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EXECUTIVE SUMMARY

The research results described in this report are the product of Phase II
of a four phase effort to develop and test methods to improve the design of
cost-effective aquatic monitoring programs. The PHASE II work statement
(Appendix A) defined the following tasks: (1) to develop a handbook and
software containing a framework and methods to improve the design of aquatic
monitoring programs; (2) to evaluate and select methods to include in the
handbook and software, (3) to develop and parameterize a method to perform
cost-effective optimization on monitoring program elements, and (4) to
identify potential case studies that can be used to evaluate the handbook and
software. The first phase of this research project, completed in April 1982,
reported the existing state-of-the-art and the outstanding issues in aquatic
monitoring of thermal electric power plants. The third phase of this effort
will evaluate the methods presented in this report by using selected case
studies from utilities active in aquatic monitoring. The final phase of this
research will be the improvement of the handbook methods based on the
evaluation results, the final documentation of the project results, and the
technology transfer of these results.

The framework for the handbook and software has been designated the
Electric Power Aquatic Monitoring (EPAM) model. Chapter 1 of this report
describes the basic concepts inherent in EPAM and covers prior efforts which
form a portion of its foundation. Chapter 2 presents a user's guide to EPAM,
and describes the hypothesis generating procedures, the sampling design
alternatives, and the optimization methods. At each step in the EPAM process,
the user is asked to consider the value of additional information versus the
cost of obtaining such data. Chapter 3 describes the approach used to develop

and refine the major components of EPAM. A nationwide group of 65 experts



operating as a Delphi panel was employed to evaluate and resolve alternative
frameworks to be incorporated in EPAM and to reduce uncertainty in the
specific issues addressed by EPAM. The Delphi process is a method of
structuring group communication to deal with a complex problem, often one with
no generally accepted decision criteria, in an attempt to develop a consensus.
The Delphi eXercise was implemented with a series of questionnaires developed
by the research team and mailed to panel members. Use of the Delphi panel
permitted expert opinion to be incorporated into EPAM in an effective manner.

Chapter 4 presents the theory and application of several computational
algorithms that perform specific functions in EPAM. One algorithm, termed
CHOICE, provides a means of ranking options according to designated criteria.
CHOICE may be activated in EPAM to select various elements of a monitoring
program design on a priority basis. The remainder of Chapter 4 concerns
statistical aspects of the EPAM framework.

A substantial portion of this research investigated certain statistical
problems that have limited the success of aquatic monitoring programs. This
inquiry focused on the linking of optimization methods with factorial treat-
ment and time series analysis, plus the explicit recognition of the spatial
and temporal correlation of errors. A multivariate framework for sampling
program optimization was developed for those situations in which spatially-
correlated errors must be considered. A pairwise comparison concept was
selected as the general prioritization and optimization procedure to be used
in EPAM. Parametric cost data were collected for use in cost optimization in
EPAM.

A prototype handbook, a demonstration of the EPAM model, details of the
analysis and theoretical derivations supporting this research, and work state-
ments for the various research phases are found in the appendices of this
report. This report is the source book for the Phase III evaluation of the

EPAM handbook, software, and methods.
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CHAPTER 1
OVERVIEW: BASIC CONCEPTS OF EPAM DEVELOPMENT

INTRODUCTION

This project is a nontraditional attempt by the research team to bring new
perspectives to the improvement of aquatic monitoring program design. The
research team was assembled to provide skills and insights developed from the
statistical analysis and modeling of hydrologic and water quality data, the
optimization of multiobjective natural resource allocation problems using
subjective inputs, and general system analyses of complex ecosystems.

The overall goal of this project is to incorporate the most accepted
aquatic monitoring design practices into a well-documented and easily used
framework. Existing practice is being extended and improved for several
purposes: (1) to formalize the recognition and use of subjective information,
especially to define objectives and criteria to measure these objectives; (2)
to provide practical methods to prioritize and increase the cost-effectiveness
of monitoring activities; and (3) to focus on the tradeoff between the costs
and precision of monitoring short- and long-term effects.

PHASE I SUMMARY

The Phase I report "Sampling Design for Aquatic Ecological Monitoring-
Phase I Report," prepared in April 1982, summarized a review of approximately
500 publications and 50 interviews with experts in various aquatic monitoring
activities. A workshop was held to review this summary and to permit some of
these individuals to discuss and assess Phase I activities. While the details
of this workshop are not repeated in this document, the conclusions are summar-
ized to provide background and a point of departure for the Phase Il efforts
to improve and integrate the existing knowledge.

1. The methodology used in aquatic monitoring design varies in quality
and tends to be fragmented by discipline. At one end of the spectrum
are outstanding pioneering efforts that provide leadership and innova-
tion to improve the process of monitoring design, while at the other
extreme are myopic, biased, and obsolete efforts.
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In most cases the design of a monitoring program is based on the
experience and subjective decisions of .a few individuals. Usually
these individuals emphasize their areas of expertise and interests
and select measurement techniques that they have used in the past.
This practice creates a difficulty in the sharing of this expertise
that stems from the inability of monitoring program designers to
capture subjective insights and then to transfer this knowledge.

Potential aquatic effects of thermal power generation are well-
recognized, but the magnitude and scope of these effects are site-
specific and difficult to estimate.

Specific hypotheses of impact and expected levels of change caused by
plant operation are rarely defined as part of the design of a moni-
toring program. Moreover, formalized regulatory specifications for
aquatic monitoring programs are very general, and regulatory agencies
tend to operate on a case-by-case basis.

The development of statistically valid monitoring programs requires
not only the identification of hypotheses, but also the definition of
treatments, controls, and variables that can be measured. If observa-
tions are correlated in space and/or time, the analysis of the
monitoring data must be adjusted.

While water and pollutant movement can be modeled with some preci-
sion, most scientists lack confidence in using ecosystem models.

The costs of conducting monitoring programs are seldom reported, and
the few data available cannot be standardized because of inconsistent
assumptions and formats used in presenting the data. Cost-effective-
ness has not been an important criterion in most designs.

The consensus, developed at the workshop, concluded that Phase I provided
several new directions for Phase II. The workshop panel particularly
redirected the Phase Il work toward the development of a conceptual framework
to generate hypotheses to be tested in monitoring designs. On the other hand,



3

the proposed investigation of models to design monitoring programs and the
risk/benefit analysis of monitoring program design were deemphasized by the
panel. The panel believed that efforts to compile and define the effective-
ness of techniques to measure a given variable would require much greater
resources than those available in this project and should be the subject of
another investigation. These recommendations altered the Phase II goals;
rather than being concerned equally with what to measure in a cost-effective
aquatic monitoring program, as well as where, when, how, and how often, Phase
I1 goals now center most fundamentally on what to measure. Setting aside the
question of how to measure, the research proceeded to devise means of deter-
mining where, when, and how often. Also as a result of the workshop delibera-
tions, the emphasis on an effort to assess expert opinion was increased sub-
stantially beyond the initially anticipated level for Phase II. The review
panel concurred with the recommendation that this assessment be conducted by
use of the Delphi process (Linstone and Turoff, 1975).

PHASE II WORK STATEMENT

The contractual statement of work for Phase II, developed from the Phase
I surveys and the workshop panel recommendations, is presented in Appendix A.
Following is a brief summary of the tasks and references to pages on which
discussions of the respective issues begin:

Task 1A Develop a methods handbook and interactive computer software
containing:

a. A framework to evaluate and prioritize elements of a
monitoring program (p. 4)

b. Alternative approaches to monitoring programs design (p. 7)

c. A method to generate hypotheses to be tested (p. 8)

d. Methods to test the hypotheses (p. 8)

e. Guidelines for selection of statistical methods for
application to the data (p. 58)

f. Methods to select the optimized set of hypotheses and tests
and an application of the methods to be demonstrated in an
example (p. 49, Appendix C.3)
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Task 18 Develop a prototype interactive software system that can be
used in the application of the Task 1A products (Appendix C.2)

Task 2 Compare the effectiveness of the following methods to detect
both long- and short-term impacts

a. Use of expert judgment (p. 50)
b. Use of statistical/optimization techniques (p. 58)
c. Use of simulation models (p. 114)

Task 3 Develop optimization techniques and cost data for use in
designing aquatic monitoring programs (p. 86)

Task 4 Identify data sets generated by actual monitoring programs
that can be used in evaluating the results of the Phase II
effort (Appendix E)

OVERVIEW OF EPAM

Aquatic monitoring design must integrate concepts from many disciplines.
The framework developed in Phase 11, EPAM (a model for Electric Power Aquatic
Monitoring), attempts to integrate: (1) the concepts that aquatic scientists
use to generate hypotheses concerning the impact of thermal electric
generating facilities on the aquatic environment with the methods
statisticians use to design experiments to test hypotheses and demonstrate
significance, (2) the methods experimentalists use to obtain and assure the
quality of sampling data, and (3) the methods systems analysts use to optimize
and allocate resources in a cost-effective manner. Since much of the infor-
mation employed in the design of an aquatic monitoring program may be subjec-
tive or require value judgments, the EPAM framework includes methods to
accommodate qualitative as well as quantitative information.

EPAM was designed to follow the classical pattern of allocating resources
to a set of scientific inquiries. The basic steps in this pattern are:
(1) identifying the potential causes and effects of interest, (2) formulating
hypotheses that can be tested to determine if cause and effect are related,
(3) designing experiments that can observe the proposed changes and have
statistical rigor, and (4) balancing the cost of each experiment against the
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value of the information gained from that experiment. Since aquatic monitor-
ing design may be an iterative process where increasing precision and detail
must be provided as the process continues, EPAM is designed to process a
spectrum of input formats ranging from general subjective information to
precise and replicated observations.

NOMENCLATURE

Several terms have been used in EPAM and in this report to describe
specific components in the EPAM framework. MONITORING PROGRAM is the term
used to describe a set of SAMPLING PROGRAMS that collect data to test
HYPOTHESES concerning potential responses of the aquatic environment to the
activities related to a thermal electric generating facility. Each SAMPLING
PROGRAM is designed to test a specific HYPOTHESIS. A HYPOTHESIS proposes that
an IMPACT AGENT (a factor causing change) is affecting a TARGET (a factor
proposed to be changed).

With this nomenclature the EPAM framework can be described as a sequence
of procedures and methods to perform the following functions: (1) to identify
IMPACT AGENTS associated with thermal electric generating facilities, and to
identify TARGETS present that have a potential to be changed by these IMPACT
AGENTS; (2) to combine and rank IMPACT AGENT and TARGET pairs in order to
generate HYPOTHESES that may need to be tested in a MONITORING PROGRAM; (3) to
determine the cost and effectiveness of alternative SAMPLING PROGRAMS that
will test a given HYPOTHESIS, or to design the most effective SAMPLING PROGRAM
given a cost constraint; and (4) to optimize or find the most cost-effective
set of SAMPLING PROGRAMS to include in a MONITORING PROGRAM for site-specific
goals.

BASIC FRAMEWORK

EPAM is a hierarchical framework containing four major components or
levels. Figure 1.1 presents a flow chart representing the EPAM structure and
components. LEVEL O contains only the optimization process to identify the
most cost-effective set of SAMPLING PROGRAMS needed to meet the goals of the
user. If the alternative SAMPLING PROGRAMS are not well known or need better
definition, LEVEL 1 is summoned. LEVEL 1 contains information and methods to
design SAMPLING PROGRAMS (the locations and timing of data collection) to



INTRODUCTION

MONITORING PROGRAM
OPTIMIZATION

Il

ourPUT

MONITORING
PROGRAM

IMPACT AGENT MENU

><

LEVEL OF CERTAINTY

Am)!vr_zo DESIGN

.

mbz_v_._zoomw_oz
OPTIMIZATION

Figure 1.1.

]

ourPur

SAMPLING
PROGRAM

EPAM Flow Chart

LEVEL 3

a /" IMPACT AGENT

LEVEL OF CERTAINTY
C. Water Quolity Degradation — Bioti

J ﬁ D. Hobitat Modification — Biotic

m A. Physical /Chemical Alterations - Abiotic

N

B. Impingement / Entrainment ~ Biotic

c

HYPOTHESIS GENERATION

Severity
-_—— = = = = .Ilvq;ama SELECTION
Complementary Hg ¢

Variables /_\

Alternative ...n.o

HYPOTHE SIS nzo:@ ,_" orD

a _ f&@ﬂxomq SENSITIVITY )
ouTPUT _

)

HYPOTHESES

OIVDﬂd AGENT CHOICE n§sv

L4

IIVm TARGET OVERLAP Repeat
for A,8,C

ﬁ m TARGET CHOICE E

IMPACT
AGENTS

TARGETS




7

test specific HYPOTHESES. If HYPOTHESES are not well defined, then methods in
LEVEL 2 are available to assist in the generation of HYPOTHESES, as well as
the ranking of a list of candidate HYPOTHESES in order to select those to be
tested. If the user needs assistance to establish IMPACT AGENTS or TARGETS
that will form the basis for the generation of HYPOTHESIS, LEVEL 3 contains
methods to identify and rank these factors. The research and synthesis
conducted to develop the EPAM model are described in the subsequent chapters
and appendices of this report. A brief overview of the concepts incorporated
in EPAM is presented in this chapter for readers seeking only a user's
perspective of the model.

LEVEL O

The ranking process for identifying the most cost-effective set of
sampling programs is based on a pairwise comparison method suggested by Saaty
(1977). Other multiobjective optimization schemes were much more complex and
did not offer a reference point for subjective comparisons of qualitative
information, which may enter into aquatic monitoring program decision-making.
In LEVEL 0, the user characterizes each sampling program by its cost, the
quality of the hypothesis test produced, the importance of the information to
the user, and any other attributes of concern. The user then compares each of
these CRITERIA pairwise using a scale of 1 to 9, where 1 indicates that the
CRITERIA are equally important and 9 indicates that one CRITERION has been
demonstrated to be much more important than the other. A 5 is used to indi-
cate an apparent but not demonstrated difference in importance, and
intermediate values may be assigned as appropriate.

The user then compares each SAMPLING PROGRAM with all others using each
CRITERION as the sole basis for the comparison. These comparisons are tabu-
lated in a matrix format; eigenvectors and eigenvalues are computed and used
to establish the tradeoffs and ranking of each SAMPLING PROGRAM in terms of
its contributions to the goals of the overall MONITORING PROGRAM as specified
by the CRITERIA. This same tradeoff process is modified for use at each level
of EPAM whenever optimization or ranking is needed. The theoretical basis for
this method is described in Chapter 4.



LEVEL 1

LEVEL 1 contains the optimization and statistical algorithms for SAMPLING
PROGRAM DESIGN. The user enters LEVEL 1 after defining the hypotheses to be
tested, the variables to be measured, and the sampling costs and the quality
of data that can be obtained from each observation. LEVEL 1 guides the user
in defining an initial set of sampling locations, frequencies and replicates
for testing each hypothesis, and in identifying appropriate statistical tests.
Methods are included to examine existing sampling data to determine if the
residuals in the data are correlated in either space or time. If the residuals
in the data are independent, then methods to optimize a classical analysis of
variance (ANOVA) are provided. If the residuals are correlated, a modified
ANOVA optimization is available to compensate for such dependence. When ANOVA
is inappropriate, alternative statistical designs are examined. Chapter 4
describes the theoretical basis for these methods and supporting information
is provided in Appendix D.

LEVEL 2

LEVEL 2 contains methods to guide the user in generating and ranking
hypotheses. LEVELS 2 ‘and 3 are conceptually different from LEVELS 0 and 1,
where computational algorithms developed by this research are used to optimize
MONITORING PROGRAM components. In LEVELS 2 and 3 the user is guided to define
HYPOTHESES (LEVEL 2) and IMPACT AGENTS and TARGETS (LEVEL 3), and then prepare
tables of data or information that characterize these parameters using exist-
ing knowledge. At LEVELS 2 and 3, the user must decide whether to conduct
specific studies to improve the quality of the information in the tables, or
to use the existing data for the LEVEL 0 and 1 considerations. The user can
examine the possible improvement in the MONITORING PROGRAM design if more
information or better information is used, versus the cost of obtaining the
additional data.

Since the generation of hypotheses requires judgment and experience, as
well as knowledge of aquatic monitoring practices, the development of the
LEVEL 2 and 3 framework and methods employed a Delphi panel of experts. The
process used to obtain the panel's expert judgment and the results obtained
are summarized in Chapter 3 of this report. The questionnaires are presented
in Appendices B.2 through B.5.
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The results of this research, as reviewed and augmented by the Delphi
panel, created the LEVEL 2 process where the user generates and ranks
hypotheses. The pattern of generation is to examine an IMPACT AGENT/TARGET
pair and to develop a PRIMARY HYPOTHESIS of impact. The analysis also
attempts to identify any ALTERNATIVE HYPOTHESES that may cause the same TARGET
response and COMPLEMENTARY HYPOTHESES (indirect responses) that may result if
the PRIMARY HYPOTHESIS occurred. Next the user defines the VARIABLES that
could be measured to test the various types of HYPOTHESES. Each HYPOTHESIS is
then characterized by the cost and precision associated with the VARIABLES
selected to measure the TARGET response, the number of ALTERNATIVE HYPOTHESES
that could cause the same outcome, and the number of COMPLEMENTARY HYPOTHESES
that may be triggered by the PRIMARY HYPOTHESIS. HYPOTHESES are ranked using
the pairwise comparison process to define those that are most cost-effective
as defined by the CRITERIA selected.

LEVEL 3

LEVEL 3 guides the user in identifying and selecting IMPACT AGENTS and
TARGETS that can potentially serve as the basis for the HYPOTHESES of impact
to be defined for a particulate site. Four categories of IMPACT AGENTS
associated with thermal electric generating facilities have been defined: (1)
physical or chemical alterations, (2) impingement or entrainment, (3) water
quality degradation, and (4) habitat modification. Similarly, categories of
potential TARGETS (e.g., decomposers, producers, consumers, chemical indices,
etc.) have been identified for various receiving water types. This informa-
tion is available to guide the user in initially identifying IMPACT AGENTS and
TARGETS for his or her particular site. The user evaluates each TARGET in
terms of ecological, socioeconomic, and regulatory importance. The concen-
trations of each TARGET in time and space are overlayed with the temporal and
spatial distributions of IMPACT AGENTS. Potential severity of the TARGET
response to the IMPACT AGENT effect is also evaluated in LEVEL 3. The general
philosophy is that the larger the overlay of TARGET domain and IMPACT AGENT
area, and the higher the potential severity of the effect, the greater the
probability is that any change observed would be caused by the plant.

For application at other EPAM levels, the user is asked to estimate the
quality of the data underlying the analysis at LEVEL 3 and the cost to improve
the quality of these data. Information on data quality and cost is used in
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LEVEL 2 to consider the strength of the foundation for high ranking
hypotheses. If the foundation is weak, the user can elect to collect more
data for the estimated cost and return to LEVEL -3 to reconsider the IMPACT
AGENT and TARGET definitions.

PRIOR WORK

The EPAM approach has its roots in the classical scientific method of
inductive inference. As set forth theoretically by Platt (1964), this method
attempts to strengthen the inferences drawn by applying the inductive
procedure systematically to devise hypotheses and experiments to test them.

Several previous investigators have endeavored to simplify the process of
determining what to measure in a monitoring program by providing a set of
guidelines. These guidelines use data to identify components of an ecosystem
likely to be impacted by a proposed development. Other investigators have
specified that particular organisms or biotic components be included in the
study regardless of the site-specific conditions. Such mandates have usually
been based upon ecological perceptiohs or the socioeconomic value of the
jdentified components. In general, the criteria for determining what to
measure in a monitoring program have been as follows:

1. A1l biotic components of the ecosystem because of their high degree

of interdependence and interaction (Meyers and Bremer, 1975)
2. Species determined to have critical importance based on one or more
of the following:
a. commercial or recreational value
b. rare or endangered classification
c. relevance to the well-being of a species in a or b above
d. importance to the structure or function of the ecosystem (Munn,
1975; U.S. Nuclear Regulatory Commission, 1976; U.S.
Environmental Proteétion Agency, 1977a,b)
3. Species designated by legislative mandate (Tetra Tech, 1981)
4. Species likely to be impacted, based on the interaction in time and
space with the characteristics of the plant (Munn, 1975; Fritz et
al., 1980; Rago et al., 1983)
5. A combination of the above with consideration given to the existence
and feasibility of reliable measurement techniques (States et al.,
1978)
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6. A combination of the above plus some consideraton for the expected
magnitude of the effect and the time scale of recovery. For
example, a long-term effect on a commercial fishery would cause much
greater concern (and hence, should be quantified more exactly) than
a short-term effect, even if the same fishery were affected (States
et al., 1978).

This last criterion, particularly, formed the basis for a portion of the
EPAM framework. That is, the selection of the subjects of a monitoring scheme
(outside of legal mandate) would be based primarily upon three issues: (1)
the expected IMPACTS of plant operation, (2) the extent to which the temporal
and spatial distribution of these IMPACTS overlap with the measured distri-
bution of the susceptible organisms, and (3) the sensitivity of the TARGET to
the IMPACT. The necessity to measure a given component will vary with the
importance of the role that organism or biotic component (i.e., TARGET) plays
in the ecosystem and in the socioeconomic sphere of the area. Extensive
overlap of the distribution of an economically unimportant and highly
redundant organism (in terms of function) with the field of influence of the
intake structure of a large power plant might not justify the expense and
complications of a major monitoring program. However, the partial overlap of
a commercial species of critical importance with the same intake structure
might justify an extensive program (e.g., an overlap extending only for two
months a year during the period of migration of young fry). Thus, the nature
of a given program becomes a function of the role that the interacting com-
ponents play both in the ecosystem and in the political, socioeconomic, and
legal spheres.

Other researchers also have considered the definition of hypotheses of
impact on monitoring program subjects, as well as the design of experiments to
test hypotheses. States et al. (1978) noted that the responses of ecosystem
components to impact agents may or may not be linked in the context of formal
hypotheses of impact. Holling (1978) and Fritz et al., (1980) generally
adhered to the concept of hypothesis-based design, and advocated developing
such a design through the assembly of a multidisciplinary panel of specialists
familiar with the site to be monitored. Proctor et al. (1980) also favored
basing monitoring efforts on hypothesis testing. Rago et al. (1983) believed
that the logical process of monitoring program design could be standardized,
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although specific elements of a given program should be selected by investi-
gators at the site. They recommended proceeding by developing a conceptual

model of the aquatic system in question, leading to identification of hypo-

theses for testing.

Jeffers (1978) and Green (1979) treated experimental design and data
analysis and management in detail in response to the difficulties of testing
formal hypotheses with field data, and of providing statistical inference to
assess impact. Green (1979), particularly, emphasized the selection of
response variables that can be measured to evaluate the potential impacts and
provided extensive guidance in this area. Comiskey and Brandt (1982) also
were concerned with the need to identify appropriate data analysis techniques,
including, in some cases, data management systems.

A major shortcoming of the existing guides to monitoring design is their
dependence on in-house expertise. The resulting assumption is that these
experts would be available and would be able to make a wide variety of value
judgments about diverse subjects, such as the nature of functional linkages
between two different trophic groups or the appropriateness of a particular
variable or statistical or optimization technique. In practice, in-house
expertise rarely covers the complete range of these needed skills. Even when
extensive catalogs of elements to consider and open-ended sample impact
matrices are presented (States et al., 1978), development of a viable set of
hypotheses and appropriate test variables becomes an artful process at best.
When little guidance information is presented, as, for example, in the selec-
tion of representative important species (RIS) advocated by the U.S. Environ-
mental Protection Agency (1977 a,b), the process can be very cumbersome.

A further shortcoming exists in the complexity of the presentation format
of many of the existing approaches. With the exception of the lists prepared
by Jeffers (1978) and the efforts of Comiskey and Brandt (1982), the guides
cited have used textual and diagrammatic formats that are cumbersome or con-
fusing to use. There is frequently no obvious point of initiation, nor any
means of transition between parts of the framework. Other shortcomings
include: a lack of criteria to make decisions, a focus on short-term impacts,
a lack of concern for cost-effectiveness, and a lack of consideration of
alternative but attractive methods. An additional major drawback is that the
utility of previous guides has not been demonstrated through application in
actual case studies. As a result, most of these guides have not been
implemented by aquatic monitoring program designers.
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EPAM has been formulated to minimize these shortcomings encountered in
the existing frameworks for monitoring program design. In the following
chapter the basic components of EPAM are described in detail, and the
following features of EPAM will be made apparent:

* Methods to present pertinent information and solicit opinions from
expekts by means of the Delphi technique in order to develop a consensus
on pertinent aquatic monitoring issues where no objectively based or
generally accepted opinion existed previously.

* Methods that can use both subjective and objective information
to rank alternatives, given a multiobjective set of criteria.

* Improved statistical methods to design experiments that can examine
both long- and short-term impacts, even when the measurements may be
correlated in space or time.

* Data and methods to optimize monitoring programs for cost-effectiveness.

* A tiered approach that can be used by individuals with a broad range of
knowledge and skill. The user can enter the framework at any point and
elect either to conduct a tentative assessment, basing program design
decisions on available information, or to perform more detailed studies
prior to making decisions.

* Software that can be used interactively to record and manage all the
information (whether subjective or objective) available for the design of
a monitoring program.
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CHAPTER 2
EPAM USER'S GUIDE

GENERAL EPAM FRAMEWORK

This chapter emphasizes the content of the interactive EPAM hierarchy
(LEVELS 0 through 3), and presents other information pertinent to the EPAM
structure and format. Appendix C.3 illustrates the interactive use of EPAM
with actual data from the San Onofre Nuclear Generating Station.

As described in Chapter 1, EPAM contains four levels corresponding to the
optimization of a MONITORING PROGRAM (LEVEL 0), design of a SAMPLING PROGRAM
(LEVEL 1), generation of HYPOTHESES (LEVEL 2), and identification of IMPACT
AGENTS and TARGETS (LEVEL 3). If the user has insufficient information at any
given level, he or she is directed to the next level to develop the required
information. In each level the user is guided with questions and prompts to
define and select a set of CRITERIA that will be used to rank the subjects
addressed by each level. For example, in LEVEL O the subjects are the SAMPLING
PROGRAMS that are candidates for the MONITORING PROGRAM, and in LEVEL 3 the
subjects are TARGETS and IMPACT AGENTS. The general procedure at all levels
is to construct a table of subject characteristics, where the column headings
of each table are the CRITERIA, and the row headings are the subjects. Each
table entry should include indices of the quality or precision of the estimate
of the characteristics, as well as the cost to increase the quality of the
estimate.

Once the user completes a table, the data in each table become the input
and basis for generation of pairwise comparisons of each subject with all
other subjects in that table. The ranking procedure (termed CHOICE) requests
pairwise weightings based on the data in each column (i.e., for each CRITER-
ION). Whether the data are quantitative or qualitative, the following scale,
as well as interim values, is used for ranking characteristics at all levels
of EPAM:

1 = Subjects are demonstrated to be equal.
3 = One subject is thought to rank slightly higher.
5 = One subject is judged to rank higher.
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7 One subject is demonstrated to rank higher.

9 One subject demonstrably dominates thg other.

Values 2-5 represent subjective judgments in the pairwise comparisons, while 1
and 6-9 represent objectively demonstrated ratings. Appendix C.3 provides an
example of the use of this ranking procedure.

Only three computational routines are used in the four levels of EPAM.
At LEVEL 0, CHOICE is used to prioritize the SAMPLING PROGRAMS developed in
LEVEL 1. In LEVEL 1 there are two other major computational routines, one
that optimizes the frequencies and numbers of sampling locations and repli-
cates, and another that analyzes sampling data for correlation of residuals.
Classical sampling data analysis routines that compute means, variances, etc.
have not been incorporated into EPAM since the literature review and surveys
of utility practices indicated that extensive investment has been made in
Statistical Analysis System (SAS) software with this capability. LEVELS 2 and
3 also use the CHOICE ranking scheme, but no other computational routines.
Instead, LEVELS 2 and 3 involve an interactive narrative that prompts and
queries the user in table building protocols.

LEVEL O

LEVELS 0 and 1 are designed for users who have identified the major
element of a MONITORING PROGRAM design. These levels permit such users to
design and optimize individual SAMPLING efforts and to optimize an overall
MONITORING PROGRAM incorporating a number of SAMPLING efforts. An algorithm
labeled CHOICE is the basic component of LEVEL 0; it is also applied in
several places at higher EPAM levels to rank sets of alternatives given
multiobjective criteria. The output of LEVEL O is a monitoring program
optimized according to the established CRITERIA.

A user entering LEVEL O of EPAM must have defined all the SAMPLING
PROGRAMS required for the MONITORING PROGRAM. The table that will be
constructed in LEVEL O will have as CRITERIA: (1) the cost of each SAMPLING
PROGRAM, (2) the anticipated statistical power or other measure of
effectiveness of the SAMPLING PROGRAM, and (3) any measure of the importance
or need for the particular results it will yield. Representative sampling
cost data have been compiled to assist the user in estimating such costs, if
local data are lacking. The narrative in EPAM presents expert judgment of
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useful CRITERIA, as well as suggestions for characterizing and quantifying
these characteristics for each SAMPLING PROGRAM. The user must provide a
pairwise comparison of the relative importance of these CRITERIA to the
MONITORING PROGRAM, and then rate each SAMPLING PROGRAM with respect to all
others using each CRITERION independently. The CHOICE algorithm then will
compute the priority of each SAMPLING PROGRAM and inform the user on the
consistency of the pairwise comparisons. Chapter 4 develops the theoretical
basis for this analysis.

LEVEL 1
LEVEL 1 is designed to assist individuals attempting to establish the

components of a MONITORING PROGRAM (defining the individual SAMPLING PROGRAMS
to be integrated into an overall monitoring program). Users of LEVEL 1 are
assumed to have defined the HYPOTHESES to be evaluated and the VARIABLES to
be measured. The user can employ the algorithms included in LEVEL 1 to
produce a sampling design which minimizes cost for a given level of precision
or, alternatively, maximizes precision for a given cost.

The user must have a set of HYPOTHESES to be tested and must have defined
the VARIABLES that will be measured to test each hypothesis before LEVEL 1 can
be exercised. Furthermore, the user must have an estimate of the cost to
conduct each experiment and the variability of the data that will be obtained.
The user can either conduct exploratory studies to improve these estimates or
use existing information to determine whether the SAMPLING PROGRAMS are robust
and insensitive to such estimates, or whether further refinement of the input
data would be effective. If any of these data are inadequate, the user is
directed to LEVEL 2 to develop the underlying HYPOTHESES more fully.

Data representing the variable to be measured are analyzed using the
RESIDUALS algorithm to determine if the residuals are correlated in space or
time. If no prior information exists, the value of an exploratory program
will be weighted against the use of the first set of monitoring data for the
residuals analysis. If the residuals are not independent, the design may have
to be altered to improve the power of the test.

Two OPTIMIZATION algorithms are available and each has two options. The
algorithms differ in that one assumes the samples are independent, while the
other accepts the interdependence and corrects for it. The options are: (1)
to maximize statistical effectiveness given a monetary budget, or (2) to
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minimize cost in order to obtain a given level of statistical power. After
the user is prompted by EPAM to specify the algorithm and the option, the
interactive prompts identify all necessary input data for the optimization.
The theoretical basis for these methods is discussed in Chapter 4.

LEVEL 2

LEVELS 2 and 3 are designed for users who lack experience in comprehen-
sive monitoring and sampling program design or the necessary knowledge of the
circumstances at a given site. The various components of these levels consist
of questions and prompts drawn from the collective knowledge of the project
team and refined by the Delphi process. The data obtained are presented in a
structured sequence designed to identify important IMPACTS, TARGETS, or
HYPOTHESES for a specific site. An important function of LEVELS 2 and 3 is to
provide a framework for recording data gathered and decisions reached during
the analysis. New knowledge can be inserted as it develops, and its effect on
the overall monitoring design can be evaluated at a small cost.

LEVEL 2 is designed to generate HYPOTHESES OF IMPACT. The user is
requested to complete a LEVEL OF CERTAINTY MENU to evaluate the adequacy of
information on IMPACT AGENTS and TARGETS of interest in order to use LEVEL 2.
Furthermore, items on this list should be characterized by their distribution
in time and space, and each TARGET should be further characterized by its
sensitivity to each IMPACT AGENT. The user is referred to LEVEL 3 to develop
missing data.

The next task consists of an eight-step definition of each HYPOTHESIS:

1. Identify the potential IMPACT AGENT.

2. Identify the TARGETS most likely to be affected by the IMPACT AGENT.
3. Define the spatial domain of the response.

4. Define the temporal domain of the response.

5. Define the severity of the response.

6. Select a VARIABLE to measure the response and define the cost,
precision, and characteristics of such measurements.

7. Determine if other hypothesized changes could result as an indirect
outcome of the subject hypothesis (COMPLEMENTARY HYPOTHESES).
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8. Define ALTERNATIVE HYPOTHESES that could falsify the proposed
hypothesis test.

The LEVEL 2 narrative leads the user through these steps and helps the user
create a table of these data for each potential HYPOTHESIS. Information on
the domains of IMPACTS and TARGETS forms the basis for defining the sampling
pattern, while the characteristics of the variable to be measured provide the
information to select the numbers of stations, frequencies, and numbers of
replicates for the SAMPLING effort represented in each HYPOTHESIS test. These
data are supplied by the user or developed with the assistance of the LEVEL 3
narrative.

Appendix C.3 contains an example which applies LEVEL 2 to develop
HYPOTHESES for an aquatic monitoring program at San Onofre Nuclear Generating
Station. Chapter 3 discusses the use of the Delphi panel and the results of
the literature research used to create the LEVEL 2 framework.

LEVEL 3

LEVEL 3 is designed to assist the user when IMPACT AGENTS or TARGETS must
be defined. In most cases, the informed user will not need to use this
section of EPAM. The narrative in LEVEL 3 presents categories of IMPACT
AGENTS and TARGETS commonly associated with different environments and
different types of power generating facilities. The user is requested to
examine his or her own situation and complete tables of IMPACT AGENTS and
TARGETS with information on their characteristics. The CHOICE algorithm is
used to rank the entries in these tables and provide input for the LEVEL 2
HYPOTHESIS GENERATION process. The user must estimate spatial and temporal
domains for each IMPACT AGENT and each TARGET, as well as characterize the
sensitivity of each TARGET to the associated IMPACT AGENT. If these data are
incomplete or not available, the user must develop them. The user always will
be guided to compare the improvement of an input value to the resulting
improvement in the design of the MONITORING PROGRAM.

Appendix C.1 reprints a paper entitled, "A Conceptual Framework to Guide
Aquatic Monitoring Program Design for Thermal Electric Power Plants," which
was presented to the American Society for Testing and Materials Symposium on
Rationale for Sampling and Interpretation of Ecological Data in the Assessment
of Freshwater Ecosystems. This paper discusses the development and content of
LEVELS 2 and 3 in further detail.
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Support Modules

The interactive version of EPAM contains support modules, such as HELP,
GLOSSARY and TECHNIQUES to provide assistance ir responding to queries at any
level of EPAM. These texts are also published in the handbook format (see
Appendix C.2). A user can either use the interactive computer format to
complete the tables used by EPAM or a manual procedure, using the handbook as
a reference guide; however, the computational algorithms such as CHOICE,
RESIDUALS, and OPTIMIZATION, must be executed on a computer.
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CHAPTER 3
THE DELPHI PROCESS IN EPAM DEVELOPMENT

This chapter reviews the results of the Delphi process as exercised in

Phase II.

The Delphi technique is one of several communication methods developed
during the last twenty-five years in the general field of technological
forecasting., Initially developed by the Rand Corporation, its usage has
expanded to include many contexts in which judgmental information is needed.
The Delphi technique has been used successfully in the evaluation of
educational issues, socio-cultural questions, environmental management
options, and others (Bakus et al., 1982). Linstone and Turoff (1975) have

characterized the Delphi technique as:

... a method for structuring a group communication
process so that the process is effective in allowing a
group of individuals, as a whole, to deal with a complex

problem.

The Delphi technique was incorporated into this project to fulfill two

objectives:

1. To test the use of an expert panel as a means of reaching a consensus
about issues in the assessment of environmental impact, caused by
electrical power generation, for which no objective criteria exist

2. To allow an evaluation and validation by an interdisciplinary group of
experts of the proposed method for the design of aquatic monitoring
programs

The conventional Delphi process is essentially a combination and extension
of a polling and conference procedure. In this technique a small monitor team
designs a questionnaire to address the range of issues to be considered by the
Delphi process. The questionnaire is then sent to a larger group of expert
respondents (the Delphi panel), each of whom submits answers to the monitor
team. The monitor team reviews, and statistically summarizes the responses to
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this initial questionnaire. The monitor team then develops a second question-
naire, which includes both a reiteration of questions from the first question-
naire for which no clear consensus was evident, -and new questions, which
present new issues and options that were raised by the respondents during the
first round. The expert respondents are given a chance to change their initial
responses based upon the knowledge gained from the group responses and the new
options presented.

This process of response and reiteration is usually repeated three or
four times. The intermediate rounds in the Delphi process allow a formal
exploration of areas of disagreement and an evaluation of the underlying
reasons for these disagreements. This chance for exploration of dissenting or
minority views represents one of the strengths of the Delphi process. In a
more traditional conference or small group meeting, minority views frequently
receive less than adequate consideration because of the overriding influence
of dominant personalities, lack of time, or other logistical shortcomings.

The greatest potential weakness in the Delphi method 1ies in the ability
of the monitor team to present correctly the developing consensus and
dissenting views to the respondent group. Assuming that these views are
represented properly, the Delphi method represents a unique technique which
was felt to have potential utility for the field of environmental assessment.
In consequence, the Delphi method was incorporated as a central feature in
this project.

SELECTION OF THE DELPHI PANEL

In the absence of well established criteria for the selection of expert
panels (Delbecq et al., 1975; Linstone and Turoff, 1975), the University of
Washington researchers chose a straightforward selection procedure, In the
first step, an initial list of 105 candidates was established from recommen-
dations based on personal experience or from a review of the literature.

The second step of the selection process involved two levels of organi-
zation. In the first level, a set of six objective criteria was established as
a basis for candidate selection. These six criteria were:

1. Past experience in at least two or more of ten specialty areas judged
by the researchers to represent different subjects that would be
considered during the development of the proposed research
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2. Past experience in at least one of six water body types
3. Representation of each of the major geographic areas of North America
4. A reasonable balance of at least four professional environments

5. At least seven years of combined professional experience in the
fields of ecology and environmental assessment of power generation
effects or ten years in either field.

6. A high level of professional productivity

Appendix B.1 discusses the specific considerations exercised in applying these
criteria.

The second level of selection evaluated each candidate so as to obtain
a reasonable balance among panel members of the six criteria developed in
level one. Each candidate received a Pre-Delphi Survey (PDS) that questioned
the candidate about the six criteria and other issues. A copy of the PDS can
be found in Appendix B.2.

The final panel composition required: (1) that all speciality areas be
represented by at least two persons; (2) that all waterbody types and geo-
graphic areas be represented by at least three persons; (3) that panelists be
approximately equally distributed among utilities, consulting firms, and
academic institutions, with a smaller component from regulatory agencies; and
(4) that all members meet criteria 5 and 6. It was decided that if this compo-
sition could not be met with the initial set of 105 candidates, more candi-
dates would be identified and contacted. It was also decided that the minimum
acceptable number of members on the Delphi panel was 20, although a membership
of 50 or more was considered optimal.

IMPLEMENTATION OF THE DELPHI TECHNIQUE

Initial implementation of the Delphi technique required a three-stage
effort:

1. All candidates (105 persons) received an introductory letter from
the EPRI project manager (Dr. J.S. Mattice) explaining the



23

objectives of the research project, the rationale for invoking the
Delphi technique, and the potential benefits to EPRI of their
participation. ’

2. One week later, all candidates received an invitation letter from
the University of Washington. This letter outlined the objectives
of the project in greater detail, gave backgraund information about
the Delphi technique, explained the time schedule for invoking the
technique, and requested that the candidate accept or reject the
invitation by returning an enclosed, stamped postcard.

3. Following receipt of the consent postcard, candidates were sent the
PDS and were asked to return completed PDS's (in enclosed, stamped
envelopes) within a month of initial receipt.

Following receipt of the completed PDS's, the monitor team reviewed
candidate credentials and finalized membership for the Delphi panel. The
composition and formal credentials of the panel are presented in the Results
section of this chapter.

The second step in implementing the Delphi technique involved the
development of a set of questions by the monitor team and presentation of
these questions to the Delphi panelists in questionnaire form. The response
process was simplified by dividing the basic issues to be addressed into two
questionnaires; a third questionnaire reiterated selected questions from the
initial questionnaires. Questionnaire 1 (Ql) concentrated primarily on the
conceptual basis of the proposed methodology, while Questionaire 2 (Q2)
emphasized specific scientific issues raised in the methodology and an initial
reiteration of questions from Ql. Questionnaire 3 (Q3), the final question-
naire, reiterated questions from both Ql and Q2 and presented new options
raised by the expert panel. Al1 questionnaires were sent with return stamped
envelopes. Copies of the three questionnaires are presented in Appendices
B.3, B.4 and B.5. Figure 3.1 indicates the relationship between the question
sequence and the development of EPAM.,

Seventy-seven persons agreed to join the Delphi panel. A1l of these
persons met the established criteria and received Q1 during the first week of
April 1983. Returns were requested by April 30, 1983. A reminder letter was
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mailed on May 2, 1983, to those who had not returned their questionnaire, A
total of 65 questionnaires were received by mid-May, and further mailings were
limited to this group. Q2 was mailed to the 65 panelists during the second
week of May 1983. Panelists were asked to return it by May 31, 1983. A
reminder letter was sent to those who had not returned the questionaire by
June 8, 1983, Fifty-six panelists returned Q2 by mid-June. These results
were used to develop the questions for Q3. Q3 was mailed to 62 panelists
during the last week of June 1983. Panelists were to return the questionnaire
by July 31, 1983, They were informed that they would receive a copy of the
results of the full Delphi review later in the year, along with a survey in
which they would evaluate their experience in participating on the panel. A
reminder letter was sent to those who had not responded by August 7, 1983.
Sixty-two persons returned the questionnaire.

RESULTS OF THE DELPHI REVIEW

Pre-Delphi Survey

The Pre-Delphi survey was concerned primarily with the biographical data
of the invited panel members, their opinions of the Delphi process, and some
general issues in monitoring program design. This section summarizes the
responses. The data represent the responses of the 62 persons who continued
as Delphi panel members through Questionnaire 3.

Appendix B.6 presents tabular data about the characteristics of the
Delphi panel membership. In terms of areas of professional expertise, the
majority of panelists reported experience and expertise with the ecological
effects of electrical generation (82 percent), evaluation of monitoring
programs (75 percent), and monitoring program design (73 percent). The
majority of panelists reported experience with finfish, and nearly half had
worked with benthic macroinvertebrates.

The péne]ists' experience in various water body types was fairly evenly
distributed among estuaries, small lacustrine systems, and coastal
environments, with a somewhat larger distribution of experience on large
rivers and a smaller distibution on small riverine systems and the Great
Lakes.

The geographic distribution of experience largely followed the concen-
trations of population and thermal electric power plants, with more than half
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of the members reporting experience in the Northeastern, Northcentral, and
Southeastern United States or Eastern and Central Canada. The Southcentral
United States was represented rather 1ightly on the panel (8 percent with
experience in that area).

The panel membership was divided primarily among university, consulting
and electrical utility affiliations, with a sizable component from government
agencies. As stated earlier, six criteria were used to establish a balanced
panel membership.

The PDS included a number of questions designed to measure the panelists'
familiarity with and opinion of the Delphi process. They were generally
unfamiliar with the process but most believed, based on their knowledge at the
time, that it would be worthwhile to try it in the aquatic monitoring design
area. A large majority (82 percent) believed the product of the proposed
effort would be somewhat useful, useful or very useful. Thought has been
given to implementing a small, specialized Delphi panel review via interactive
computer mail during Phase III of the research. A majority of the respondents
were familiar with interactive computers and were willing to participate in a
review which used electronic mail.

The final section of the PDS questioned the panel about several general
issues in aquatic monitoring. One issue concerned criteria for designation of
abiotic or biotic characteristics (TARGETS) to be monitored. A consensus
developed on the advisability of considering ecological (weighted mean score
1.51) and economic (2.02) importance, while tradition scored rather low
(3.60).1 Panelists suggested twelve additional criteria; thus, the question
was repeated in Ql. A second issue explored in the PDS was the quality of
certain aspects of past monitoring programs. Table 3.1 summarizes responses.
None of the seven aspects listed rated higher than 2.77. There was almost
complete dissatisfaction with the ability of monitoring results to establish
significance and hence infer the existence of power plant effects. Because
panelists brought up ten additional aspects of monitoring programs, this
question also was repeated in Ql.

1 A1 to 5 scale was provided for Delphi responses, with 1 signifying a high
rating and 5 a low rating.
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Table 3.1. Delphi Panelists' Opinions of Monitoring Program Design

Aspect Weighted Mean Score?
Design of Statistical Aspects 3.53
Establishment of Goals

and Objectives 3.56
Implementation of Goals and

Objectives 3.47
Execution of Program Design 2.77
Availability of Technology 2.85
Establishment of Significance

of Results 4,37
Ability to Distinguish Change 4.47

@ 1 = satisfactory, 5 = Unsatisfactory.
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Questionnaire 1
The initial questions in Q1 were reiterations of the two points for which

PDS responses produced additional considerations. Table 3.2 presents Ql
responses to the question concerning criteria for designating biotic
characteristics to be monitored (TARGETS), and lists those criteria for which
a consensus developed (weighted mean score < approximately 2.5). Table 3.2
also indicates the EPAM routine that addresses each point. All of the
consensus issues are represented in the EPAM structure. The TARGET SELECTION
subroutine, particularly, is strongly based in the Delphi panel review of
monitoring TARGETS. These criteria were re-evaluated in Q2 and the final
ranking is included in Q2 results, below.

Table 3.3 provides the responses to the Q1 question reiterating the
degree of satisfaction with various aspects of monitoring program design,
along with the consideration of these points in EPAM. The major areas of
dissatisfaction, the ability to detect change and establish the significance
of results, are addressed primarily in the HYPOTHESIS GENERATION subroutine.
This subroutine guides the development of primary HYPOTHESES OF IMPACT, which
incorporate the IMPACT AGENT, TARGET, and approach to testing. Expected
severity of the effect is a major criterion for the adoption of a HYPOTHESIS.

HYPOTHESIS GENERATION also assists the user in developing ALTERNATIVE
HYPOTHESES (Ha‘s) associated with conditions extraneous to the power plant,
which may falsify the PRIMARY HYPOTHESIS, i.e., lead to a decision to accept
or reject the PRIMARY HYPOTHESIS based on an observed response created by a
factor or factors external to the power plant. Strategies to assess long-term
change are considered at various points in EPAM, including TARGET SENSITIVITY,
HYPOTHESIS GENERATION, SAMPLING DESIGN, and OPTIMIZATION.

The remainder of Q1 consisted of questions concerning the structure of

monitoring programs generally and the overall structure of EPAM. Figure 3.1,
page 24, illustrates the correspondence between this questionnaire and the
EPAM layout. Discussion of Q1 results will center on four topics: (1) general
monitoring program structure, (2) hypotheses of impact, (3) criteria for
monitoring program optimization, and (4) potential for long-term effects.
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Table 3.2. Delphi Ranking of Criteria for Target Selection

Consideration in EPAM

weightedaMean
Criterion Score
Ecological Importance 1.44
Economic Importance 1.95
Probability of Exposure* 2.11
Duration of Exposure* 2.11
Dominant Role_in Community 2.41
Metabolism*
Ease and Accuracy of 2.55
Quantification*
Indicator Species* 2.58
Designation By Law 2.58
Susceptibility to 2.58
Change

TARGET SELECTION
TARGET SELECTION
TARGET OVERLAP
TARGET SENSITIVITY
TARGET SELECTION

VARIABLES
(HYPOTHESIS GENERATION)

VARIABLES
(HYPOTHESIS GENERATION)

TARGET SELECTION
TARGET SENSITIVITY

*Suggested by Delphi Panel

a 1 = Most Important, 5 = Least Important.

b Incorporated in definition of ecological importance in TARGET SELECTION.
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Table 3.3. Delphi Panelists' Satisfaction with Aquatic Monitoring Programs

NeightedaMean
Aspect Score Consideration in EPAM
Detect change 4.58 Falsification routine (Holling,
relative to other agents 1978) (ALTERNATIVE HYPOTHESES)
and natural variation Criteria for PRIMARY HYPOTHESES
Establish significance of 4,35 Explicit consideration of long-
results (especially long-term) term stategies and severity of
potential effect
Establish goals and 3.58 Identification of HYPOTHESES
objectives
Apply statistical design 3.51 Identification of statistical
design (including assumptions,
data needs, etc.)
Implement 3.42 Responsibility of monitoring
goals and objectives team
Access technology 2.8 TECHNIQUES subroutine
Execute program 2.75 Responsibility of monitoring
design team
a

1 = Satisfactory, 5 = Unsatisfactory.
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Regarding general monitoring program structure, the panel reached a

consensus on the following points:

1. Monitoring programs should be founded on quantifiable and
scientifically valid hypotheses.

2. Methods for design of monitoring programs should be standardized.
"
3. Methods for collection of field samples should be standardized (or
intercalibrated).

4, Alternative hypotheses should be evaluated.

5. Cost and error criteria should be used for choosing which hypotheses
to evaluate.

6. Data not related to a formal hypothesis should be collected in some
cases.

The final point had not been presented in the questionnaire but was raised by
the panel. Examples of such cases given in the responses were: (1) the
occurrence of unexpected conditions that may contribute to understanding a
non-plant condition, and (2) the need to collect information for public
relations purposes.

Questions relative to hypotheses of impact considered criteria for
deciding to test primary hypotheses (Ho's) and attributes of a well-formulated
hypothesis. In order of preference, the following criteria for selecting Ho's

for testing were recommended by the panel.

Availability of good measuring techniques
Suitability of controls

Low variance in the measured element
Total cost of the test

W N -
.
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Concerning the attributes of a hypothesis, a consensus was reached that
it should incorporate the following elements:

1. Impact agent (effect mechanism)

2. Target (component to be observed for change)

3. Physical overlap

4, Sensitivity to impact agent

5. Quantifiable variable

6. Spatial and temporal dimensions of hypothesized change

The final element received the least support. Overall, the recommendations
constitute strong support for the approach taken in EPAM,

With reference to optimization of monitoring program design, the
consensus criteria in order of preference were as follows:

Efficiency in the sampling network

Priority of the primary hypothesis (based on established criteria)
Reduction of error (sampling variance)

Cost

W N
e & @

EPAM incorporates these criteria in various ways. Efficiency is of central
concern in the OPTIMIZATION subroutine, while CHOICE provides a mechanism for
ranking HYPOTHESES according to an established priority. The structure pro-
vides an accounting system for the variance and cost associated with various
options so that these can be considered in the final monitoring design.

Gauging the potential for long-term change was an area of considerable
controversy in the panel's deliberations. A consensus developed on three
situations likely to produce long-term effects: (1) presence of extremely
vulnerable target(s), (2) extensive impact agent/target overlap, and (3)
operation of an extremely intense impact agent. The panel failed to reach
agreement on one issue of great interest, however: whether multiple power
plants and other human activity, which introduce similar impact agents in the
vicinity, create a high potential for long-term change. A number of panelists
commented that site-specific considerations are too important to permit
arriving at a general conclusion in these cases. These points were raised
again in the subsequent questionnaires and will be discussed further in
connection with their results.
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Questionnaire 2

Questionnaire 2 consisted of two parts: (1) a reiteration of certain
questions from Q1, and (2) questions about specific subroutines in EPAM,
Repeated questions dealt primarily with the general monitoring program
structure and the potential for long-term effects, with several other
miscellaneous issues being represented.

There was a fairly strong consensus (weighted mean score 2.23) that
collection of data other than that defined by a formal hypothesis should be
considered. Relative to the purposes of data collection, the panel took a
rather pragmatic view that documenting and explaining conditions for a
specific purpose should take precedence over enhancing regional data bases.
One question concerned means of making results of hypothesis testing
believable, in addition to evaluating alternative hypotheses. Panelists
ranked the various alternative approaches presented in the following order:

1. Correlation of observed biological change with physical/chemical
changes and/or known tolerance limits

2. Laboratory testing

3. Replication at other sites

4., Demonstration that observed changes at one trophic level have
indirect effects at another trophic level

5. Simulation model development

The majority of the panelists responding to Q2 (63 percent) believed that
the issue of long-term change could only be addressed at the site-specific
level. About 10 percent of the survey group was persuaded that a concentra-
tion of power plants or other sources is not 1ikely to increase the potential
for long-term effects. The remainder thought separation distance may be of
interest, with the majority believing multiple sources must be within 10 miles
(in a range of choices 10-200 miles) to increase the potential of long-term
change.

In the portion of Q2 dealing with development of EPAM subroutines,
panelists suggested options in addition to those presented in the question-
naire in a number of instances. In most of these cases, the questions were
repeated in Q2. In other cases a consensus was not apparent after one round
of consideration, and the questions involved also were repeated. This
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discussion will be confined to those areas which were not reiterated in the

subsequent questionnaire.
Points of agreement arising in the respective sections included:

Section A (General Development Questions)

1.

If the spatial extent of a hypothesized effect is equal to the local
range of a target, it may be critical to the monitoring program. If
it is greater than the target's local range, it should definitely be
monitored; if it is less than the target's local range, the
hypothesized effect should be considered if other criteria (e.g.,
sensitivity) indicate a high probability of impact.

Eliminating a primary hypothesis from a monitoring program should be
considered if the degree of confidence in the underlying data base is
low, at least one Ha with a high probability of occurring exists, or
a total of more than three Ha's exists.

Section B (Target Choice)

1.

The public interest criteria for target selection, in order of
importance are those (1) designated by law (weighted mean score
1.54), (2) designated as representative important species, (3)
designated as rare or endangered species, (4) considered to have
other unique societal value, (5) noted to have a history of
monitoring (weighted mean score 2.65).

The economic value of targets, in order of importance, is:

(1) primary commercial value (weighted mean score 1.44), (2) primary
sport value, (3) major food source to commercial or sport fishery,
(4) secondary commercial value, (5) secondary sport value (weighted
mean score 2.72).

Data bases likely to be most useful in judging relative vulnerability
to an impact agent are onsite studies and historical records
pertinent to a given target. Published tolerance data were judged to
be rather marginal in value. Unfortunately, the best data bases are
least available.

Definitions of overlap and relative vulnerability will help to
prioritize monitoring program elements to a greater degree than
otherwise possible.
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Section C (Assessing Stock Distribution)

1.

2‘

Physical overlap in time and space between an organism and an impact
agent should and can be measured cost-effectively.

when overall geographic overlap between an impact agent and a target
is low, but the local population spends considerable time in the
affected zone, the target should be monitored. Support existed for
expressing geographic overlap in a probabilistic form.

Sections D and E (Impingement/Entrainment and Physical/Chemical Problems)

1.

Very few panelists knew of accepted models capable of deriving a
probability density function of the intake field, whereas 38 percent
were quite familiar with such models for discharge plumes.

Section F (Statistical Characteristics)

1.

The panel rated the following statistical tests as being useful in
past data analysis efforts: analysis of variance (weighted mean
score 2.23), time series analysis (2.52), non-parametric tests
(2.55), cluster analysis (3.05), and factor analysis (3.13).
Respondents listed nine additional techniques which they had used
successfully.

Most respondents have considered spatial and temporal correlation in
statistical analysis.

The most successful technique reported for handling zeros in data
sets is aggregation by space (weighted mean score 2.25). Other means
of aggregation were considered to be less useful (scoring 2.47 -
3.00).

Space-time tradeoff for station allocation in assessing long-term
change is determined most often by personal judgment and less often
by an optimization model, although several respondents listed other
approaches. '

A number of panelists was aware of adequate data sets to assess the
space-time tradeoff. These panelists were contacted as part of the
Phase III effort.
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Section G (Sampling Costs)

1. Fixed costs represent 25-50 percent of total sampling costs in the
case of fish and 10-25 percent for benthic invertebrates, water
quality and plankton.

2. The incremental cost of a sample at a different station, compared to
the same station, is 50-300 percent greater.

Note: Only 11 of the 56 respondents rated their experience in this
area at a high level (1 or 2 on a 1 to 5 scale).

Questionnaire 3

Part I. Reiteration of questions from Questionnaire 1

The questions in Part 1 of Q3 re-evaluated four areas of concern that had
been identified in Q1. These were: (1) alternative methods for evaluating
hypotheses, (2) an operational definition of ecological value for EPAM, (3)
the characteristics of sites and types of ecological changes associated with
long-term effects and (4) the characteristics of sites demonstrating
resiliency to adversity. The results of these evaluations are presented below.

(1) The panel suggested five possible alternatives for hypothesis evalu-
ation in Q1. These alternatives were rated in Q2 and again in Q3.
The re-iteration did not change the panel consensus. The panel felt
that correlation of observed biological change with physical/chemi-
cal changes and/or known tolerance limits was the best approach
among the various alternatives. Laboratory testing and replication
of observed results at other sites ranked equally, although slightly
lower than the use of correlation analysis. Panel members were
neutral about the utility of demonstrating that indirect effects
exist (at a different trophic level) and the utility of simulation
models as a means of making primary hypotheses believable.

(2) A strong consensus supported an operational definition of the
ecological value of an ecosystem component. In Q2, 72 percent of
the panel members felt that this value was equally dependent upon
the general public's opinion (including social, political or
economic definitions of value or function) and the scientific
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opinion (including the more traditional ecological definition of
ecosystem structure and function). In Q3, 96 percent of all
respondents agreed that the inclusion of both sets of values was
appropriate. The operational definition of ecological value used in
EPAM will include consideration of both social and scientific
definitions of value.

The questions of how to characterize sites that have an increased
potential for long-term ecological change and how to predict which
types of ecological change have the potential to continue for long
time periods (defined herein as being equal to or greater than plant
1ife) were considered in all three questionnaires. In Ql and Q2 a
great deal of confusion arose as a result of poorly defined nomen-
clature, particularly the failure of the University of Washington
team to distinquish among long-term, cumulative, and severe ecologi-
cal change, and as a result of the relative paucity of data that
describe the characteristics of long-term ecological effects. Some
of the confusion was alleviated in Q3 by the use of a clearcut
definition, and the Delphi panel reached a consensus on several
issues (see below). Nevertheless, because precise characterization
of long-term effects is necessary before appropriate monitoring
programs can be designed, further questions on this subject will be
considered in the Delphi round to be conducted during Phase III.

The Delphi panel reached a strong consensus that it is difficult to
observe long-term effects in the absence of preoperational data
regardless of other characteristics of the effects. This result
suggests that baseline data must be collected if the potential for
long-term effects exists at a given site. The panel also felt that
long-term effects were more likely to appear some time after the
plant starts operating than immediately after operation begins. The
panel was evenly divided about the site-specificity of long-term
effects. About half of the panel felt a priori predictions could
not be made because of this problem, while the other members felt
some predictions were possible.
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Specific conditions likely to coincide with an increased potential
for long-term effects were agreed upon. Eighty-three percent of the
panel believed that the presence of multiple power plants or

other industrial water users on the same water body increased the
potential for long-term effects. The panel felt that if conditions
at a new site were similar to conditions at an existing site that
had experienced long-term effects, then the new site had a high
potential for long-term change. Changes in the basic habitat
structure of the ecosystem and in the reproductive strategy or
growth habits of resident organisms were also judged as being
important diagnostic indicators of an increased potential for
long-term change.

The panel was divided on the issue of defining an allowable level of
change (i.e., that which could be tolerated without resulting

in long-term change). Fifty-three percent felt that less than a 10
percent change in any chemical or physical attribute could be
tolerated, while 47 percent felt that consideration of this type of
criterion was not useful.

(4) The panel agreed that certain target or site characteristics would
be likely to decrease the potential for long-term effects or, in
other words, created conditions in which either a given target or
the site itself was resilient to adverse effects. These were, in
order of importance:

a. The affected population is ubiquitous in distribution.

b. The affected population has broadly based environmental
requirements for reproduction.

c. The affected population has exhibited resiliency in historical
studies.

d. Refuge areas are available near the affected area.

The panel did not believe that the option of artificial replacement (e.g.,

hatchery, planting, etc.) was a viable means of decreasing the potential for
long-term effects.
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Part 11. Development of Subroutines for EPAM

The remaining sections of Q3 were a re-iteration of questions about the
development of EPAM and its various subroutines. Since this section of the
questidnnaire considered so many different issues, the majority of the results
are presented in list form. Choices that received high consensus scores
(usually greater than 2.5) were considered to represent viable alternatives
for inclusion in EPAM. Any choice that received more than 10 percent of its
total score at the opposite extreme (either positive or negative) from the
mean score are noted as representing an issue for which dissenting opinions
still exist. A1l such choices will be evaluated in detail in Phase III (case
study evaluation), regardless of the numerical value of the mean score. If the
minority opinions refer to important site-specific conditions, it is likely
that their utility will become evident in one or more of the case study
examples. These non-consensus issues will be included in EPAM as deemed
appropriate following Phase III evaluation,

General Development Questions (Section A)

The five IMPACT AGENT classes defined in EPAM (impingement, entrainment,
thermal loading, chemical change and physical change) remain as originally
defined. The panel felt that all other agents (of which ten were suggested)
were subclasses of one of the original five or represented special effects
that were likely to exist at few sites, and/or for brief time periods (e.g.,
during construction phase). The panel did note that the redistribution of
either organisms or water mass from one water body to another represented a
special case of physical change that had a large potential for adverse
effects. The consensus opinion was that the five major IMPACT AGENTS should
guide the development of the operational monitoring program (i.e., the program
that will be used during the period of plant life), and that all other
suggestions should be considered within the context of the original five.

The panel was traditional in its definition of what constitutes an appro-
priate TARGET (i.e., an ecosystem component likely to change as a result of
power plant operation or design). Only six choices (out of fifteen, see
Appendix B.5) were given high scores by all panel members. The following six
target types, in order or preference, will be the primary TARGETS in EPAM,
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A distinct species (all life stages)

A distinct species (one life stage)

Measure of a physical phenomenon (e.g., temperature, discharge)
Concentration or mass of a given chemical (e.g., copper)

Population indicator (e.g., fecundity, change in population dynamics)
A taxonomically defined group (e.g., phytoplankton)

A 0N W N
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Two other choices received low mean scores but more than 10 percent
of the panel felt they were very important. These two types of data, which
provide surrogate information about the ecological condition of some of the
target types listed above, will be considered as potential target categories
in the case study evaluations. These choices were:

1. Records of social use of the area, such as swimming, boating, or
fishing, that serve to document a particular habitat quality or the
presence of particular biota (such records may be available from
local or state park departments, state fish and game agencies, etc.)

2. Records that document the type and/or quantity of commercial or
sport harvest removed from the area of interest.

The questionnaire also presented a number of potential target selections
representing trophic level or community- or ecosystem-wide activity. These
choices all received little support. Because the monitor team can conceive of
situations in which such targets may be of importance, the Phase III Delphi
round will reconsider the issue.

The Delphi panel agreed upon acceptable criteria for choosing test
variables, The criteria to be incorporated in EPAM include the four original
criteria suggested by the University of Washington team and six suggested by
the Delphi panel. They are, in order of importance:

1. Potential error of the measurement

2. Utility of the variable for meeting the study objectives (Delphi
suggestion)

3. Ability to interpret the variable (Delphi suggestion)

4, Importance of the variable in the local system (Delphi suggestion)

5.* Availability of comparative data (Delphi suggestion)
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6.* Cost of measurement

7.* Technical requirements of measurement

8. Utility as judged by historical precedent

9. High quality control (Delphi suggestion)

10. Probability that the variable will change (Delphi suggestion)

* Criteria 5-7 ranked equal in importance.

Two other criteria, suggested by the Delphi panel, received 1ow mean scores
but were rated as very important by 11 and 15 percent of the panel, respec-
tively. These criteria, theoretical significance of the variable and the
potential that the variable measures a phenomenon with a high potential for
changing something with social value (e.g., weight of commercial catch,
availability of swimming beach, etc.) were judged by the monitor team to be
subsets of criteria 4 and 8. They will, therefore, not be included as separate
criteria.

A strong consensus supported all suggested criteria for judging the
importance of the spatial and temporal extent of the hypothesized effect.
These criteria can be found in Appendix B.5. In both instances the most
important criterion was judged to be the extent to which the hypothesized
effect overlapped with critical habitats (spatial) and critical life stages
(temporal).

The panel felt that evaluation of a hypothesis having a strong likelihood
of identifying an ecological change should not be included automatically in
the monitoring program. They believed that the existence of alternative
explanations (competing causes of change), measurement problems, or other
difficulties might justify exclusion of such a hypothesis. This opinion lends
strong support to the inclusion of the HYPOTHESIS CHOICE subroutine in EPAM.
HYPOTHESIS CHOICE allows a users to choose from all suggested HYPOTHESES those
which have the greatest potential for occurring and, at the same time, can be
measured effectively.

EPAM Subroutine (Sections B through G)

In Section B of the questionnaire panelists were asked to consider the
concept of defining the ecological value of a target by assigning numerical
values to different functional roles. Ninety-three percent of the respondents
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thought that such an assignment was possible. The consensus scores for the
four categories of ecological value that were included in this question are:

1. Target provides more that 20 percent of the total biomass at a given
trophic level

2. Target provides a primary food supply (more than 30 percent) to an
organism with economic or social value

3. Target provides a secondary food supply (more than 20 percent) to an
organism with economic or social value

4. Target is a primary producer or primary producing group which
provides more than 20 percent of the food base for primary
consumption,

Other categories that may have potential for inclusion in the ecological
value definition will be considered in the next Delphi round. Example
candidates include habitat formers (e.g., kelp beds) and major predators.

Section C asked panelists to consider the concept of overlap between
targets and impact agents in greater detail. The panel was supportive of
the concept of geographic overlap and some measure of its variability.
However, panelists suggested that the extent of overlap between an impact
agent and the more sensitive life stages and habitat spaces of a target
should also be considered explicitly in defining the amount of overlap. The
panel also felt that overlap into refuge areas should be evaluated. Such
measures will be included in the TARGET OVERLAP subroutine.

Section D asked panelists to consider various problems caused by
impingement and entrainment. Two questions asked panelists to evaluate the
kinds of conditions that would be likely to increase the severity of these
problems. Eight conditions were considered to be important and are listed
below in order of importance. The conditions suggested by the Delphi panel
are noted.

1. Small fish abundant in the intake area

2. Intake design provides no potential for egress, no return
devices, etc. (Delphi suggestion)

3. Intake location is coincident with critical habitat space
(Delphi suggestion)
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4, Shoaling fish present in intake area
5. Targets have physiological or behavioral preference for
being in intake area (Delphi suggestion)
6. lIchthyoplankton, zooplankton, and phytoplankton are abundant
in intake area
7. Plant operation coincides with natural catastrophic
and/or other anthropogenically induced stresses (Delphi suggestion)
8. Screen mesh size larger than the size of organisms in the
intake area (entrainment consideration) (Delphi suggestion)

One further condition, the presence of organisms that are very active in terms
of daily activity, was not judged to be very important by the panel as a whole
but was felt to be extremely important by 10 percent of the respondents. It
will be considered with the other eight conditions in evaluating the impor-
tance of impingement and entrainment in the initial consideration of potential
impact agents.

Panelists were asked to consider several other concepts in this same con-
text. These included consideration of the relative dilution of cooling water
in the water body, the intake velocity, and the presence of multiple plants.

A prominent minority (25 percent of respondents) believed that the dilution
volume was less important than the rate of dilution. The others felt that
anything greater than 12 percent (volume of cooling water to volume of the
water body) would increase problems. A majority of respondents (73 percent)
believed that an intake velocity greater than 1 ft/sec would exacerbate
impingement/entrainment problems, while 20 percent felt that the critical
intake velocity was species-dependent. Seven percent of respondents argued
that such a concept has not been useful in the past and should not be
considered. The panel was split concerning the importance of multiple plants.
Forty percent felt that no generalizations could be made, while almost 60
percent thought that the presence of one or more additional plants within a
25-mile radius would increase the potential for impingement/entrainment
problems. Because of the lack of consensus on these three issues, all three
will be evaluated with the case study data sets before a decision about
inclusion in EPAM is made. Further evaluation by the Delphi panel will also
be made during Phase III.
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A strong consensus supported the statement that reproductive rate is
important to consider when evaluating the potential for population declines
following entrainment. However the panel was unable to specify what repro-
ductive rates would result in population declines. This information will be
pursued further by the monitor team at the University of Washington and in the
next Delphi round prior to inclusion in EPAM.

Section E evaluated problems due to chemical or physical alterations.

The panel agreed on several conditions that would be likely to increase the
severity of such problems. These are noted below in order of importance. The
conditions suggested by the Delphi panel for inclusion are so designated.

1. Biota in area are already close to tolerance levels
and/or existing water quality is poor (Delphi suggestion).

2. Targets are immobile.

3. Flushing rate or mixing in discharge area is low (Delphi
suggestion).

4. Organisms have reduced free mobility (e.g., juvenile fish).

5. Discharge concentrates in preferred depth strata (Delphi
suggestion).

6. Organisms are attracted to discharge area as a result of
habitat or physiological preference.

7. Bioaccumulation occurs in sediments (Delphi suggestion).

The panel also agreed that at least crude estimates of the intake or
discharge envelope (e.g., uniform distributions) would be useful in initial
estimates of impact.

The panel felt that predictions of thermal problems were most dependent
upon the ambient temperature of the waterbody in question and the tolerances
of the targets under consideration. Given this belief, they also reached a
consensus that temporal duration and Spatial extent of the maximum temperature
was much more useful in predicting thermal problems than either a consider-
ation of maximum temperature alone or the concept of a temperature change
greater than or equal to 10 degrees C.

The questions in Section G about sampling costs reconfirmed that this
issue is difficult or sensitive for many of the panelists to discuss in
precise terms. As shown in Q2, only about 25 percent of the panel felt
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proficient in analyzing costs. While no one panelist's responsibilities
explicitly exclude cost considerations, it appears that many organizations
have specific persons assigned for cost evaluations. In addition, many
members of the panel reported expertise in one or two specialty areas but
claimed that the type of information requested (all trophic levels) was too
comprehensive. Several members make "first-cut" cost estimates in the process
of program design but do not make the final decisions. Other panel members
are not directly involved in field monitoring programs and hence do not have
relevant numbers.

No consensus was reached on identifying the relative cost of a replicate
versus an independent sample for fish, benthic invertebrates, water quality
or plankton. Panelists reported that fish and water quality replicates repre-
sented anywhere from 10 to 75 percent of the cost of an independent sample.
There was no consensus within this range. The cost of a replicate for benthic
invertebrate samples was reported to be between 25 and 75 percent, with 60
percent of the panelists reporting 75 percent. Plankton replicate costs were
reported to range between 10 and 75 percent, again with 60 percent of the
panel reporting 75 percent.

CONCLUSIONS OF THE DELPHI REVIEW

The Delphi process has performed a valuable role in providing a wide-
spread (in terms of disciplines) basis of support for the philosophical stance
and underlying structure of EPAM. The panel also helped to define, and in
some cases identify, many of the detailed points that needed to be considered
in the full development of the model. A more secondary, but no less useful,
function of the panel has been as a source of various data necessary for the
development of the statistical and optimization routines that are an integral
part of EPAM. Panel members have also been cooperative in agreeing to
participate in the Phase III case study evaluations.

The Delphi results strongly support the identification and hypothesis
testing routines that are a central element of EPAM. The panel agreed that
initial identification of impact agents is mandatory prior to the development
of testable hypotheses. They also believed that the reduction of program
objectives into formal hypotheses provides a strong basis for the development
of a sound monitoring program. The incorporation of falsification routines,
which identify alternative explanations for a hypothesized change and judge
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primary hypotheses on the basis of their relative freedom from alternative
explanations, was strongly supported by the Delphi panel. This hypothesis
testing structure will help to effect improvement in one area identified by
the Delphi panel as unsatisfactory in past monitoring programs: the ability of
a program to distinquish change due to power generation from other sources of
variability (see Q1 results).

Another area identified by the Delphi panel as inadequate in past moni-
toring programs was the ability of a program to establish whether observed
changes have ecological significance. The emphasis of EPAM on the development
of hypotheses that have an increased potential to identify long-term change,
and that represent extensive impact agent/target overlap in time and space
(increased severity), will help to alleviate this problem., The Delphi panel
also was instrumental in defining the kinds of conditions and ecosystem
components that have an increased potential for change in general and for
change 1ikely to continue for a long time, or, alternatively, conditions and
ecosystem components that are likely to be resilient to adversity. The panel
will consider these questions again in the Phase III Delphi round.

Several of the subroutines in LEVELS 2 and 3 require a user to identify
different components of the monitoring program and then rank these aspects on
the basis of established criteria. As shown in the Results section for Q3
above, the Delphi panel contributed to the initial identification of program
components (e.g., what is an appropriate target?) and to the definition of
appropriate choice criteria (e.g., how should targets be selected?). As a
result of the scoring system used in the Delphi questionnaire (1-5), default
value ranks for the various criteria also were identified.

Regarding application of the Delphi technique itself, several conclusions
are warranted. The relatively large size of the panel used in this applica-
tion (a final membership of 62 persons) may not be necessary if the diversity
of expertise can be represented in a smaller panel. In Ql areas of consensus
were apparent and did not change after the results of 15 to 20 panelists were
collated. In Q3, 60 of the questionnaires were scored in two randomly chosen
groups of 30 each. Weighted mean scores and importance rankings were not
different between the two groups. It should also be noted that there was no
apparent pattern or disciplinary bias associated with the persons who chose
not to continue in the Delphi panel following initial agreement.
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It appears that a strong consensus, once formed, is not shaken even when
additional options occur in a repeated question. Responses to the two PDS
questions repeated in Q1 were markedly similar, even though the reiteration
presented many more options. The rating of alternatives for hypothesis evalua-
tion did not change between Q2 and Q3. In some instances however, a reduced
number of options led to a stronger consensus in a second iteration. For
example, in Q2, 72 percent of the panel agreed to a given definition of
ecological value. In Q3, the other options were removed and panel members
were asked if they agreed with the majority opinion. Ninety-six percent of
all members did.

Cogent definition of the question(s) being asked is mandatory for success-
ful application of the Delphi technique. This is particularly true if the
issue is complex or has no widely accepted attributes. The confusion that
arose in discussion of long-term change in Q1 and Q2 was largely alleviated by
the use of more clearly defined nomenclature in Q3. Perhaps related to this
problem is the finding that the Delphi technique was most useful in this
application for considering issues that had been jdentified by the monitor
team before the first questionnaire was prepared.

Implementation of the Delphi process is time-consuming. The development
of questionnaires and the processing of responses can require up to a person-
month, depending on the length and complexity of the issues to be addressed.
Clearly a small panel considering only one or two issues would be more effi-
cient in terms of implementation. The role of the monitor team appears to be
critical regardless of the size of the panel. The most important functions of
the monitor team are in defining the issues to be considered and in analyzing
the consensus opinion from the diversity of responses. The actual logistics
of the application could be accomplished by any responsible person.

The Delphi process represents a very useful method for increasing the
breadth and validity of coverage. In the current application, options missing
from the original questionnaires but suggested by the panelists became impor-
tant elements in EPAM. The basic structure of EPAM and functions of the vari-
ous subroutines did not change as a result of the Delphi process, although
this possibility certainly existed and could occur in another application. The
Delphi panel was in strong support of the initial premise and format. While
this may have been a self-se]ecting result, the diversity of the panel and the
fact that panel members wrote extensive comments about areas on which they
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disagreed argue against this conclusion. Furthermore, many of the invitees who
did not join the panel were unable to participate due to schedule conflicts or
excessive work loads, and not because of lack of interest or sympathy.

In conclusion the Delphi technique appears to be a method that has poten-
tial utility for the process of monitoring program design, either in the
development of a standardized set of general methods as has been demonstrated
here, or in the development of a specific program at one site by a group of
local experts working in conjunction with utility staff.
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CHAPTER 4

COMPUTATIONAL ALGORITHMS EMPLOYED IN EPAM

This chapter details the computational algorithms employed primarily in
LEVELS O and 1. LEVELS 2 and 3 are also discussed in the case of CHOICE.

METHODS OF ALTERNATIVE EVALUATION

The design of an ecological monitoring program requires the careful con-
sideration of multiple objectives and a variety of physical, economic, and
temporal constraints. The individuals charged with designing the monitoring
program may be required to select from a set of conflicting, competing acti-
vities. If the monitoring network is to address multiple objectives, the
decision maker must choose between activities that contribute to these objec-
tives and select the activities that, when viewed over all objectives and con-
straints, represent a best compromise solution to the problem.

This section addresses two issues: (1) choosing between conflicting
activities and selecting those that best achieve a given set of objectives,
and (2) applying a solution methodology to aquatic biological monitoring. The
methodology presented is based upon the use of pairwise comparisons between
objectives and activities and subsequent application of an eigenvalue analy-
sis. This procedure is shown to result in computationally efficient solutions
and to generate useful, easily interpreted results. A computerized, inter-
active program that incorporates this technique into EPAM (denoted as the
subroutine CHOICE) is described. Examples of the procedure are also presented.

Multiple Solution Techniques

The application of multiobjective analysis has grown considerably in
recent years in both the public and private sector (Keeney and Raiffa, 1976).
A majority of the work in this field has been quantitative in nature, and has

emphasized mathematical solution techniques and optimization procedures. Cohon
(1978) has characterized these procedures as techniques that generate non-
inferior solutions, incorporate preferences, and involve multiple decision
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makers. The techniques differ not only in mathematical form but also in the
extent to which the analyst and decision maker interact in selecting among
alternative solutions. Four of the more frequently used approaches include
the weighting method (Goicoechea, et al., 1982), the surrogate worth trade-off
method (Haimes and Hall, 1974), utility approaches (Keeney and Raiffa, 1976),
and goal programming (Ignizio, 1981).

Two important objectives in the design of monitoring programs are mini-
mizing the network's cost and maximizing the network's effectiveness or abil-
ity to detect change if it occurs. These conflicting objectives are exempli-
fied by the following situations:

1. Given a hypothesis to be tested, select a monitoring design from
among the possible allocations of sampling effort in time, space,
and replicates to provide the best test of the hypothesis.

2. Given a set of hypotheses of interest, each concerned with a differ-
ent target in the site area, list them in order from the most impor-
tant to the least important.

3. Given a set of sampling programs to test hypotheses, select those
that best achieve a given set of overall monitoring objectives.

Expert Involvement

Because multiobjective analysis involves choices between competing activi-
ties, a well informed decision-maker should be involved. An important require-
ment in solving these problems is a detailed understanding of the problem, its
inherent conflicts, and the relative importance of its potential outcomes. As
in the case of monitoring design, the complexity of the problem makes it
unlikely that anyone other than an experienced decision maker will understand
or appreciate the problem's nuances. The experience gained by an individual
responsible for monitoring program design will be influenced not only by the
design in general but by specific knowledge involving the location and environ-
mental issues of importance.

Incorporating the décision-maker into the selection of the best compro-
mise solution can, however, create difficulties. Decision-makers may not
respond consistently at all times. In developing the relationships and com-
parisons that must be made between objectives, constraints, and criteria, the
decision-maker should be rational, consistent, and certain of his or her judg-
ments.
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Research in the field of psychology (Fischhoff, et al., 1981) suggests
that individuals may not demonstrate all of these traits when making deci-
sions. It is often difficult for people to make clear distinctions between
objectives and constraints. In addition, people are inconsistent for a vari-
ety of reasons and may not choose rationally between alternatives. These
features should not necessarily be considered faults, but rather character-
istics of individuals who may view a problem differently as more and different
information becomes available.

Computer Program CHOICE

The design of monitoring networks occurs amidst constantly changing infor-
mation about and knowledge of the aquatic environment. Because of this situa-
tion, a multiobjective technique was incorporated into the EPAM methodology
that would allow users to evaluate carefully targets and criteria for their
individual and specific settings and to select the monitoring design based on
their unique needs. The method developed also would allow users to incor-
porate their objective knowledge and their judgment when it would provide the
best information available.

This task was accomplished through the development of an interactive com-
puter program, denoted CHOICE. The goal of this program is to allow users to
describe objectives and potential alternatives throughout the EPAM program by
assigning relative weights or values and then deriving rankings of importance.
CHOICE is used at three levels: LEVEL 3 employs CHOICE to rank IMPACT AGENTS
and their TARGETS, LEVEL 2 uses CHOICE to rank PRIMARY HYPOTHESES, and LEVEL O
exercises CHOICE to rank individual SAMPLING PROGRAMS comprising a full MONI-
TORING PROGRAM. ‘

CHOICE was developed to allow decision-makers to demonstrate inconsis-
tencies in their judgments, as will be described in detail in the following
discussion, and to indicate the degree of the inconsistencies. CHOICE was
based on a mathematical procedure suggested by Saaty (1977) for deriving
weights for a set of activities based upon their relative ability to meet
specified goals. The approach, unlike many others in the multiobjective
literature, emphasizes the incorporation of human judgment into the decision-
making process and the quantification of inconsistencies or uncertainties when
they exist. The procedure, described in detail below, requires a pairwise
comparison to be made between activities and allows a hierarchical structure
to be developed for activities and objectives.
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The following pages present an explanation of the procedure with a des-
cription of the program CHOICE. In addition, the technique is applied in two
examples to illustrate its power as a decision-making tool.

Solution Technique

The user's fundamental requirement in multiobjective analysis is to
choose between a variety of activities, each of which contributes in varying
extents to one or more objectives. The challenge is to determine relative
weights or priorities of each of the activities relative to each of the objec-
tives and to combine the objectives to generate an overall ranking. In the
case of aquatic sampling, there may be several objectives and several levels
or hierarchies of objectives that arise. When this is the case, the user
needs to rank the objectives in one level relative to those in the next higher
level.

The technique presented here includes a method for scaling the weights in
each level of a hierarchy with respect to an element of the next higher level.
The user accomplishes this by constructing a matrix of pairwise comparisons of
the activities whose entries indicate the degree to which each element domi-
nates the others with respect to the given criteria.

This process can be posed as an eigenvalue problem (Saaty, 1977). Sup-
pose that n activities are to be compared relative to their importance or
worth in achieving an objective. A matrix can be generated that indicates the
relative value or weight each activity has in achieving the objective. For
instance,

1 wl/w1 w1/w2 cee wl/wn
A2 wz/w1 w2/w2 ces wz/w
3 w3/w1 w3/w2 cee w3/wn

An wn/w1 wn/w2 .o wn/wn

where w; is the weight assigned to an activity.
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A1l elements in this matrix will be positive, and each will have the

reciprocal property that a;; = 1/a.:. If this matrix is multiplied by the

J J1
transpose of the weight matrix, wT, the problem becomes:

Aw=nw 4 (4.1)

Thus far, it has been assumed that w is known. However, it is much more
common that w is unknown and that what is available is the A matrix, the
relative weighting derived by a decision-maker. Such matrices can be devel-
oped by questioning those familiar with the specific monitoring program. If A
is known, then w can be recovered by solving:

(A-nl)w=0 (4.2)

This equation represents the familiar eigenvector problem with w as
unknown and n representing an eigenvalue of A. It can be shown that since
every row of A is a multiple of another, it has unit rank and thus all eigen-
values except one are zero. It follows that the value of the one non-zero
eigenvalue, and therefore the maximum eigenvalue, is equal to n.

It has been implicitly assumed that the A matrix is cardinally consistent
(i.e., element dominance is maintained). This may not be true because of
human inconsistencies in judgment. The new matrix can be characterized as the
original matrix with small perturbations that will result in small perturba-
tions in the eigenvalues. The problem now becomes:

AI !l-l = AI El (4.3)
with the new associated eigenvalue problem of
(A" -2 I)w =0 (4.4)

Saaty (1977) suggested that a determination of the inconsistency of the
A' set of relative weights can be evaluated by comparing the eigenvalue
obtained in this problem with the eigenvalue associated with a consistent
matrix (which is equal to n). In addition, the eigenvector obtained repre-
sents the best compromise estimate of the true weights derived from the matrix
of relative weightings.
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Solution Procedure

Initiation of this solution procedure requires that the user develop a
relative weight matrix for each objective to be considered. In the procedure,
weights are assigned on the following scale:

Scale Value Contribution to the Composite Set

1 A1l sets are of equal importance
or this is the least important.

3 ' This set appears to be slightly more
important.

5 Judgment suggests this set is more
important.

7 This set has "demonstrated importance"

over all others.

9 This set dominates all others.

(Even numbers are used to interpolate between the levels.)

Next the user constructs the positive pairwise correlation matrix for the
weights of the components as described previously. Saaty (1977) suggested
that the first row be completed and then the first column generated by using
the reciprocals of the row entries. The second row then can be completed and
used to complete the second column; this process continues through each row
and column. When objective data are available, the weights are computed on a
scale of one to ten. When objective data are unavailable, the weights are
generated using a Delphi technique or subjective judgment.

Examples

The following examples illustrate the utility of the CHOICE program. The
first example is extremely simple in construction and illustrates the applica-
tion of the methodology to a single hierarchy problem. The second example
expands the setting to a multiple hierarchy problem, a more realistic setting
for aquatic monitoring design.
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Example 1: Suppose that the user wants to compare the weights of five
aquatic species. These weights may represent actual weights in terms of their
mass or perhaps the economic value of the species. Suppose initial values are:

Starfish Salmon Perch Trout Clam

Starfish 1/1 1/5 1/3 1/4 4/1

If the weights were derived in a rational and consistent manner, there
would be no need to make any other comparisons. In this case the relative

ranking would be:

Salmon - 5
Trout - 4
Perch - 3
Starfish - 1
Clam - 0.25

However, as described previously, this may not be the case. Assuming
that such comparisons are inconsistent, the entire comparison matrix might
look like:

Starfish Salmon Perch Trout Clam
Starfish 1 1/5 1/3 1/4 4
Salmon 1 2 2 8
Perch 1 1/2 4
Trout 1 7
Clam 1

(Note that the lower triangular matrix values would be the inverse of the
given upper triangular values.)

Because the relative rankings of these elements are inconsistent, their
relative values cannot be determined from this matrix. To do so the user
could initiate CHOICE to determine the relative weights that are the most
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consistent with the weights reported. Calculation of the eigenvector for this
inconsistent matrix using CHOICE determined the relative rankings to be:

Salmon - 5.00
Trout - 3.50
Perch - 2.25
Starfish - 1.10
Clam - 0.45

The eigenvalue determined for this matrix is 5.15, indicating that it is
approximately consistent. These relative weights could be used in the next
level of objectives as indicated in the next example.

Example 2: The second example illustrates how multiple hierarchies can be
incorporated into the methodology. The example considers a user wanting to
select a monitoring network from three potential candidates. These networks
are denoted as Design A, Design B, and Design C. Two organisms are evaluated
by the networks, Fish and Benthic organisms. Suppose that two criteria are
important in the evaluation of the network, the cost of the network and its
power at detecting change. These criteria for the potential designs are
summarized as:

Design A - Best power for Fish, most expensive

Design B - Best power for Benthic, second most costly

Design C - Poorest for power for both Benthic and Fish,
least costly

Suppose that after examination, the relative weights derived for the criteria
are determined to be equal:

Power for Fish Power for Benthic Cost

Power for Fish 1 1 1
Power for Benthic 1 1
Cost
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The relative weights for each design for each objective are determined:

Power for Fish Power for Benthic
Design A B C Design A B C
A 1 4 6 A 1 .8 0.6
B 1 2 B 1 1.5
C 1 C 1

Cost

Design A B C
A 1 2 0.1
B 1 0.2
o 1

Rankings of the potential designs relative to the objectives, and.the
objectives relative to one another, are needed so that the best design, based
upon the objectives, can be chosen.

From CHOICE the relative ranking of each of the alternatives is:

Power For Power For Least

Fish Benthic Cost
Alternative A 1.000 0.635 0.158
Alternative B 0.275 1.000 0.128
Alternative C 0.151 0.840 1.000
Eigenvalue 3.01 3.05 3.23

Based on the rankings of the three objectives, the final rankings of the
alternatives calculated by CHOICE are:

Alternative A: 0.36 Alternative B: 0.23 Alternative C: 0.41
It is interesting to note the effect on the ranking of the alternatives

if the weighting of the criteria is altered. Consider for instance, the
following weighting of criteria:
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Power for Fish Power for Benthic Cost
power for Fish 1 o2 2
Power for Benthic 3
Cost 1

The rankings of the alternatives in this case are as follows and indicate the
selection of a different alternative:

Alternative A: 0.45 Alternative B: 0.25 Alternative C: 0.30

Summary of Technique

The technique described above was incorporated into EPAM to supply a deci-
sion criterion to choose among sampling alternatives in the development of a
sampling program. The required inputs for this type of analysis are matrices
relating each of the alternatives to each criterion and relating the relative
importance of each of the objectives to be achieved. These inputs are direct
outputs of other subroutines of the EPAM model. With these inputs CHOICE can
be used to allow decision-makers to determine the existence and extent of
inconsistencies and to select among alternatives that best achieve expressed
objectives.

DESIGN AND OPTIMIZATION OF SAMPLING PROGRAMS

The four questions the user must address in designing any sampling pro-
gram are the type, location, frequency, and number of replicates to collect.
The first issue, what to sample, is addressed in LEVELS 2 and 3, and is essen-
tially not a statistical question. The second problem of where to sample can
be considered from a statistical viewpoint only insofar as sampling locations
are not constrained by the factors incorporated into the design. For
instance, in the sampling of benthic organisms, substrate type may have a
strong influence on organism abundance, and it simply will not make sense to
sample in areas having substrates that are inhospitable to the organisms of
interest. In some cases, other factors, such as water depth, circulation
patterns, or salinity may constrain station location to the point that the
designer is left with very limited flexibility in placing stations. On the
other hand, sampling of some variables, such as water quality indicators, may
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be almost totally unconstrained, and then statistical considerations may be
brought to bear on the problem of station location. The problems of how often
to sample and how many replicates to collect usually may be addressed statis-
tically, as these choices will directly influence the detectability of change.
The station selection modules of EPAM (see Appendices D.5 and D.6) rely heav-
ily on expert judgment to select candidate station locations. The statistical
algorithms discussed in this section are then invoked to determine the number
of stations, and their specific locations.

The type of statistical test to be used also bears directly on the sampl-
ing design. Factorial treatment designs, making use of the analysis of vari-
ance (ANOVA), are by far the most widely used technique for the detection of
short-term ecological change (McKenzie, et al., 1977). They have been widely
accepted because ANOVA is well understood and explicitly accounts for multiple
sources of variation (depth, transect location, time of year, substrate type,
etc.) that might otherwise confound the detection of change. In some cases
other tests such as sequential comparison, regression analysis, pattern recog-
nition, etc. might be more appropriate; however, factorial designs provide by
far the most general basis for sampling design. It should be emphasized that
any sampling design is, of necessity, dependent on the assessment methodology
that will be used, and the work reported here is not jmmune from this restric-
tion. Likewise, arguments could be made against ANOVA on the basis of its
frequent misuse, which is perhaps a result of its familiarity to most ana-
lysts. Nonetheless, if properly used it is a versatile method, and is the
sampling design approach outlined in this section.

As reported in the Phase I completion report, the majority of sampling
designs for aquatic ecological impact detection have addressed the problem of
short-term change. In this context, factorial designs appear to be the best
approach. However, for the detection of long-term change time series analysis
is perhaps the most applicable method. As will be described later in this
section, time series methods are essential when temporal correlation of the
model residuals becomes significant.

The most important consideration in determining space-time sampling
tradeoffs, and the desired amount of replication, is the structure of the
data. Specifically, in a factorial treatment design with three factors, for
instance, it is assumed that
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Yijk] =u+ A+ Bj +Cp + ABij + ACyy + Bcjk + ABCijk * €45k (4.5)
i.e., the observation is the sum of various effécts plus a random, or unex-
plained, error term. The correlation in the errors €5 k1 determines the
redundancy of observations in space and time, which can be exploited to
address problems of sampling location, frequency of sampling, and replication.
It should be emphasized that the ANOVA model is exclusively concerned with the
variance explained by the various factors, assuming that the residual, or
error term, €45k is independent with respect to all factors. Such a condi-
tion appears to be the exception rather than the rule; moreover, the correla-
tion between the residuals must be a key consideration in achieving efficient
sampling designs.

Therefore, in the remainder of this chapter six topics related to sampl-
ing program design are addressed: (1) evidence of, and appropriate models
for, correlation between the residuals; (2) the costs associated with various
aspects of aquatic sampling, compiled from a number of sources; (3) optimiza-
tion of sampling programs designed to detect short-term aquatic change when
the residuals are uncorrelated and continuous in space and time; (4) optimiza-
tion of sampling programs for short-term aquatic change when the error term is
continuous but correlated in time and/or space; (5) development of a method-
ology for balancing allocation of sampling resources between monitoring pro-
grams designed to detect short- and long-term aquatic change, respectively;
and (6) an approach for incorporating deterministic ecosystem models into
monitoring designs.

Much of the information presented in this section is technical in nature,
and a detailed understanding of the algorithms presented requires that the
reader be comfortable with basic mathematical and statistical concepts. There-
fore, a brief overview is included at the beginning of each section, and a
summary at the end, so that the reader, if so inclined, can skip the intermed-
jate derivations without loss of continuity.

Exploratory Data Analysis

Three sets of typical aquatic monitoring data were examined for evidence
of correlation in the residuals at each station over time (temporal correla-
tion), and correlation in the residuals between locations at a fixed time
(spatial correlation). Then two different models of the decay of spatial
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correlation with distance were fitted to the data. The three sets of aquatic
monitoring data included (1) extensive benthic data collected around the Palos
Verdes Peninsula of the Southern California coastal area by the Los Angeles
County Sanitation District (Garrison, 1981); (2) benthic and phytoplankton
data from the Zion nuclear generating station, located on the western shore of
Lake Michigan immediately south of the Wisconsin-I111linois state line; and

(3) benthic, phytoplankton and zooplankton data from the Nine Mile Point
nuclear generating station, located on Lake Ontario near Oswego, New York.

The three sites are reasonably diverse with respect to water body type, test
species, and climate. Brief descriptions of the principal characteristics of
each data base follow.

Los Angeles County Sanitation District

The Los Angeles County Sanitation District (LACSD) is responsible for
wastewater treatment for much of the greater Los Angeles area. A major LACSD
outfall discharges primary treated wastewater approximately 1.75 miles (2.8
kilometers) offshore from Whites Point on the Palos Verdes Peninsula. Dis-
charge of wastewaters to the marine shelf in this area has been occurring
since 1937, and is believed to have greatly impacted the native benthic popu-
lations (Garrison, 1981).

The waters off the Palos Verdes Peninsula have been sampled extensively
for soft-bottom benthic invertebrates (biomass measurements) since 1974. The
monitoring network utilized is shown in Figure 4.1. It consisted of forty-
four stations on four depth contours (eleven stations per depth contour). The
depth contours were at 100, 200, 500, and 900 feet. The stations were located
on an approximately rectangular grid, and spaced one mile apart. The analyses
were undertaken on the assumption that the station coordinates were described
by the nominal grid spacing.

The variable analyzed in this project was the average total benthic bio-
mass (e.g., gm/mz) per station. Samples were taken semi-annually from 1972 to
1978. Four replicates were taken at each station from 1972 to the first semes-
ter of 1977, while only three were taken from then on. The number of observa-
tions per station was not uniform; some stations were not sampled during 1972
and 1973, and a few other values are missing. The average number of observa-
tions per station was fourteen.
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Nine Mile Point Nuclear Power Station Site

The Nine Mile Point station began commercial operation in December 1969
and draws once-through cooling water from Lake Ontario. The variables ana-
lyzed for this site were total benthic population density [number/mzj, and
total phytoplankton density [cells/ml]. The monitoring network, shown in
Figure 4.2, consisted of twenty benthic organism sampling sites distributed
over five depth contours (10, 20, 30, 40, and 60-feet), and sixteen phytoplank-
ton sampling sites, which coincided with most of the benthic stations. The 30-
foot depth contour was not sampled for phytoplankton (Murarka, 1976).

Benthic organisms were sampled in the months of April, June, August, and
October from 1975 to 1978. A1l benthic stations were sampled at this fre-
quency to yield a total of sixteen observations per station. Phytoplankton
was sampled monthly from April to December from 1976 to 1978, yielding a total
of twenty-seven observations per station (no phytoplankton values were avail-
able for January, February or March).

Zion Nuclear Power Station Site

The data and information from the Zion site were taken from a report by
Murarka et al. (1976). Like Nine Mile Point, this plant is located on one of
the Great Lakes (Lake Michigan). The plant began commercial operation in
1974. The variahbles analyzed here were total benthos [number/mz], total
phytoplankton [number/m1], and total zooplankton [number/m3].

Figures 4.3 and 4.4 show the field sampling locations for benthos and
plankton, respectively. The monitoring network for benthic data included 20
stations and five contours at 10, 20, 30, 40, and 60 feet. The plankton
sampling stations were included among the benthic sites; there were twelve
stations (six treatment and six control) distributed on three depth contours
at 10, 30 and 60 feet.

Benthos were sampled bimonthly for the years 1972 to 1975, giving a total
of 24 observations per sampling location. Phytoplankton and zooplankton were
sampled monthly for the same period of time yielding 48 observations per samp-
ling station. Very few data were missing.
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Figure 4.2. Nine Mile Point Sampling Network
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Estimating Temporal Correlation

The estimates of temporal correlation for phytoplankton at Zion are given
in Table 4.1 and were derived as follows. The data were grouped into six
seasons, with each season consisting of two months, so January-February was
one season, March-April another, and so on. Two-month periods were combined
into seasons to provide a reasonable sample size to estimate the means and
standard deviations. Seasonal means and standard deviations were then esti-
mated for each station (see Table 4.2). For each station, observations were
standardized by subtracting the appropriate seasonal mean and then dividing by
the seasonal standard deviation. Based on these standardized observations,
maximum likelihood autocorrelation estimates were then calculated according to
Box and Jenkins (1976). It should be noted that observations taken before and
after plant operation were combined when estimates of seasonal means and
standard deviations were computed. This procedure is justified by the fact
that Murarka, et al. (1976) found no plant effect for either phytoplankton or
zooplankton, although McKenzie, et al. (1977) found ambiguous results on this
issue.

A problem in testing for spatial correlation is the effect of autocorrela-
tion at each site on the estimator of cross-site correlation (Jenkins and
Watts, 1968). Therefore, when autocorrelation is present, the data should be
pre-whitened (i.e., the autocorrelation should be removed) before the cross cor-
relation between stations is computed. The estimated autocorrelations were
quite small at all sites, and in fact when an AR(1) process was fitted to the
standardized series at each station, none of the AR(1) parameters was signi-
ficantly different from 0 at the .05 significance level, or even at the .10
level (two-sided test). Therefore, pre-whitening was not necessary, although
in other cases it may be. Estimates of temporal correlation at the other
sites investigated are summarized in Table 4.3. These estimates were computed
using the same approach as was used to compute the Zion estimates.

Estimating Spatial Correlation

Spatial correlations were determined by applying the following procedure
to all sites. Given two sampling sites with their respective data sequences,
the correlation of the residuals was calculated and plotted versus the separa-
tion distance between the sites. The scattergram obtained in this manner was
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Table 4.1. Estimates of Autocorrelations at Zion,
variable = 1n (total number phxtOplankton/ml)

Station 5 7 9 28 30 32
Lag
1 -0.06 -0.22 -0.13 0.11 -0.06 -0.05
0.17 0.11 0.21 0.20 0.10 0.04
3 0.11 -0.01 0.03 0.06 -0.17 0.02

Table 4.2. Seasonal Means and Standard Deviations at Zion
Variable 1n (total number of phytoplankton/ml) at Zion

SEASONAL MEANS

Station 5 7 9 28 30 32
Season
1 7.68 7.57 7.43 7.78 7.57 7.30
2 8.22 7.97 7.66 8.04 7.72 7.08
3 7.72 7.60 7.35 7.89 7.52 7.34
4 7.25 6.92 6.70 7.33 6.79 6.37
5 6.96 6.81 6.49 7.04 6.75 6.46
6 7.44 7.25 6.94 7.60 7.32 6.67
SEASONAL STANDARD DEVIATIONS
Station 5 7 9 28 30 32
Season
1 0.51 0.48 0.30 0.49 0.37 0.37
2 0.67 0.46 0.43 1.20 1.09 1.37
3 0.81 0.63 0.62 0.80 0.71 0.86
4 0.67 0.67 0.89 0.57 0.74 0.84
5 0.32 0.37 0.63 0.36 0.42 0.47
6 0.58 0.71 0.75 0.61 0.58 0.56
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of Autocorrelation

Estimates
Variable Min
Benthos -0.53
Benthos -0.18
Phytopln 0.02
Benthos -0.39
Phytopln -0.22
Zoopln -0.16

Max Average
0.79 0.14
0.65 0.18
0.54 0.31
0.42 -0.07
0.08 -0.08
0.11 0.01

Number of sampling stations,
Number of observations at each sampling station.

20
16

20
12
12

b=

12

15
26

21
46
46
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then analyzed in search of a pattern of spatial correlation (a spatial correla-
tion structure) that could be associated with the organism or environment in
question. ‘

Table 4.4 gives the estimates of the correlations between stations for
the phytoplankton at Zion. Treatment stations appear to be just as highly
correlated with each other as with their respective paired control stations.
The variances of these estimates of cross correlation are on the order of
(1- p2)2/n, where p is the true correlation and n is the number of observa-
tions used to compute the estimate (Anderson, 1958). The smallest sample cor-
relation is 0.596 from a sample size of n = 45, so a rough upper boundary on
the variances of these estimates is 0.01. All estimates are significantly
different from 0 (p < .0005, one-sided test).

Given a value for the separation distance, the mean of the various cor-
relation coefficient estimates corresponding to it were averaged to yield
Cor(h), the estimate of the correlation between two stations that are separ-
ated by a distance h. The estimates of the correlation coefficients were
assumed to be distributed normally around the population value, Cor(h), with a
variance of (1 - Cor(h)z)z/n (Anderson, 1958). A scattergram of Cor(h) versus
h was then plotted. A better view of the general behavior hidden by the varia-
bility of the scattergrams was obtained through the application of smoothing
techniques. The technique utilized is called the three-repeated running-
medians technique and was suggested by Tukey (1977). The medians of each set
of three points sliding one at a time are taken as the new smoothed sequence.
This technique was applied twice (hence the name repeated running-medians) to
each data base with the exception of LACSD, since in this case the first
smoothing gave values that were very close together.

Once the smoothed correlation estimates had been obtained as a function
of distance, two correlation functions were fitted to the data. The correla-
tion functions considered were an exponential decay,

Cor(h) = exp (- beh) 0« be { (4.6)
and a modified Bessel function, Kl’
Cor(h) = bbhkl(bbh) 0 < bb { = (4.7)

where Kl(.) is the modified Bessel function of the first kind.
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Table 4.4. Estimates of Correlations Between Stations at Zion,
Variable = 1n (total number phytoplankton/ml)

Station 5 7 9 28 30
Station :
7 .748
9 .859 .857
28 |.852] .596 .797
30 .715 |.794| .848 .781
32 .763 .696 |.859| .761 .815

Based on observations from April 1972 to December 1975. Boxed values are
correlations between control-treatment pairs.

The fits of the two functions were achieved by weighted least squares,
where the weights were the inverse of the variance of the correlation at each
separation distance. The results are shown in Figures 4.5-4.10. With the
exception of the LACSD benthic data, all sites and variables exhibited quite
high correlations at close distances.

Although temporal correlation in the residuals was not significant in
most cases (for monthly and bimonthly sampling schedules), spatial correlation
frequently was found to be present. This result has important implications
for sampling design, and is discussed in the following section.

Effects of Correlated Errors on ANOVA

The following sections present: (1) an example of a monitoring program
design in which ANOVA is used to test for plant impact, (2) an explanation of
the assumptions of ANOVA and their relationship to temporal and spatial corre-
lation in the error terms, and (3) the results of a Monte Carlo study of the
performance of an ANOVA procedure when temporal or spatial correlation is
present in the error terms.

A state-of-the-art design to test for short-term, local impacts in the
aquatic environment adjacent to an electrical power plant was presented by
Skalski and McKenzie (1982). An example they gave of such a design is shown
in Table 4.5. This design can be used to investigate whether the presence and
operation of a power plant is affecting the mean of some indicator variable
(e.g., the abundance of a particular species or the concentration of a
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Table 4.5. Example of ANOVA Design (after Skalski and McKenzie, 1982)
Network Design: As in Figure 4.4.

Model: Yyucqe = + Ay *+ By + Co # Dy'+ AByp + AC,e + ADaq

+ BChe + BDpy + CDey * €apcde?

where ¥Y.o de = the difference in the natural logarithms of organism

abundance between control and treatment stations for
station pair (c,d),

€abcde 2are i.i.d. N(O,oz) random variables,

(]
[}

1, «cey N,

n = number of years of sampling for each level of plant

status
FACTOR DESCRIPTION NUMBER OF LEVELS
Plant Status 2 (1=pre-operational, 2=operational)
Time of Sampling 12 (monthly samples)

Location of Station Pair 3 (1=10 feet, 2=30 feet, 3=60 feet)
Position of Station Pair 2 (1=north, 2=south)

OO WP
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chemical substance). In this example it is assumed that the indicator vari-
able is organism abundance. Six control-treatment pairs of sampling stations
have been formed on the basis of depth contours (10, 30, and 60 feet) and
location (north vs. south). The stations of each control-treatment pair are
assumed to track each other, i.e., maintain a constant proportionality, or a
constant -difference, in the indicator variable over time (Skalski and
McKenzie, 1982). Two stations that maintain a constant proportionality neces-
sarily maintain constant differences between the logarithms. Two hypothetical
examples of station pair tracking are shown in Figures 4.11a and 4.11b.

Impact is defined as a statistically significant change in the proportional
abundance (or change in the difference) of the indicator variable at control
and treatment stations between pre-operational and operational periods of the
power plant, (Skalski and McKenzie, 1982).

A statistical analysis of data that are gathered based on this design
would involve an ANOVA procedure. In the example shown in Table 4.5, the
factors included in the ANOVA are depth contour, station location, time of
sampling (season), and plant status. If control and treatment stations truly
track each other over time as in Figure 4.1la, season need not be included as
a factor in the ANOVA. If, however, it is believed that differencing between
treatment and control pairs does not remove all the seasonal fluctuations in
the indicator variable, then season should be included as a factor. In this
case, it is assumed that the control and treatment stations track each other
in a manner similar to that shown in Figure 4.11b. Inclusion of season as a
factor, moreover, will allow detection of differential changes across seasons,
regardless of whether station pairs track each other as in Figure 4.11a or
4.11b. ANOVA procedures using models similar to the one given in Table 4.5
were used by McKenzie, et al. (1977, 1979) to evaluate data gathered at the
Prairie Island, Zion, Haddam Neck, San Onofre, Calvert, Cliffs, and Pilgrim
nuclear power plants.

Assumptions of ANOVA

Carrying out an ANOVA procedure requires that three assumptions be made
about the error terms in the model (e.g., the €abcde in the model in Table
4.5), aside from assuming they all have mean 0 (Eisenhart, 1947). These
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assumptions, listed in order of decreasing importance (Glass, et al., 1977;
Box, 1954) are:

1. The errors are independent (hence uncorrelated).
2. The errors all have the same variance.
3. The errors are all distributed as normal random variables.

The existence of serial (temporal) correlation among the observations at
a treatment station and/or among the observations at its paired control sta-
tion can induce temporal correlation among the differences in the observations
for this station pair. Skalski and McKenzie (1982) stated, "use of propor-
tional abundance [i.e., differencing the logarithms of abundance at paired
treatment and control stations] reduces the serial correlation that can exist
among the successive observations of abundance [or successive observations of
the logarithm of abundance] at sampling stations ...". This proposition is
not necessarily true. The relationship between temporal correlation among the
observations at each station and temporal correlation among the differences
between the observations for control-treatment pairs is given in Appendix D.1l.

In addition, for each observation period, correlation among the N treat-
ment and control stations (spatial correlation) can induce correlation among
the N/2 station pair differences. The relationship between spatial correla-
tion among the observations at each station and correlation among the differ-
ences is derived in Appendix D.2.

If spatial or temporal correlation among the observations at the stations
induces correlation in the differences, these data (the differences) will vio-
late assumption 1 of ANOVA given above, the assumption of independent errors.
The qualitative effects of the violation of this assumption on the F-tests of
the ANOVA have been known for some time (Cochran, 1947; Box, 1954).

Explanation of the Monte Carlo Study

To quantify the effects of spatially and temporally correlated errors on
ANOVA set ups like the ones proposed by Skalski and McKenzie (1982), a Monte
Carlo Study was carried out. The design used for this study was based on the
one used at Zion Nuclear Power Plant (see Figure 4.4), and is given in Table
4.6. Observations were generated at each sampling station and the errors
(deviations from the mean) were allowed to be correlated in space and time.
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Table 4.6. Network Design and Model Used in Monte Carlo Study

Network Design: Stations 5, 7, 9, 28, 30,:and 32 of Figure 4.4.

Station Number Coordinates
5 0, O
7 0.75, 0
9 1.88, 0

28 -0.48, 4.03

30 0.02, 4.03

32 1.92, 4.03

Model: y.le =y + A'I + CJ + AC1J + Eijk’

where Yiik = the difference between the observations at
J the treatment station and the control station
for station pair j, for the kth sampling
occasion at plant status level i

. . 2
€45k are i.i.,. N(0,0%),
k=1, ..., n
n = number of sampling occasions for each level
of plant status
FACTOR DESCRIPTION NUMBER OF LEVELS
A Plant Status 2 (1=pre-operational, 2=operational)

C Location of Station Pair 3 (1=10 feet, 2=30 feet, 3=60 feet)
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Temporal correlation was incorporated through the generation of an AR(1)
process (Box and Jenkins, 1976) at each samp11ng station. Spatial correlation
was taken to be an isotropic function of distance and took the form of the
exponential decay model (4.6). The assumption of isotropy is open to question
due to the influence of such factors as depth and current, which could lead to
an anisotropic correlation function. The simple correlation model (4.6) was
favored, however, because it requires the estimation of only one parameter,
and because it is sufficient to indicate the general effects of spatially
correlated errors on ANOVA.

The multivariate time series generating algorithm given in Appendix D.3
was used to simulate the observations at each station. It should be noted
that the purpose of simulating observations at the stations was not to model
the Zion phytoplankton data (although these data were used to provide an idea
of the general levels of some of the parameters), but rather to provide a
means of studying the effects of spatial and temporal correlation on ANOVA
under controlled conditions.

The effects of spatial and temporal correlation on type I error only were
considered in this study. The type I errors with regard to testing the fol-
Towing two hypotheses were examined:

1. The null hypothesis of no interaction between plant status effect
and depth contour effect, given by:

H01: Acij =0 Vi,j

2. The null hypothesis of no plant status effect (no plant impact),

given by:
H02 : A1 = A2 = 0.
The interest in H0 lies in the fact that the presence of non-zero interaction
1 _
terms complicates the interpretation of the results for the test of H0 (Seber,

2
1977). In practice then, it is often taken for granted that the usual test

for main effects cannot be carried out if the null hypothesis of no interac-
tion has been rejected.
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For each set of parameters that determined a specific level of spatial
and temporal correlation, 100 and 200 trials were carried out. Each trial con-

sisted of:

1. The generation of 48 observations at each station (24 observations
in the pre-operational phase, and 24 in the operational phase). The
standard deviation of the observations was set at 0.6 because this
is approximately the standard deviation of the observations at each
station in the phytoplankton data from Zion (see Table 4.2). In
some cases, the standard deviation of the observations was also set
at 50 to test the invariance of the results.

2. The calculation of the differences between the treatment and control
stations. All differences were distributed as normal random vari-
ables with mean 0. Hence, there was no seasonality in the differ-
ences (station pair tracking as in Figure 4.11a) in the generated
data, and this factor was not included in the ANOVA model. Also,

both HO and H0 were always true.
1 2
3. Application of the test of H0 : no interaction.
1
4, If H0 was not rejected, application of the test of H0 : no plant
1 2
impact.

In all the trials, the F-statistic was compared to the 95th percentile of its
true distribution (in the absence of spatial and temporal correlation) under
HO' Thus, in the absence of spatial and temporal correlation, H0 and H0
should have been rejected about 5 percent of the time. 1 2

The results of the Monte Carlo study are shown in Tables 4.7 and 4.8, and
in Figures 4.12 and 4.13. It appears that the probability of a type I error

with regard to testing H0 (no interaction) decreases with increasing spatial
1
correlation. On the other hand, the probability of a type I error with regard

to testing H0 (no plant impact) increases with increasing spatial correla-
2

tion, and with increasing temporal correlation.
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Effect of Spatial Correlation on ANOVA

1. # =0, o= 0.6, Number of trials s 200

5
1
.05
N

A

a

—ps

.0625 (.0714)

.0761 (.0851)

.1173 E.1616)
(

.1950 (.1111)
.1750 (.2700)

A

2. @ =0, og=50, Number of trials = 100
b

“e %int

2 .06 .
1 .01 (.045)
0.5 .03

0.1 0 (.005)
0.05 0 (.005)

%ps

.0957

.0505 (.0995)
.1649

.1700 (.1960)
.2200 (.2261)

umbers in parentheses indicate results for 100 trials.

* Numbers in parentheses indicate results for 200 trials.

g =
G:."
be =

a. =
int HO :
1

aps =

Table 4.8.

e
2
0
.05
.10
.30
.50
.70

Acij =0 Vi,j

QR

int

the lag one correlation at each station,

the estimate of the probability of rejecting
the estimate of the probability of rejecting H0 :
2

Effect of Temporal Correlation on ANOVA.

b =5, 0 =0.6, Number of trials = 100

A

Qa

—Ps

.06
.03
.15
.16
.20
31

A

1

the standard deviation of the observations at each station,

the parameter of the spatial correlation function (4.1),

= Az = 0‘
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The results for testing H0 agree with the findings of Box (1954)
2

and Cochran (1947). They showed that positive correlation within groups can
increase the type I error probability when means between groups are compared.
For each station pair, the presence of temporal correlation induces serial
correlation, within each level of plant status (see Appendix D.1). Hence,
positive temporal correlation should increase the type I error probability for
the test of plant status effect. The presence of positive spatial correlation
induces positive correlation among the station pair differences for each
sampling occasion (see Appendix D.2). Hence, positive spatial correlation
also induces positive correlation within each level of plant status.

In the kinds of ANOVA models suggested for analyzing aquatic monitoring
data, temporal correlation in the errors can increase the probability of a
type I error when interaction or plant status effects are tested, and spatial
correlation can increase the probability of a type I error when plant status
effect is tested. An investigator analyzing aquatic monitoring data should
test for spatial and temporal correlation in the errors (see Appendix D.5)
before applying standard models and tests that assume uncorrelated errors. If
temporal or spatial correlation appears to be present, modified techniques
such as those introduced in the following sections should be used.

The next objective will be to develop optimization algorithms for the
cases of correlated and uncorrelated errors. Because this optimization devel-
opment incorporates cost considerations, an analysis of sampling costs, con-
ducted during Phase II of the research, is discussed before the optimization
sections.

Analysis of Sampling Cost

Sampling costs discussed here are based on a survey of data from five
sources. A cost equation is described, and cost coefficients based on two
different data bases are derived. This cost equation is used in the sampling
program optimization algorithm described in the following sections. Numerous
additional sources were contacted to provide such data, and an inquiry was
placed in a Delphi questionnaire to elicit other potential sources. However,
additional data sets were not found, either because cost data had not been
assembled or could not be released.
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An adequate determination of cost-effective monitoring requires accurate
data describing the cost of sampling. A major problem in obtaining these data
is a proper definition of what constitutes a sample. Confounding this problem
is the introduction of continuous sampling technology into the field of aqua-
tic monitoring. The cost to obtain a single observation using high technology
(continuous sampling) is orders of magnitude less than the cost of traditional
methods of discrete sampling and may provide quite different information. In
addition, determining the marginal cost per sample can be an extremely diffi-
cult exercise because of the number of overlapping and dependent cost relation-
ships that exist.

Evaluation of cost data was performed to generate parameters appropriate
for the optimization techniques developed. Aquatic sampling data were
obtained from five different organizations (Mattson, 1982). The general char-
acteristics of these cost data are summarized in Table 4.9. All costs were
adjusted to 1982 U.S. dollars, but differences in overhead rates, subsidies,
profit margins, and salary differences could not be resolved. Major cost
differences between sources may be due in part to the level of detail of
laboratory or on-site analysis performed on each sample. Costs of specific
levels of taxonomic identification or condition can vary greatly. Also the
experience of the staff can influence sampling costs if costs of learning to
sample properly are included. Some sources did not report net sizes, volumes
of water sampled, or areas of substrate observed. Therefore, normalization of
data was not possible.

Tables 4.10 and 4.11 present disaggregated cost data reported from
sources B and E. While there are differences in boat and equipment costs,
both these data sets suggest that Taboratory and data management costs are
major components of sampling costs. Proper allocation and definition of such
costs will be essential in standardizing reported costs. Table 4.11 presents
data that suggest labor and overhead costs also may require standardization
before cost comparisons can be made. Because of the high level of variability
of absolute sampling cost data demonstrated in these tables, relative costs of
sampling were used in subsequent analyses, since relative cost data are less
variable and easier for most individuals to estimate.
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Table 4.9. Cost Data in 1982 Dollars for Five Sources

Source
A B c D E
Costs included:
Collection X - - X X
Boat/supplies - partial partial X X
Equipment X - X X X
Amortization - - X X X
Supplies X X X X X
Personnel Costs X X X X X
Data Acquired:
Density or Numbers X X X X X
Species, Size, Weight
Age, etc. - X X X X
Sample Cost:
Water (nutrient,
conductivity, etc.) 19 95 35 -- 85
Temp. and D.0. only 6 -- 2 -- --
Phytoplankton 12 145 13 615 235
Zooplankton 18 -- 130 230 380
Ichthyoplankton -- 660 110 155 -
Fish:
Otter Trawl 28 460 - 120 295
Beach Seine -- -- 190 130 255
Trap -- -- 190 -- --
Gill Net -- - 190 375 --
Benthic: ‘
Grab 23 -- -- -- 185
Core 23 200 -- 395 --
Quadrat 11 35 90 850 --
Acoustic Surveys ($/hr) 300 .- 900 - 800

Source A - A 1982 research proposal submitted by a university for a variety of
aquatic research sampling efforts. These are minimum costs due to
low overhead (34%), low salaries, and exclusion of boat costs. The
analysis, conducted only for density, excludes detailed species
identification.

Source B - A 1982 operational phase environmental study for a West Coast power
plant. Field sampling and laboratory equipment costs are not
included in this set, but regular costs such as boat rental, trans-
portation, and fuel costs are included.
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Table 4.9 - Continued

Source C -

Source D -

Source E -

A 1979 budget for a baseline study or a large lake. Only a portion
of boat and motor costs are included since capital costs for equip-
ment used but purchased for previous studies are not included. In
the cost information submitted, the management, accommodations,
data analysis, reports, and contingency costs were not included in
the cost/sample values; they were allocated according to crew days
to obtain overall cost/sampie values.

A 1981 environmental laboratory study for a New England coastal
power plant. Costs include overhead, laboratory 0 and M, boat 0
and M plus carrying charges or costs, miscellaneous expenses, and
management/clerical salaries.

A 1982 budget for a baseline study on the West Coast for several
sampling schemes. Equipment costs were estimated when the budget
indicated that these items were being provided by the client or
borrowed from another project. Overall management and direct costs
that could not be directly associated with a sampling scheme were
not included.
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Disaggregation of Sampling Costs

Percent of Total Cost Total Cost
Samples Field Laboratory Data Management $/Sample
B E B E B E B E
Chemical/Physical 22 50 39 25 29 25 96 85
Phytoplankton 17 36 27 31 56 33 195 235
Bottom Fish 30 34 - 26 70 40 460 295
Benthos 16 17 34 47 50 36 197 185
Table 4.11. Percentage Contribution of Cost Categories to Cost
Discrete Sample Values from Source E
Cost Category Water Chemistry Phytoplankton Fish Benthic
Boat, equipment and :
supplies 52 37 29 13
Labor 30 40 52 65
Indirect* 18 14 19 16
Labor 30 49 52 65

* Indirect cost on labor and supplies
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For the purposes of this research sampling costs were divided into four com-

ponents:
1. Co, overhead costs, including program management, that are fixed and
do not vary with the size of the program
2. .C.. costs associated with a sampling occasion, including travel to

azd from the site, boat rental and all other costs related to the
number of sampling occasions

3. CS, costs per sampling station, including travel between stations
and incremental time spent for each station

4. Cr’ costs per replicate, including sample collection and laboratory
analysis

Using these components, the total cost equation becomes:
C=2C4+ TC, + STCgs + RSTC,. (4.8)

where T is the number of sampling occasions, S is the number of stations, and
R is the number of replicates.

Data from benthic sampling studies from two separate sampling cost data
bases were used to derive estimates of the cost coefficients Co, Ct’ CS, and
Cr' The first set of coefficients, reported in 1982 dollars, is:’

C; = 2,160
Cs = 79
P 460

The second set of coefficients is:

Cy = 986
Cs = 37
C. =211

The cost coefficients of the second set are rough]y_one-half those of the
first set; hence, the ratios of Ct/cs/cr are about the same for both sets
(27.3/1.0/5.8 vs. 26.6/1.0/5.7). It should be noted that benthic sampling
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costs are expected to be quite different from costs of sampling other aquatic
biological populations, such as finfish. Benthic sample collection is not
expensive, but laboratory costs are high, because a trained biologist may
spend many hours classifying all of the benthic organisms in a single sample.
Therefore, one would expect higher CS values and lower Cr values in other
aquatic monitoring programs.

Although the values of the cost coefficients associated with sampling a
specific taxon may vary considerably from program to program, it appears that
the ratios of these coefficients may remain fairly constant. The relationship
of these ratios will determine the nature of the space-time tradeoff in a
cost-effective network design.

Short-Term Sampling Network Optimization - Independent Residuals

The purpose of this section is to describe an ANOVA model to apply to
aquatic monitoring data that allows for more than one replicate at each samp-
ling occasion. The usual assumption of independent errors is used here;
however, this is extended to the dependent case in subsequent sections. A
procedure to optimize a sampling network based on this model is then described.

In this report, a sampling network design will be termed "optimal" if it
satisfies one of the following two conditions:

1. For a fixed amouht of resources, C', that can be allocated to samp-
ling, the network design maximizes the power of detecting a speci-
fied impact over the set of all possible network designs whose cost
is no more than C'.

2. For a fixed minimum power, B', of detecting a specified impact, the
network design minimizes the cost of the design over the set of all
possible network designs that yield at least power B'.

In other words, an optimal sampling network maximizes the power for a fixed
cost or minimizes the cost for a fixed power.

This report considers only one basic design (Skalski and McKenzie, 1982):
two levels of plant status (before operation vs. after), p station pairs,
" sampling occasions before plant operation, Ny sampling occasions after
plant operation, and r replicates at each sampling station and occasion.
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Also, only two kinds of intervention response functions (IRF) are considered:
a step IRF and a linear trend IRF (see Figure 4.14). Thus the set of design

networks over which optimization takes place consists of this one design with
P, Nys Ny and r allowed to vary. This framework is sufficiently flexible to

encompass the objectives of most aquatic monitoring programs.

Sampling Design Framework

The models considered by Skalski and McKenzie (1982) assume only one
replicate per station and sampling occasion. A simple model that allows for
more than one replicate is:

where
Yijk] = the 1th observation on sampling occasion k at station pair j
for plant status at level i
A, = effect due to plant status at level i (fixed)

B. = effect due to station pair j (fixed)

ABi. = effect due to plant status x station pair interaction at
J Tevel ij (fixed)

C/AB(ij)k = effect of sampling occasion k at station pair j for plant
status at level i (random)

eijk] = effect of replicate 1 in sampling occasion k at station pair
j for plant status at level i (random),

i=1,2

J=1,.0.,p
k=1,...,n
n="n-="n

1 =1,00e,r

This model is basically the same as the one given in Table 4.6, except it
allows for more than one replicate at each sampling station and occasion.
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Furthermore, a balanced design is assumed, that is, an equal number of sam-
pling occasions before and after plant operation (n1 =n, = n). Although it
is possible to perform ANOVA on unbalanced data sets, balanced designs are
highly preferable for two reasons. First, the F-tests are more powerful under
a balanced design. Second, under an unbalanced design, the F-tests are not as
robust to departures from normality or homoscedasticity (Seber, 1977).

In model (4.9), station pair (factor B) could be considered as a random
factor. McKenzie et al. (1977) posit, however, that sampling station loca-
tions are chosen in a nonrandom, systematic fashion and therefore, following
Winer (1971), station pair should be considered a fixed factor. This conven-
tion will be adopted in this report. The expected mean square for each source
of variation in the model and the associated degrees of freedom are given in
Table 4.12.

Table 4.12. Expected Mean Square and Degrees of Freedom for Factors in
Model (4.9)*

Source of Variation df EMS
A 1 og + raE/AB + pnri(A)
B (p-1) o§ + r°§/AB + 2nrg(B)
AB (p-1) og + HJE/AB + nrg(AB)
C/AB 2p(n-1) og + rO%/AB
€ 2pn(r-1) 02

* The notation follows that of Cochran (1951).

In most aquatic sampling programs true replicates will not exist and what
is called a replicate here, for a given sampling occasion and station, is
actually a measurement taken at a time and location very close to that of the
first measurement. For instance, if the program is sampling benthic organisms
with an Ekman grab, it would not be wise to take a grab in exactly the same
location where the first grab occurred and then call the second grab a repli-
cate. Thus, the component of variance cg is itself composed of two sources of

variability: the variance in the observations caused by measurement error and
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the variance in the observations caused by the small-scale spatial variability
inherent in the variable of interest.
The power of any test of effects in an ANOVA model has the general form:

Power = P(Fyy,v,(NCP) > FUy,u,) (4.10)
where
Fvl,VZ(NCP) is a random variable distributed as a non-central F with
Vl and vz degrees of freedom, and non-centrality
parameter NCP,
and

F31’v2 is the (l-a)th percent point of the central F distribution
with 2] and Vo degrees of freedom.

For vl(vz) held fixed, the power increases monotonically in vz(vl) and NCP.

For model (4.9), the power of the test of no plant impact
(HO: Ay = A, = 0) is given by Eq. 4.10, with v, v, and NCP suitably
determined. The form of these three parameters can be calculated from Table
4.14. Thus,

vy = 1,
vz = zp(n'l),
1/2
NP = [y« 2R 4%
9 * o/

where A = the overall change in the mean of the variable after plant
operation.

The above discussion shows that the power of the test of no plant impact
is affected by two sources of variability in the data: og and O%/AB' As
g is variability due to measurement error and small-
scale spatial variability. g%/AB, on the other hand, can be described as
follows. Model (4.9) assumes that each station pair maintains a constant

difference over time within a certain margin of error unrelated to measurement

indicated previously, o

error. OE/AB is the variance of this error.
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The power of the test of no plant impact is also affected by the magni-
tude of A and the values of n, p, and r. For all other quantities held fixed,
NCP is proportional to the absolute value of A.  Thus, the power increases as
the size of the change increases.

The relationship between the power and the values of n, p, and r is more
complex. With all other quantities fixed, NCP is proportional to n, but v,

is also proportional to n. Thus, increasing n increases the power by increas-
ing both NCP and Vye This same argument applies to p. Conversely, the quan-
tity r/(og + rog/AB) is bounded below by l/O%/AB‘ Hence, unless og is much
larger than OC/AB (i.e., the measurement error is much larger than the natural
variability) increasing r will not greatly affect the value of NCP and thus
will not greatly affect the power.

Let G(vl,vz,NCP,x) denote the cumulative distribution function of a non-
central F distribution with 2! and Vo degrees of freedom and non-centrality
parameter NCP:

G(vl,vz,NCP,x) = P(Fvl,vz(NCP) < x),

and let G'(vl,vz,NCP,x) =1 - G(\)l,v2 NCP,x). Then the power of the test of
no plant impact in this case is given by:

Power = G'(vy,v,, NCP,FSl’vZ) (4.11)
with V1 and Vos and NCP as above.
The total number of sampling occasions is 2n, the number of sampling
stations is 2p, and the number of replicates per station and sampling occasion

is r. Thus, based on the cost equation (4.8) derived in the previous section,
the cost of the sampling program is:

C = Cq + 2nCy + 4npCg + 4nprC,. (4.12)
The cost function can be written as:

C(n,p,r) = 2nC, + 4npCg + 4nprC,. (4.13)
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For a fixed cost C', a reasonable objective for the monitoring design is to
maximize the function:

G' (Vq5VosNCPLFS v )
1°72 122

subject to the constraint c(n,p,r) < C'',
where C'' = C' - CO'
For a fixed power B', the objective is to minimize the function:

C(n,p,r,)

subject to the constraint G'(vl,vz,NCP,F% ,vz) > B'.

1

The details of the optimization algorithm used are described below.

The statistical procedures described above were incorporated into a samp-
ling optimization subroutine in EPAM. As in the other subroutines in EPAM,
the optimization procedure is designed to be user friendly and interactive.

To execute the optimization in EPAM the user must supply the following inputs:

- 2 2
the cost coefficients (CO, Ct’ C., and Cr)’ Og, GC/AB, A, and a. The cost

coefficients and the variance mus: be estimated from preoperational or pilot
study data. The user also is asked to supply reasonable upper limits on p, n,
and r. For example, the user may desire no more than 20 station pairs,
sampled at no more than 120 times for each level of plant status, with no more
than 5 replicates for each station and sampling occasion. The lower bound on
p and r is always 1 and the lower bound on n is always 2.

In the case of a fixed cost design, two additional required inputs are C'
(the fixed cost) and the minimum power against A a sampling network design
must possess in order to be considered as a candidate in the search for the

optimal design. The constraint C'' - C(n,p,r) = 0 forces the range of r to be:

1<rc(C' - 4c, - scs)/(scr).
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For r fixed at r', the range of p is:
1<pg(C'' -4c,)/(8Cg + 8r'CL).

If r is fixed at r', and p is fixed at p', then n is determined by:
n=C"/(2C, + 4p'Cg + 4p'r'C). (4.14)

The optimal network design is identified by allowing n, p, and r to range over
their limits given above. Designs in which n, p, or r exceed their user-sup-
plied upper bound and designs with power less than the user-supplied minimum
power requirement are not considered as candidates in the search.

In the case of a fixed power design, two additional required inputs are
B' (the fixed power) and the maximum cost a sampling network design may
possess in order to be considered as a candidate in the search for the optimal
design. The optimal design is identified by allowing n, p, and r to range
over their limits (from 1 to the user-supplied upper bounds in the case of r
and p, and from 2 to the user-supplied upper bound in the case of n). Any
design in which the cost exceeds the user supplied maximum cost is not con-
sidered as a candidate in the search.

Example of Application of Optimization Algorithm

With the use of the second set of cost coefficients derived in the sec-
tion Analysis of Sampling Cost (Ct = $986, CS = $37, Cr = $211), the optimiza-
tion algorithm was applied to a hypothetical case study in which the variance
parameters (Og and O%/AB) were estimated from the LACSC benthic data discussed
in the Exploratory Data analysis section. Data from eight stations for the
years 1978-1979 were employed using as the variable total number of organisms
per sample. In order to induce normality and homoscedasticity, the raw data
were transformed by taking the natural logarithm (McKenzie, et al., 1977).

é and O%/AB were estimated from the data to be 0.24 and 0.06, respectively
(see Appendix D.4). These estimates, however, are very approximate because

ag

there was no specific pairing of control and treatment stations (see Appendix
D.4). The parameter A was taken to be -0.3567, corresponding to a 30 percent
reduction in organism density‘(Skalski and McKenzie, 1982). The type I error,
a, was set to 0.10. The current LACSD benthic sampling program uses three
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replicates per station and occasion, but four were used in the past, so the
upper bound on r was set at four in all cases. Currently, eighteen stations
are sampled at each occasion, but as many as forty-four were sampled in the
past; therefore, the upper bound on p was varied between nine and twenty-two.
Because each station is sampled twice per year, the upper bound on n was
varied from four to twelve in steps of two (corresponding to two-to-six years
of sampling for each level of plant status).

Table 4.13 presents the results of the optimization for a fixed cost, and
Table 4.14 shows those of the optimization for a fixed power. In both, the
optimal n increases and the optimal r decreases with an increasing upper bound
on n. Similarly, the optimal p increases and the optimal r decreases with an
increasing upper bound on p. These results are in accord with those expected,
based upon the earlier discussion of the relationship between the power of the
test of no plant impact and the quantities n, p, and r.

The effect of the ratio Oglgg/AB on the optimal number of replicates is
summarized in Table 4.15. It is evident that as the ratio of measurement
error to natural variability increases, more replicates are required to
achieve a given power.

Another variable that affects the optimal number of replicates is obvi-
ously C,.» the cost of each replicate. As replicates decrease in cost, the
optimal number increases toward the user-supplied upper bound on r. The
effects of C. and the ratio °€/°C/AB on the optimal number of rep11cates are
summari zed 1n Table 4.16.

The optimal sampling program design remains invariant when the ratio
o /Ct/C /C, stays constant. This relationship may be illustrated by comparing
the resu]ts in Table 4.17 to those in Table 4.13b. In Table 4.17, C', Ces
C and C,. were all doubled compared to their values in Table 4.13b, but noth-
1ng e]se was changed. The results in the two tables are identical except for
the values of the total costs of the programs. As already pointed out in the
Analysis of Sampling Cost section, the ratios Ct/CS/Cr were almost exactly the
same for the two sets of cost coefficients derived in that section.

These results show that there are four ways to decrease the required
number of replicates in an optimal design: (1) increase the number of 5amp1ing
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Table 4.13. Results of Short-Term Sampling Optimization, Fixed Cost
(minimum power required = 0.50)

a. c' = $135,000
Optimal Design

n prer Bound* n P r Cost ($) Power
4 4 9 4 134,752 0.66
6 5 9 3 130,460 0.68
8 8 8 2 133,280 0.70
10 8 8 2 133,280 0.70
12 12 9 1 130,800 0.70
b. c' = $205,000

Optimal Design

n Upper Bound* n P r Cost ($) Power
4 4 9 4 134,752 0.66
6 6 9 4 202,128 0.74
8 8 8 3 187,296 0.75
10 10 9 2 184,960 0.76
12 11 9 2 203,456 0.78

c. C' = §205,000

Optimal Design

p Upper Bound** n D r Cost ($) Power
9 6 9 4 202,128 0.74
12 6 12 3 204,792 0.77
15 6 12 3 204,792 0.77
18 6 17 2 199,104 0.79
22 5 21 2 202,640 0.79

* p Upper Bound = 9

** n Upper Bound = 6
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Table 4.14. Results of Short-Term Sampling Optimization, Fixed Power
(maximum cost allowed = $205,000)

+

a. B' = 0.70
Optimal Design
p Upper Bound** n p r Cost (§) Power
4 No network design candidate achieved power 0.70
6 6 9 3 156,552 0.71
8 8 9 2 147,968 0.72
10 8 9 2 127,968 0.72
12 12 9 1 130,800 0.70

b. B' = 0.70

Optimal Design

p Upper Bound** n p r Cost ($) Power
9 6 9 3 156,552 0.71
12 6 11 2 133,008 0.71
15 5 13 2 120,200 0.70
18 6 18 1 118,968 0.70

* p Upper Bound = 9

** n Upper Bound = 6
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Table 4.15. Optimal Number of Replicates for Fixed Power Design as

n Upper

*
Bound

p Upper

*
Bound

* p Upper Bound

** n Upper Bound

2

a Function of n Upper Bound, p Upper Bound, and OE/OE/AB

8' = 0.70
1211 1 1 1 1 1 1
wli 1 1 1 1 2 2
gl1 1 1 2 2 2 2
611 1 2 2 2 3 3
10 1.5 2.0 2.5 3.0 3.5 4.0
2,2 +
%e/9¢/nB
B' = 0.70
® 1 1 1 1 1 1 1
5 1 1 1 1 1 2 2
2 1 1 1 2 2 2 2
9 1 1 2 2 2 3 3
10 1.5 2.0 2.5 3.0 3.5 4.0
2,2
9% /9¢/nB
=9
=6

+0 C/AB = 0.06
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Table 4.16. Optimal Number of Replicates for Fixed Cost Design as

; 2,2 *
a Function of C_ and OE/GC/AB

C' = 135000
5218 1 1 1 11
$185 1 1 1 2 2
c. $158 1 1 2 2 2
$105 1 2 2 2 2
$ 79 2 2 2 2 2
§ 52 2 3 3 3 3
§ 26 S

0.5 1.0 2.0 3.0 4.0

2) 2
o /o C/AB

* n upper bound = 12

p upper bound

r upper bound

2,2
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Table 4.17. Effects of Doubling Costs on the Fixed Cost Optimization

(minimum power required = 0.50)
C' = $410,000
Optimal Design

n Upper Bound* n

p r Cost ($) Power
4 4 9 4 269,504 0.66
6 6 9 4 404,256 0.74
8 8 8 3 374,592 0.75
10 10 9 2 369,920 0.76
12 11 9 2 406,912 0.78

Compare to Table 4.13.b.
* p Upper Bound = 9

+Cy = §1972, Cg, = §74, C,. = $422
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occasions before and after plant operation, (2) increase the number of station
pairs, (3) decrease the variability due to measurement error by using more
accurate sampling techniques, or (4) any combination of (1)-(3).

Short-Term Sampling Network Optimization - Correlated Residuals

Sampling Design Framework

The algorithm used for design of a network for detecting short-term
change when the residuals are correlated in space and/or time is based on the
protocol described in Appendix D.5. It is a general form of the simplified
ANOVA model discussed in the previous section, and allows for inclusion of
season as a factor, and spatial and temporal correlation in the residuals.

The model is similar to that described by Skalski and McKenzie (1982), except
that it is couched in a multivariate framework, allowing differential change
between station pairs. In addition to seasonal variation, and plant status,
factors such as depth, transect location, etc. may be incorporated. As with
the use of independent residuals, pilot study data or pre-operational data
should be available to determine the accuracy of the control-treatment station
pairing scheme and to estimate the necessary variances and correlations.

The non-centrality parameter NCP and the degrees of freedom vy and vy
associated with the power of the applicable ANOVA test against the null hypo-
thesis of no plant impact depend on whether season is incorporated as a factor
in the ANOVA and whether spatial correlation is present. The values of Vi
Vs and NCP for each of the four possible situations are given in Table 4.18
below. Table 4.19 may be referenced to for definitions of the variables used.
A balanced design is assumed, so that ng=n, = Sn. Also, only one replicate
per station and sampling occasion is assumed. Therefore, the cost equation
(4.8) can be rewritten as: '

C = Cy + 2SnC, + 4pSnC . (4.15)
where

Csp = G5 Cp (4.16)
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Table 4.18. Degrees of Freedom and Noncentrality Parameter for ANOVA

with Correlated Residuals

Spatial Correlation Absent 1 2
Seasons Present 1 2pS(n-1)
Seasons Absent 1 2p(Sn-1)

Spatial Correlation Present
Seasons Present p 2S(n-1)-p+l

Seasons Absent p 2(Sn-1)-p+1

where gij = the (ij)th element of gL,
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Table 4.19. Nomenclature Used in Factorial Treatment Design Algorithms

¢ =¢ -G

C' = Fixed cost of sampling network
p = Number of station pairs
S = Number of sampling periods per year (number of seasons)

ng = Number of samples taken before plant operation
ny = Number of samples taken after plant operation
n = Number of years of sampling before (or after) plant operation
(assumed equal)
gij = ij'th element of inverse residual covariance matrix
NCP = Noncentrality parameter in noncentral F distribution
vy = First degree of freedom in F (or noncentral F) distribution

v, = Second degree of freedom in F (or noncentral F) distribution
n. = Number of sampling periods in nonseasonal design before and after
plant operation (assumed equal)

If season is not included as a factor in the ANOVA, then g will be used to
denote the number of sampling periods for each level of plant status,
(n0 = Sn) so that (4.15) becomes:

C=Cy+ 2ngCy + 4pnyCye (4.17)
The cost function can be written as
Cl(p,S,n) = 2SnC, + 4psSnCy,.. (4.18)

For a fixed cost C', a reasonabTe objective for the monitoring design is to
maximize the function

1 a
G' (V) ,V5,NCP,Fy v ),

1’72

subject to the constraint Cl(p,S,n),i c",
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where C'' = C' - CO.
For a fixed power B', the objective is to minimize the function

C,(p,S,n),

subject to the constraint G'(\i,vz,NCP,F% v ) > B'. The details of the
122
optimization algorithm used are described for several special cases below.
In the first part of this discussion of the optimization algorithm, it
will be assumed that the cost of the sampling program is fixed. In this case,

the constraint C'' - C(p,S,n) = 0 forces the equality
Sn = C"/(2Ct + p4csr). (4.19)
If p, S, and n are all bounded below by 1, then the range of p is given by:
1<pg(Cc'' - zct)/4csr)' (4.20)

For the case of no spatial correlation, the algorithm requires that the magni-
tude of the impact and the variance of the differences between control and
treatment stations be provided. When season is not included as a factor, the
optimal design is identified by allowing p to vary over the limits given by
equation (4.20). The results of the algorithm are then the optimal p and o

When season is included as a factor, the optimization routine consists of
the following steps:

1. Set the value of p.

2. Vary S and n over all possible combinations that satisfy equation
(4.19).

3. Follow steps 1 and 2 for all possible values of p that satisfy
equation (4.20).

The outputs of the design algorithm are then the optimal p, S, and n.
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when spatial correlation is present, the required inputs are the change
magnitude, the total set of 2p' station pair coordinates from which a subset
will be chosen, and £, the p'xp' variance-covariance matrix of the differences
between control-treatment station pairs.

In the subcase when season is not included as a factor, the sampling
design algorithm consists of the following steps:

1. Set the value of p.

2. Choose the set of p station pairs (from the given set of candidate

PP
p' pairs) that yields the largest value of (zze
11
3. Follow steps 1 and 2 for all possible values of p that satisfy

equation (4.20).

i

The outputs from the algorithm are then the optimal p and Ng-
In the case when spatial correlation is present and season is used as a
factor, the optimization routine proceeds as follows:

1. Set the value of p.

2. Choose the set of p station pairs (from the given set of candidate

PP

LI0::).
11 Y

p' station pairs) that yields the largest value of (
3. Vary S and n over all possible combinations that satisfy the con-
straint equation (4.19).

4. Follow steps 1-3 for all possible values of p that satisfy equation
(4.20).

The output of the algorithm is the location of the p optimal station
pairs, as well as the optimal S and n.

In the second part of this discussion of the optimization algorithm, it
will be assumed that the power of the sampling program is fixed. When power,
rather than cost, is fixed, the algorithm requires the user to supply
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reasonable limits on p, S, and n. For example, the user may desire no more
than fifty station pairs, sampled at no more thqn twenty-four times per year,
for no more than ten years for each level of plant status.

If spatial correlation is absent, the same inputs are required as for
fixed cost. In the special case when season‘is not used as a factor, the
procedure involves the following steps:

1. Set the value of p.

2. Find the smallest value of Ny that yields at least power B'. If
| "o exceeds its user-prescribed limit, the value of p set in step 1
is discarded as a possibility.

3. Follow steps 1-" for all possible values of p.

As in the case of fixed cost, the algorithm yields the optimal p and Ng-

When season is used as a factor, the optimization consists of the fol-

lowing steps:

1. Set the value of p.

2. Find the smallest value of Sn that yields at least power B'. If Sn
exceeds its user-prescribed 1imit, the value of p set in step 1 is
discarded as a possibility.

3. For a set value of Sn vary S and n over all possible combinations.

4. Follow steps 1-3 for all possible values of p.

Again, as in the case of fixed costs, the outputs are p, S, and n.

Finally, for the fixed power case with spatial correlation, the inputs

are identical to the fixed cost case. When season is not used as a factor,

the optimization consists of the following steps:

1. Set the value of p.
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2. Choose the set of p station pairs from the given set of p' station

PP
pairs that yields the largest value of (z = gij)'
11
3. Find the smallest value of Ny that yields at least power B'. If
g exceeds its user-prescribed limit, the value of p set in step 1

is discarded as a possibility.
4. Follow steps 1-2 for all possible values of p.

The outputs are the optimal p, the locations of the optimal set of station
pairs and the optimal Ny

When seasons are used as factors, the optimization consists of the fol-
lowing steps:

1. Set the value of p.

2. Choose the set of p station pairs from the given set of p' station

PP
pairs that yields the largest value of (I I gij)'
11
3. Find the smallest value of Sn that yields at least power B'. If Sn
exceeds its user-prescribed 1imit, the value of p set in step 1 is

discarded as a possibility.

4. For a set value of Sn (no), vary S and n over all possible combina-
tions.

5. Follow steps 1-4 for all possible values of p.

The procedure which has been described allows the planner of an aquatic
monitoring program to determine an optimal sampling network to detect a given
short-term change. If cost is fixed, the optimal design yields maximum power
(probability) of detecting the change. If power is fixed, the optimal design
yields the minimum cost.
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Resource Allocation to Short- Versus Long-Term Sampling

There has been much discussion among speciq]ists in aquatic monitoring
design concerning the relative merits of programs designed for short- as
opposed to long-term detection of aquatic ecological impacts. Some plant
effects are evidenced relatively quickly after first plant operation, and are
susceptible to detection by short-term, intensive sampling. Other effects may
occur at a relatively low level, or may be delayed in time, so that detection
can only be accomplished (if at all) over a long period of time. From the
st°andpoint of an electric utility, it is desirable to have sampling programs
that can identify both types of change, and, where possible, the same sampling
program should be used for both short- and long-term change in the interest of
cost-effectiveness. In this section, an algorithm that allows such tradeoffs
is described. The methodology employs a factorial design with analysis of vari-
ance for short-term change detection, and a modification of Intervention
Analysis, a form of Box-Jenkins transfer function modeling (Box and Tiao,
1975) for long-term change detection (See Appendices D.6-D.7). The interven-
tion analysis model allows for multiple control-treatment station pairs, and
uses differencing procedures to form a single time series. Table 4.20 may be
referenced for definitions of the variables used.

Cost Equation

The total cost of a sampling network is given by:

C=C.+C, +¢C (4.21)

0 A I’

where

(]
n

overhead cost,

(w}
i}

A cost due to the design to detect short-term impact (ANOVA
design),

(@]
1]

I additional cost due to the design to detect long-term impact
(IA design).
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Table 4.20. Nomenclature Used in Short- Versus Long-Term Tradeoff

Bl

]

Design Algorithms

Fixed cost of sampling network
c' - C0
Number of station pairs for ANOVA design

Number of station pairs for IA design

Number of sampling periods (seasons) per year for ANOVA design

Number of sampling periods (seasons) per year for IA design

Number of years of sampling before (or after) plant operation for
ANOVA design

Number of years of sampling after plant operation for IA design
Total number of sampling periods before plant operation
Total number of sampling periods after plant operation

Number of station pairs in the set of station pairs from which the
network will be constructed

Short-term step change
Long-term total change

Vvariance of the differences between observations at control-treat-
ment station pairs

p'xp' variance-covariance matrix of the differences between control-
treatment station pairs

Lag-one auto-correlation for the differences between observations at
control-treatment station pairs

Minimum power required to detect a short-term step change
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The cost associated with the ANOVA design (ignoring overhead) is given by:

CA = 25,nC, + 4p,aSpnCy . (4.22)
The additional cost of the IA design is given by:

C; = SI("a'")Ct + ZPISI("a'")Csr’ (4.23)

assuming Ny > n.
If season is not a factor, equation (4.22) can be rewritten as

and equation (4.23) can be rewritten as
Cy = (n2-n1)Ct + ZpI("z'"l)Csr‘ (4.25)

Optimization Algorithm

The optimization algorithm described below assumes a fixed cost, C', for
the sampling network.

When spatial correlation is absent, the user must supply A (the short-
term step change), § (the long-term total change), 02, @, and B' (the minimum
power required to detect a short-term step change a). The first step taken is
to find the minimum cost ANOVA design that yields power B' with respect to the
step change A. This step is accomplished via the algorithm already described
in the section on optimizing sampling networks for short-term change. The out-
come of this step is the determination of the optimal CA, Pp> SA, and n (or
N in place of SAn if season is not a factor). The amount of funds left to
spend on the IA design is (C" - CA). The second step of the algorithm finds
the IA design that maximizes the power of detecting a long-term change given
the constraints CI = (C' - CA), P £ Pps and N fixed at the value determined
in the first step. The output for this step is the optimal Ps SI’ and N, (or
n, in place of SI"a if season is not a factor).

When spatial correlation is present, the user must supply the set of 2p’
station pair coordinates from which a subset will be chosen, as well as A, &,
z, B, and B'. The optimization algorithm then proceeds in the same manner as
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when spatial correlation is absent. The output is the optimal (A,pA, the
optimal set of Pa station pairs, the optimal SA% n (or " in place of SAn if
season is not a factor), the optimal p;, Sy, and N (or n, in place of S;n,
if season is not a factor).

A procedure has been described that allows the planner of an aquatic
monitoring program to determine optimal space-time tradeoffs in the sampling
network for given levels of short-term and long-term change he or she wishes
to detect with a given level of probability.

Use of Simulation Models in Sampling Design

One of the issues addressed in this project is the degree to which model-
ing can act as a substitute for field monitoring. While this investigation
was conducted at a relatively low level in terms of project resources, some
important progress has been made and is reported here. The approach taken was
to apply the methods of optimal estimation to determine how much can be gained
by substituting increasingly complex models in place of space/time resolution
of a sampling program. The problem can be viewed as having three dimensions:
model complexity, and spatial and temporal distribution of sampling.

It should be noted that the preceding three sections do not consider the
model complexity dimension, i.e., they effectively assume that all information
about the system must be gained through sampling, as opposed to modeling.

This assumption is relaxed in this section. As in the field-oriented designs
discussed earlier, the efficacy of monitoring program design is to be evalu-
ated in terms of how well the design detects the impact resulting from some
disturbance.

The objective of this section, therefore, is to develop a methodology
that is appropriate for a wide variety of ecosystems. For the purposes of
this development, however, the emphasis will be on benthic and nektonic com-
munities affected by thermal power plants. The reasons for this choice are
the sophistication of available models, and the importance of the species
selected in environmental assessment programs.

Because a great deal of work has been devoted to the analysis of these
ecosystem types, state-of-the-art models for these systems are fairly complex.
One such model was developed for EPRI by Tetra Tech (1979), and was chosen for
the purposes of the experiments reported here. It has been assumed that this
model represents the real world after the variability of forcing functions and
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residual error have been included. Monte Carlo simulations, using this com-
plex model, provided the data with which to evaluate the importance of model
complexity. Methods developed for the analysisﬂof other large-scale, complex
systems, such as power grids and economic systems, were applied to the proto-
type to find levels of aggregation which describe appropriate levels of system
response. Hypothesis testing methods, based on the 1ikelihood function, and
which make use of optimal estimation, evaluated the models of different com-
plexity given a range of reasonable space/time sampling schemes.

State Estimation

The physical, chemical and biological dynamics of aquatic ecosystems can
be described in terms of a conservation equation:

sC

STt UYL = V.eVC + [K] C + 0 (4.26)
where

C = the nx1 vector of constituent values,

u = the velocity vector for the x,y,z, directions,

e = the diffusion coefficient,

[«] = an nxn matrix of coefficients describing the system kinetics,
0 = a source (sink) term.

Finite difference or finite element methods allow transformation of this equa-
tion into state-space form. Incorporation of process model uncertainty and
measurement model uncertainty into the state-space formulation makes it possi-
ble to design filtering schemes for weighting state estimates produced by the
model and state estimates derived from the data. The process model becomes

X(J+1) = 8X(3) + AU(J) + TW(J) (4.27)
and the measurement model

Z(3) = Hx(3) + v(J) (4.28)
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where

Z(j) = the measured value of the state variable at the jth time

increment,

H = a matrix for the relationship between the state variables and
the measured value,

U(j) = a forcing function
v(J)

A = a coefficient matrix for the forcing function

a white noise process, distributed as N(O,[Bd]).

I = a coefficient matrix for the white noise process

The filter design is accomplished by specifying a cost function associ-
ated with errors in state estimates, where errors result from differences
between the estimated value of the state and the true value. In the case of
the widely used'Ka1man filter, this cost function is the sum of the squared
error and optimal estimates obtained by minimizing this function. In addi-
tion, the error is constrained to be unbiased, leading to the well-known
relations for the filter gain, []; the estimates of the state, [X(n+l|n+1)];
and the corresponding covariance matrix, [Z(n+lwn+l)] (Gelb, 1974).

Hypothesis Testing

The process and measurement models (Eqs. 4.27 and 4.28) lead to estimates
of the state and the covariances of the state; however, the evaluation of
impact requires a formalism for incorporating this information into hypothesis
testing. Typically, hypothesis testing is done by establishing a set of
hypotheses and evaluating some decision function in light of a pre-established
criterion or decision rule.

For assessing environmental impact, the null hypothesis is

HO: there is no environmental impact
as opposed to the hypothesis
le there is an environmental impact.

The null hypothesis H0 states that the model for no impact
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X =8 + N , (4.29)
is true, while the hypothesis Hy states that the model of the observable

impact is true

Xp = @X, + AU + W (4.30)

where the matrices [9] and [I'] have the same elements in both equations (4.29)
and (4.30). When either HO or H, are true, the likelihood functions g,
and Ty according to Schweppe (1973), are normally distributed:

22(n,3) o Mg (), wgemad) (4.31)
N M 1

Mg(nad) = LT d(mIIE(n|n-1) + R(MIT.dy(n)) (4.32)
n=1 j=

where the dk are developed from the knowledge of the deterministic mean value
of the state and by using the optimal filter equations appropriate to 4.27
and 4.28. Specifying decision criteria requires the use of the following
decision rules for this model:

1. Choose H0 if ] > A*
and P < A*

2. Choose H1 if g1 < A*
and Ty > A*

3. No decision if 21 { A*
and P > A*

4. No decision if Zq < A*
and P > ¥

A* = a decision criterion chosen to obtain the proper balance between
the probability of detecting an impact when there is none and the
probability of finding no impact when there really is one.
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Implementation of this algorithm allows for the reduction in estimation
uncertainty achievable by use of a model. A number of studies have examined
this issue with the time and space distribution of samples as the dimensions
of the problem, but only Moss (1980) has added the dimension of model accur-
acy. His analysis was one of hydrological parameters in a system of river
basins.

Experiments currently in progress are testing this algorithm on a hypo-
thetical power plant cooling lake, using a modification of the Tetra Tech lake
ecosystem model as the prototype. Also being employed are three simplifica-
tions of this model, using several techniques for aggregating with respect to
number of species and temporal and spatial resolution.
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CHAPTER 5
CONCLUSION

The complexity of aquatic monitoring program design for electric power
plant impact assessment makes development of a comprehensive framework a chal-
lenging task. Previous efforts, such as those of States et al. (1978) and
Fritz et al. (1980), have made notable progress in this direction, but have
not been fully successful. In this research, an algorithmic framework, termed
Electric Power Aquatic Monitoring (EPAM) has been developed to provide a com-
prehensive set of guidelines, making use of interactive computer programming
technology, to guide aquatic monitoring design. EPAM moves beyond the pre-
vious formats in several important respects:

1. It involves expert judgment in a unique manner and with
greater efficiency than its predecessors.

2. EPAM represents a hierarchical framework aimed at monitoring
program designers having different levels of knowledge about the
system under consideration. This approach is well-suited to
interactive computer manipulation, and the EPAM framework and
many of the special-purpose algorithms have been programmed for
this application. Versions are being developed for both main
frame and microcomputer systems in FORTRAN and BASIC languages.

3. EPAM gives specific and detailed attention to certain statis-
tical problems that have limited the success of aquatic
monitoring programs, particularly the questions of spatial and
temporal correlation in the residuals when factorial treatment
designs are applied. This effort has extended to a consideration
of monitoring program optimization for cost-effectiveness.

4. EPAM presents specific algorithms to aid the monitoring program
designer in identifying IMPACT AGENTS, TARGETS, and HYPOTHESES
OF IMPACT.
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5. EPAM has been evaluated using a case history from aquatic moni-

toring records. Further case history evaluation will continue
in Phase III. '

The major findings of the Phase II research in these five areas and the conclu-
sions drawn are discussed in the remainder of this section.

The complexity of aquatic ecosystems affected by thermal electric power
generation necessitates the use of experts in many aspects of monitoring pro-
gram design. This research has demonstrated that, to an extent, expert judg-
ment can be built into a generalized framework to consider monitoring issues
and to arrive at definite program elements. Use of the Delphi process for the
purpose of exploring general consensus js feasible, although time-consuming,
but convening multidisciplinary panels for the design of each major monitoring
program, as suggested by Fritz et al. (1980) is probably not feasible.

Even with a general conceptual framework incorporating expert judgment,
such as EPAM, expert opinion may still be required to make site-specific
decisions with respect to individual monitoring programs. EPAM facilitates
incorporating expert judgment at this level through use of a mathematical
procedure (CHOICE) that prioritizes selections relative to the achievement of
multiple monitoring objectives.

A hierarchical structure to guide monitoring program design is more appro-
priate, and potentially useful in more situations, than a single-tier
approach, because electric utilities face the need to conduct monitoring in
widely differing circumstances. These situations range, on the one hand, from
a new plant on a poorly studied water body to an existing plant with a
monitoring program of long duration where optimizing just one of the sampling
efforts is desired. Since many utilities have large data bases that can be
employed in planning future monitoring at the same site, it is advantageous to
have a planning framework that can be entered at the level equivalent to the
existing knowledge. Others may wish to design a monitoring program on paper
at low cost using very minimal data. EPAM will accommodate such a user and
provide the opportunity for upgrading as additional knowledge becomes avail-
able.

Relative to statistical design, standard procedures in the analysis of
aquatic monitoring data assume uncorrelated errors. This assumption is cri-
tical and violation of it requires modified procedures. This research has
explored this point and has concluded the following:
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Temporal correlation in the errors in aquatic data appears to be
negligible for monthly and bi-monthly sampling periods.

Spatial correlation in the errors in aquatic data is significant
for space scales important to aquatic monitoring and must be
considered in most cases, particularly for suspended and mobile
organisms. Fixed organisms, such as benthos, tend to exhibit
less spatial correlation and may be treated adequately using
traditional methods that employ an assumption of independent
residuals.

In the application of an aquatic monitoring optimization program
that assumes uncorrelated sampling residuals, one replicate for
each sampling station and sampling occasion resulted in the most
cost-effective program. This conclusion was shown to be true

for a wide range of sample variability and sampling cost ratios.

For those situations in which spatially correlated errors must

be considered, a multivariate framework has been developed. The
application of this framework to actual monitoring data will be
evaluated in Phase III.

The effectiveness of an aquatic monitoring program in detecting
both short and long-term effects should be considered in the
design stage. Studies of short-term effects usually require
spatially intensive sampling, whereas detection of long-term
effects requires a record of extended length. An algorithm has
been proposed for performing this tradeoff, using a factorial
treatment design for short-term assessment and a control-
treatment station pairing appropriate to time series analysis
for long-term assessment.

The modeling of biological interactions and dynamics may substan-
tially reduce the magnitude of the monitoring effort by provid-
ing insights into optimal location and frequency of sampling.
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A partial limitation to the application of the procedures developed for

sampling design at this time is that the structure of the residuals, which
reflect both natural variability and measurement error, must be known.
Measurement errors depend largely on the sampling techniques employed.
Because this area has been poorly documented and is beyond the scope of this
research, maximum effectiveness in using the knowledge gained must await
research on this question.

LEVELS 2 and 3 of EPAM contain a number of rather specific procedures to
aid a monitoring program designer in identifying and ranking basic elements of
the program. Most of these factors have been considered in preceding
frameworks, but the present effort is distinguished in the power plant aquatic
monitoring field by its comprehensive outlook. States et al. (1978) discussed
impact agents and recommended ranking them im importance. These investigators
also gave attention to the vulnerability of ecosystem components to impact,
hypothesis development and ranking, and selection of variables. Fritz et al.
(1980) also defined and ranked impact agents as a primary underlying element
of monitoring program design. They went on to consider interaction between
affected species and the power plant and the central nature of hypotheses to a
monitoring program. The present research has adopted and augmented these con-
cepts and developed specific procedures for conducting analyses and arriving
at decisions.

Although evaluation of EPAM by case study has barely begun at this stage,
it will be the central component of the next phase of the project. Experience
to date has indicated that verification of performance will make a major
contribution to the conceptual model and provide an important incentive for
its eventual use. There is no substitute for applying a process in the arena
for which it has been developed to determine its utility. While the major
components were set, the San Onofre case study revealed many specific features
that required modification to close gaps in logic, to permit useful data to be
employed, or to provide a means of proceeding where data were not as complete
as may have been desired. Phase III case studies are expected to serve in the
same fashion to evaluate the model's performance in different circumstances
and to aid in 'tuning up' the algorithms.
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