periods. One way of modeling this feature is to treat
the data as samples from a mixture of two multivariate distributions.
This in turn suggests that the data at a site may be modeled by means

of a univariate mixture model.



169

Chapter 3 also introduced the concept of multiple equilibria
states by which it is assumed that the atmosphere can exist in one of
two quasi-stable states. One state is associated with predominantly
meridional circulation over the Pacific Northwest and the other state
with predominantly zonal circulation. Meridional circulation, associ-
ated with a high pressure ridge over the area, leads to generally dry

conditions, while zonal circulation is associated with wet conditions.

There is thus a tentative physical basis for representing rain-
fall by a mixture of two distributions; one distribution associated
with a meridional state and generally low rainfall, the other assoc-
iated with a zonal state and normal or wet conditions. Unfortunately,
the detailed analysis of concurrent pressure and precipitation data in
Chapter 5 failed to develop a suitable approach fo; differentiating
objectively between meridional and zonal circulation. Hence it was
not possible to show that precipitation comes from a mixed distri-
bution, although the known qualitative association of dry conditions

with meridional flow and wet conditions with zonal flow was confirmed.

The work in this section is an attempt to see whether the rain-
fall data indicate that use of a mixture model is appropriate. For
this purpose 81 years of concurrent monthly rainfall data, from Octo-
ber 1891 to September 1979, were obtained for two high quality
stations in southern British Columbia; Victoria Gonzales Heights and
Agassiz CDA. The location of the two stations is shown in Figure
6.10. They were chosen for this study after consultation with staff
of the Pacific Weather Center, Vancouver, B.C. because their records
are among the longest available from the area; the records have few
missing data; and the data are generally considered to be quite reli-
able. It should be noted also that the stations are close enough to-
gether that they are affected simultaneously by the same type of upper

level circulation whether it be meridional or zonal.
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Figure 6.10 Location map

Annual data were obtained by summing monthly data over the water
year October 1 to September 30. Some basic statistics for the annual

and monthly data are given in Tables 6.5.

6.5.1 Analysis of Annual Precipitation Data, Victoria Gonzales
Heights

The Q-Q plot of the quantiles of the standardized Victoria data
plotted against standard N(0,1) quéntiles is shown in Figure 6.11,
The plot shows a slight S-shape suggesting a mixture distribution.
Note, however, that if a mixture had not been expected apriori, one
might have concluded that the data came from a normal distribution and
attributed the departure from the theoretical straight line to
sampling variability. (In this example the physical basis for

assuming a mixture has not been well established. For the purposes of
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illustration, however, I will assume that use of a mixture distri-

bution is justified.)

The P-Q plot for the annual Victoria data is shown in Figure
6.12. The plot oscillates about the zero line on the ordinate, but
the configuration of the plot does not conform closely to that of the
theoretical P-Q plot for mixtures shown in Figure 6.6. Although in
this case the sample P-Q plot alone would not necessarily indicate a
mixture, the departure of the sample plot from the theoretical mixture

configuration could again be ascribed to sampling variability.

Graphical estimation of mixture parameters from the Q-Q plot of
the standarized Victoria data is illustrated in Figure 6.13. Straight
lines asymptotic to the upper and lower limbs of the S-shape were

fitted by eye, and the point of inflexion XL was estimated by eye.

Figure 6.13 shows the point of inflexion at the N(0,1) quantile
XL = =0.77. An estimate of the mixing proportion Py is given by the
corresponding N(0,1) percentile which is found from tables of the

standardized normal distribution to be 0.22.

A first estimate of mixture parameters for the standardized
Victoria data is thus

¢ = (Pl, Hys Oy5 My 02) = (0.22, -0.60, 0.70, 0.14, 0.90)

Given a variable y having a mixture distribution with parameter set

¢ = (pl) ul’ Ol’ UZQ 02)

then the transformed (standardized) variable

z = (XC}E)



173
2-5 1 T T Ll L) T 1 | T

-.5F 4

-1:0' f -1

-1.5} S -

xXX
X
~2.0F -
% X

STANDARDIZED SAMPLE QUANTILES
o

__Z.s 1 L 1 1 1 1 ' 1 1
"2 -5 -2-0 "1 -s “1 -0 —-5 0 -5 1 -0 1 05 Z-O 2#5
NORMAL N(O,1) QUANTILES

Figure 6.11 Q-Q plot of standardized annual precipitation
at Victoria

-10 ¥ T T v T T 1 T T
A .osh -
=
’—
z .06} .
2 X
W04t 7&&2 >¢u5><< ]
)
T .0 x X% % X
= 2+ T
x X
L X X |
o °f X xx X% SO T Ve
X X X
w X % X X
0-4"'-02' x xx T
= Y o X
8_,04,- X .
Qz
W X
:—-08' T
o
=-.08r -
-.10 i 1 L 1 A 1 1 1 1
-2.50 -2.00 -1.50 -1.00 -.S0 0 .50 1.00 1.50 2.00 2.50

SAMPLE QUANTILES

Figure 6.12 P-Q plot of annual precipitation at Victoria



174

S°3

BTI03IOTA 3JE
uoriejrdiosad Tenuue i0J sidjsweled IINIXTW JO UOTIBPWEISS Tedrydein ¢1°9 2and1g

SATIINEND (1°0)IN THUYON %
02 S1 o1 s 0 = i oI~ S 1- 0*2- G-

T T T T — T T T T S*2-

N

— e — - ——— — —

LL0- X uon28jJUI JO JUI0Y

0,0 edoig
09°0- 1deosyf

/\
10
™~] 060 edos ﬁ
pL'0 1dedislyj

02

SITIINGND 3INSHWHS O3Z10¥HANYLS



175

also has a mixture distribution with parameters

Ul'u Sl UZ‘U S;
Pl’ 0"0" o e ]

The overall mean U and standard deviation O used to standardize the
Victoria data were 667.9 mm and 138.4 mm respectively. Using the
inverse transform ¥ = Z0 + H gives the mixture parameters for the
original Victoria data as (0.22, 585, 97, 687, 125).

These initial parameter extimates were used as a starting point
for finding the MLE's of the parameters using the EM algorithm de-
scribed in Section 6.3.3. Convergence was achieved in 177 iterations
using the criteria described in Section 6.4 with a resolution of 0,01.
The final parameter set was (0.139, 456, 53.2, 702, 115.5). To study
the effect of the initial choice of parameters on the MLE's, param-
eters were estimated using the EM algorithm with a number of different
initial or starting points. The starting points and resulting MLE's
are shown in Table 6.6. The final MLE's were the same from each
starting point giving us some confidence that the MLE corresponds to a

global maximum rather than a local maxima.

Table 6.6 Effect of Starting Point on the MLE's
for Annual Data from Victoria

Initial Parameter Set Maximum Likelihood Parameters
(0.22, 585, 97, 687, 125) (0.139, 456, 53.2, 702, 115.5)
(0.50, 569, 98.4, 766, 98.4) (0.139, 456, 53.2, 702, 115.5)

(0.80, 670, 63.3, 670, 126.5) (0.140, 456, 53.3, 702, 115.4)
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The simple transformation

Y - 456
Z="533

converts the fitted distribution just obtained to the "standard" form
of the mixture distribution with parameters (0.139, 0, 1, 4.62, 2.17).
The theoretical Q-Q and P-Q plots for this distribution were shown in
Figures 6.3 and 6.6 respectively and the Q-Q and P-Q plots for a
sample of 81 observations drawn from this theoretical distribution
were shown in Figures 6.5 and 6.8. Comparison of Figures 6.11 and
6.12 with Figures 6.3, 6.5, 6.6, and 6.8 again demonstrates the
problem of sampling variability. The sample Q-Q plot for the Victoria
data resembies the theoretical Q-Q plot for the fitted distribution,
but the sample P-Q plot only bears a superficial resemblance to its

theoretical counterpart.

The adequacy with which the data fits the mixture distribution is
shown in Figure 6.14. This is a Q-Q plot of the quantiles of the
standardized data plotted against the quantiles of the fitted mixture
distribution. As would be hoped for a fit to a five parameter
distribution, the sample Q-Q is essentially straight with only minor
deviations from the straight line.

The mixture quantiles used in Figure 6.14 were computed by means

of the iterative scheme illustrated in Figure 6.9 and described in
Section 6.4,

A final set of figures worth studying are the weights used in
deriving the MLE's of the mixture parameters via the EM algorithm.
The weight wij’ it will be recalled, is the posterior probability
that, given Yis observation i is from state j. The set of weights
wi1, i=1,...n corresponding to the MLE's is shown, together with the
associated observations Vi in Table 6.7. To help understand the

meaning of the weights, Figure 6.15 shows the density functions for
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Table 6.7 Weights Associated with the MLE's of the Mixture
Parameters for Annual Precipitation at Victoria

Year Observation Weight#* Year Observation Weight®

Yy ¥i1 : Yy i1
1899 806.0 0.0 1940 711.7 0.0
1900 781.0 0.0 1941 515.6 0.409
1901 620.3 0.004 1942 464.,0 0.744
1902 623.6 0.003 1943 585.6 0.029
1903 751.7 0.0 1944 472.8 0.706
1904 660.4 0.0 1945 545.8 0.174
1905 693.1 0.0 1946 697.3 0.0
1906 462.5 0.750 1947 643,6 0.001
1907 708.9 0.0 1948 842,0 0.0
1908 696.1 0.0 1949 663.7 0.0
1909 573.5 ‘0.054 1950 892.8 0.0
1910 948.8 0.0 1951 759.9 0.0
1911 828.7 0.0 1952 528.4 0.301
1912 694.9 0.0 1953 631.9 0.002
1913 695.8 0.0 1954 779.1 0.0
1914 682.1 0.0 1955 658.7 0.0
1915 437.0 0.822 1956 781.3 0.0
1916 871.4 0.0 1957 8ou. 4 0.0
1917 590.4 0.023 1958 485.2 0.638
1918 782.6 0.0 1959 893.5 0.0
1919 798.0 0.0 1960 689.8 0.0
1920 767 .4 0.0 1961 723.5 0.0
1921 T74.8 0.0 1962 570.3 0.063
1922 687.2 0.0 1963 599.7 0.013
1923 782.8 0.0 1964 803.2 0.0
1924 584.8 0.030 1965 541.,1 0.205
1925 6744 0.0 1966 €05.1 0.010
1926 481.0 0.663 1967 739.6 0.0
1927 552.1 0.138 1968 826.0 0.0
1928 651.2 0.0 1969 617.4 0.005
1929 4u40.4 0.815 1970 428.9 0.835
1930 508.4 0.469 1971 548.6 0.157
1931 683.1 0.0 1972 836.0 0.0
1932 761.8 0.0 1973 408.6 0.857
1933 781.8 0.0 1974 707.2 0.0
1934 957.5 0.0 1975 607.4 0.009
1935 873.9 0.0 1976 903,2 0.0
1936 646.5 0.001 1977 376.2 0.860
1937 671.2 0.0 1978 485.5 0.636
1938 721.4 0.0 1979 361.0 0.849
1939 654,2 0.0

*Weight wij is the posterior probability that given Yy observation i
comes from state j
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the component distributions making up the mixture scaled by the

appropriate mixing proportions.

Of particular interest in Table 6.7 is the fact that the maximum
value for a weight W is 0.860, for data from 1977. Thus even in a
year with a persistent meridional circulation (see Monthly Weather
Review, Volume 105), a purely probabilistic approach to parameter
estimation suggests that data for that year could have been associated
with the "wet" distribution, and perhaps zonal atmospheric flow, with
probability 0.14.

A comparison of weights for years 1977 and 1979 is also instruc-
tive. Note that although 1979 is drier than 1977, the value of weight
wi1 is lower. This implies that there is a greater probability that
the drier year was associated with the "wet" distribution and zonal
flow. Although 1979 was the driest year on record, examination of
Figure 6.15 shows that for the current mixture distribution more
extreme dry years would have even larger probabilities of association
with a zonal state. In fact a hypothetical year with rainfall of only
300 mm would have approximately a 50 percent probability of being
associated with either state. This is completely counter to the qual-
itative physical arguments used to justify a mixture distribution and
implies either that the model is inappropriate or that the parameters

estimated in the absence of exogenous information are unreliable.

6.5.2 Analysis of Annual Precipitation Data, Agassiz

An analysis similar to that described in the previous section for
the Victoria data was performed for the annual precipitation data from

Agassiz. Only the essential details and results of the analysis are

described here.



181

Figure 6.16 shows the Q-Q plot for the standardized Agassiz data
and Figure 6.17 shows the corresponding P-Q plot. The Q-Q plot shows
definite departures from normality and, if one drops the two smallest
values, then the sample plot closely resembles some of the. theoretical
Q-Q plots for mixtures shown by Fowlkes (1977). The sample P-Q plot,
however, does not resemble the general configuration of the theoreti-
cal P-Q plots for mixtures. As with the Victoria data, a mixture
distribution would probably not be used here unless a mixture had been

expected a priori.

A mixture distribution was fitted to the Agassiz data using an
approach indentical to that used for the Victoria data. The MLE's for
the mixture parameters were (0.57, 1405, 197, 1895, 233) which
corresponds to the "standard" parameter set (0.57, 0,1, 2.49, 1.18).
Q-Q and P-Q plots for the theoretical mixture were shown in Figures
6.4 and 6.7, and a sample Q-Q plot of the quantiles of the Agassiz
data plotted against the theoretical mixture quantiles is shown in
Figure 6.18. Figure 6.18 shows close agreement between the data and
the fitted distribution, However, as pointed out earlier, many other
five parameter distributions might have fitted the data just as
well.

Finally Table 6.8 shows the weights associated with the MLE's of
the mixture parameters and Figure 6.19 shows the component distri-
butions of the mixture scaled by the mixing proportions., Note that in
this case the mixture is more widely separated than for the Victoria
data making classification by state somewhat easier. The values of
the weight are also consistent with the highest weights associated
with the lowest rainfall values. '

It had been assumed that rainfall at Victoria and Agassiz are
both affected by the same large scale atmospheric features such that
if rainfall at Victoria in a particular year was associated with zonal

circulation then the rainfall at Agassiz in that year would also be
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Table 6.8 Weights Associated with the MLE's of the Mixture
Parameters for Annual Precipitation at Agassiz

Year Observation Weight* Year Observation Weight*

i Wi Yy i1
1899 1461.9 0.891 1940 1640.5 0.574
1900 2066.5 0.007 1941 1420.9 0.923
1901 1299.7 0.972 1942 1256.4 0.980
1902 1364.1 0.952 1943 1593.5 0.689
1903 1580.3 0.718 1944 1253.9 0.980
1904 1296.2 0.972 1945 1423.3 0.921
1905 1635.3 0.588 1946 1733.2 0.325
1906 1361.4 0.953 1947 1483.1 0.870
1907 1771.7 0.235 1948 1877.7 0.078
1908 1209.0 0.986 1949 1545.9 0.783
1909 1243.1 0.982 1950 1846.4 0.111
1910 1636.5 0.585 1951 1871.4 0.084
1911 1327.0 0.965 1952 1337.1 0.962
1912 1752.4 0.278 1953 1615.8 0.637
1913 2276.2 0.0 1954 1855.6 0.101
1914 1628.2 0.606 1955 1679.5 0.468
1915 1369.8 0.95 1956 2078.7 0.006
1916 1962.1 0.028 1957 1545.,9 0.783
1017 1484.0 0.869 1958 1266.9 0.978
1918 . 1930.9 0.041 1959 2129.6 0.003
1919 2077.8 0.006 1960 1713.4 0.376
1920 2386.5 0.0 1961 1779.4 0.219
1921 1917.7 0.049 1962 1501.2 0.849
1922 1757.6 0.266 1963 1342.3 0.960
1923 1525.5 0.816 1964 2162.9 0.002
1924 1671.9 0.489 1965 1420.4 0.923
1925 1911.2 0.053 1966 1624.8 0.615
1926 1238.6 0.982 1967 1877.4 0.078
1927 1345.4 0.959 1968 2152.6 0.002
1928 1138.5 0.992 1969 1727.2 0.340
1929 971.8 0.997 1970 1322.3 0.966
1930 901.6 0.998 1971 1708.8 0.388
1931 1179.3 0.989 1972 2270.8 0.0
1932 1883.4 0.073 1973 1188.0 0.988
1933 2080.3 0.006 1974 2008.3 0.015
1934 1962.9 0.028 1975 1453.9 0.898
1935 1762.4 0.255 1976 2222.2 0.001
1936 1589.5 0.698 1977 1329.6 0.964
1937 1338.7 0.961 1978 1U71.2 0.882
1938 1276.3 0.976 1979 1301.9 0.971
1939 1606,9 0.658

*Weight W is the posterior probability that given vi

comes from state j

observation i
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associated with zonal circulation. Comparison of Figure 6.15 and
Figure 6.19 shows that this assumption is frequently violated, again

indicating either that the model assumed is inappropriate or that the

estimated parameters are inappropriate.

6.5.3 Analysis of Monthly Precipitation Data, Victoria Gonzales

Heights

For the periods of drought I am primarily interested in, a
pattern of meridional circulation will perhaps persist for a number of
weeks or months rather than years. There is thus a danger in per-
forming analysis on an annual time scale of aggregating rainfall
associated with both meridional and zonal states. In principle then
it appears that it should be somewhat easier to detect mixtures in

monthly rather than annual rainfall data.

Basic statistics for monthly data from Victoria Gonzales Heights
were shown in Table 6.5. Sample Q-Q and P-Q plots for the January
data are shown in Figures 6.20 and 6.21 respectively. In this case,
unlike the situation for annual data, neither the Q-Q nor the P-Q plot
in any way suggests the presence of a mixture of two normal distri-
butions. Rather, the Q-Q plot suggests perhaps a logarithmic distri-
bution. To check for the presence of a mixture of two two-parameter
lognormal distributions, Figures 6.22 and 6.23 show respectively the
Q-Q and P-Q plot for the natural logs of the January data. Again

neither plot suggests, in any way, the presence of a mixture.

Q-Q plots for the remaining months of the year have been plotted
from the Victoria data but are not shown here. Only data for October
and November exhibited the S-shaped Q-Q plot characteristic of a
mixture of two normal distributions. The plots for the remaining
months were qualitatively similar to those presented for the January

data, i.e. convex, and in no way suggestive of the presence of a
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mixture. Consequently, no attempts were made to fit mixture models to

the monthly data.

6.6 Concluding Remarks

In the work described in this chapter I have investigated in some
detail the properties of univariate normal mixture models, the esti-
mation of mixture parameters, and the application of mixture models

for representing annual and monthly precipitation data.

The precipitation records from Victoria and Agassiz are among the
longest available in the area and are considerably longer than most
records used in the water resources field. Even with these records,
however, it was not possible to confirm the presence of mixtures. The
Q-Q plots for the annual data showed slight S-shapes,’suggesting that
a mixture might be appropriate, but the departure from normality was
small and could easily have been the result of sampling variability.
The Q-Q plots for monthly data did not indicate the presence of
mixtures, and the P-Q plots for the data failed to exhibit the config-

urations typical of the theoretical P-Q plots of mixtures.

In principal, as pointed out earlier, it should have been easier
to detect mixtures from the monthly data than from the annual data.
The failure to detect mixtures at the monthly interval reinforces the
supposition that the slight S-shapes of the annual Q-Q plots were the
result of sampling variability.

The inevitable conclusion from this work is that the use of
univariate mixture models cannot be justified for modeling single-site
precipitation data. The problems of modeling nonlinear inter-station
precipitation relationships, however, remains. These problems are

discussed in the next chapter.



7.0 MULTIVARIATE MIXTURE MODELS FOR PRECIPITATION SYNTHESIS

Models of multi-site hydrologic sequences are commoniy based on
the assumption that, after suitable transformations, the multi-site
data can be regarded as samples from a multivariate normal
distribution. This assumption is, however, generally an act of faith
made, not because the data have been shown to come from a multivariate
normal distribution, but because of the attractive computational
features of the distribution. Of particular importance from the

operational point of view is the fact that the marginal distributions

are normal.

The usual approach to modeling has been first to fit a simple
distribution, such as a normal or lognormal, to the data from each
site. The choice of distribution is dictated by the requirement that
application of a simple transformation should permit the transformed
single-site data to be treated as samples from normal distributions.
These normal distributions are of course the marginal distributions of
the transformed multi-site data. Multi-site data in the transformed
domain can hence be obtained by sampling from a multivariate normal
distribution having the fitted marginal distributions and with an

appropriate covariance matrix.

The primary concern in most modeling efforts to date has been to
ensure that the theoretical marginal distributions fit the data
adequately. The validity of assuming joint normality has received
little or no attention. The work in Chapter 4 has shown, however,
that under certain circumstances inter-station precipitation
relationships cannot be modeled adequately using a multivariate normal
distribution. The question now arises as to how multi-site sequences
should be modeled to ensure that both the marginal distribution and

the cross properties of the data are adequately represented.
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It was seen in Chapter 4 that the difficulties in modeling the
inter-station relationships could be ascribed to the occurence of
higher cross correlations during drought than during wet or normal
periods. Although mixture distributions were not found to be useful
for single-site applications in the work described in Chapter 6, they
remain attractive for multi-site work since they are perhaps the
simplest form of model which incorporates a nonlinear structure in the

inter-station relationships.

The work in this chapter uses mixtures of two multivariate normal
distributions. This is a somewhat arbitrary choice of distribution
from the point of view of representing the observed data. However,
the distributions are not only computationally attractive, but the
flexibility allows one to fit both the marginal distributions and the

important features of the inter-station relationships.

7.1 Modeling Approach

Assume that the precipitation at n sites may be modeled by means
of a mixture of two n-variate normal distributions with different
means and different covariance matrices. Denote an observation from

the mixture distribution by

k<
1

= (y1o Y2.---Yn)
(nx1) matrix of concurrent observations at n sites

In a sequence of m independent and identically distributed
observations suppose that each y may be associated with one of two
possible states. Let the sequence of states be represented by the

outcome of m identical and independent Bernouilli trials such that:

P(y is associated with state 1)

Py

P(y is associated with state 2) 1-p1 = p,
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Further assume that the y given the associated state j are

conditionally independent with n-variate normal densities.

g(y|state j) = Bj(l)
- n/2 T exP § —5(y-U M. (y-u.) }
(2m) " “(det Mj)z 31773 =j
;3=1,2 (7.1)
where ﬂj = (nxn) covariance matrix of the y given state j
Hj = (nx1) matrix containing the means of the

iven state j =
Y8 J (uij, Moy u3j,-.-,unj)

Then the unconditional density of the y is the multivariate mixture

distribution:

and the unconditional marginal density of the Yi» i=1,..,n is in

general the mixture of two univariate normal distributions:

= - 7.3
f(yi) p1f1(yi) + (1 p1)f2(yi) (7.3)
where
(y; = u..)
fj(yi) = —~——%———— exp - —i———iil . ;i=l,n
™ 1=
(zm) Oij ZOij j=1,2 (7.4)
Oij = conditional variance of i given state j
Uij = conditional mean of yi given state j

Sampling from the independent multivariate mixture distribution was
undertaken using an extension of the scheme described in Section U4.2.1

as follows:
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A uniform pseudo-random number U on the interval [0,1) was

generated using the CDC RANF random number generator.

For U < p, the matrix of observations y given state 1 was

generated as:
Y =BgEg +¥ (7.5)

where € = (nx1) matrix whose elements are independent
identically distributed samples from the normal
N(0,1) distribution.
21 = (nxn) matrix such that

BB, =M,
ﬂ1 = lag-zero conditional covariance matrix of y given
state 1
El = (nx1) matrix of conditional means of y given state 1

Similarly for U > Pys» ¥ was generated as

¥y = BE +-E2 (7.6)
where the subscript 2 now indicates that the parameters of the

scheme are conditioned on state 2.

The number of parameters in this multivariate mixture model is
(n2 + 3n + 1) whereas the comparable multivariate normal (Equation
2
4,2) has (n + 3n)/2 parameters.

Parameter estimation for univariate mixture models was discussed
in Chapter 6 for unclassified data. Parameter estimation for multi-

variate mixture models clearly presents serious difficulties for
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unclassified data particularly in view of the short records commonly
used in hydrologic work. Maximum likelihood estimates for the special
case of parameters of multivariate mixtures with common but unknown
covariance matrices have been discussed by Day (1969), but a more

general maximum likelihood approach is not available to my knowledge.

Parameter estimation for the purposes of this work is based on a
subjective classification of the data into two states, followed by
estimation of the parameters conditioned on the state by means of
moment estimators. The two states used in the examples in Section 7.2
are widespread drought (i.e. unusually dry conditions affecting all
sites) and "normal" conditions (comprising all events not classified

as drought). Further details of this approach are given in the
following examples.

7.2 Applications of Multivariate Mixture Models

7.2.1 Port Hardy and Eureka

The monthly January data from Port Hardy and Eureka were used in
Section 4.2.1 to demonstrate the difficulties of modeling monthly
precipitation at widely separated sites using conventional models. 1In
this section the same data are modeled by means of a mixture of two
bivariate normal distributions in an attempt to improve the
representation of the inter-station relationships. The locations of
Port Hardy and Eureka were shown in Figure 4,1, basic statistics for
the data were shown in Tables 4,2 and 4.3 and a scatterplot of the

data was shown in Figure 4.5

The mixture parameters were estimated by first identifying
observations associated with dry conditions at both sites. A dry
condition was rather arbitrarily defined as any observation less than

one-half a standard deviation below the mean. This definition gave
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six observations for which dry conditions prevailed at both sites;
these observations were classified as coming from a drought state,
state 1. The remaining 26 observations were associated with a normal
state, state 2. The mean, standard deviation and cross correlation
for observations from both states were then calculated by the method

of moments. The resulting estimates are shown in Table 7.1.

Table 7.1 Bivariate Mixture Parameters for January
Precipitation Data at Port Hardy and Eureka

No. Mean St. Dev. Cross
Obs. (mm) (mm) Correlation
State 1
Port Hardy 6 88.8 29.9 0.40
Eureka 6 75.5 34.7
State 2
Port Hardy 26 241.2 85.4
Eureka 26 207.6 82.8 -0.39

Mixing proportion Py = 0.19

The difficulty of estimating parameters for the mixture model is
obvious from the small sample associated with state 1 (drought state).
The state 1 parémeter estimates are unreliable, but the state 2
parameter estimates with 26 observations should be reasonably stable.
Assuming that the mixing proportion P is a reasonable estimate, the
state 1 parameters only affect the lower tail of the marginal distri-
bution, which is not well defined for any distribution. The use of
mixture distributions in this case thus allows for adjustments in the
shape of the lower tail of the marginal distribution by altering the

relatively unreliable state 1 parameter estimates.
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The cumulative distribution functions for the Port Hardy and
Eureka data are shown in Figures 7.1a and 7.1b along with the marginal
mixture distributions given by the parameters in Table 7.1. The
mixture parameters provide quite a good fit to the observed data. The
fit is usually as satisfactory as that for the LN3 distributions shown
in Figure 4.7. The effect of changes in the mixture parameters on the
marginal distribution of the Port Hardy data is shown in Figures 7.2a

to 7.2c. Note that the parameters used are given in the annotation on

the figures.

Using a similar approach to that of Section 4.2.1, the
inter-station characteristics of the multivariate mixture model were
investigated by means of Monte Carlo simulation. The generation
scheme described in the previous section was used to create 3200 years
of synthetic January data at Port Hardy and Eureka. The parameters
used were those given in Table 7.1. The 3200-year synthetic sequence
corresponds to one hundred 32-year sequences or one hundred sequences
of the same length as the historic record. The 10, 15, 20,...50
percent quantiles for the synthetic sequences from Port Hardy and
Eureka were determined and then joint occurrences were counted in
which both sites had rainfall less than or equai to their respective
10, 15, 20,...50 percent quantiles. These counts were then divided by
100 to give an estimate of the expected number of joint occurrences in
a period of 32 years. These data and the corresponding data from the
historic record are shown in Figure 7.3. For comparative purposes
Figure 7.4 shows a similar plot for joint occurrences where both sites
had rainfall greater than their respective 10, 15, 20,...50 percent
quantiles. As in Section 4.2.1, the actual numbers of joint low
events in the one hundred 32-year periods comprising the synthetic

record were recorded and are given in Table 7.2 for various quantile

levels.
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As mentioned earlier with the small sample available it is
recognized that the state 1 parameter estimates in particular are
quite unreliable. It is clear from Figures 7.1 and 7.2 that the state
1 mean and variance can be adjusted to give a subjective best fit over
the lower quantiles of the CDF; it is really the form of the CDF that
is of interest and not the parameter values per se. Similarly, it is
not really the cross correlation coefficient that is of principal
interest in water resources planning, rather it is the related
distribution of joint events. Figures such as 7.3 and 7.4 give a more
direct indication of both the cross properties of the data and the
adequacy of the generation scheme. Consequently, both the state 1 and
state 2' correlations may be regarded as parameters which should be
selected and adjusted so that the synthetic and historic data in

Figures 7.3 and 7.4 conform reasonably closely.

The effect of adjustments to the state 1 and state 2 cross
correlations (P; and Py) on the distribution of joint events was
investigated by repeating the above experiments with correlations
(01= 0.0, Py= -0.39) and (Py= 0.75, Py= -0.20). The results are again

plotted in Figures 7.3 and 7.4 and summarized in Table T7.2.

Figures 7.3 and 7.4 show that the multivariate mixture model is
capable of adequately representing both the marginal distributions of
the historic data and the inter-station precipitation relationships.
Comparison of Figures 7.3 and 7.4 with Figures 4.8 and 4.9 and Table
7.2 with Table 4.8 demonstrates the superior ability of the
multivariate mixture model vis-a-vis more conventional models in

preserving the spatial characteristics of drought.
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7.2.2 Pacific Northwest Data

Precipitation data from seven sites in the Pacific Northwest were
‘used in Section 4.2.2 to evaluate the possible effect of dimension-
ality on the ability of conventional models to reproduce the observed
joint occurence of drought at multiple points. It was found that
current models tend to undersimulate joint drought occurence for the

Pacific Northwest data.

In this section the same data (i.e. 32 years of monthly January
data from Victoria, Vancouver, Sedro Woolley, Snoqualmie Falls,
Longmire, Kid Valley and Centralia) are used with a multivariate
mixture model to determine whether the additional flexiblity of the
mixture models can improve significantly our ability to model the
spatial characteristics of drought. The essential features of the
data were discussed in Section 4.2.2 and the locations of the sites is

shown in Figure 4.2.

The modeling approach adopted is similar to that used in the
previous section. The model parameters were again estimated by
classifying as drought events (state 1) those events for which all
sites had precipitation less than a one-half standard deviation below
the mean. This produced five observations from state 1 with the
remaining 27 observations being classified as associated with state 2.
The means and standard deviations of the state 1 and state 2 data are
shown in Table 7.3 and the cross correlation matrices are shown in
Table 7.4. Again it is recognized that the state 1 parameter esti-

mates are probably unreliable because of the small sample available.

The CDFs for data from the seven sites are shown in Figures 7.5a
to 7.5g along with the marginal mixture distributions with parameters

given in Table 7:3. The same CDFs with fitted LN3 distributions were
shown in Figure 4.12,
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Table 7.3 Multivariate Mixture Parameters for January Precipitation
Data at Seven Sites in the Pacific Northwest

State 1 State 2

Mean St. Dev. Mean St. Dev.

(mm) (mm) (mm) (mm)
Victoria 49.0 19.2 124,2 50.8
Vancouver 62.0 31.0 168.8 4y.8
Sedro Woolley 86.3 21.4 163.0 74,0
Snoq. Falls 79.6 21.4 259.0 85.0
Longmire 111.0 50.0 390.0 156.3
Kid Valley 67.8 33.5 249.0 95.3
Centralia 56.9 26.4 210.3 71.6
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Table 7.4 Cross Correlations for January Precipitation Data
at Seven Sites in the Pacific Northwest

>
[}
— )]
- — B
M o - 9 8
s & & & g g I
- 5 o ) o
o) e} o) . =] > =~
o Q v o &0 i
Q & 9 <! o o o
o 1] L)) o Q o U
State 1 > = @ @ - . ©
Victoria 1.0 .60 79 .86 .67 55 e
Vancouver .60 1.0 .93 .81 U7 63 .33
Sedro Woolley .79 .93 1.0 .96 .73 .81 .62
Snoq. Falls .86 .81 .96 1.0 .86 .83 .68
Longmire .67 U7 .13 .86 1.0 91 .79
Kid Valley .55 .63 .81 .83 .91 1.0 .80
Centralia T .33 .62 .68 .79 .80 1.0
*
State 2 Experiment 1
Vietoria 1.0 .51 U2 .76 .65 .66 .68
Vancouver .51 1.0 .49 46 .23 .35 .35
Sedro Woolley .u2 .49 1.0 .52 .66 .53 .50
Snoq. Falls .76 .46 .52 1.0 .85 .87 .85
Longmire .65 .23 .66 .85 1.0 .86 .83
Kid Valley .66 .35 .53 .87 .86 1.0 .94
Centralia .68 .35 .50 .85 .83 .9l 1.0
*
State 2 Experiment 2
Victoria 1.0 .51 .10 .76 .65 .66 .68
Vancouver .51 1.0 .10 Lu46 40 LU0 40
Sedro Woolley .10 .10 1.0 .10 .10 .10 .10
Snoq. Falls .76 .46 .10 1.0 .85 .87 .85
Longmire .65 LU0 .10 .85 1.0 .86 .83
Kid Valley .66 .40 .10 .87 .86 1.0 .94
Centralia .68 .40 .10 .85 .83 .94 1.0

*
See Figures 7.6, 7.7, 7.9, 7.10
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The mixtufe distributions provide a good fit at all sites except
perhaps Victoria and Sedro Woolley. Even at these sites, the fit at
the low and middle quantiles 1is adequate. The lack of fit arises
mainly from the largest observation, and if this were ignored, the fit
would be reasonable over all quantiles. With the exception of the
Victoria and Sedro Woolley data, the mixture distributions provide
fits which are as good as those provided by the LN3 distributions

shown in Figures 4.12.

Following the approach described in the previous section, the
multivariate mixture model was used to generate 3200 years of
synthetic January precipitation data at the seven sites in question.
The parameters used initially were those given in Tables 7.3 and T7.4.
To find a real solution to the matrix equation gg? = M, however, the
correlation matrix ﬂ1 must be positive definite. Unfortunately this
Wwas not the case with the initial estimate of the state 1 correlation
matrix ﬁ1 and some adjustments had to be made to the elements of the
matrix. These adjustments were made using Fiering's (1968) eigenvalue
modification scheme. The final adjusted positive definite matrix
differed only slightly from the initial estimate of ﬂ1. The
difficulties encountered with the state 1 correlation matrix are
probably a direct result of the small sample size available and again

indicate a lack of reliability in the parameter estimates.

The results of the Monte Carlo experiment are summarized using
the procedure described in Chapter 4 (i.e. in.terms of the frequency
of occurence of joint events at all sites) in Figures 7.6 and 7.7, and

the actual number of occurences of joint low events in the synthetic
record are given in Table 7.5.
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Table 7.5 Occurrences of Joint Low Events in January Synthetic
Record at Seven Sites in the Pacific Northwest

Number of 32-year Synthetic Sequences having n Joint
Events Less than or Equal to Quantile qp

Percentile p n O 1 2 3 ] 5 6 7 8
Run 1

10 b9 38 13

15 22 33 25 16 3 1

20 T 23 24 24 11 T 3 1

25 3 11 17 25 22 11 6 2 3

Compariéon of Figures 7.6 and 7.7 with Figures 4,13 and 4,14 and
Table 7.5 with Table 4.12 indicates that use of the multivariate
mixture model again results in a significant improvment in reproducing
the observed frequency of widespread drought. The frequency of
occurrence of joint synthetic high events also shows some improvement

but is still over simulated.

In the previous section it was suggested that correlation
coefficients be adjusted to ensure reasonable agreement between the
observed and synthetic distributions of joint events. For the case of
two sites only this is a relatively easy task. However, for seven
sites this approach may be impractical. Clearly an inability to
reproduce joint events at seven sites could be caused by difficulties
with the modeling at only one of those sites. Thus to ensure correct
modeling of joint events at multiple sites, it would seem necessary to
investigate the occurrence of joint events at all possible pairs of

sites (21 combinations for the seven site case).
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A study of this nature showed that the high events occuring
concurrently at Sedro Woolley and other sites were not being modeled
correctly. A scatterplot of the January data at Sedro Woolley and
Snoqualmie Falls (Figure 7.8) illustrates the nature of the problem.
Apparently the correlation between rainfall depths at Sedro Woolley and
other sites is small for high events. Since the Sedro Woolley data are
thought to be reasonably representative of conditions over parts of the
North Cascades (Rasmussen and Tangborn 1976), these problems are
probably due to meteorological conditions rather than errors or incon-
sistencies in the data. The occurrence of joint low aﬁd high events at
Sedro Woolley and Snoqualmie Falls for the historic and synthetic data

is summarized in Figure 7.9 and 7.10.
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Figure 7.8 Scatterplot of January precipitation data, Sedro
Woolley vs. Snoqualmie Falls
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A considerable improvement in the simulation of joint high events
was achieved by reducing the state 2 correlation coefficients for the
Sedro Woolley data to 0.1. Small adjustments were also made to the
state 2 correlation coefficients for the Vancouver data. The adjusted
correlation matrix is shown in Table 7.5, denoted as state 2 experiment
2.

The Monte Carlo experiments were repeated using the revised
correlation matrix. Some additional minor adjustments were again
necessary to ensure that the matrix was positive definite. The results

obtained are summarized as before in Figures 7.6, 7.7, 7.9, and 7.10,

The substantial improvements in the simulation of joint high
events at Sedro Woolley and Snoqualmie Falls (Figure 7.10) and at all
seven sites (Figure 7.7) is obtained at the cost of some deterioration
in the simulation of joint low events. A decision as to whether one
should try to correctly model only the joint low events or joint events
at all quantile levels depends on the nature of the problem being
addressed. In some circumstances the joint low events may be of
principal concern whereas in other situations joint events over a wider
range of quantiles may be of interest. In the latter case some
deterioration in the simulation of joint low events may be acceptable

if the simulation were improved for other quantile levels.

The multivariate mixture model presented here is obviously useful
in its ability to represent both the marginal distributions of the
historic data and the observed cross properties of the data. The model
has the additional attractive feature that the proportion of widespread
drought is controlled directly by one of the model parameters thus

introducing some degree of consistency into the parameter estimates.



8.0 SUMMARY AND CONCLUSIONS
8.1 Summary

The primary motivation for this work was the belief that
consideration of the physical mechanisms involved in the hydrologic
cycle could lead to improvements in the techniques currently used in
stochastic hydrology. Of particular concern to water resources
planning is the frequency, severity and areal extent of droughts,
which on the west coast of North America can be related to anomalous

conditions in large scale atmospheric circulation.

A brief review of the concepts and past developments underlying
stochastic hydrology is given in Chapter 2. This review illustrates
the general lack of physical bases in most work in this area. 1In
particular, no consideration seems to have been given to the role of

the large scale atmospheric processes associated with drought.

The known qualitative relationships between precipitation and
patterns of atmospheric circulation are reviewed in Chapter 3. The
most important qualitative association for water resources planning is
between precipitation and the track of the jet stream. Persistent
anomalous jet stream tracks lead to severe droughts such as those
which occurred on the west coast during 1977 and 1978. The nature of
the atmospheric circulation associated with drought suggests that
inter-station precipitation relationships are nonlinear with higher
cross correlations during drought than during wet or normal periods.
This indicates that current multi-site stochastic models, which all
assume linear inter-station relationships, may under simulate the

areal extent of drought.

As noted in Chapter 3 both observational studies and theoretical

work in the atmospheric sciences have led to the hypothesis that

atmospheric circulation may exist in one of two quasi-stable states;
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one state associated with meridional circulation and dry conditions
and the other with zonal flow and generally wet conditions. This
hypothesis and the previously noted nonlinear inter-station precip-
itation relationships indicate that rainfall may perhaps be modeled
better using a mixture of two distributions; one distribution assoc-
iated with meridional flow and dry conditions and the other associated

with zonal flow and wet conditions.

Multi-site precipitation data from the west coast were analyzed
in Chapter 4 in an attempt to detect nonlinearities in the inter-
station relationships. Many existing multi-site models generate
synthetic data by sampling from multivariate normal distributions. It
is hypothesized that these models suffer from two deficiencies which
have been termed the "scale effect" and "dimensionality effect". Both
of these effects are related to the large areal extent of severe

drought.

The scale effect refers to the potential inability of conven-
tional models to reproduce correctly the observed frequency of extreme
Jjoint low events occurring conchrrently at widely separated sites.
This is illustrated by analyzing the January precipitation data from
Port Hardy and Eureka (separation 1300 km). Attempts to model
concurrent Port Hardy and Eureka January monthly data using a
conventional model resulted in a substantial under simulation of joint
drought events. From a practical standpoint this has serious
implications for the design of projects such as those involving the
long distance transfer of water or hydro power. It is clear that

conventional models are unsuitable for multi-site modeling in such

situations.

The dimensionality effect refers to the hypothesized inability of
conventional models to reproduce correctly concurrent drought at
multiple points in an area where drought at one point is invariably

associated with drought at all other points. This is illustrated by
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modeling the January precipitation at seven sites in the Pacific
Northwest. The conventional model gave a consistent under simulation
of joint drought occurrences, but the discrepancies between the
historic and synthetic data were not as significant as those
encountered when modeling the joint Port Hardy and Eureka data. The
dimensionality gffect is potentially significant in the generation of
multi-site synthetic data for studying the operation or design of

large water resources systems such as the Columbia basin system.

Although the work in Chapter 4 is based on the analysis of a
limited amount of data, it is clear that the assumption of linear
inter-station relationships may be invalid in some multi-site studies.
While conveﬁtional multi-site models may be appropriate in any
particular situation, the assumptions of linearity should be checked

and the consequence of nonlinearities in the observed data evaluated.

In an attempt to understand better the relationships between
precipitation and circulation, an analysis of concurrent precipitation
and 500 mb geopotential height data was undertaken. The results of
this analysis presented in Chapter 5 generally confirm the previously
known qualitative relationships between precipitation and circulation,

but attempts to develop more detailed quantitative relationships were
unsuccessful.

The hypothesis put forward in Chapter 3 that rainfall comes from
a mixed distribution implies a classification of the data into two or
more populations. It had been hoped to classify the data into wet and
dry populations based on the prevailing type of atmospheric
circulation, (i.e. meridional or zonal). However, the work in Chapter
5 showed that the distinction between zonal and meridional conditions
is quite subjective except in extreme situations. As a result no

useful method was found to classify the precipitation data by
circulation type.
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The parameters of mixture models can be estimated, however, in
the absence of suitable information for classifying the data. The
characteristics of simple univariate mixtures of two normal
distributions were investigated in Chapter 6. Various methods for
parameter estimation Qere explored with particular emphasis on maximum
likelihood estimates. Although mixtures have been used in various
fields for some time, little is known about the small sample
properties of the MLE's. Consequently, a number of Monte Carlo
experiments were performed to determine the mean and variance of the
ML parameter estimates for both classified and unclassified samples of
sizes 50 and 100. As had been expected, parameter estimates from the
unclassified data showed considerably greater bias and variability
than the estimates from the classified data. However, the quantiles
of the distributions fitted to classified data proved to be only
slightly better estimates than those quantiles obtained from the
unclassified data. Since the interest in water resources is primarily
in the quantiles of a distribution and not in the parameters per se,
these findings indicate that the ability to classify the data from a

mixture distribution is not necessarily important.

Attempts were made in Chapter 6 to fit mixture distributions to
precipitation records from Victoria and Agassiz, these stations having
some of the longest records available in the area. Unfortunately,
again no evidence was found to justify the use of univariate mixture

models for single-site precipitation modeling.

The use of multivariate mixture models for multi-site precip-
itation modeling was explored in Chapter 7. Such models are
attractive for multi-site modeling because they are perhaps the
simplest form of model which incorporate nonlinearities in the
inter-station relationships. The model was applied to the Port Hardy
and Eureka data used to evaluate the scale effect in Chapter 4. The
performance of the multivariate mixture model was quite encouraging in

that it was able to preserve both the marginal distributions of the
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data and the nonlinear inter-station relationships. Its performance

was superior to that of the conventional model used in Chapter 4.

The multivariate mixture model was also applied to the seven site
data used in Chapter 4. Although the model again performed better
than its conventional counterpart, severe difficulties were
encountered in estimating consistent (i.e. positive definite)

correlation matrices, and the parameter estimation method is far from
satisfactory.

8.2 Conclusions

The foilowing conclusions regarding seasonal multi-site

precipitation modeling may be drawn from this study:

(1) Both recorded data and physical considerations show that
inter~station precipitation relationships are nonlinear for
widely separated sites on the west coast of North America
(separation greater than 1,000 km) with higher cross

correlation during drought than during wet periods.

(2) Monte Carlo simulation shows that as a result of such
nonlinearities, conventional multi-site models, which
all assume linear inter-station relationships, could
seriously under simulate the frequency and areal extent of

drought at widely separated points.

(3) Evaluation of data synthesized by a conventional multi-site
model at seven sites in the Pacific Northwest also revealed
a tendency to under simulate widespread drought in high
dimensionality problems where stations separation is not
necessarily large. , Such difficulties are attributed to the
fact that droughts generally affect considerably larger

areas than are affected by frontal systems.
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(4) In many situations the conventional cross correlation
coefficient is an inadequate descriptor of inter-station
precipitation relationships. An alternative descriptor of
inter-station relationships is suggested which is based on
plots of the occurrence of joint events below (or above)
specified quantile levels.

In exploring alternative approaches for the analysis and
synthesis of precipitation sequences, it was hypothesized that
precipitation may be treated as coming from a mixture of two
distributions; one distribution associated with meridional atmospheric
circulation and dry conditions, the other with zonal flow and wet or
normal conditions. Analysis of concurrént precipitation and 500 mb

geopotential height fields led to the following conclusions;

(1) Relationships between precipitation depths and simple
characteristics of the 500 mb field are too weak to be of
quantitative value in the field of stochastic hydrology.
The data examined, however, do support the previously known
qualitative relationships between precipitation and

atmospheric circulation.

(2) There is no evidence in the geopotential height data to
suggest that atmospheric circulation may be objectively

classified into only two states: zonal and meridional.

(3) No basis was found for using 500 mb data to classify
rainfall data into dry or wet states dependent on the type

of atmospheric circulation.

A detailed study of the properties of univariate mixture models
led to the following findings:
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(1) Parameters estimated from small unclassified samples drawn
from a mixture of two normal distributions exhibit great
variability. Accurate parameter estimates from samples of
the size available in hydrologic work are only possible if

the observations in the sample can be classified by state.

(2) Despite the variability of the parameter estimates, the
quantiles of mixture distributions fitted to small
classified samples are only slightly more accurate than the
quantiles of distributions fitted to unclassified data.
Since most hydrologic work requires a knowledge of the
qqantiles of a distribution rather than the parameters per
se, this suggests that the ability to classify observations
from mixed distributions is not necessarily important in

hydrologic work.

(3) Analysis of iong (81 years) rainfall records from two sites
in the Pacifiec Northwest failed to demonstrate the presence
of mixture distributions. Although mixtures of two normal
distributions fitted annual data well, the mixture was
subtle, and a simpler 2 or 3 parameter distribution would

have provided a satisfactory fit to the data.

Despite difficulties in justifying the use of univariate mixture
distributions in single site precipitation synthesis, multivariate
mixture distributions were found to have a number of attractive

features for multi-site modeling:

(1) They are perhaps the simplest form of model which supports a

nonlinear cross correlation structure.

(2) Experiments performed in this study showed that multivariate
mixture models are capable of preserving both the marginal

distributions and cross correlation structure of data which
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could not be modeled adequately using more conventional

models.

(3) Mutivariate mixture models allow explicit recognition of the

wide spread nature of drought.

8.3 Implications and Recommendations

The work described in this report has potentially serious
implications in water resources planning. I have shown that conven-
tional multi-site stochastic models may greatly understate the areal
extent of drought on the west coast of North America. Difficulties
with existing models stem from their assumption that inter-station
relationships are linear. A class of multivariate mixture models is
explored which show great promise in its ability to preserve both the

marginal distributions and cross properties of the historic data.

The difficulties with conventional models are especially evident
in attempting to model concurrent drought events at widely separated
sites on the west coast. This problem is of great significance if
stochastic methods are to be used in the design or cperation of
schemes for the long-distance transfer of hydropower (for example,
from northern British Columbia or southern Alaska to the southwest
U.S.A.). In such situations multivariate mixture models provide an
attractive and practical method for maintaining both the observed
areal coverage of drought and the marginal distributions of the

recorded data.

While this may appear to be an extremely limited application, the
concepts explored in this dissertation are likely to be useful for
large scale problems in other parts of the world. Serious
nonlinearities in cross correlations may exist wherever drought occurs

on larger scales than the rainfall producing mechanisms, and where
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there are distinct relationships between drought and large scale
atmospheric circulation. Conditions such as these may occur, for
example, over central Brazil where rainfall is related to the movement

of the inter-tropical convergence zone (ITCZ).

During the northern hemisphere summer, the ITCZ generally lies
several degrees north of the equator. During the fall, the ITCZ moves
south usually lying over central Brazil during the rainy months of
November through March. Failure of the ITCZ to move south over the
region results in drought. Droughts over the Indonesian archipelago

may be related to movement of the ITCZ in a similar manner.

While multivariate mixture models seem attractive for modeling
events at widely separated sites, the justification for their use in
more general multi-site applications is not as clear. As has been
seen, there are severe parameter estimation problems but, more
important is the practical significance of the possible discrepancies
between natural multi-site sequences and the synthetic sequences
produced by conventional multi-site models. Suppose for example that
we wish to model rainfall at seven sites which are all affected
concurrently by drought. Use of a conventional model may however
produce synthetic drought at only five of the seven sites in the study
area. The significance of this discrepancy depends on whether the two
sites not affected by drought had substantially greater synthetic
rainfall than normal or whether they were just marginally wetter than
our arbitrary definition of drought. In the former case, multivariate
mixture models may be of great value; in the latter case they may

simply be irrelevant from a pactical viewpoint.

The value of using multivariate mixture models depends on the
degree of nonlinearity in inter-station relationships. The
investigation reported here studied monthly precipitation from a
limited number of sites. Additional work is needed to identify more

accurately situations in which nonlinear inter-station relationships
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present practical difficulties. In particular, work is needed to
study the cross correlation structure of streamflow series, to extend
multivariate mixture modeling to preserve serial correlation, and to

improve methods of parameter estimation.
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APPENDIX A

MAXIMUM LIKELIHOOD ESTIMATES OF THE PARAMETERS OF A MIXTURE OF
TWO NORMAL DISTRIBUTIONS USING THE EM ALGORITHM

Making use of the development by Dempster, Laird and Rubin
(1977), herein referred to as DLR, suppose that we have a sample of n
observations y = (y1.y2,...,yn) and that each yi is associated with
one of two unobserved states. We can thus define an unobserved vector
zZ = (z1,22....zn) where zy is an indicator vector with components zero
and one, the component equal to one indicating the unobserved state
associated with Yy The complete data can thus be defined as

x = (y,z) where y is the incomplete observed data.

A useful approach to specifying a mixture model is to first
obtain the marginal distributions of the indicators z and then to
specify the conditional distribution of the yi given zi. In the
simplest type of model, as pointed out in Section 6.1.1, we can think
of the z; as being based on the results of identical and independent
Bernoulli trials so that the z; are drawn from the discrete

distribution:

P(zi (1,0)) =
P(Zi = (0'1))

|
el
—_

(A.1)

Py = 1P,

For mixtures of two normal distributions, the yi given zi are

conditionally independent with the conditional distributions:

g(ylz, = (1,0),8) = (2109 7% expl-(y-1)%/20]] o

g(ylzy = (0,1),0) = (210277 expl-(y-1,) /207
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Then for complete data x sampled from the joint density f(x|¢)

depending on parameter set ¢, we can write the complete data

likelihood as:

n

T
£(x|9) =];11 2] (g(yilzi = (1,0),9),80,lz; = (0,1),¢)) 2L (.0,
(A.3)
or the complete data log-likelihood as:
L = log £(x|9)
n : T
= g;; zi<}og g(yilzi = (1,0),9),1log g(yilzi = (0’1),¢))
3~ T
+ }E: z;(log P;,108 P,)
= (a.4)

For brevity denote
G(y;»9) = (108 g(yilzi = (1,0),9),1lo08 g(yilzi = (0,1),¢)> (A.5)

so that

L= ;;; <zz G(yi,¢) + zz(log Py»>1log pz)) (A.6)

The EM algorithm comprises two steps, an E-step or expectation
step, and an M-step or maximization step. The algorithm requires an
initial choice of parameters say ¢(0), and the MLE's are then
determined by cycling between E- and M-steps until some convergence
criteria are met. Suppose that at iteration v we have a parameter set
¢ = ¢(V). then in its most general form, the next iteration of the EM

algorithm is defined as follows:
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E-step: Compute Q(¢|¢(v)) = E(log f(x|¢) y’¢(v))

M-step: Choose ¢(V+l)

Q6]

to be a value of ¢ which maximizes

Q(¢|¢(V)) is the current expectation of the complete data log

likelihood given observations y and the current parameters ¢(v). So
rather than maximize the complete data log-likelihood, which is not
known, we are instead maximizing the current conditional expectation

of the complete data log-likelihood.

For the case of a mixture of two normals:

E(log £(x|)]y,0¢")

n
E(Z log £(x,[9) Iyi.cb(v))
i=1

n

2_ E(log f(xi|¢)lyi,¢(v)) (A.7)
i=1

Q]o¢)

But X, = (yi’zi) so that given parameter set“¢(v):

o<y o)

P(x |y, P(y 2y lyys

RADERR RIS

2 P(yilzi,¢(v)) P(zi|¢(v))
all zg

gy, 12,60 2z, 160

> 8,126 2z 16

all zi

(A.8)
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Substituting from Equation A.7 and A.8:

Qo™ =
n
E Z (z'f Gly . 9) + zg(log Py»>log p2)>*
all z;
i=
) )
gy 12,07 ) Bz lom™) 5.9)
?[, gy l2,,60) Bz 104
The M-step now consists of finding ¢ = ¢(v+1) to maximize Q(¢l¢(v)).

Taking partial derivative of Q(¢|¢(V)) with respect to the components

of ¢ = (Pys Hys Tys Hyo 02) and setting them to zero:

n () v) _
% _ gy lr,00 ) P(ryl0) (Yi ?uj) (5.10)
W L\ T sy lry 8™ peryle™ \ o)
= 3
where ry = (1,0) for j =1
and ry = (0,1) for j = 2
For brevity put
87,11,0,6) = £, 10

27,10, 1,6 = £,6,16™)

1
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and define weights at iteration v

L) P(v) £ (yi|¢(V)) j=1,2 (A.11)
iJ 2 ;i=].,
DR AL !
j=1
Then
n ) -
8 - (V _i 3 j= ’2
33 3w ) ( > ) j=1 (A.12)
j =1
.‘l
Choosing uj §v+1) to set BQlauj to zero gives
e
Z 13 71
u;v'"l) - %131___2__)_. sy=1,2 (A.13)
v
2 vy
i=1
Similarly for the
o (v) 2
3Q S 171" ¥
= = -1 33=1,2 (A.14)
BO‘j iZ ij o-j <( oj
which gives
wi}) (y §V)?2 Y
c§v+1) = 33=1,2 (A.15)
Z w(V)
i=1

For the pj, recalling that Py = 1 - P, and noting that Wio = 1 - wi1:
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n (v) (v)
3Q _ i Uy ) (A.16)
T\ ™ Py
For 8Q/3p1 = 0 then
n n
v) (v+1) (v)
Z w. ' (1-p ) =p Z (l-w;.")
=1 il 1 1 =1 il
n
(D 13 0

Equations A.11, A.13, A.15 and A.17 together with an initial estimate
of parameters ¢(O) provide an iterative solution to the maximum
likelihood equations. Note that wij is the posterior probability that
given Yy observation i is from state j. For further details and
proofs associated with the EM algorithm, the reader is referred to
Dempster, Laird and Rubin (1977).



