University of Washington Department of Civil and Environmental Engineering

INSTALLATION, OPERATION AND MAINTENANCE MANUAL FOR BREAKWATER DATA ACQUISITION AND ANALYSIS SYSTEM

Derald R. Christensen

Water Resources Series Technical Report No. 91 October, 1984

Seattle, Washington 98195

Department of Civil Engineering University of Washington Seattle, Washington 98195

INSTALLATION, OPERATION AND MAINTENANCE MANUAL FOR BREAKWATER DATA ACQUISITION AND ANALYSIS SYSTEM

Derald R. Christensen

Water Resources Series Technical Report No. 91

October, 1984

U.S. ARMY CORPS OF ENGINEERS
FLOATING BREAKWATER PROTOTYPE TEST MONITORING PROGRAM
CONTRACT NO. DACW67-81-C-Ø196

INSTALLATION, OPERATION AND MAINTENANCE MANUAL FOR BREAKWATER DATA ACQUISITION AND ANALYSIS SYSTEM

by

Derald R. Christensen

for the

Seattle District Corps of Engineers

INSTALLATION, OPERATION AND MAINTENANCE MANUAL FOR BREAKWATER DATA ACQUISITION AND ANALYSIS SYSTEM

TABLE OF CONTENTS

				Page	
LIST OF	FIGURES	5		iii	
ACKNOWLEDGMENTS					
CHAPTER	I	INTRODU	JCTION	1	
CHAPTER	II	SITE DESCRIPTION AND PROJECT LAYOUT			
		II.1 II.2 II.3	General Field Project Layout Anchoring Detail Transducer Locations	3 5	
CHAPTER	III	INSTRUMENTATION			
		III.3 III.4 III.5	Design criteria and Transducer Summary Load Cell Wave Monitoring Pressure Sensors Motions a) Accelerations b) Relative Motions Wind Speed and Direction	16 17 20 23 24	
		111.8 111.9	Concrete Strain Temperature Current Speed and Direction Pontoon Interconnection Forces a) Rubber Connector b) Rigid Connection	25 25 25 26	
CHAPTER	IV DA	ATA ACQU	JISITION SYSTEM	a .	
		IV.2 S IV.3 C	Recording System Signal Conditioning System Operation Software/firmware	57 57 57 58	

TABLE OF CONTENTS (Continued)

		Page
CHAPTER V	ANALYSIS SYSTEM	
	<pre>V.l System Description V.2 Design Criteria V.3 Software</pre>	65 65 65
CHAPTER VI	MONITORING SYSTEM RELIABILITY ASSESSMENT	82
CHAPTER VII	CONCLUSIONS AND RECOMMENDATIONS	84
APPENDIX I	RECORDING AND ELECTRONICS SYSTEM DRAWINGS	
	a) Mechanicalb) Electronicc) System Operation Procedures	
APPENDIX II	SOFTWARE LISTINGS	
	a) RCA Field Data Acquisition Systemb) CompuPro Tape Reading Systemc) CompuPro Analyst System	
APPENDIX III	TAPE SUMMARY	
APPENDIX IV	SCALE FACTOR SUMMARY	
APPENDIX V	BOAT WAKE AND PULL TESTS	
APPENDIX VI	LABORATORY TESTING	
	a) Anchor Line Testsb) Dynamic Rubber Connector Testing	
APPENDIX VII	SUPPLEMENTAL DATA	
AMMACUMENIM A	Manufactures Literature (Supply to CERC only)

LIST OF FIGURES

Figure II-1. Site Location and Tide Data II-2. Site Location Chart Location Map	6 7 8 9
	7 8
II-3. Location Map	8
II-4. Bottom Contour Map	
II-5. Isometric Layout of Both Breakw	aters 10
<pre>II-6. Isometric Layout of Concrete</pre>	11
II-7. Anchor Plan	12
<pre>II-8. Anchor Detail - General</pre>	13
<pre>II-9. Anchor Detail - Concrete Breakw</pre>	ater 14
II-10. Anchor Detail - Pipe Tire Break	water 15
III-l. Project Layout	27
III-2. Monitoring System Diagram	28
III-3. Load Cell Layout and Connection	
III-4 a-c. 25 Kip Load Schematic	30
III-5. Strain Gage Layout and Voltage Output Calculation	33
III-6 a-b. Wave Buoy Schematic	34
III-7. Wave Buoy Anchor Attachment Det	
<pre>III-8. Wave Buoy Array Anchoring Detai</pre>	1 37
<pre>III-9. Wave Staff Electronic Circuit</pre>	38
<pre>III-10. Wave Staff Calibration Curves</pre>	39
III-ll. Wave and Accelerometer Data for Buoy Test (Plus and Minus One	
Foot Motion)	
III-12. Wind Wave Data for Spar Buoy an	d 40
and Stationary Staff	1.0
III-13. Roll Response	41
III-14. Heave Response	41
III-15. Autospectral Estimate# for Buoy	
Staff Gages	
<pre>III-16. Side Pressure Transducers Mount</pre>	ing 43
<pre>III-17. Side Pressure Transducers Layou</pre>	t 44
III-18 a-b.Acceleration Transducer Mountin Detail	g 45
<pre>III-19 a-b.Relative Motion Device Schemati</pre>	c 47
<pre>III-20. Concrete Strain Gage Layout</pre>	49
III-21 a-g.Concrete Strain Gage Detail	53
III-22. Original Rubber Connector and Load Bolt Detail	55
III-23. Rigid Connector Load Bolt Detai	1 55
III-24. Second Flexible Connector and Load Bolt Detail	56

CHAPTER I

INTRODUCTION

In February, 1981, the U.S. Army Corps of Engineers initiated a Floating Breakwater Prototype Test Program. The test was designed to obtain field information on construction methods and materials, connector systems, and maintenance problems and to measure wave transmission characteristics, anchor loads, and structural forces. The program consisted of constructing two types of floating breakwaters and extensively instrumenting them to measure structural, hydraulic, and environmental parameters which are important in assessing floating breakwater performance. Program planning, engineering, and design work were completed in September 1981, and construction and placement were completed in August 1982. Monitoring and data collection continued until January, 1984, when the last breakwater was removed from the test site.

The two types of prototype breakwaters (concrete pontoon and pipe-tire) were moored at an exposed test site in Puget Sound, Washington. An extensive array of instrumentation was installed to measure and record data which will serve as a basis for establishing and evaluating the fundamental behavior of the two breakwater types. The monitoring system utilized 74 transducers to measure 16 pertinent environmental and structural variables, that may be involved in the ultimate design and mathematical modelling of these and similar structures. Results will be used to verify and modify existing mathematical models.

Results of the prototype test program fall into two categories: field experience and monitoring measurements. The field experience provides information on construction methods and materials, on connector design, and on maintenance of the structures and overall breakwater performance. The monitoring program placed primary emphasis on measuring wave attenuation and forces acting on the structures and anchor systems in natural sea state conditions (wind-generated waves). Because the most severe wave climate impressed on floating breakwaters used in sheltered waters may originate not from wind-generated waves but from boat wakes, a limited number of boat-wake attenuation tests also were performed.

The concrete breakwater was composed of two 75-foot-long units, each 16 feet wide and 5 feet deep (draft of 3.5 feet). The pipe-tire breakwater was composed of nine 16-inch-diameter steel pipes and 1,650 truck tires fastened together with conveyor belting to form a structure which is 45 feet wide and 100 feet long.

Details of the project site, breakwater installation and anchoring system, and transducer locations are given in Chapter

II. Construction details for the breakwaters are presented in a separate report by the Corps of Engineers. Test variables for the boat-wake tests and pull test on the anchoring system are given in Appendix VII.

CHAPTER II

SITE DESCRIPTION AND PROJECT LAYOUT

II.1 General Field Project Layout

The breakwater test site was in Puget Sound off West Point at Seattle, Washington (Figure 1). The site was in an exposed location, assuring that within the short period available for testing, wave conditions would exceed design waves normally associated with sites currently considered suitable for floating breakwaters. Water depth at the site varied between 40 and 50 feet at mean lower low water (MLLW) and bottom materials consisted of gravel and sand. The diurnal tide range at the site was 11.3 feet and the extreme range was 19.4 feet. The breakwater locations are shown on Figure II-1 - II-4.

The concrete structure design was based on field and design experience from numerous floating structures now in use, available model test data, and detailed structural analysis of similar structures (Adee et al, 1976; Carver, 1979; Davidson, 1971; Hales, 1981). The pipe-tire breakwater was based on a Sea Grant funded design by Volker Harms (Harms and Westerink, 1980) and modified based on local site conditions and personal discussions with Professor Harms. Other types of floating breakwaters, such as log bundles, twin pontoons, or A-frames, were considered, but either high construction costs, lack of broad applicability, or overall test program budget limited testing to the box-type concrete float and the pipe-tire mat structures. Based on available design information, the breakwaters were sized to provide acceptable wave attenuation under conditions typical of sites where the future use of floating breakwaters is anticipated (i.e., $H_s = 2$ to 4 feet, T =2 to 4 seconds). However, the structures and anchor systems were designed to withstand the maximum wave predicted for the West Point site ($H_S = 6$ feet, T = 5 seconds).

Concrete Breakwater. The basic design of the concrete breakwater was adapted from the structure planned for a Corps of Engineers', Seattle District, project at Friday Harbor, Washington, but with modifications to accommodate the more severe wave climate at the West Point test site. It consisted of two rectangular units or modules, each 75 feet long and 16 feet wide, with a draft of 3.5 feet and a freeboard of 1.5 feet. The units were cast from lightweight, 5,000-pound-per-square-inch (p.s.i.) compressive strength concrete, and reinforced with welded wire mesh. Each module was subdivided into eight compartments by intersecting walls running the length and width of the module The interior walls were 3 inches thick, and the interiors. module sidewalls, top, and bottom were 4.75 inches thick. Interior forming of the walls was accomplished through the use of carefully cut styrofoam blocks, which also provide positive

buoyancy in the event of hull leakage. The 14- and 16-foot end compartments of each module were emptied of foam after the concrete pour and made accessible through a 23-inch water tight manhole in the deck. These compartments were necessary for access during structural modifications of the modules and for providing an area for adding trim ballast to the completed breakwater.

Initially the units were connected together by flexible connectors. Later, they were rigidly connected to form a continuous float of 150-foot length. The purpose of this procedure was to permit field development and investigation of the behavior of the connectors and measurement of design parameters for longer structures which are more representative of some recent breakwater designs. The initial flexible connection was made of extruded, butyl-rubber, marine fenders anchored in the corners of the reinforced concrete module end walls. The rigid module connection was made by using twenty 1 1/4-inch diameter steel bar tendons inserted through the end walls of the modules. The tendons were threaded at both ends to allow proper tensioning of the connection. The concrete pontoon breakwater is shown schematically in Figure II-5.

Pipe-Tire Breakwater. The breakwater was a floating mat of flexibly interconnected used truck tires. Styrofoam filled steel pipes provided stiffness in the direction of wave motion and served as buoyancy chambers. The orientation of pipes with respect to the incident wave train is shown in the artist's conception on Figure 5, with major structural features of the breakwater given in an additional report on this project. The steel pipes used in the breakwater were 45 feet in length and 16 inches in diameter, with a wall thickness of 1/4 inch. tires ranged in size from 9.00-18 to 10.00-20, with an average outside diameter of 40 inches. A 3-ply conveyor belt strip, 5.5 inches wide by 0.5 inch thick (rated breaking strength of 17,000 pounds), served as binding material. A five nylon bolt connection was used to tie each belt into a continuous loop. basic pipe-tire breakwater module was composed of two parallel pipes anchored 12 feet apart and armored ith 66 tires each. Twelve rows with 11 tires in each row were fastened between the The test breakwater consisted pipes with the conveyor belting. of eight modules to produce a breakwater 45 feet wide by 100 feet The buoyancy of the pipe-tire breakwater was calculated from the difference between the total buoyant force and the weight of the breakwater with its mooring system attached. styrofoam filled pipes contributed approximately 35 pounds of buoyant force per linear foot of pipe. The other major source of buoyancy was the foam in the crowns of 880 tires, originally designed to provide 75 pounds per tire under ideal conditions. The weights used for buoyancy calculations were: (1) 15 pounds (submerged weight) per tire for 770 unfoamed tires; (2) 11 pounds per tire for sediment and biofouling; (3) 1,000 pounds for submerged anchor lines, 1,700 pounds for belting; and (4) 14,500 pounds for vertical component of anchor load with design wave loading and wind/tidal current force applied. The buoyant force

and weights combine to produce a net positive buoyancy of about 33,000 pounds.

II.2 Anchoring System

The concrete breakwater was anchored in place by using ten 30-foot-long steel H-piles (HP 14 by 102) embedded their full length. Anchor lines consisted of 1-3/8-inch-diameter galvanized bridge rope with 30 feet of 1-1/4-inch stud link chain at each end and a 2,000-pound clump weight attached to minimize lateral displacement of the breakwater. Anchor line lengths were sized to provide a minimum scope of 1 vertical to 4.5 horizontal. Positioning of the four end H-pile anchors at a 5 degree inward angle provided resistance to longitudinal displacement of the breakwater. The bridge rope anchor line was chosen because, when combined with an anodic corrosion protection system (deemed necessary for more permanent structures), it appears to be the most cost effective design when maintenance over a 50-year life is taken into account.

The steel H-piles were considered the most suitable type of anchor for this project because: (1) the cost of steel pile anchors was considerably less than alternatives such as gravity (concrete block) or ship-type (stockless) anchors, (2) the consequences of dragging a gravity or ship-type anchor over either a sewer outfall lying to the north or a cable area to the south were potentially very serious, and (3) the effectiveness of various anchor types was already well documented, and since all anchors depend directly on foundation conditions, any data on anchor efficiency would have been site specific.

The anchors for the pipe-tire breakwater were ten $2\emptyset$ -foot long steel H-piles (HP 12 by 53) embedded their full length. Anchor lines consisted of 1-1/4-inch, three strand, nylon rope with $1\emptyset$ feet of 3/4-inch stud link chain at each end. Minimum scope for these anchor lines was about 1 vertical to 4 horizontal. The center and end H-piles had one anchor line each, while the remaining four anchor piles were attached to three anchor lines a piece. The four end pilings were offset at an outward angle to counteract the opposing longitudinal component of force from the adjacent anchor lines.

The anchoring arrangement for the two breakwaters is indicated in plan view on Figure 7. Mooring system details of the concrete and pipe-tire breakwaters are shown on Figures II-8 - II-10, respectively.

Figure II-1. Site Location and Tide Data

Figure II-2. Site Location Chart

Figure II-3. Location Map

Figure II-4. Bottom Contour Map

Figure II-5. Isometric Layout of Both Breakwaters

Figure II-6. Isometric Layout of Concrete Breakwater and Wave Array

Figure II-7. Anchor Plan

Π

Π

Π

П

Figure II-8. Anchor Detail - General

Figure II-9. Anchor Detail - Concrete Breakwater

 \prod

Figure II-10. Anchor Detail - Pipe Tire Breakwater

CHAPTER III

INSTRUMENTATION

III.l Design Criteria and Transducer Summary

The project monitoring system was installed in the fall of 1982 and removed on 31 January 1984. Details of the individual sensors are described in subsequent paragraphs, however the general purpose of the program was to collect data which will serve as a basis for establishing and evaluating the fundamental behavior of the two breakwater types under study. The system was designed to measure all pertinent environmental and structural variables, that may be involved in the ultimate design and mathematical modeling of these and similar structures. The actual variables to be measured, along with the required individual transducer accuracies and measurement resolutions are summarized in the appendices, and their layout within the floating breakwater test facility is given in the previous section. The monitoring program consisted of four major parts, 1) Equipment installation and maintenance, 2) data collection and storage, 3) remote monitoring, and 4) data reduction and presentation.

The basic criteria used for the development of the monitoring system are as follows:

- Automatic data recording based on given storm conditions.
- 2. Complete automation and battery operation.
- 3. Remote monitoring of transducer outputs and data from a host computer facility and/or remote terminal.
- On site storage of all data in a retrievable format.
- 5. Minimum of 1024 samples of each input transducer for each event (an event being defined as hourly sampling of 1024 points of all inputs during any selected storm event).
- 6. The data reduction consisted of a basic summary of all the pertinent statistical data for each input event. This includes the minimum, maximum and mean values, the standard deviations, and the auto and cross-spectral calculations for all pertinent breakwater response measurements.

The parameters that were measured include: incident and transmitted waves, wind speed and direction, anchor line forces, strains in the concrete units, relative float motions, rotational and linear accelerations, pressure distribution on the concrete

breakwater, water and air temperature, water current speed and direction and connector forces.

Off the shelf transducers for measuring many of the parameters were not available. A major effort was required to design and fabricate underwater anchor force load cells, wave measuring spar buoys, a relative motion sensor, pressure sensors and embedment strain gages. By the end of the monitoring program, approximately 80 transducers had been installed in and around the breakwater. Over 2 miles of underwater electrical cable were required to feed signals to the on-board data acquisition system, which was housed in the hollowed-out interior of the western concrete breakwater unit during the first part of the test program and in a metal house mounted on the deck during the second half of the testing. Using large lead-acid batteries for power, the system was completely self contained. In addition to the input transducers, the system includes a microprocessor controlled data logger and special purpose signal conditioning electronics which were designed and built by the university. data acquisition system was programmed to sample selected transducers for one minute on an hourly basis. When either wind speed, current speed, anchor force, or significant wave height exceed a present threshold value, a 8.5 minute record of all transducers was made at a sampling rate of 4 hertz. The system was inaugurated on 11 October 1982, but several weeks of debugging were required before reliable data recording actually began.

TABLE

Transducer Layout	Channel Number	Date In	Bits Res.	Transducer Range
Anchor forces-concrete	1-8	10/11/82	12	50 kips
Anchor forces-tire	10-12		12	10 kips
Wave & tide gage	16	10/11/82	12	25 feet
Wave buoys	17-21	*	8	8 feet
Dynamic pressures	22-44	*	8	5 psi
Concrete strains	45-60	10/11/82	8	200 us
Accelerometers	61-66	*	8	l g
Relative motions	67-72	10/11/83	8	as required
Wind speed	73-74	10/11/82	8	100 mph
Wind direction	75-76	10/11/82	8	0-360 degrees
Current velocity	76-77	*	8	0-5 fps
Unused	79-82			-
Voltages	83-88	10/11/82	8	as required
Temperatures	89-92	8/83	8	0-100 of
Wave array	9-12	11/83	1.2	8 feet
Wave array	*	11/83	8	8 feet
Rubber connector forces	*	*	8	*
Rigid connector forces	*	*	8	*

^{*} Varied throughout project.

III.2 Load Cell

Forces in the anchor lines were measured close to the break-waters and close to the anchor piles, as shown in Figure III-3. Since the incident waves can approach the test site from both the north and the south, gages needed to be placed in the anchor lines on opposing sides of the breakwater.

The design for the anchor force gage is shown in Figure III-4. It is a University of Washington design, using an O-ring-sealed strain gage load cell, similar in construction to the standard laboratory load cell. The gages were calibrated using standard laboratory test equipment. Four 10-kip load cells with an ultimate strength of 25 kips were placed on the pipe-tire breakwater and eight 50-kip cells with an ultimate strength of 125 kips were placed on the concrete breakwater. Waterproof connectors were used on each anchor force gage. Connectors were capability of being plugged and unplugged underwater.

Each load cell signal conditioning circuit consisted of a load cell bridge power supply and balancing circuit, a high gain precision instrumentation amplifier, and a low pass analog filter. This circuitry is shown in Appendix I.

The strain sensing element of the load cell is a strain gage bridge circuit having four active legs with two strain gages per Mounting of the strain gages in the load cell is illustrated in Figure III-5 as well as the relative position of the gages in the bridge circuit. The stress concentration at the edge of the hole is assumed to be a factor of 3 over the average stress in the corresponding direction. This is only a rough approximation which is nearly true if the hole diameter is very small compared with the tube diameter. However, this is not quite the case here and the approximation serves only to give order of magnitude values for the output voltage from the bridge circuit for design purposes. Because of this unknown factor, it was necessary to calibrate the load cells, (i.e.), measure the output under known applied loads to obtain the actual relationship between load force and output voltage. (See Appendix VI).

The relationship between average strain and output voltage as derived in Figure III-5 and is given as follows:

 $E_0 = E_{in} (G.F.)(2) L$

L = Average longitudinal strain

G.F. = Gage factor or strain gages

 E_{in} = Bridge excitation voltage

A bridge excitation voltage of 5 volts was chosen based on the recommended power density level in the strain gages to avoid

$$E_0 = \frac{(5)(2.055)(2)(.0005)}{4} = \frac{10.25}{6.7}$$
 millivolts.

The required input to the analog to digital converter for maximum output is 5 volts. Therefore, the required gain of the amplifier is

Amplifier Gain = 5/.0067 = 750

Because of the uncertainties noted above and to allow for a reduced output voltage range, the gain of the amplifier was made adjustable from approximately 100 to 1000.

We come now to the question of accuracy of the measurement. While the resolution is very high, the accuracy is not of the same magnitude. There are a number of sources of error in the measurement. The first and most important is the calibration error. Appendix VI shows the calibration curve for the load cells tested. An MTS testing machine was used for these calibrations. The overall accuracy is about 3%.

The principal sources of error in the load cell bridge circuit, the instrumentation amplifier and the A to D converter are the zero-drift, gain stability/linearity, and noise voltages. Since this is to be primarily a dynamic measurement, (although at very low frequencies), zero drift is not as important as the other two sources of error. However, every effort has been made to keep zero drift as low as possible.

If the external pickup noise in the load cell itself and in the leads to the load cell can be reduced to a negligible value, (particularly at the frequencies of interest), the noise voltage at the input to the instrumentation amplifier, (specified by the manufacturer), is 0.8 microvolts peak-to-peak in the frequency range 0.01 to 10 Hz. The one bit recording resolution corresponds to an output voltage change from the load cell of about 1 microvolt and, thus, the noise is of the same order of magnitude as the recording resolution. Because of the high gain of this amplifier, the self-noise of the other components is not significant.

Possible sources of drift are creepage of strain gage backing material and bonding agents, slight differences in temperature coefficient of strain gages and change in gage factor. Since a four-arm active bridge is being used in a very uniform temperature environment, the temperature drift should be very minimal. Zero drift of the instrumentation amplifier is a function of the ambient temperature change and power supply variations. The specified maximum zero drift of the amplifier is +4 microvolts per degree centigrade and +3 microvolts for a one per cent change in power supply voltage. The power supply has a temperature stability of +0.05% over a 5^{OC} temperature change and it also has a long term stability of +0.1%. Thus, the amplifier drift due to power supply variation is negligible compared to the drift with temperature. If the temperature of the electronic

recording package is controlled to, say 5°C, the temperature drift at the input to the amplifier, (not counting load cell drift), would be + 20 microvolts. This is equivalent to a +24.4 lb force on the load cell. This, however, would only be a factor when looking at the mean or stationary value over long time periods and would have little effect over the data sample period for a single record. The zero drift in the analog to digital converter is small compared to the drift from the amplifier and can be neglected.

Gain stability and nonlinearity are the most important factors in determining the accuracy of the dynamic measurement. The gain of the bridge circuit will be affected by changes in the gage factor of the strain gages as a function of temperature variation and by power supply changes. The power supply stability as previously stated is +0.15%, (long term stability plus 5° C temperature variation), and the gage factor stability for the bridge circuit is the sum of the two or +.2%. Gain stability of the instrumentation amplifier and the analog to digital converter under the same conditions of power supply and temperature variations are +.01% and +0.02%, respectively. The overall gain stability is then the sum of the stabilities of each component which is +0.23%.

The measured nonlinearity and hysteresis of the load cell is approximately +0.3% of full scale. The maximum nonlinearity of the instrumentation amplifier and the analog to digital converter are specified by the manufacturers as +0.01% and +0.05% of full scale, respectively.

The overall accuracy of the system would be the sum of errors due to gain instability, nonlinearity and calibration errors. Gain instability produces an error based on the magnitude of the reading while nonlinearity produces an error based on full scale. The overall accuracy then is +0.23% of the reading and +0.36% of full scale.

III.3 Wave Monitoring

Incident and transmitted waves were measured for wind waves and during four boat wake tests. Resistance wire wave staffs were used. Detailed descriptions of the design and operation of the wave staff follows.

Five wave gages were arranged as shown in Figure III-1. Gages 2 through 5 are spar buoys as shown in Figures III-6, and gage 6 was mounted to a stationary piling and served as a tide gage as well. The spar buoys consist of a 15 feet long, 6 inch diameter polyvinyl chloride, (PVC) pipe with a 2 1/2 foot damper plate, on which is mounted a 12-foot section of 3 1/2 inch PVC pipe with a spirally wound wire to form a resistance gage. The necessary electronics was installed in the top of the upper section. Gage 6 was a 3/4 inch-diameter PVC pipe 25 feet long supported by being attached to a steel cage bolted to the piling. This gage served as both a wave gage and a tide gage, and

therefore, extended from -5' mean lower low water (MLLW) to +20' MLLW. See Figures III-6 - III-8 for more details.

Between mid-October, 1983 and the removal of the breakwater in late January, 1984, there was an eight-gage linear wave buoy array anchored where the rubber tire breakwater was originally located. These gages were at a five-foot-spacing and were 66.7 feet due west of the tide gage. The longitudinal alignment of the array was parallel with the breakwater. See Figure III-8.

During this same period, a Wave Ryder acceleration wave buoy was anchored approximately 150 feet south of the wave array. The data from this buoy were sent directly to the Corps' Coastal Engineering Research Center for analysis.

<u>Wave Staff Design.</u> A block diagram of the wave staff and associated electronic circuits is shown below:

The wave staff itself consists of a length of PVC tubing which is spirally wound with a resistance wire, such that when it is immersed in sea water, the electrical resistance varies in direct proportion to the length of the exposed staff.

The electronic circuits driving the wave staff consists of a fixed frequency square wave oscillator, (having a precisely controlled output amplitude), driving a precision bilateral current source with an output current directly proportional to the input voltage. Thus, the wave staff is driven by a current source of constant magnitude, but one which changes direction with each half cycle of the square wave oscillator. The output of the wave staff then is a square wave voltage with a magnitude, (peak-to-peak), that is directly proportional to the length of exposed wave staff. This output is fed to a high input impudence voltage follower circuit which serves as a buffer between the wave staff and the AC detector circuit. The precision AC detector circuit uses two operational amplifiers in conjunction with two diodes to form a precision full wave rectifier circuit that is capable of operating at very low input voltages. Ordinary diode detector circuits cannot operate on AC signals of peak magnitude less than the forward voltage drop of the diodes and produce large conversion errors unless the signal magnitude is large with respect to the diode voltage drop. A gain control has been incorporated in the detector circuit so that full scale output can be set at any positive value up to +10 volts with a wave staff resistance of 300 ohms up to 3000 ohms.

Alternating current is used to drive the wave staff to avoid

both the corrosion effects that would occur if direct current were used and the DC offset which occurs as a result of the use of dissimilar metals in a conducting solution. The latter is eliminated by use of AC coupling in the output from the wave staff.

Bench tests of the wave staff electronic circuits were made using a 1000 ohm variable precision resistor in place of the wave staff. The circuit was adjusted to produce an output range of 0 to 10 volts with the resistor varied from 0 to 1000 ohms. Linearity was determined to be 0.1% of full scale over this range.

Tests were also made to determine the effect of temperature on sensitivity and zero drift. A decrease in sensitivity was noted with decreasing temperature of about 0.03% of reading per $^{\circ}$ C over the temperature range of 0 to 24° C. A zero drift of 2 millivolts was also noted over the same temperature range. A +10% change in supply voltage from the nominal +15 volts produced no observable change in output. If we assume an operating temperature range of $+5^{\circ}$ C, the maximum error in the wave staff electronics due to the combined effects of nonlinearity and sensitivity variations with temperature is +0.2% of reading. Since the primary interest is in a dynamic measurement of waves, the zero drift noted will have negligible effect on the experiment since temperature variations of any appreciable magnitude will only occur over long periods of time compared to the wave periods.

Further calibration tests were conducted using actual wave staffs of 1-inch diameter and 20-ft. lengths, and 3 1/2-inch diameter and 8-ft. lengths at various depths of immersion in salt These tests were conducted from a dock at Shilshole Bay Marina on Puget Sound. Because of ripples and waves on the water of the order of one inch (peak-to-valley), it was difficult to obtain a highly precise measurement. The output was recorded on a strip chart recorder and it was therefore possible to average these variations to some degree. The readout resolution of the strip chart, (and accuracy), is about +1/4 of a minor division. Full scale across the chart is 50 minor divisions and, thus, the resolution is about 0.5% of full scale. Some nonlinearity is noted near full immersion, (see calibration curve). was expected because of the finite resistance of the salt water path in the ground return which is not taken into account during initial calibration of the wave staff unit. The initial calibration is made with the wave staff on the dock where full scale and zero are set by making actual contact between the ground wire and the wave staff resistance element at the corresponding ends. However, measurements were made of the resistance of the salt water path to ground in the same location where the wave staffs were immersed and the value of resistance measured, (on the order of 10 ohms), does not account for the offset observed at full immersion. In addition, the offset should occur at all readings and, it does not. Therefore, it is believed that the nonlinearity observed is a result of some other phenomenon as yet undetermined. Both units produced highest accuracy near center scale with decreasing accuracy toward either end. Overall accuracy including end points is about +3%. If the range of operation is reduced so as not to use the last one foot on each end of the wave staff, the accuracy is improved to about +1%.

Spar Buoy Design. Spar buoys were used at four locations because of their advantage in handing and transport and because they minimized the placement difficulties due to navigational hazards, water depth, and tidal conditions. The spar buoys were made of two PVC pipes coupled together near the center of the The lower section is a 15' x 6 " pipe filled with styro-The top section is 12' x 3" wherein the upper 8 feet is foam. wound with a resistance wire which measures wave height. wave staff electronics are mounted inside the top section, above the water line with the remainder being filled with a foam core to add stiffness. The buoys also have a 2.5 foot diameter damping plate mounted on the bottom and are anchored using dual point mooring system with the anchor lines attached at the center of drag on the buoy to prevent it from being pulled underwater in strong currents.

In 1975, one of these buoys was tested in the Puget Sound just north of Seattle. Its performance exceeded expectations both in terms of minimized response to the waves and accuracy of wave height measurement. Figure III-11 gives a sample of the output from the buoy's wave staff in salt water for a plus and minus one foot excitation of the buoy in heave. This was accomplished by pushing the buoy up and down by hand. Some distortion resulted from this approach which shows up in the output of the accelerometer mounted at the center of buoyancy of the buoy. Figures III-13 and III-14 give samples of the output of the response of the buoy in heave and roll in calm water. ral periods for heave and roll taken from these plots are approximately 18 and 14 seconds respectively which are well out of the range of maximum wave periods expected at the breakwater site, which is between 3 and 5 seconds. Visual observations of the buoy in waves in excess of 1 1/2 feet indicated no heave or roll motion, but some yaw about the anchor line caused by the current and wind. This motion resulted in less than a one foot variation from the buoy's horizontal position in calm water and appeared to have periods in excess of 30 to 60 seconds. For comparative measurements, the buoy was located about 30 feet from an existing one inch diameter resistance wire wave staff. A comparison of simultaneous output from the two wave staffs, (buoy mounted and stationary), is shown in Figure III-12. The autospectras computed from data obtained from one of the stationary wave staffs and from the spar buoy, in a 25 mph storm with maximum wave heights in excess of 1 1/2 feet, are shown in Figure III-15.

These spectras were computed from simultaneous records of 17 minutes in length.

III.4 Pressure Sensors

Fifteen pressure sensors were mounted on the sides of the concrete pontoons and 7 on the bottom of the west pontoon only. (See Figure III-17.). All of the side mounted units were damaged early in the project and were not replaced until late summer, 1983. The mounting details for the side mounted gages is given in Figure III-16.

The pressure sensors used were a Kulite Model IPT-750, 0-5 psi range. They are a semi conductor, strain gage devices with a flush stainless steel diaphragm. The basic specifications are:

- 1. Ø-5 psi range
- 2. 0.85% overall accuracy
- 3. Infinite resolution
- 4. 75 mv output full scale
- 5. -40° F to 250° F temperature range

III.5 Motions

a) Accelerometers

Linear accelerometers measuring normal, (to the deck, or heave), and transverse, (or sway), acceleration and an angular accelerometer measuring rotation about the longitudinal axis, (or roll), were employed on each float. Although some change of equipment and repair took place during the life of the project, all accelerometers employed were of the highly accurate servo type. The design incorporates a feedback mechanism whereby motion of the displacement pickoff produces a countering force, (or moment), which accelerates the seismic mass so that it undergoes only a minute displacement from the applied input motion. This feature combined with a flexural suspension system provided for accurate acceleration measurement with minimal nonlinearities and negligible hysteresis. Internal filtering mechanisms provided very clean data, so no additional filtering or detrending is required.

b) Relative Motions

The relative displacement between the two concrete pontoons, while connected together using the later rubber connector design, was monitored using a specially designed articulated mechanical transducer. The unit was constructed of anodized aluminum and a U-joint type fixture at each end and a rotating extendable tubular section between them.

The device was able to measure the rotation about the perpendicular axes, which are in the plane of the end sections on the adjacent pontoons and the relative distance and rotation between the two pontoons. See Figure III-19 for more details. From this configuration all six degrees of freedom associated with the relative motion of the two pontoons can be computed.

The five rotational motions were sensed using Vernitech Model 106 Sine-Cosine potentiometers with an overall accuracy of

0.3%. The single linear measurement used a Model III linear potentiometer with a full range of 8 inches and an overall accuracy of 0.015%.

III.6 Wind Speed and Direction

A cup-type anemometer was mounted on a pole atop the piling where wave gage No. 5 was attached. The anemometer was set at a height of approximately 30 feet above MLLW and will be used to measure speed and direction. Duration will be deduced from the anemometer records. The anemometer was operated continuously and was used to turn on the complete monitoring system when the wind speed reached a preselected speed-duration level. At the start of the program, monitoring was initiated when the average wind speed exceeded 15 miles per hour, (m.p.h.) for a one minute period, or if selected anchor force gages measured loads exceeding 2000 pounds above the initial tension.

III.7 Concrete Strain

Measurements of internal concrete strains were made at 12 locations on the west module, using rebar strain gages, (see Figure III-20 and III-21). The gages were built at the university and were constructed using a 3 foot piece of No. 5 rebar which was machined to 1/2" over a 6" section at the center. Four strain gages were attached and wired into a complete bridge circuit. The gages were then sealed using standard strain gage sealants and a self adhesive heat shrink tube was placed over the finished unit for both mechanical protection and as a final Two sets of gages and lead wires were attached to each unit. Each gage was checked, (calibrated) using an MTS testing They were attached to the rebar in the breakwater using machine. standard wire ties. The electrical leads were also attached to the rebar with wire ties and wire running along the rebar to the instrument compartment.

III.8 Temperature

The temperature sensors used were manufactured by Analog Devices (Model AC2626). They are a laser-calibrated two terminal IC transducer. The electrical output is a current (1 A per K) linearly proportional to absolute temperature, thus eliminating the need for costly linearization and cold junction compensation. Due to the units high impudence current output, it is insensitive to voltage drops over long lines thus enabling remote monitoring with no need for costly transmitters or special wire. The unit is also insensitive to supply voltage changes above 3 volts thus allowing for battery operation. The units used were potted in a stainless steel tube 3/16" by 3" and were placed directly in the sea water. The overall accuracy of each was + 0.8°C.

III.9 Current Speed and Direction

An off the shelf, Series 500 Marsh McBirney electromagnetic

water current meter was used in an attempt to measure the x and y components of water velocity. The Model 512 unit with a 1 1/2-inch probe was used. The current probe was mounted under the center of the pontoon. For a number of reasons, satisfactory current measurements were never obtained.

III.10 Pontoon Interconnection Forces

a) Rubber Connector

Strainsert standard internally gaged hex head steel bolts were used to-measure the axial forces on the flexible connectors. Two different connectors were used in the breakwater experiment. In both cases four bolts were used to monitor the axial forces between the rubber sections (see Figures III-22 and III-24).

The bolts were instrumented by drilling a 0.15 inch hole in the end of the bolt approximately 3 to 4 bolt diameters deep. A complete strain gage bridge is then mounted at the bottom of the hole using an inflatable teflon tube and special adhesives techniques. See Appendix VI for calibration information.

b) Rigid Connection

Standard Dywi-dag bolts were sent to Strainsert and gages were placed 17 inches from one end. Four bolts were instrumented and they were placed in the four outer corner positions in the rigid connection. See Figure III-23.

Figure III-1. Project Layout

⊕⊕□+

Figure III-2 Monitoring System Diagram

Figure III-3. Load Cell Layout and Connection Detail

Figure III-4a. 25Kip Load Cell Schematic

Figure III-4b. 50 Kip Load Cell Schematic

Figure III-4c. Load Cell Electrical Connection

$$E_{o} = E_{2} - E_{1} = E_{in} \left[\frac{2R_{o} + 2\Delta R_{L}}{4R_{o} + 2\Delta R_{L} - 2\Delta R_{T}} - \frac{2R_{o} - 2\Delta R_{T}}{4R_{o} + 2\Delta R_{L} - 2\Delta R_{T}} \right]$$

$$= E_{in} \left[\frac{\Delta R_{L} + \Delta R_{T}}{2R_{o} + \Delta R_{L} - \Delta R_{T}} \right]$$

$$E_o \approx E_{in} \left[\frac{\Delta R_L + \Delta R_T}{2R_o} \right]$$
 since $2R_o >> \Delta R_L - \Delta R_T$

where ΔR_{T} = Resistance change of transverse gage due to strain ϵ_{T}

 ΔR_L = Resistance change of length gage due to strain ϵ_L

In a strain gage, the resistance change (ΔR) is related to the strain (ϵ) by the gage factor (G.F.) as follows:

$$\Delta R = R_{o}(G.F.)\varepsilon$$

Therefore $R_T = R_o(G.F.)\varepsilon_L$ and $\Delta R_L = 3R_o(G.F.)\varepsilon_L$

and
$$E_o \approx E_{in} \left[\frac{R_o(G.F.)\epsilon_L + 3R_o(G.F.)\epsilon_L}{2R_o} \right] = 2E_{in}(G.F.)\epsilon_L$$

Figure III-5. Strain Gage Layout and Voltage
Output Calculation

Figure III-6. Wave Buoy Schematic

Figure III-6b. Tide Gage Detail

Figure III-7. Wave Buoy Anchor Attachment Detail

Figure III-8. Wave Buoy Array Anchoring Detail

I. UNLESS OTHERWISE SPECIFIED, ALL. NESISTORS ARE 1/4 WATT, 10%.

Figure III-9. Wave Staff Electronic Circuit

^{2.} SELECT DIODES FOR BALANCED OUTPUT (±) AT 2MA DIODE CURRENT

^{3.} CIRCUIT MUST BE MOUNTED WITH RESISTANCE WIRE WAVESTAFF AND GROUNDED TO SALT WATER AT THE WAVESTAFF,

Figure III-10. Wave Staff Calibration Curves

Figure III-11. Wave and Accelerometer Data for Spar Buoy Test (Plus and Minus One Foot Motion)

Figure III-12. Wind Wave Data for Spar Buoy and Stationary Staff

Figure III-13. Roll Response

Figure III-14. Heave Response

Figure III-15. Autospectral Estimate for Buoy and Staff Gages

П

П

Figure III-16. Side Pressure Transducers Mounting Detail

Bottom Pressure Transducer

Side Pressure Transducer

36 Channel Number

Figure III-17 Side Pressure Transducer Layout

Figure III-18. Acceleration Transducer Mounting Detail

Figure III-18.b. Acceleration Transducer Layout

Figure III-19a. Relative Motion Device Schematic

Figure III-19b. Relative Motion Device Schematic Layout

Figure III-20a. Concrete Strain Gage Layout

Figure III-20b. Concrete Strain Gage Layout-Top Plan

Figure III-20c. Concrete Strain Gage Layout-Bottom Plan

Figure III-20d. Concrete Strain Gage Layout-North Elevation

Figure III-20e Concrete Strain Gage Layout-South Elevation

Figure III-20f. Concrete Strain Gage Layout-Section A-A

Figure III-20g. Concrete Strain Gage Layout-Section B-B

#5 Re-bar

Heat Shrink

6"+

Figure III-21a. Concrete Strain Gage Mechanical Detail

COMPLETED ASSEMBLY

Longitudinal Axis of Bridge

 E_0 = Excitation voltage

 $E_{\dot{X}} = 0$ utput voltage

t = Strain on the axis parallel to the longitudinal bridge axis

-ut= Strain on the axis normal to the longitudinal axis

SCHEMATIC DIAGRAM FOR STRAIN MEASURING DEVICE

WIRING DIAGRAM FOR STRAIN MEASURING DEVICE

Figure III-21b. Concrete Strain Gage Electronic Detail

Figure III-22. Original Rubber Connector and Load Bolt Detail

Figure III-23. Rigid Connector Load Bolt Detail

CHAPTER IV

DATA ACQUISITION SYSTEM

IV.I Recording System

The major factors in making the initial decisions associated with the selection of a data acquisition were:

- a) Low power on site battery operated system.
- b) Size and space was minimal. The system had to fit through a 24-inch diameter hatch cover and fit inside a four-foot high compartment.
- c) On site data storage of a minimum of 10 Mega bytes of data storage in a compact removable format.
- d) Hardwired connections to all transducers. To do otherwise would have been cost prohibitive.
- e) Off the shelf Hardware wherever possible.
- f) Hold cost to a minimum.

Based on this and the current state-of-the-art at the time (Fall 1981) the RCA microboard system was chosen. This was the only complete board level, low power CMOS system available at that time. All the boards or components associated with the data acquisition system, other then some (see Appendix IIA) minor signal logic and interfacing hardware, were manufactured by RCA. The software/firmware required for this application, however, had to be developed in-house. The basic hardware configuration and all relative schematics are given in Appendix A.

IV.2 Signal Conditioning System

The major design criteria here was space, low power requirements, versatility in appllication and ease of maintenance and repair. Based on this, it was decided to build a single board that would work with all the different input transducers. The signal conditioning board that was designed for this application is made up of five distinct sections. The first is a bridge completion and breadboard area, an instrumentation amplifier section, a buffered high level signal conditioning section, a universal active analog filter section and a separate sample and hold circuit to minimize digital noise problems and to ensure simultaneous sampling of all 80 channels. All schematics and details are given in Appendix A.

Packaging. Size watertightness and corrosion resistance were the major restrictions on the packaging selection. The necessity to fit the units through a 24 inch-hatch eliminated any known off the shelf watertight enclosure. The obvious advantages

of separating the digital and analog sections (minimize electronic noise) also mandated two separate packages. For this reason, it was decided to use two separate PVC housing and water-tight plastic connectors. See Appendix IA for details.

IV.4 Software/Firmware

General Information. A 96 channel data acquisition system (referred to as DAS hereafter) capable of sampling each channel at a rate of up to 8 hz. was developed. The DAS consists of 6 analog to digital conversion microboards (A/D cards) with 16 channels on each card. Channels 1-16 have a resolution of 12 bits (0-4095 counts) and the remaining channels have a resolution of 8 bits (0-255 counts). Most of the parameters that determine the operating configuration are switch selectable. Once familiar with the software, further changes can be made by writing on to different pre-set random access memory (RAM) locations using either the RCA Microterminal or a standard video terminal.

Software. The DAS can be activated by turning the main power switch on on the front panel while pressing the [RST] on the Microterminal and then pressing [RP].

The driving software can be divided into 5 categories depending on the functions performed by each segment, as follows:

- a) Main (Calling) Program: This program initializes the tape-drive (rewinds to beginning of tape) , sets the real time clock to 00:00:00, defines scale factors and turns off the sampling interrupt signal and power if they are on. In addition, the number of timeseries samples are set to 2048 and the counters determining the number of STAT and TIMESER executions (see (b) and (c)) are set to zero. (The state of the digital line EF3, which can be concontrolled by a switch on the front panel, determines whether to skip the above initializing procedure or not. Such a situation arises only if the DAS is reset for trouble shooting and data acquisition has to continue on the same tape cartridge after that.) It will then wait for a pulse on the digital line EF2 to activate a sampling program called 1 Minute Statistical Program (hereafter referred to as the STAT program) which is described below.
- b) STAT Program: This program samples a selected group of channels (channel numbers are given elsewhere) for 1 minute and computes the basic statistics (Mean, Standard. Deviation, Maximum and Minimum). Instantaneous samples are taken on another group of channels. After writing the data on tape it will then examine the statistics to check whether pre-set criteria are satisfied in order to trigger the program that collects a full timeseries of 2048 (4096 prior to 12/82) samples of Channels 1-80. This program called TIMSER is described below. A switch on the front panel generates a pulse on EF2 enabling

manual activation of STAT. Under normal circumstances this is generated by a real time clock at a front panel selectable interval (usually 1 or 2 hrs.)

- c) TIMESER Program: This program is triggered by a pulse on the digital line EF4 usually generated by program STAT. A switch on the front panel can generate this signal enabling manual activation if necessary. A pre-set number ber of samples (number of samples are defaulted to 2048. This can be changed by writing on the relevant RAM location tion described at a later stage) are collected from Channels 1-80 and written on tape.
- d) MODEM Program: The DAS can be interrogated by telephone using a 300 baud full duplex terminal and a modem. This function has the least priority in the working of the DAS so that channel sampling is not interrupted. If the modem does not answer after two rings, the DAS is probably in STAT or TIMESER. The caller should then hang up and try again at a later time. The program is menu driven and self explanatory. Utmost care should be exercised in inputting parameters since wrong parameters can result in a system crash. The following capabilities are available at present:
 - 1. List last STAT record written on tape
 - 2. Run new STAT record and list
 - 3. Single channel scan
 - 4. Examine/change TIMESER triggers
 - 5. Alter number of TIMESER samples and Time
 - 6. Comment
 - 7. Leave message
 - 8. Read message
 - 9. Examine memory locations
 - 10. Write on RAM
 - 11. Change scale factors
 - 12. Run TIMESER
 - 13. Real time data
 - 14. Quit
- e) Utility Program: This program drives the RCA Microterminal and can be activated by pressing [RST] and then [RU] on the Microterminal. This is usually used to examine memory and CPU states in the field for trouble shooting. It can also be used to write on RAM to change no. of samples, time etc. See RCA Microterminal manual for further information.

The attached flow chart describes the utilization of program functions described in (a) through (d).

Tape Record Format. All the data on the tape cartridges have been written in 512 byte chunks. This 512 record size was determined as the optimum size compatible with both the tape

drive and DAS speeds. STAT consumes only one 512 byte record where as TIMESER (2048 samples of 80 channels) takes 384 of these. The approximate capacity of one tape cartridge is about 20 consecutive TIMESER executions. The following formats should be utilized when reading data.

(1) STAT records

The following bytes appear in the order listed:

	No. of bytes
Identification word - STATIST (83/84/65/84/73/83/84)	7
No. of the STAT record Dummy bytes	2 2
Tape track Time (Yr, mths/10, mths, Day of week, Days/10, Days,	1
(hrs./10,hrs.,min./10,min)	10
Scale factors (96 channels, 2 bytes per channel-all s	et
to unity)	192
Number of samples per channel taken	2
Data (see format below)	59
Zeros	237
	512

Data Format:. Unscaled Mean, Standard. deviation, Maximum and Minimum for Channel Numbers 3, 4, 16, 61, 73 and 75 sampled over a period of 1 minute (dt=.5 s) are written on the tape in the same order. Instantaneous samples of Channels 77, 78, 81-89 then follows.

Channel No.	Quantity	No. of bytes	Description	
3, 4, 16 (12 bit)	Mean Std. dev.	3	B ₁ B ₂ •B ₃	
	Max. Min.	3 2 2	B ₁ B ₂ ·B ₃ B ₁ B ₂ B ₁ B ₂	10 bytes
61,73,75 (8 bit)	Mean Std. dev. Max Min.	2 2 1 1	B ₁ .B ₂ B ₁ .B ₂ B ₁ B ₁	6 bytes
Instantaneous samples				
77,78,81-89		1	В ₁	
3 channels @ 10	bytes/channels	= 30 bytes		
3 channels @ 6	byte/channels	= 18 bytes		
ll instantaneous	s sample bytes	= 11 bytes		
Total		= 59 bytes		

For example the the first three bytes of the 59 data bytes give mean of Channel 3 as (in decimal)

Mean = $(256*B_1 + B_2).B_3$

Note that B_3 denotes the digits to the right of the decimal point. Similarly standard deviation for Channel 3 can be computed using the second three bytes. 8 bit channel computations are straight forward. For example 31 st and 32 nd bytes of the 59 data bytes give the mean of Channel 63 as

 $Mean = B_1.B_2$

The above number format was used to avoid the use of time consuming floating point number routines.

(2) TIMESER

These data records consist of 1 header record (512 bytes) followed by 384 data records (512 bytes per record). The header record has the following format:

	No. of bytes
Identification word - TIMESER (84/73/77/69/83/69/82) Associated STAT record no. (Ø if TIMESER was manually	7
activated)	2
TIMESER record no.	2
Tape track	1
Time (Yr,mths/10,mths,Day of week, Days/10, Days, (hrs./10,hrs.,min./10,min) Scale factors (96 channels, 2 bytes per channel-all	10
set to unity)	192
Number of samples per channel taken Zeros	2 rest
	512

Sampled data of Channels 1-80 follows the header. The channels with 12 bit resolution (Channels 1-16) require 2 bytes while the remaining channels require only 1 byte per sample. Data is written on the tape in the following channel order per 80 sample scans:

$$i, i+16, i+32, i+48, i+64$$
 $i = 1, 2, ..., 16$

The same order is repeated for each successive scan (2048 of them). This order minimized the effect of the time required for analog to digital conversion in each card.

TIMESER triggering criteria used by STAT. TIMESER triggering criteria is computed from the statistics computed by STAT.

Let x_i = Instantaneous sample value of Channel i

 $\langle x_i \rangle$ = Mean of Channel i

 s_i = Standard deviation of Channel i.

Triggering occurs if:

- a) $3500 < \langle x_3 \rangle < 4092$
- b) $3500 < \langle x_4 \rangle < 4092$
- c) $4 s_{16} > 164$
- d) $\langle x_{73} \rangle > 25$

e)
$$x_{77} < 255$$
 $x_{78} < 255$
 $SQRT(x_{77}^2 + x_{78}^2) > 102$

All numbers are unscaled values.

Only triggers (c) and (d) were active during the West Point Breakwater Monitoring Program.

Memory Allocation. The following memory partitions have been used in the DAS (all locations are in hexadecimal).

0000 - 2FFF BASIC Interpreter

3000 - 67FF Modem and other miscellaneous software

6800 - 6DFF Data acquisition software

7000 - 7FFF DURACOM clock location

8000 - 87FF Utility program (UT 5)

8800 - 9000 RAM used by utility program

9000 - 93FF BASIC work page

9400 - EFFF RAM

Location

7004

7003

F000 - FFFF Stack

Important RAM Locations

Quantity

Units of mins.

Tens of secs.

A006 A00A,A00B A010,A011 A012,A013	Tape track No. of TIMESER samples No. of STAT executions No. of TIMESER executions.
Clock locations:	
700E	Start/ Stop
700D	Years
700C	Tens of months
700B	Units of months
700A	Days of week
7009	Tens of Days
7008	Units of days
7007	Tens of hrs.
7006	Units of hrs.
7005	Tens of mins.

7002 7001 Units of secs.
Tenths of secs. (read only)

Updates and Changes. Effective 03/11/83:

In STAT,

Channel 3

was replaced by

Channel 7

Channel 4

was replaced by

Channel 8

TIMESER trigger (c) was changed to

4 s₁₆ < 164

<x16> <4092

Effective 10/14/83:

Identification words in both STAT and TIMESER programs were changed as follows:

STATIST---->STATHDR

TIMESER---->TIMEHDR

Also, instantaneous sample values for Channels 83-96 were added to STAT. This increased the total number of data bytes from 59 to 73. These were written on the tape immediately after the previously assigned 59 byte locations.

CHAPTER V

ANALYSIS SYSTEM

V.1 System Description

The computer system used for reading and converting data tapes and for doing the analysis has the following major components.

- 1. CompuPro dual processor microcomputer system.
- 2. Qantex Model 100 cartridge tape reader.
- 3. Alloy Engineering, S-100, cartridge tape controller and software.
- 4. HP7470 digital plotter.
- 5. Cypher 9 track 1/2 magnetic tape drive.
- 6. Tape reading and sorting software.
- 7. Spectral analysis software.

The operation of these relative pieces of h/w is covered in the individual manufacturers' users manuals and literature which is summarized in the appendices and which has been provided with the equipment. The operation of the actual software for reading, converting and analyzing the data is covered in the following sections with complete program source listings and example runs given in the appendices.

V.3 Software

User's manual for Qantex Tape Reading Software. The following pertains to a group of computer programs designed to run with the Gifford Computer Systems Compupro System 8/16. package consists of 4 programs: QIF, BWSORT, SRCON, and SSP whose purpose are to read and interpret data from a tape cartridge recorded by a remote data acquisition system. actually controls and communicates with the tape drive. Program BWSORT converts and arranges timeseries data into a random access file with file records corresponding to channel numbers. Program SRCON writes a map and summary of one-minute record headers. Program SSP computes basic statistics, Fast Fourier transforms, filtering, etc. on timeseries data. The output of program QIF therefore provides the input for programs BWSORT and SRCON. output of program BWSORT provides the input to program SSP. operation instructions for program SSP are provided in a separate section. Since programs SRCON and BWSORT require no console input, the bulk of the present document is primarily concerned with the correct operation of program QIF.

Reference is made in this document to two files intended for use with the MP/M submit facility. These files are entitled 'TSER' and 'TMAP'. They are invokeed by typing "submit tmap" or "submit tser". The use of submit files merely removes the need for the operator to issue a specific sequence of commands from system level, but there is no reason why the operator cannot 'manually' issue the same sequence contained in these files without the benefit of the submit facility.

Program QIF was written for the purpose of controlling a Qantex Model 150 Cartridge Drive. The Qantex Model 150 is manufactured by North Atlantic Industries, Inc. and is controlled via a DS-100 card manufactured by Alloy Engineering Inc. which is plugged into an S-100 bus slot on the Compupro System 8/16. The DS-100 card provides common RAM between the Qantex and the computer through which commands, status information, and data are exchanged. Although the DS-100 card comes equipped with 'canned' software enabling it to be used directly for file back-up on the Compupro, the nonstandard data format used by the data acquisition system which generates the tapes required that a set of special software drivers be written.

The Alloy Tape Utility Protocol was utilized for this pur-This protocol is described in Section 5 of the Tape Interpose. change Package (TIP) Operators Guide by Alloy Engineering, Inc. (see attachment A). A three byte command sequence is issued to the drive, and the drive responds with a two byte status report. If the first two bytes of the command sequence remain unchanged, it is only necessary to transmit the third byte. bytes which are returned by the drive preceding command execution are referred to as the drive status and the interface status or DS and IS. These values will be displayed at various points during the operation of Program QIF and should be noted by the operator if any unusual or unacceptable events occur. meaning of these bytes is detailed on pages 39-40 in the TIP manual.

The software for the DS-100 card is designed to operate in CP/M 2.2 and is therefore limited to an 8 bit processor. For this reason, program QIF is written in Microsoft Fortran 80, an 8-bit Fortran which can only utilize 64K of RAM. Program QIF processes little data, its functions being restricted to tape drive operation and dumping raw data to disk. Major processing is done subsequently by other programs which can utilize the capabilities of the 8088 16-bit processor. This method of processing provides for much faster overall execution times.

Once the Qantex drive is turned on, turning it off has been known to crash the Compupro, necessitating a reset. It is a good idea, therefore, to turn it off at the end of the day or else at a time when all users are not engaged in some critical process.

<u>Definitions</u>. The following terms will be employed in this document with the following meanings:

record: A 512-byte block of data, whether a header or data.

header: A record containing a certain initial sequence which marks it as containing summary and/or control information. This sequence is either 'statist' in the case of 1 minute records or 'timeser' for timeseries headers. For a full description of what is contained in headers byte by byte, see the field data acquisition system section.

timeseries: A sequence of records which contains samples from all 80 breakwater data channels. A timeseries consists of a one-record header followed by a sequence of records containing actual sampled data. The header records the date, time, and number of samples as well as other information of interest. Most timeseries on the West Point Prototype breakwater project are either 384 records (2048 samples) or 768 records (4096 samples) not counting the initial header record. Additional information on the order in which timeseries bytes are written may be found in the writeup on the field data acquisition system.

sample: A set of values for each of 80 channels taken at the same time. There are 5 1/3 samples per record or 16 samples for every 3 records.

mask: A sequence of bytes which is transmitted to the drive following a search command. The drive then searches records for this sequence, stopping when it is found.

tape number: All data tapes are numbered, with numbers ranging from 1 to 121. This number is requested by the program because certain details such as the exact format of the header mask depend upon it.

glitch: For unknown reasons, possibly relating to cold temperatures or malfunctions of the on-site recorder, certain records are unreadable by the Qantex drive. When such a record is encountered, the tape motion becomes spasmodic, with a back and forth motion, and status bytes indicating 'abort with attempt', or sometimes 'abort without

attempt' are received. Such occurrences are referred as glitches and are mapped as a "*" when option 11, one minute rec. search and dump, is selected.

Operation. Program QIF is menu-driven and provides the operator with commands allowing tape positioning, searching for headers, mapping of header locations, and dumping of data to disk. No facility is provided for writing of data to the tape by the computer as the program is intended as a means of retrieving data written by the data acquisition system rather than a means of back-up. QIF may be invoked directly by typing 'QIF' from a user area and drive which contains the file 'QIF.COM'. useful when experimenting with the program. If a header map of a tape is desired, a more convenient method is to type 'submit This will also initiate the subsequent processing step, program SRCON which interprets the data written by program QIF and generates one-minute record summary printouts. If the process is not initiated as a submit file as described, then the user must himself type SRCON to initiate the second processing step. To dump a timeseries to disk, the user should first make certain that the 'N' drive has enough space (this will be described in detail below in the section on timeseries) and then type 'submit tser'. In this manner, not only will QIF be invoked, but programs BWSORT and SSP in turn as well.

When QIF first begins, it writes the message 'Program QIF vers. 1.4 for use with Qantex model 150'. After two status bytes are displayed (in response to an interface reset), the following main menu is then displayed:

1-Change Track or PA
2-Rewind Tape
3-Read next record & Display
4-Forward Space record
5-Reverse Space record
6-Search for record
7-Write Timeseries to disk
8-Reset Interface
9-1 min rec. Search & Dump
10-Stop
enter choice

The tape drive is now ready to respond to commands. Every command consists of three parts: the MA, the PA, and the CA. The MA tells the Qantex which track is being used (there are 4 tracks which will be referred to as tracks 1-4) and which drive (assuming you have more than one hooked up to the DS-100). As currently configured, program QIF assumes only one drive. The track is set as track 1 and will stay that way unless changed by a) the user by means of menu option 1 or b) the program during a 1 minute record search and dump or c) by the program if a timeseries which is being written to disk happens to span two adjacent tracks. The PA tells the drive 'how many data records'. The PA set to 1 record at the beginning of the program. It is

not necessary to change it unless you with to forward or reverse space some other number of records than one. It does not matter what the PA has been set to except when forward or reverse spacing. Once the PA has been set, however, that value remains in effect for all record spacing commands until changed, even when there are other intervening commands. If you change the tape track, you will also have to change the PA. If you give an invalid PA (outside the range of 1 to 256), it will be assumed to be 1.

When program QIF is first initiated, it is always a good idea to check to make sure the interface is working correctly before attempting to initiate menu options 7 or 9. This may be easily done by, for example, setting the track to 1, the PA to 200 and executing a forward space record, followed by a rewind. The tape should visibly and audibly move forward during the forward spacing, and return to its original position after a Furthermore, DS and IS values should be rewind is issued. displayed after both motions, and they should be non-zero. all of this occurs, then the interface is most likely functioning properly and the drive is ready for further commands. If there is a problem in getting this far, it is advisable to 1) abort the program 2) remove the tape 3) turn off tape drive and wait 5 seconds 4) turn drive back on 5) replace tape and 6) reinitiate program in that order. If after two or three times you have no success, check to make sure there is cabling running from the drive to the computer, that the drive is turned on and plugged in Sometimes the interface can be stubborn getting started. No definite reason why this is the case has been found: reasons include head misalignment, tape mispositioning or something similar. Such problems are not common, however.

An important fact which is sometimes confusing to new users is that the tape format is 'serpentine'. This means that the beginning of track two is at the end of the tape. This is an advantage, as it removes the need for the tape to be rewound after each track is finished before more data can be read or written. Once a user is familiar with this convention, it may be used for rapid positioning within a tape. Often it is advantageous to switch between tracks one and two or three and four when positioning, switching back to the track desired when the proper location is approached. The ability to quickly and accurately locate specific timeseries headers on the tape with the use of the map and the search for record command can be developed with a little practice.

Whenever the tape is in motion, MP/M is 'suspended' and all users will find their terminals dead until the command is finished. This is generally not noticeable except when searches are being executed. The facility to quickly locate records, therefore, becomes a virtue which rapidly becomes appreciated by other users if there are any.

The commands will now be examined one by one.

1) Change Track or PA

In general this option will be used quite frequently. When QIF is first initiated, both the track and PA are set to one. To change either of these values, simply select menu item 1 and respond to the prompts. Valid track numbers range from 1 to 4 while valid PA's are from 1 to 256. Any time a spacing command is given in which the PA is greater than 8, a high-speed command is given. High-speed commands are somewhat approximate, so the user should bear in mind that if a PA of 200 is given followed by a forward space record, that about 200 records will be skipped.

2) Rewind Tape

Since the drive uses a serpentine format, a rewind issued when the MA is set for track 1 or 3 will result in the tape being rewound to the opposite spool as when the MA is set for track 2 or 4. The PA has no effect on a rewind command.

3) Read next record & Display

Selecting this option will result in a prompt requesting the number of records to be displayed. The program will then initiate a consecutive sequence of reads, reading and displaying to the console the number of 512 byte records specified by the user. The ASCII values are also displayed on the right.

4) Forward Space Record

The execution of this command results in the tape advancing forward PA records. If PA is larger than 8, a high-speed command is issued and the number of records spaced is then only approximately PA. If no records are present on the current track, the tape drive can get quite confused, due to the lack of any end-of-file marks. The PA may not be larger than 256.

5) Reverse Space Record

Exactly the same as forward space record except in the opposite direction.

6) Search for Record

The Qantex drive has the capability to search any data records for a specific sequence of bytes, skipping those records in which the sequence does not occur, and positioning itself on the first record exhibiting the proper mask or string which is being searched for. Program QIF is set up to search for either timeseries or 1 minute record headers. The user specifies whether a timeseries or 1 minute record header is to be searched for, and whether the search is to be for a specific 1 minute record number or merely for the next header of the appropriate type. The details of specifically which header mask is involved

is made by the program itself based upon the tape number input by the user. If the tape number is greater than 75 then headers have the form "stathdr" or "timehdr", but for tape numbers less than 75 "statist" and "timeser" is used. This is because the header masks were changed part way through the project.

If a glitch is encountered during a search, the userhas the option of continuing the search or of terminating it.

Once the record is found, its contents are displayed at the console. Since the screen is not large enough to display the contents of an entire record, the user should be ready to type a 's or control s to stop the display where desired. The display may then be reactivated with a 'q.

7) Write Timeseries to Disk

This option is most frequently used in the context of a 'submit tser' command. The following explanation will assume that program QIF was initiated in this manner.

The process of producing usable data summaries from field data cartridges has several steps. First the desired data must be located on the tape. Much of the preceding discussion has centered around this consideration. Once the data is located in program QIF, it is written directly to a file which is then read by the next program BWSORT for additional processing.

Program QIF merely dumps the numbers from the tape drive into a scratch file in exactly the same order that they are read off the tape. This order is dictated by the needs of the field sampling system, but a sort must subsequently be done by program BWSORT in order for the data to be grouped by channels. files that Program QIF generates during a diskwrite are therefore temporary, being intended for use by program BWSORT only. the data must be read and written several times, the scratch files written by Program QIF are written to the 'N' drive which This 'drive' is not intended to is a solid-state disk emulator. be used as permanent storage since its contents are destroyed in the event that power is shut off or lost. The advantage of using the N drive in this manner is that Program BWSORT executes significantly faster than if the files were written to a floppy or even the hard disk. Program QIF is not used to do the sort directly because of memory limitations and because such a process would execute significantly slower on an 8-bit processor than it would by using the 16-bit capabilities of the Compupro.

To write a timeseries to disk, the following procedure is employed:

First, check the amount of memory available in the N drive. This is done by means of logging onto the N drive (by typing "N:") and then typing "stat". If 250 K bytes still remain on the N drive (about half the drive capacity) then there should be no problems for a timeseries of 385 records. For a timeseries of

769 records you will need just about all of the N drive. If less than these amounts are available, it is necessary to delete some files from the N drive. To find out which user areas contain files, type "stat usr:". With this information, go to the relevant user areas and type era "*.*" (but make sure you are still in the N drive when you do this or you may be erasing someone's permanent files). Alternatively, power the system down entirely and reboot. This will completely clear the N drive.

Next, go to user area 15, drive B. Type "submit tser" and Program QIF will be initiated. It is a good idea at this point to take the steps described above to make sure the interface is working properly. Next, locate the timeseries of interest by referring to the beginning of the one-minute record summary printouts, which contains a map of all headers found on the tape during a 1-minute record search and dump (if this has not already been done, you may want to do it first). Find out the tape track on which the record of interest is located. It is also a good idea to form some notion of where on the track it might be This takes some experience, but again, the maps are located. All tapes after March 15, 1983 contain 384 data records per timeseries, plus one header record. Those tapes from before this date probably contain 768 data records per timeseries. If you know, therefore that the record you want is two timeseries in from the beginning of track 3, and the tape is from June, 1983, then the header that you need is approximately 2 x 385 or about 730 records in. This will not be exact, because in general there will be some intervening 1-minute record headers.

Change the tape track to 3, set the PA and rewind to the beginning of track 3. At this point there are two options. Either simply search for the timeseries header desired by specifying menu option number 6. This is the slow way. A faster method would be to set the PA to about 230, then execute 3 consecutive forward space records. This will advance the tape about 700 records. Then issue the search. Spacing commands will execute much faster than searches.

When the header is displayed, check to be sure that it is the correct one. Each timeseries header has two associated numbers: the number of the associated 1-minute record header immediately preceding it, and the timeseries header number. The header number that is searched for is always the 1-minute record header number. The first 11 bytes of a timeseries will appear as follows:

54 49 4D 45 53 45 52 ## ## ## ## (tape number < 75)

or 54 49 4D 45 48 44 52 ## ## ## ## (tape number > 75)

The first seven bytes are the hexidecimal values for ASCII 'timeser'. The four spaces marked ## (bytes 8-11) are bytes containing the following information in hexadecimal:

1 minute record number = byte 8*256 + byte 9

timeseries number

= byte 10*256 + byte 11

If you requested a search for a timeseries corresponding to a specific one-minute record number, then that number should match up with the information contained in bytes 8 and 9 as described above. You are now in a position to initiate a diskwrite. If you attempt to initiate a write with the tape in the wrong position, you will get a message from the program asking you if you really want to do this. Unless you are making modifications to program QIF and are debugging, it is suggested that you bail out as conveniently suggested by the program. Otherwise, meaningless data will be written into certain control files and program BWSORT, if invoked, will get very confused.

When a diskwrite is initiated, QIF prompts for certain necessary information such as tape number (if it has not already done so), tape dates and times etc. You might make a point of writing down the tape dates and times from the tape (if you don't have a log available) before you start the session. Once the tape is inserted in the Qantex, you won't be able to see what's written on the back of the cartridge and you will have to reposition the tape again if you remove it to find this information.

Program QIF will next issue the following prompt:

"enter number of records to be dumped
this timeseries contains ### records"

where ### is the number of data records contained in the timeseries. In general, you will be reading the entire time series and will just want to enter the number displayed by the program.

You are then asked for a drive letter for the output file. Usually this will be either 'D' or 'E' if you want results stored on a floppy. Make sure that a formatted floppy with adequate space is in the drive specified before the session starts and that you have typed "DSKRESET" from system level after you have inserted it. Unless you have 350K bytes remaining on the floppy for a timeseries of 385 records and about double this for a 769 record timeseries, it is suggested that you use another disk. The amount of space remaining on a drive may be found by logging onto that drive and typing "stat".

Next the program asks for any comments that you wish to be included in the final header file that is written to the output drive. Five lines are provided for this purpose. Either enter the comments desired with carriage returns, or simply enter five carriage returns if you have no comments.

The program then writes the data and stops itself. If you are running a 'submit tser', then Program BWSORT is automatically initiated and should run with no intervention (assuming a floppy

of adequate space is present in the drive specified or that the hard disk is not full if a hard drive was specified). When program BWSORT terminates execution, Program SSP is automatically invoked. The first question it asks is "what is the name of your data file".

Program BWSORT automatically generates filenames according to the following rules:

filename = <D:>BW<tape number>R<1 min. record number>

where <D:> signifies the drive specified (if it is the current logged drive then it may be omitted). In addition, various extenders are added by program BWSORT such as (for example)

E:BW85R32.DAT E:BW85R32.HDR

In this case, the timeseries read corresponds to tape 85, one minute record number 32. The '.DAT' signifies the main data file while the '.HDR' denotes the header. The format of the header file and further operation instructions are covered in the documentation for Program SSP.

8) Reset Interface

The interface is automatically reset by Program QIF at the time the program first begins. Sometimes it is useful for the operator to specify an interface reset if there appears to be a problem with the status bytes or if communication does not seem to be proceeding as expected. If this doesn't work, then often it is necessary to shut off the drive and start over as described above.

9) 1 min rec. search and dump

This option should normally be used in the context of a 'submit tmap' command. It causes files to be written to the logged drive which may be interpreted by the following program SRCON. Program SRCON tapes output from QIF and writes an ASCII file which may be spooled to the printer containing a map of all 1 minute record headers on the tape. If the tape number is greater than 75, all timeseries headers as well. The map shows which track a header was found on and the location of any glitches encountered, designated by a "*".

To use this option, first be prepared to answer the prompt regarding tape numbers, dates, times, etc. Before selecting option number 9, make sure the interface is working as described above, and then rewind to the beginning of track 1. Finally, select Option 9. The rest is automatic. Program QIF will stop itself and Program SRCON will be initiated. The output of program Program SRCON is a file called

BW<tape #>.1MR

This is an ASCII file which will appear on the B drive (or wherever Programs QIF and SRCON are run from). Two temporary files are left by Program QIF: "lMINREC.DAT" and "GMAP.DAT". These files are the input of Program SRCON. Once SRCON is finished, these files may be erased.

It is a good idea to use option 9 at times when system demand is low since other users will find their terminals almost totally dead during execution of this routine.

10) Stop

If Program QIF is being run as part of a submit file, either TMAP or TSER, then execution will be stopped automatically. If not, this option may be selected for an orderly exit from the program.

SSP User's Guide Overview. SSP (Simple Statistical Program) was developed in the fall of 1983 at the University of Washington to analyze data recorded on an instrumented floating breakwater built by the Army Corps of Engineers. SSP can compute summary statistics on the data as well as filtering, clipping and performing Fourier transformations on individual channels.

The data are originally recorded in a complicated format on 1/4" magnetic tape cartridges. Program QIF (documented elsewhere) reads these tapes and writes a scratch file of the data. This file is read by program BWSORT, which writes the data as a random access disk file of binary format integers with the file name BWxxxRyy.DAT, where xxx is the tape number and yy is the record number, and the .DAT suffix indicates that this is the data file. BWSORT also produces a header file (BWxxxRyy.HDR) of ASCII text that contains information such as when the tape was made and how many data points were recorded. The exact format of these files is described in the comments inside the source code for SSP.

In order for SSP to run, both the .DAT and .HDR files must be present on the same logical disk drive. SSP itself may reside on another drive.

SSP produces numerous output files, which are placed on the same drive that the .DAT and .HDR files are on. The names of most of these files is automatically determined from their contents. These files are:

BWxxxRyy.STS Contains statistical information in binary form.

This is an internal workfile and cannot be edited or printed.

BWxxxRyy.OUT Is a printable two page report that lists summary statistics (min, max, mean and standard deviation) for each channel, as well as labels and scale

factors. It is produced automatically when summary statistics are computed.

BWxxxRyy.Czz Is an input file for program PLOTR that contains a plot of time series data from channel zz.

BWxxxRyy.Fzz Is a PLOTR input file of the Fourier transform of channel zz.

How to run SSP. After making sure that the .DAT and .HDR files are on the same drive, and that there is room on this drive for any output files you may create (100k is plenty), simply type SSP<cr>. (where <cr> stands for a carriage return) You should then see the message:

Simple Statistical Program v. 1.3 What is the name of your data file?

where the underscore (_) indicates the final position of the cursor. You must now enter d:BWxxxRyy<cr> substituting the proper numbers for xxx and yy. The d: is the indicator for the drive where the input files exist and the output files are to be placed. If this is the currently logged drive then the d: does not need to be specified. The alphabetic part of the file name may be in either upper or lower case.

If the files are found then after a few seconds the main menu will come up on the screen, looking something like this:

- 1 Load a channel into an array
- 2 Summary statistics on one or all 80 channels
- 3 Scale an array
- 4 Extreme value smoothing
- 5 Detrend a time series
- 6 High/Low/Band pass filter on a time series
- 7 Write an array to the master data file
- 8 Perform a Fast Fourier Transform
- 9 Write raw FFT coefficients to a file
- 10 Compute and write cross-spectral phase and coherency
- ll Execute a macro file
- 12 Plot an array
- 13 Quit

Array A: Unused Array B: Unused

Enter option desired:

This menu is the starting point for all functions in SSP. As well as listing the available functions, it shows the current status of the arrays which are used to hold the data of a channel while analysis is being done. When a channel is loaded into an array, the channel number and label will be displayed on the menu, as well as whether or not the data have been scaled and how

they have been transformed. This appears to the right of "Array A:" and "Array B:".

Description of Menu Options

1) Load a Channel into an Array

This reads an unscaled channel of data and places it into an array, overwriting whatever was there before. This must be done before any analysis can be done on a channel.

2) Summary Statistics on One or All 80 Channels

After selecting this you will be asked for either an array indicator (A or B) or an empty carriage return. If you enter an array designator, statistics for the data currently in that array will be printed on the screen. These statistics will reflect any transformations or changes made to the data since it has been loaded. If you just enter a carriage return then statistics will be computed for each channel of data from the master data file and will be printed on the BWxxxRyy.OUT file. This will overwrite anything stored in array A.

3) Scale an Array

This will multiply an entire array by the appropriate scale factor to turn it from a measure of raw counts into a measure in the correct units for the quantity measured. This should be done before a Fourier transform is performed.

4) Extreme Value Smoothing

This allows you to clip all data points in an array that fall outside of a certain range. Any values that are outside of the allowed range are set to a value calculated by interpolating a straight line between the first good data points on either side of the extreme-valued interval.

5) Detrend a Time Series

This function can be used to either remove the mean of the data in an array and hence center the data around zero, or to remove the least squares straight line to eliminate any drift in the data. The mean is automatically removed prior to an FFT, but removing the least squares straight line can often help to reduce low frequency noise in the computed spectrum.

6) High/Low/Band Pass Filter on a Time Series

This will filter out high and/or low frequency noise from a time series in an array. You may do high or low pass filters by specifying a filtering frequency outside the range of interest.

7) Write an Array to the Master Data File

This is the only function that makes changes to the .DAT file and as such it should be used with EXTREME caution. Always make a copy of your data file before altering it.

If you have invested much time in filtering, detrending and otherwise massaging an array of data, you may wish to save this so that it can be accessed easily in the future. This function will allow you to place your new data in the master data file, overwriting the original data. Since this alters the .DAT file, the corresponding .STS file is deleted so that the outdated statistics are not used in the future.

8) Perform a Fast Fourier Transform

Selecting this will allow you to perform a Fourier transformation of the data in either array, transforming the data from the time domain to the frequency domain. Options include performing the transformation on only a subrange of the time series, and doing FFTs using only every Nth point, which effectively decreases the sampling rate. Due to the algorithm used, N must be a power of 2, so you may use every 2nd, 4th or 8th, etc. point. With each doubling of N, the time required to produce the FFT (potentially as long as several minutes) falls by slightly more than half while the maximum frequency of the spectrum produced is halved. After the FFT is completed, FFT N will be printed after the array name on the main menu.

In order for the units of the Fourier coefficients to be correct, the time series data should be scaled before the transformation is done.

9) Write Raw FFT Coefficients to a File

It is sometimes necessary to do more processing on the Fourier coefficients than SSP can do and this procedure provides a way to record the raw coefficients so that another program can access them. The coefficients are written on a file of the user's choice in binary complex format. The file does not contain any information about the frequencies that the coefficients correspond to, so any program that uses this file must calculate this information itself.

10) Compute and Write Cross-spectral Phase and Coherency

This computes the cross-spectral phase and coherency between two channels. The two channels must have already been loaded into arrays A and B and have undergone identical Fourier transformations. The computed values will be written on a file of the user's choice in a format compatible with PLOTR so that a plot may made. Details about how this is done are documented within the SSP source code.

11) Execute a Macro File

Sometimes it is necessary to perform the same series of functions on a number of channels. SSP v.l.3 provides aneasy way to do this through the use of macro command files. Since SSP is menu-driven, these command files take the form of long lists of menu choices and are easily generated using programs such as MAKEMAC.

Once a macro file has been generated, it can be executed by choosing this menu option and entering its name. SSP will then take its commands from this file but will still write prompts and menus to the screen, so that you may gauge its progress, if desired.

The last command in the macro file should be either a Quit or an Execute macro with a file name of "ZZZZ". The quit will return you to the operating system and trying to execute a macro file named "ZZZZ" will return control to the terminal. If the macro file does not end of one of these two commands, it could cause the program to "hang" unrecoverably and ignore all input.

12) Plot an array

This routine will take the data currently in an array and write it to a file in X-Y coordinate pairs with the appropriate header information for program PLOTR. It also has the ability to plot only subranges of the data and you will be prompted for how many points (or for FFTs, what frequency range) you want plotted. To make a plot of the data, after leaving SSP execute PLOTR and when it asks for the file name, give it the file name (which will be of the form BWxxxRyy.Czz or BWxxxRyy.Fzz) which was printed on the screen by SSP.

13) Quit

Closes all files and returns the user to the operating system.

Technical details about how these functions work and interrelate may be found in the comments within the source code, with an overview of the program at the beginning of the file and details about the individual procedures in the procedures themselves.

PLOTR User's Guide

PLOTR is a relatively simple program designed to do plots of data written out by program SSP. The only reason that this ability was not included in the plotting routine in SSP is that the plotter driver software that we have is written in a different version of FORTRAN and indeed runs on a different processor than SSP.

PLOTR

Operation. When you invoke PLOTR you will see a menu asking

you to either open (and plot) a new file, finish a page, or quit. If you open a new file then you will be asked for the name of the file and the data from that file will be plotted. Once you have made enough plots to fill a page (one or two, depending on type) you should finish the page. On plotters with continuous forms capability, such as the C.Itoh CX-4800, this will cause the paper to advance to the beginning of the next sheet. Quitting closes all open files and terminates the program.

Input. PLOTR requires an SSP plotter file (either BWxxxRyy.Czz or BWxxxRyy.Fzz or a combined phase and coherency file) as input, and will prompt you for the name of this file. Unfortunately PLOTR does not have the capability to read files from other drives, so the input file must be on the currently logged drive, so when you type in the file name, do not include a drive designator.

After you have entered the file name, PLOTR will issue a message saying what is in the file and proceed to read the data. For complicated plots this can take several minutes. When it has finished reading the data it will ask whether the plot should be placed on the top or bottom of the page. (N.B. Row plots are done lengthwise on the page while FFTs are plotted one above the other. Combined phase and coherency plots take up an entire page so this question is not asked) On FFT plots you will also be asked to input a label for the vertical axis. This enables you to specify the units as you would like them to appear.

Output. PLOTR writes plotter commands to two places. One is the CP/M LST: device, enabling you to plot while the program is running. The other is a file named PLTiii.dev where iii is a number taken from a file named PLOTNUMB.ERS and dev is the plotting device selected (e.g. H-P for an HP 7470A or C-X for a C.Itoh CX-4800). The number in PLOTNUMB.ERS is incremented automatically every time a plot is made. The PLTiii.dev file can later be sent directly to the plotter if multiple copies are desired. Otherwise it can be purged to avoid cluttering up directories.

PLT2GTK

PLT2GTK (PLOTR to GrafTalk conversion program) was written to facilitate the unattended production of large numbers of plots of data from SSP. Very simply, PLT2GTK will scour a given drive area for all files of the form BWxxxRyy.tzz, where the file type t is either C or F, and combines them into a GrafTalk command file with the name BWxxxRyy.GTK. Then all the plots can be generated with the single command "GRAFTALK BWxxxRyy.GTK<CR>", requiring no operator intervention.

Operation. After PLT2GTK has been invoked, it will ask its only question, the name of the data set. At this point you should enter "d:BWxxxRyy." where d is the drive where the files are located and xxx and yy have been replaced with the appropriate tape and record numbers. PLT2GTK will then start searching for

files with this stem, updating the screen and transferring the information to the .GTK file when it finds one. When all the data files in the specified drive area have been transferred, PLT2GTK will quit.

CHAPTER VI

MONITORING SYSTEM RELIABILITY ASSESSMENT

This project had several challenging moments early on that were relatively common problems associated with this and other projects of this sort. These were brought on by oversights in the initial design and planning, inadequacies in construction, shortage of time and, to little man power. However, the major problems in the first winter season were associated with bad weather which resulted in too few full working days on the breakwater. It should be kept in mind that most of the installation, maintenance and repair was done from a small 13 foot fiberglass boat in relatively open and hostile waters. The boat was very adequate and anything much over 15 to 16 feet would have proved to be too large and more difficult to work from and with. The boat was, however, a relatively inexpensive unit which resulted in some repair and maintenance problems.

The most important piece of equipment was the data acquisition system. The major problems here were associated with the power system, which used a bank of four lead acid truck batteries. Inadequate charging time and some early problems in the DAS which caused an excessive power drain, were the main source. Other failures were the loss of a DC to DC converter and several of the 8 bit RCA A to D boards, which were never completely understood.

The next piece of hardware was the signal conditioning and transducer input box. This unit used approximately forty dual channel analog input signal conditioning cards which were designed and manufactured for this application. They were low power units and were a universal design which could be altered to accept allof the different inputs. In general, these cards functioned well with no more than expected repairs, given the environment they were used in. The only feature that was left out, mainly because of space and power was a built in calibration system. This would have been well worth the effort had it been included. Also, an incremental gain adjustment, in place of an adjustable pot, would have helped.

One common and relatively important problem with both of these units, was that plastic moisture proof connectors were used for all signal inputs and system interconnects, this involved hundreds of connector pins. These connectors were chosen because of the extremely corrosive environment and because of lower cost. They turned out to be inadequate and were broken easily and did not make as positive a connection as was desired. Also, the connectors that were used, made it more difficult than necessary to install new transducer leads.

The next major installation and maintenance problem was associated with the lead wires. It was decided at the beginning to use a relatively inexpensive neopreme coated braided shielded four conductor wire. It was felt that due to the large number of cables, that once they were bundled together, they would act as a single unit with more than sufficient strength. Due to the extreme difficulty and expense of getting the required diving, it was impossible to ever get the cables installed as well as intended. However, they performed as well as could be expected, and it would be hard to say if any other approach would have worked any better.

The tide gage was expectionally successful, with the only problem being that of maintaining the electrical lead, which lasted over a year the first time around. Two major problems were encountered with the spar buoys. The first was with the anchoring system. Until the center of drag was located and properly attached to, the buoys were pulled under water at extreme current conditions. This problem was eventually completely overcome. Also, the staff units proved to be inadequate and had to be reinforced at the threaded connection between it and the lower part of the buoy. The buoys required more than their share of maintenance, but once they were properly installed, they proved to be more than adequate for their intended use.

The anchor load cells functioned without failure except for the connectors and lead wires. The connectors were manufactured by Electro Corp. and were underwater make and break units. They proved to be inadequate for strain gage level signals without careful cleaning and installation procedures when connected underwater. A solution to this problem would be to use a better connector or place the amplifier circuitry in the load cell. This would reduce the reliability, however.

All other transducer problems were associated with the mechanical connections and installation procedures and could and were only improved on by improving these variables.

CHAPTER VII

CONCLUSIONS & RECOMMENDATIONS

In general, this project went well, given the time and field conditions. The main areas that were not completed or maintained as well as expected, due mainly to time, manpower constraints and equipment failures were:

- 1. The regular calibrations of both the tranducers and electronics.
- 2. Data analysis.
- 3. Telephone link to the breakwater.
- 4. Early equipment shelter.
- 5. Electrical leads.
- 6. Miscellaneous electronic failures.
- 7. Mechanical integrity of transducer attachments.

Almost all of the problems that were encountered, were solved and eventually repaired or retrofitted and made to work. The only problems left unsolved, could have been taken care of given more time and manpower. Some initial designs, both in mechanical and electrical components were poor and had to be redone. However, the main souce of the problems that were encountered were attributable to extreme weather conditions the first season and to an under estimate in the original proposal as to the amount of manpower that was needed.

This is not to say that the initial design and planning stages were not comprehensive and complete, on the contrary, they were extensive and from the monitoring contractors point of view, there was little that could have been done to improve them, other than allow more time or relying more on off the shelf hardware. Current state-of-the-art equipment would also improve on the success of future projects of this type.

APPENDIX IA

MECHANICAL

Figure I-la. Field Instrument Housing Detail

Figure I-1b. Field Instrument Housing Detail

Figure I-2 Deck House Detail

Figure I-3 Original Deck Enclosure

APPENDIX IB

ELECTRONIC

П

Figure I-4 Signal Conditioning Schematic

Figure I-5 Signal Conditioning Logic Schematic

Figure I-6 Master Clock Schematic

Note: Vex is wired to pin 4 on pwr plug.

Leagure 7 Campadg nune De De

On back SCC box (viewing from back

Note: To get continuous power to any card jump pins 22 & Z plus pins 1 & A.

Figure 8. Power Connector.

Signal Ouputs

Connector AA

Channels 1-60
Channel # is the same as pin # on Connector AA

Connector BB

Channels 61-100 (Channel # 40) gives pin # on connector BB

Table 1. Channel Pin-outs (n = channel #).

Connector A	Connector B	Connector C	Connector D
Channels 1-15	Channels 16-30	Channels 31-4	3a) (Boards 23b-30)
(Boards 1-8a)	Boards 8b-15)	(Boards 16-23	
(n-1) x 4 + Br #	(n-16) x 4 + Br	# (n-31) x 4 +	
Connector	E Conn	ector F	Connector G
Channels	31-37a) (Boa	nels 76-90	Channels 91-100
(Boards 3		rds 37b-45)	(Boards 46-50)
(n-61) x		6) x 4 + Br #	(n-91) x 4 + Br #

Figure 8a. Inconnection and signal input connector detail

Table 2.

To convert board # to Channel #: multiply board # by 2, subtract 1 for "a" suffix.

(e.g. Board # is $29a - channel # is <math>2 \times 29 - 1 = 57$)

To convert channel # to board #:

If even - divide channel # by two, add suffix "b"
If odd - add one to channel #, then divide by two,
 add suffix "a"

(e.g. Channel # is 77 - Board # is (77+1)/2 = 39a

To find the location of a pin for channel "h", find connector and pin # (see Table 1)

For: Br (B) - add 1 GN
Br (C) - add 2 WH
Br (D) - add 3 BK
Br (A) - add 4 Rd

(e.g. Channel # is 69, Br (D) - using Table 1: Connector is E, pin is $(69-61) \times 4 + 3 = \boxed{35}$

Figure 8b. Inconnection and signal input connector detail

SCC BOX	, <u>1</u>	CONNECTOR	Α	В	С	D	Ε	F	G
CONNECTOR	CHANNELS	PIN NUMBER		СН	ANNE	L NU	MBER	S	
Α	1-15	1-4	1	16	31	46	61	76	91
В	16-30	5-8	2	17	32	47	62	77	92
С	31-45	9-12	3	18	33	48	63	78	93
D	46-60	13-16	4	19	34	49	64	79	94
E	61-75	17-20	5	20	35	50	65	80	95
F ·	76-90	21-24	6	21	36	51	66	81	96
G	91-105	25-28	7	22	37	52	67	82	
	ID PIN ARRANGEMENT	29-32	8	23	38	53	68	83	
1	F,16	33-36	9	24	39	54	69	84	
2	5,15	37-40	10	25	40	55	70	85	
3	4,14	41-44	11	26	41	56	71	86	
4	3,13	45-48	12	27	42	57	72	87	
A TO D CARDS		49-52	13	28	43	58	73	88	
GREEN NUMBER	CHANNEL NUMBER								
30	1-16	53-56	14	29	44	59	74	89	
40	17-32	57-60	15	30	45	60	75	90	
50	33-48								
60	49-64								
70	65-80	v							
80	81-96								

Figure 8c. Connector Pin and Channel Arrangement Signal Conditioning Box

			TRAN	TRANSDUCER SPECIFICATION	FICATION			
Mea	Measurement	Design Range	Transducer Range	F.S. Accuracy	8-bit Resolution	12-bit Resolution	Excitation Voltage	Full Scale Output Volt
-	Wind speed direction	100 mph 360°		±3%	0.39 1.40°	1 1	O 16	0-2.5 V 2.5 ac
2.	Temperature water air	40-60°F -10-100°F	-55-150°C	±0.3°C	0.08	1 1	വവ	lmV/°C lmV/°C
ю́.	Waves (1) tide (5) spar	30 ft. 8 ft.		±0.5% ±0.5%	1.41"	0.09"	#15 #15	0-2.5 0-2.5
4.	Anchor forces (4) tire (8) concrete	32.5 kip 175 kip	10 Kip 50 Kip	0.1%	78 390	4.9 24	+ + 5 5	≈ 1 0mV ≈ 1 0mV
ŗ.	Dyn pressure (23)	0-5 psi	•	0.8%	.02	.00	\$	20mV
9	Concrete Str. (8) long. (4) trans.	500 μs 50 μs		 % %	1.95 µs 0.2 µs	1 1	4 +	7mV 0.7mV
7.	Accelerometers (4) linear (2) angular	±1 g ±.5 g .	±1 g ±5 rad/sec ²	%90°.	.008	.0005	#10 #10	±2.5 ±2.5
ထံ	Connector force strain bolts 14" (4) 120" (4)	0-40 kip 0-185 kip	52 kip 50k-150k / mang = 100 k)	1.0%	157 1bs 392 1bs	9.8 lbs 2.4 lbs	5 to + +	26mV 31mV
6	Fixed reference (1) linear (2) rotation	0-20 ft. 0-20.83 ft.		0.1%	0.94"	0.00	2.0	0-2.5V
10.	Relative motion (1) linear (5) rotation	±4" 24k ±15° 25k	1 1	limited by pwr supply	0.03" 0.12°	1 1	5.0	ΛΙ∓
Ξ.	Current Sp (1)	0-±10 fps_	•	±2%	0.023 km	•	01∓	*1V

APPENDIX IC SYSTEM OPERATION PROCEDURES

I. SYSTEM OPERATION PROCEDURE

Always remove old cartridge, mark date and time and return to U.W

With out monitor card

- 1. Insert new cartridge, mark date and time on back.
- 2. Place all six front panel toggle switches in the down position.
- 3.
- Turn power switch on, black rocker switch.
 Tape should rewind immediately, followed by brief 4. pause and second rewind and an advance to beginning of tape.
- 5. Turn the tape drive disable switch to the up position. This switch is mounted just below the tape drive.

With monitor card and hand terminal

- 1. Same procedure as above except:
 - (a) Hold top red reset button on terminal in while turning on the power.
 - (b) Press the RP (green) button to start the This will initiate the second tape program. rewind.

II. SYSTEM CALIBRATION AND CHECK OUT PROCEDURE (PRIORITIES)

- 1. Check through entire channel sequence and fill out summary sheet. This should be done with the system actually sampling and writing to a blank tape.
- 2. Repair any known or planned events.
- 3. Repair, adjust or reset any problems encountered in the initial check out and update check out sheet or start a new one.

III. MAINTENANCE - PRIORITY SCHEDULE

- Tide gage Ch. 16 1.
- 2. Wind speed #1 Ch. 73
- 3. Wave buoys Ch's 18,19,20,21 (in this order)
- 4. Load cells (South upper & lower same cable - tire) (South upper & lower same cable concrete) (All others)
- 5. Other wind sensors Ch./ 74,75 & 76
- 6. Side pressures
- 7. Concrete strain
- 8. Accelerometers (at least one set, 61-63 or 64-66)
- 9. Current meter
- 10. Motions Ch's 13-15
- 11. Temperatures
- 12. Internal voltages

NEW TAPE INITIALIZATION

- 1.
- Switch tape to "Auto Rewind" mode and switch on power relay bypass if necessary.
 Switch system power on. The tape will come to BOT.
 Now switch off power relay bypass. 2.
- Press RP to run program.
 When tape stops at the "Load Point" switch the tape back to "No Auto Rewind" mode. 3. 4.

APPENDIX II
SOFTWARE LISTING

APPENDIX IIA RCA FIELD DATA ACQUISITION SYSTEM

Breakwater Data Acquisition Software Effective 3/11/83

```
10 ENINT 1320
 20 DIM S(96),F(5)
 30 N1=0:N2=0
 40 POKE(@908B, #02): POKE(@908F, #02): POKE(@90A9, #00)
 50 FOR I=1 TO 96:S(I)=1: NEXT
 60 Gl=@6834:G2=@68EE:G3=@6A45:G4=@6800:G5=@6BB5:G6=@6BBA:G7=@6B82:G8=@6B98
 70 G9=@6BBF:H1=@6BC2:H2=@6B00:H3=@6BCD:H4=@6BE2:R=@A000:R0=R+@0100:C=@7000
 80 R2=@B000:H5=@6C00:H6=@6C59:A$=" ":B$=" ": FOR I=1 TO 5:F$(I)="OFF": NEXT
 90 E8=0:F$(3)="ON":F$(4)="ON"
 100 D$="Reg. not accessible. Input ignored":E$="CERCASS"
 110 GOSUB 1130
 120 X=EF(3): IF X=1 GOTO 210
 130 POKE(R+6,0): POKE(R+10, #08): POKE(R+11, #00):K1=0:K2=0
 140 FOR I=(R+#10) TO (R+#13): POKE(I,0): NEXT
 150 GOSUB 1090: WAIT(750)
 160 OUT (4,3,29):X=INP(4,2): CALL (G6): OUT (4,2,208)
 170 CALL (G6): OUT (4,2,0): CALL (G6): OUT (4,2,#43): CALL (H1)
 180 OUT (4,2,7): CALL (H1): GOSUB 1130
 190 FOR I=0 TO 15: POKE(C+I,0): NEXT
 200 POKE(C+13,1): POKE(C+14,1)
 210 OUT (#F0,3,#19): OUT (#F0,4,#FF): OUT (#F0,6,0): OUT (#F0,7,#16)
 220 POKE(R+7,1): POKE(R+8,1): POKE(R+9,1)
 230 CALL (G4)
 240 X2=PEEK(R+7):X3=PEEK(R+8):X4=PEEK(R+9)
 250 IF X2=0 GOSUB 290
 260 IF X3=0 GOSUB 1090: WAIT(750): GOSUB 1170:F=0: GOSUB 930
 270 IF X4=0 GOTO 1350
 280 GOTO 220
 290 K1=K1+1:Q=0:A=R2:R1=R0
300 X=INT(K1/256): POKE(R+#10,X): POKE(R1,X):X=K1-X*256: POKE(R+#11,X): POKE(R1+
 1,X):R1=R1+2
310 POKE(R1,0): POKE(R1+1,0):R1=R1+2
320 POKE(R1, PEEK(R+6)):R1=R1+1
330 CALL (G7,R0+5):R1=R1+10: GOSUB 1090: CALL (G1)
340 GOSUB 1130:N1=PEEK(R+1)*256+PEEK(R+2)
350 POKE(RI, PEEK(R+1)): POKE(R1+1, PEEK(R+2)):R1=R1+2
360 FOR I=1 TO 3
370 B=A:M=0:S1=0:M1=0:M2=4095
380 FOR J=1 TO N1:X=(PEEK(B)+256+PEEK(B+1))/16
390 M=M+X:S1=S1+X*X
400 IF M1<X THEN M1=X
410 IF M2>X THEN M2=X
420 B=B+9: NEXT J
430 A=A+2:M=M/N1:S1=(S1-N1*M*M)/(N1-1)
440 IF S1<0 THEN S1=0
450 S1=SOR(S1)
460 X=INT(M):B=INT(M/256):X=X-B*256
470 POKE(R1,B):R1=R1+1: POKE(R1,X):R1=R1+1
480 X=(M-INT(M))*100: POKE(R1,X):R1=R1+1
490 X=INT(S1):B=INT(S1/256):X=X-B*256
500 POKE(R1,B):R1=R1+1: POKE(R1,X):R1=R1+1
510 X=(S1-INT(S1))*100: POKE(R1,X):R1=R1+1
520 X=INT(M1/256):B=M1-X*256
530 POKE(R1,X):R1=R1+1: POKE(R1,B):R1=R1+1
540 X=INT(M2/256):B=M2-X+256
550 POKE(R1,X):R1=R1+1: POKE(R1,B):R1=R1+1
560 IF I=1 IF M<4092 IF M>3500 IF F$(1)="ON" THEN Q=1
570 IF I=2 IF M<4092 IF M>3500 IF F$(2)="ON" THEN Q=1
```

```
580 IF I=3 IF M<4092 IF 4*S1>164 IF F$(3)="ON" THEN Q=1
 590 NEXT 1
 600 FOR I=1 TO 3
 610 B=A:M=0:S1=0:M1=0:M2=255
 620 FOR J=1 TO N1:X=PEEK(B)
 630 M=M+X:S1=S1+X*X
 640 IF M1<X THEN M1=X
650 IF M2>X THEN M2=X
 660 B=B+9: NEXT J
 670 A=A+1:M=M/N1:S1=(S1-N1*M*M)/(N1-1)
 680 IF S1<0 THEN S1=0
 690 S1=SQR(S1)
 700 POKE(R1,M):R1=R1+1
 710 X=(M-INT(M))*100: POKE(R1,X):R1=R1+1
 720 POKE(R1,S1):R1=R1+1
 730 X=(S1-INT(S1))*100: POKE(R1,X):R1*R1+1
 740 POKE(R1,M1):R1=R1+1: POKE(R1,M2):R1=R1+1
 750 IF I=2 IF M<254 IF M>25 IF F$(4)="ON" THEN Q=1
 760 NEXT I
770 GOSUB 1090
780 I=#0C: GOSUB 1340:B=X:I=#0D: GOSUB 1340
790 IF B<255 IF X<255 IF SQR(B*B+X*X)>102 IF F$(5)="ON" THEN Q=1
800 I=#09: GOSUB 1340: I=#0B: GOSUB 1340
810 FOR X=2 TO 11: OUT (#80,5,X): CALL (G9)
820 B=INP(#80,3): POKE(R1,B):R1=R1+1: NEXT
830 WAIT(500): GOSUB 1170
840 WAIT(1): CALL (G6): OUT (4,2,2): FOR I=O TO 6:X=PEEK(0682D+I)
850 CALL (G6): OUT (4,2,X):N2=N2+1: NEXT
860 FOR I=R0 TO R0+#0E: CALL (G6): OUT (4,2,PEEK(I)):N2=N2+1: NEXT : GOSUB 1280
870 FOR I=R0+#0F TO R1-1: CALL (G6): OUT (4,2,PEEK(I)):N2=N2+1: NEXT
880 X=512-N2: CALL (H3,X):N2=0: CALL (H2)
890 IF Q=1 GOTO 910
900 GOTO 1070
910 T=PEEK(R+6):F=1: CALL (G6): OUT (4,2,T+208)
920 CALL (G6): OUT (4,2,0)
930 K2=K2+1: WAIT(1): CALL (G6): OUT (4,2,2)
940 FOR I=0 TO 6:X=PEEK(@68E7+I)
950 CALL (G6): OUT (4,2,X):N2=N2+1: NEXT
960 IF F=1 THEN X=PEEK(R+#10):B=PEEK(R+#11)
970 IF F=0 THEN X=0:B=0
980 CALL (G6): OUT (4,2,X): CALL (G6): OUT (4,2,B):N2=N2+2
990 X=INT(K2/256): POKE(R+#12,X): CALL (G6): OUT (4,2,X):N2=N2+1
1000 X=K2-256*X: POKE(R+#13,X): CALL (G6): OUT (4,2,X):N2=N2+1
1010 CALL (G6): OUT (4,2,PEEK(R+6)):N2=N2+1
1020 CALL (G8):N2=N2+10: GOSUB 1280
1030 X=PEEK(R+10): CALL (G6): OUT (4,2,X)
1040 X=PEEK(R+11): CALL (G6): OUT (4,2,X):N2=N2+2
1050 X=512-N2: CALL (H3,X):N2=0: CALL (H2)
1060 POKE(R+3, #02): POKE(R+4, #00): CALL (G2):N2=0
1070 GOSUB 1130
1080 RETURN
1090 STQ 0: OUT (128,5,3): CALL (G9)
1100 Z=INP(128,3): IF Z>204 GOTO 1120
1110 OUT (16,6,255): OUT (16,6,254)
1120 RETURN
1130 STQ 0: OUT (128,5,3): CALL (G9)
1140 Z=INP(128,3): IF Z<75 GOTO 1160
1150 OUT (16,6,255): OUT (16,6,254)
1160 RETURN
1170 B=0
```

```
1180 T=PEEK(R+6): OUT (4,3,29):X=INP(4,2)
 1190 CALL (G6): OUT (4,2,T+208)
1200 CALL (G6): OUT (4,2,0): CALL (G6)
 1210 OUT (4,2,8): CALL (G5):X=INP(4,2)
 1220 CALL (G5):X=INP(4,2)
 1230 IF X<128 IF B<4 GOTO 1260
 1240 IF X>131 IF B<4 GOTO 1260
 1250 RETURN
 1260 OUT (#10,6,#FF): OUT (#10,6,#FE): WAIT(500): OUT (#10,6,#FF): OUT (#10,6,#FF)
 E)
 1270 WAIT(1000):B=B+1: GOTO 1180
 1280 FOR I=1 TO 96:X=INT(S(I))
 1290 CALL (G6): OUT (4,2,X)
 1300 X=(S(I)-X)*100: CALL (G6): OUT (4,2,X)
 1310 N2=N2+2: NEXT : RETURN
 1320 B=C+15: POKE(B,0):X=PEEK(B):X=PEEK(B):X=PEEK(B)
 1330 OUT (#10,6,#FF): OUT (#10,6,#FD): RETURN
 1340 OUT (#70,5,I): CALL (G9):X=INP(#70,3): POKE(R1,X):R1=R1+1: RETURN 1350 OUT (#F0,4,#7F): OUT (#F0,7,#95)
 1360 FOR I=1 TO 250: IF INP(#F0,5) AND 2=2 EXIT 1380
1370 NEXT: OUT (#F0,7,0): GOTO 210
1380 WAIT(1000): PRINT "Floating Breakwater"
 1390 PRINT "-----": PRINT AS: PRINT
 1400 CALL (G7,R2):R1=R2: GOSUB 2880
1410 T=PEEK(R+6): PRINT "Current Tape Track = ";T+1
 1420 X=256*PEEK(R+#10)*PEEK(R+#11): PRINT "Last 1 Min. Rec. # = ";X
 1430 X=256*PEEK(R+#12)+PEEK(R+#13): PRINT "Latest Timeseries Rec. # = ";X
 1440 N=256*PEEK(R+*OA)+PEEK(R+*OB): PRINT "* of Time Series Samples = ";N 1450 PRINT "Sampling interval: 1 Min rec. - .5 s"
 1460 PRINT TAB(19); "Time Series - .25 s": PRINT
 1470 OUT (0,1,#F0):R1=1500
 1480 FOR I=1 TO 250: IF INP(#F0,5) AND 2=2 EXIT R1: NEXT
 1490 OUT (#F0,7,0): GOTO 210
1500 PRINT : INPUT "Enter menu # (O to display menu, 14 to QUIT)"Cs
1505 IF C$<>"0" GOTO 1600
1510 PRINT : PRINT "Enter 1. List last 1 min data recorded "
1520 PRINT TAB(7); "2.Run new 1 min. record and list": PRINT TAB(7); "3.Single cha
1530 PRINT TAB(7); "4.Examine/Change Time series triggers": PRINT TAB(7); "5.Alter
N, time"
1540 PRINT TAB(7); "6.Enter comment": PRINT TAB(7); "7.Leave message"
1550 PRINT TAB(7); "8.Read message": PRINT TAB(7); "9.Examine memory"
1560 PRINT TAB(6); "10.Write on RAM": PRINT TAB(6); "11.Change scale fac"
1570 PRINT TAB(6); "12.Run Timeseries": PRINT TAB(6); "13.Realtime data BYTES ";
1580 PRINT "(not usable without a computer) ": PRINT TAB(6);"14.Quit"
1600 IF C$="1" GOTO 1760
1610 IF C$="2" GOSUB 290:R1=1760: OUT (0,1,#F0): GOTO 1480
1620 IF C$="3"F1=0: GOTO 1890
1630 IF Cs="4" GOTO 2290
1640 IF C$="5" GOTO 2360
1650 IF Cs="6" INPUT "Eter Comment (128 char. max.) "As: GOTO 1470
1660 IF C$="7" INPUT "Enter Message (128 char.max)"B$: GOTO 1470
1670 IF CS="8" PRINT : PRINT BS: GOTO 1470
1680 IF C$="9" GOTO 2530
1690 IF Cs="10" GOTO 2630
1700 IF C$="11" GOTO 2670
1710 IF Cs="12" GOSUB 1090: WAIT(750): GOSUB 1170:F=0: GOSUB 930: GOTO 1470
1720 IF C$="13"F1=1: GOTO 1890
1730 IF C$="14" OUT (#F0,7,0): GOTO 210
1740 IF CS="911" PRINT "Old password is ";ES: INPUT "Enter new pw "ES: GOTO 1470
```

```
1/50 GUTU 14/0
1760 PRINT : PRINT "Latest 1 Min Statistical Data Summary": PRINT
1770 X=10*PEEK(RO+6)+PEEK(RO+7):B=10*PEEK(RO+9)+PEEK(RO+#OA)
                               ";:X=10*PEEK(RO+#OB)+PEEK(RO+#OC):B=10*PEEK(RO+#OD)
1780 PRINT X;"/";B;"/83
+PEEK(RO+#OE)
                      ";B;" Min": PRINT "# of samples = ";(256*PEEK(RO+#OF)+PEEK(
1790 PRINT X;" Hrs
RO+#10))
1800 PRINT "Tape Track = "; PEEK(RO+*04)+1: PRINT "Rec. Number = "; 256 * PEEK(RO) + P
EEK(RO+1)
                                                             Std.Dev.
                                                                               Max
1810 PRINT : PRINT "Quantity (Ch. #)
                                               Mean
Min": PRINT
1820 C$="Anch.Force(kip) (7)":R1=R0+#11:S=S(7): GOSUB 2730
1830 C$="Anch.Force(kip) (8)":R1=R1+10:S=S(8): GOSUB 2730
1840 Cs="Tide Ht.(ft) (16)":R1=R1+10:S=S(16): GOSUB 2730
1850 Cs="Vert.Acc(ft/s**2) (61)":R1=R1+10:S=S(61): GOSUB 2780
1860 Cs="Wind Sp.(mph) (73)":R1=R1+6:S=S(73): GOSUB 2780
1870 Cs="Wind Dir.(deg) (75)":R1=R1+6:S=S(75): GOSUB 2780
1880 GOSUB 2800: GOTO 1470
1890 IF F1=1 INPUT "Enter password or <CR> to exit "CS: IF CS<>ES GOTO 1470
1900 L=0: PRINT : INPUT "Enter Chan. # "C$
1910 FOR X=1 TO 96: IF C$=STR$(X) EXIT 1930
1920 NEXT : GOTO 1980
1930 INPUT "Enter # of samples (power of 2 and < 512 ) "CS
1940 FOR I=1 TO 9:B=2^I: IF B-INT(B)>0 THEN B=INT(B)+1: GOTO 1960
1950 B=INT(B)
1960 IF C$=STR$(B) EXIT 1990
1970 NEXT
1980 PRINT "INPUT ERROR, TRY AGAIN": GOTO 1470
1990 IF B>512 GOTO 1930
2000 PRINT : PRINT "Scale factor = ";S(X);"
                                                Dt=.5 s": PRINT
2010 G=#30+#10*INT((X-1)/16): POKE(R2,G)
2020 J=X-1-16*INT((X-1)/16): IF G=#30 THEN J=J+@0100
2030 IF F1=1 GOTO 2260
2040 M=0:S1=0:M1=0:M2=10000
2050 GOSUB 1090: CALL (H5,J,B): GOSUB 1130
2060 OUT (0,1,#F0):R1=2070: GOTO 1480
2070 J=0: PRINT "Sample Values": PRINT
2080 IF X<17 GOTO 2150
2090 FOR I=0 TO B-1:Y=S(X)*PEEK(R2+I):M=M+Y:S1=S1+Y*Y
2100 IF MI<Y THEN MI=Y
 2110 IF M2>Y THEN M2=Y
2120 PRINT TAB(J);Y;:J=J+20: IF J>70 THEN J=0:L=L+1: PRINT
2130 IF L=20 INPUT "*******C$:L=0
2140 NEXT : GOTO 2210
2150 FOR I=0 TO 2*B-2 STEP 2:Y=S(X)*(16*PEEK(R2+I)+PEEK(R2+I+1)/16)
 2160 M=M+Y:S1=S1+Y*Y: IF M1<Y THEN M1=Y
 2170 IF M2>Y THEN M2=Y
2180 PRINT TAB(J);Y;:J=J+20: IF J>70 THEN J=0:L=L+1: PRINT 2190 IF L=20 INPUT "********C$:L=0
 2200 NEXT
 2210 M=M/B:S1=(S1-B*M*M)/(B-1): IF S1<0 THEN S1=0
 2220 S1=SQR(S1)
 2230 PRINT : PRINT "Ch ";X;" # of samples (dt=.5 s) = ";B
 2240 PRINT : PRINT "Mean = ";M: PRINT "Std.Dev = ";S1: PRINT "Max = ";M1: PRINT
 "Min = ";M2
 2250 GOTO 1470
 2260 PRINT "Beginning to send ";B;" bytes"
2270 GOSUB 1090: CALL (H6,J,B-1): GOSUB 1130
 2280 GOTO 1470
 2290 PRINT : PRINT "Trigger 1.Anchor Force AF7(Ch.7) ";F$(1);TAB(40);"4.Wind Sp.
 (Ch.73) ";F$(4)
 2300 PRINT TAB(8); "2. Anchor Force AF8(Ch.8) ";F$(2);
 2310 PRINT TAB(40); "5.Curr. Vel CN1, CEl (Chs.77 & 78) ";F$(5) 2320 PRINT TAB(8); "3.Sig. Wave Ht. WV1 (Ch.16) ";F$(3)
 2330 INPUT "Enter password to change trigger status or <CR>"CS: IF CS<>ES GOTO 1
 470
```

```
2340 INPUT "Enter * of triggers to be changed "X -----
   2350 FOR I=1 TO X: INPUT "Trigger # "B: INPUT "ON or OFF "F$(B): NEXT : GOTO 147
  2360 INPUT "Enter password to change N or <CR> "C$: IF C$<>E$ GOTO 2400 2370 INPUT "Enter N "C$:E9=2370; GOSUB 2910: IF E8=1 THEN E8=0; GOTO 1470
  2390 B=INT(X/256):X=X-B*256: POKE(R+#0A,B): POKE(R+#0B,X)
  2400 CALL (G7,R2):R1=R2: PRINT "Present time": GOSUB 2880
  2410 INPUT "Enter password to change time or <CR>"CS: IF CS<>ES GOTO 1470
  2420 POKE(C+14,0): PRINT "Clock stopped": PRINT : INPUT "Enter # of registers to
  2430 E9=2420: GOSUB 2910: IF E8=1 THEN E8=0: GOTO 2520
  2440 X=FVAL(CS)
  2450 FOR I=1 TO X
  2460 INPUT "Enter reg. (1 - 13)"Cs:E9=2460: GOSUB 2910
  2470 IF E8=1 THEN E8=0: EXIT 2520
  2480 B=FVAL(C$)
  2490 IF B<1 PRINT DS: GOTO 2515
2500 IF B>13 PRINT DS: GOTO 2515
  2502 INPUT "Enter value "C$:E9=2502: GOSUB 2910: IF E8=1 THEN E8=0: EXIT 2520
  2510 M=FVAL(C$): POKE(C+B,M)
  2515 NEXT
 2520 POKE(C+14,1): PRINT "Clock Started": GOTO 1470
 2530 INPUT "Password "C$: IF C$<>E$ GOTO 1470
 2540 INPUT "Enter # of memory locations "CS:E9=2540: GOSUB 2910
 2550 IF E8=1 THEN E8=0: GOTO 1470
 2560 X=FVAL(C$)
 2570 FOR I=1 TO X
 2580 INPUT "Enter mem. location"C$
 2590 E9=2580: GOSUB 2910
 2600 IF E8=1 THEN E8=0: EXIT 1470
 2610 B=FVAL(C$)
 2620 PRINT "Byte (decimal) = "; PEEK(B): PRINT: NEXT: GOTO 1470
 2630 INPUT "Enter password"CS: IF CS<>ES GOTO 1470 2640 INPUT "Enter # of memory locations"X
 2650 FOR I=1 TO X: INPUT "Enter mem. location AND byte"E,B
 2660 POKE(E,B): NEXT : GOTO 1470
 2670 INPUT "Enter password "CS: IF CS<>ES GOTO 1470
 2680 INPUT "Enter # of channnels "C$:E9=2680: GOSUB 2910: IF E8=1 THEN E8=0: GOT
 2685 X=FVAL(C$)
 2688 FOR I=1 TO X
 2690 INPUT "Enter Chan. # "C$:E9=2690: GOSUB 2910: IF E8=1 THEN E8=0: EXIT 1470
 2700 PRINT "Present s.f = ";S(B): INPUT "Need to change(Y/N)"C$
2705 IF C$<>"Y" PRINT "Unchanged": GOTO 2720
2710 INPUT "Enter new s.f "C$:E9=2700: GOSUB 2910: 1F E8=1 THEN E8=0: EXIT 1470
2715 Y=FVAL(C$)
2719 S(B)=Y
2720 NEXT : GOTO 1470
2730 M1=S*(256*PEEK(R1)+PEEK(R1+1)+PEEK(R1+2)/100)
2740 M2=S*(256*PEEK(R1+3)+PEEK(R1+4)+PEEK(R1+5)/100)
2750 M3=S*(256*PEEK(R1+6)+PEEK(R1+7)):M4=S*(256*PEEK(R1+8)+PEEK(R1+9))
2760 PRINT CS;: PRINT TAB(24);M1;: PRINT TAB(37);M2;: PRINT TAB(54);M3;: PRINT T
2770 RETURN
2780 MI=S*(PEEK(R1)+PEEK(R1+1)/100):M2=S*(PEEK(R1+2)+PEEK(R1+3)/100)
2790 M3=PEEK(R1+4):M4=PEEK(R1+5): GOTO 2760
2800 Es(1)="Curr. Vel Xft/s) (77)":Es(2)="Curr.Vel Y(ft/s) (78)"
2810 E$(3)="Wind Sp.(mph) (74)":E$(4)="Wind dir.(deg) (76)"
2820 E$(5)="-10V (83)":E$(6)="+10V (84)":E$(7)="-24V (85)"
2830 Es(8)="+24V (86)":Es(9)="+5V (87)":Es(10)="-5V (88)":Es(11)="Water Temp (F)
2835 E$(12)="Air Temp (F) (90)":E$(13)="SCC Temp (F) (90)"
2837 E$(14) = DAS Temp (F) (91)"
2840 PRINT : PRINT "Instantaneous Samples": PRINT
```

```
.. *********************
.. * FLOATING BREAKWATER DATA ACQUISITION SOFTWARE
..* Revised Tape Headers included 10/4/83
..* Senaka Ratnayake, University of Washington
.. MACHINE LANGUAGE SUBROUTINES
FLAG EOU OAOOOH
SP EQU 02H
PROG EQU 03H
FLAG2 EQU FLAG+7
   ORG 6800H
   SEX PROG; OUT 1; DC OFOH; SEX SP .. MODEM GP. *
LOOK
   B2 DATA
                       ..SET FLAGS
   B4 TS
                     .. THRU EF LINES
.. AND MODEM
.. RING
   INP 5; AND 10H
   BZ MODEM
   BR LOOK
DATA
   A.1(FLAG2)->R8.1;A.0(FLAG2)->R8.0
   OOH;STR R8
               .. HRLY. ACTIVATED PROG. FLAG
   EXIT
TS
   A.1(FLAG2+1)->R8.1;A.0(FLAG2+1)->R8.0
   OOH;STR R8
                  .. TIME SERIES FLAG
   EXIT
MODEM
   A.1(FLAG2+2)->R8.1;A.0(FLAG2+2)->R8.0
   OOH; STR R8
                     .. SET TEL. RING FLAG
   EXIT
.. THE FOLLOWING SEGMENT OF THE PROGRAM SCANS
.. SOME INPUT CHANNELS AND WRITES ON RAM
MA
        EQU OEH
WRITE1 EQU OAH
NSAMP
        EQU OCH
                         .. # OF SAMPLES
WRITE2 EQU ODH
COUNTER EQU 08H
                         .. SAMPLE COUNTER
        EQU OBOOOH
RAM
                        .. RAM ADDRESS RAW DATA STORAGE
NS
        EQU FLAG+1
                        .. RAM LOC.STORES # OF SAMPLES
NBYTE
        EQU FLAG+3
                         .. RAM LOC. FOR # OF TAPE BYTES
        EQU 70H
CLOCK
                         .. HIGHEST SIG. BYTE OF CLOCK AD
 DC 'STATHDR'
                         .. IDENTIFICATION WORD
.. FIRST SAVE RBASIC REGISTERS IN STACK
 R1.1;STXD;R1.0;STXD
 R9.1;STXD;R9.0;STXD
 A.1(WRAM1)->WRITE1.1; A.O(WRAM1)->WRITE1.0
 A.1(WRAM2)->WRITE2.1;A.O(WRAM2)->WRITE2.0
 OOH->COUNTER.1;OOH->COUNTER.O ..ZERO INTO SAMPLE COUNT
A.1(RAM)->MA.1;A.O(RAM)->MA.O ..STARTING ADDRESS
                         .. FOR DUMPING RAW DATA INTO RAM
 OOH->NSAMP.1;77H->NSAMP.O ..120-1 IN COUNTER
 CLOCK->R9.1;0FH->R9.0
 OOH; STR R9
                         .. INITIALIZE
```

```
LUN RO; LON RO; LON RO .. INTERRUPT
 REQ
  A.1(INT)->R1.1
  A.O(INT)->R1.0
                         ..O.5 S INTERRUPT
  09H;STR R9
C5
  NSAMP.1; BNZ C5
  NSAMP.0; BNZ C5
  BR EXITA
.. INTERRUPT SERVICE
 RET
INT
  DEC SP
  SAVE: DEC SP
                         .. SAVE OLD X,P
                         .. SAVE D
  STXD
                         .. SAVE R3
  PROG.1;STXD
  PROG. 0; STXD
                         .. INTERRUPT FLIP FLOP
  LDN R9;LDN R9
                         .. CHANGE PC
  A.1(BEGIN)->PROG.1
  A.O(BEGIN)->PROG.O
                         .. TO
                         .. R3
  SEP PROG
BEGIN
                         .. HOLD SAMPLE UNTIL 'REQ'
  SEO
                         .. INCREASE COUNTER BY 1
  INC COUNTER
  DEC NSAMP
                         .. #OF SAMPLES
  SEX PROG
  OUT 1;DC 30H
OUT 5;DC 06H
                         .. CHAN 7
  SEP WRITE1
OUT 5;DC 07H
                         .. CHAN 8
  SEP WRITEL
  OUT 5;DC OFH
                         .. CHAN 16
  SEP WRITEL
  OUT 1;DC 60H
  OUT 5;DC OCH
                         .. CHAN 61
  SEP WRITE2
  OUT 1;DC 70H
                         .. CHAN 73
  OUT 5;DC 08H
  SEP WRITE2
  OUT 5:DC OAH
                         .. CHAN 75
  SEP WRITE2
  REQ
  SEX SP
  A.1(ENDINT)->R1.1;A.0(ENDINT)->R1.0
  SEP R1
ENDINT
                         . . RESTORE
   INC SP
  LDXA; -> PROG. 0
                         .. ALL
                         .. QUANTITIES
  LDXA; -> PROG. 1
   LDXA
                          ..EXIT INT. PROG.
  BR INT-1
 EXITA
                         ..STOP INTERRUPT
   OOH:STR R9
   LDN R9; LDN R9; LDN R9
   A.1(NS)->RA.1;A.0(NS)->RA.0
   COUNTER.1; STR RA; INC RA
                                .. # OF SAMPLES
   COUNTER.O; STR RA
 .. RESTORE REGISTERS BEFORE RETURNING
   SEX SP; INC SP
   LDXA: ->R9.0; LDXA; ->R9.1
   LDXA;->R1.0;LDX;->R1.1
                         . . RETURN TO MAIN PROG
   EXIT
 ------
```

```
.. SUBROUTINE WRAMI - WRITES 12 BIT DATA ON RAM
  SEP PROG
WRAM1
  BN1 S:SEX MA
  INP 3; IRX
INP 2; IRX
  SEX PROG
  BR WRAM1-1
.. SUBROUTINE WRAM2 -WRITES 8 BIT DATA ON RAM
WRAM2
  BN1 S
                           .. WAIT TILL CONV. IS DONE
  SEX MA
                           .. INPUT DATA BYTE
  IRX
                           .. INCREMENT MEMORY ADDRESS
  SEX PROG
                           ..RETURN
  BR WRAM2-1
.. 2048 SAMPLE SCAN PROGRAM
PROG
        EOU 03H
CHANNEL EQU ODH
COUNT1 EQU OAH
COUNT2 EQU OFH
ANADIG EQU OBH
        EQU OCH
TAPE
UART
        EQU OEH
WRITE
        EQU 09H
NUMSAMP EQU FLAG+10
  DC 'TIMEHDR'
                           .. IDENTIFICATION WORD
  RO.1;STXD;RO.0;STXD
  R1.1;STXD;R1.0;STXD . ..SAVE
  R9.1;STXD;R9.0;STXD .. RBASIC RB.1;STXD;RB.0;STXD .. REGISTERS
  RF.1;STXD;RF.0;STXD
  A.1(NBYTE)->RA.1
  A.O(NBYTE)->RA.O
                          ..LOAD 512-N2 INTO RO
  LDN RA;->RO.1
  INC RA; LDN RA; -> RO. O
  REO
  A.1(FLAG+9)->WRITE.1 ..RAM LOCATION FOR DATA BYTE
A.0(FLAG+9)->WRITE.0 .. INPUT THROUGH INP STATEMENT
  A.1(ANALOG)->ANADIG.1 ..LOAD ADDRESS OF A/D CONV.
  A.O(ANALOG)->ANADIG.O .. ROUTINE INTO RB
 A.1(SUB2)->TAPE.1. ..LOAD ADDRESS OF TAPE
                          ..OUTPUT ROUTINE
  A.O(SUB2)->TAPE.O
  A.1(THRE)->UART.1
                          ..UART
  A.O(THRE)->UART.O
                          .. ROUTINE
  A.1(NUMSAMP)->R8.1
                          ..READ
 A.O(NUMSAMP)->R8.0
                          .. # OF SAMPLES
  LDN R8;->COUNT1.1
                          .. FROM RAM
  INC R8; LDN R8; -> COUNT1.0
  A.1(LOOP1)->R1.1
  A.O(LOOP1)->R1.0
                          ..INT. PROG. ADDRESS
 SEX PROG
                          ..BEGIN .25 S
 OUT 1;DC O4H
 OUT 3;DC 1DH
```

```
SEP WART; OUT 2; DC O2H .. NEW WRITE COMMAND
  OUT 1;DC 10H
  OUT 6;DC OFFH
OUT 6;DC OFDH
                          .. INT.
  SEX SP
CHECK
  COUNT1.1; BNZ CHECK
                          .. KEEP CHECKING
  COUNT1.0; BNZ CHECK
                         .. FOR THE CORRECT #
  BR TERMINATE
                         .. OF SAMPLES
                         ..RETURN FROM INT. TASK
  RET
LOOP1
.. INTERRUPT SERVICE FIRST
  SAVE; DEC SP
                         .. SAVE OLD X,P
                         .. SAVE D
  STXD
  PROG.1;STXD
                         .. SAVE OLD
  PROG.O;STXD
                         .. RЭ
  A.1(SAMPLE)->PROG.1
  A.O(SAMPLE)->PROG.O
  SEP PROG
SAMPLE
  SEO
                         .. SAMPLE AND HOLD SIGNAL
  DEC COUNT1
                         ..DEC COUNTER
  OOH->COUNT2.1
                         .. CHANNEL COUNTER (16)
  10H->COUNT2.0
  A.1(CHAN)->CHANNEL.1
  A.O(CHAN)->CHANNEL.O
LOOP2
  SEX PROG
  OUT 1;DC 3OH
OUT 6;DC OOH
                         ..SELECT CARD 1
                         ..12 BIT RESOLUTION
  SEP ANADIG
                         .. INITIATE A/D COVERSION
  OUT 1:DC 40H
                         ..CARD 2
  SEP ANADIG
  OUT 1;DC 50H
                         ..CARD 3
 SEP ANADIG
OUT 1;DC 60H
                         ..CARD 4
  SEP ANADIG
  OUT 1;DC 70H
                         ..CARD 5
 SEX CHANNEL
                         .. INITIATE CONV. CHANNEL # IS
 OUT 5
                         .. INCREMENTED
 SEX PROG
 OUT 1;DC 30H
                         .. ACCESS CARD 1 AGAIN FOR
                         .. INPUT/OUTPUT
 SEP TAPE
                      .. CALL SUBROUTINE SUB2 TO INPUT
                      .. MOST SIG. 8 BITS, AND WRITE IT
 OUT 1:DC 30H
 SEX WRITE
              ..LEAST SIG 4 BITS (+TRAILING 4 ZEROS)
 INP 2
 SEX PROG
 OUT 1;DC 04H
 OUT 3;DC 1DH
 SEP UART
 SEX WRITE; OUT 2
 DEC WRITE
 DEC RO
 RO.1; BNZ J1
                        .. CHECK WHETHER 512 BYTES
 RO.O; BNZ J1
                         .. IF SO CHECK TAPE STATUS
 CALL STATBYT
                         .. AND RESET TAPE
 02H->RO.1;00H->RO.0
 SEX PROG
 OUT 1;DC 40H
                         .. CARD 2
```

```
SEP TAPE
  OUT 1;DC 50H
SEP TAPE
                          .. CARD 3
  OUT 1;DC 60H
                           .. CARD 4
  SEP TAPE
  OUT 1;DC 70H
                           .. CARD 5
  SEP TAPE
DEC COUNT2
                          ..CHECK CHANNEL COUNTER. IF .. NOT ZERO REPEAT.
  COUNT2.0; BNZ LOOP2
  REQ:SEX SP
                          .. ELSE TOGGLE SAMPLING FLAG
  A.1(ENDO)->R1.1; A.O(ENDO)->R1.0
  SEP R1
                          .. AND EXIT INT. PROG.
ENDO
  INC SP
                          .. AFTER RESTORING
  LDXA; -> PROG. 0
  LDXA; -> PROG. 1
                          .. ALL QUANTITIES
  LDXA:BR LOOP1-1
TERMINATE
  SEX PROG
  OUT 1;DC 10H
OUT 6;DC OFFH
                          .. STOP INTERRUPT
  OUT 6:DC OFDH
  OUT 1;DC 04H
  OUT 3;DC 1DH
J6
  SEP UART
  OUT 2;DC OOH
                         ..WRITE 403 O'S TO .. COMPLETE 512
  DEC RO
  RO.1;BNZ J6
                          .. BYTE SEGMENT
  RO.0; BNZ J6
  CALL STATUS
                          .. CHECK TAPE STATUS
  INC SP
                              .. RESTORE
  LDXA; ->RF.0; LDXA; ->RF.1
  LDXA; ->RB.O; LDXA; ->RB.1 .. RBASIC
  LDXA;->R9.0;LDXA;->R9.1
LDXA;->R1.0;LDXA;->R1.1
                             .. REGISTERS
  LDXA; ->RO.0; LDX; ->RO.1 .. AND
                             .. RURN
  EXIT
 CHAN
  DC OOH
                 ..c
  DC O1H
                 .. H NOTE: FULL SCALE
  DC 02H
                 . . A
                 ..N IS REACHED AT 5.0V.
..N FULL SCALE VOLTAGE
 DC 03H
  DC 04H
 DC 05H
                 ..E CAN BE LOWERED IN
                 ..L SOFTWARE BY ADJUSTING
  DC 06H
 DC 07H
                       THE GAIN.
                 ..
                 . . N
 DC O8H
 DC O9H
DC OAH
                 . . ບ
                 ..M
  DC OBH
                 ..В
 DC OCH
                 . . E
                 . .R
  DC OEH
                 . .s
 DC OFH
.. SUBROUTINE WRITES THE 8 BIT DATA BYTE ON TAPE
 SEP R3
SUB2
                          .. WAIT FOR CONVERSION
 BN1 $
 SEX WRITE
 INP 3
                          .. INPUT DATA BYTE
```

```
SEX TAPE
  OUT 1;DC 04H
                    ...UART
  OUT 3;DC 1DH
  SEX SP
Jll
  INP 3;SHL;BNF J11
  SEX WRITE
  OUT 2; DEC WRITE
  SEX PROG
  DEC RO
                       ..512 BYTES ?
  RO.1;BNZ SUB2-1
                       .. IF NOT RETURN
  RO.O; BNZ SUB2-1
  SEX SP
  PROG.1;STXD
  PROG.O; STXD
   A.1(J2)->PROG.1
   A.O(J2)->PROG.O
  SEP PROG
J2
                         .. CHECK TAPE
   CALL STATBYT
   A.1(J3)->TAPE.1
   A.O(J3)->TAPE.O
  SEP TAPE
                              AND
J3
   INC SP
   LDXA; -> PROG. 0
   LDX:->PROG.1
   O2H->RO.1;OOH->RO.O .. RESET BYTE COUNTER
   SEX PROG
   BR SUB2-1
 .. A/D CONVERSION INITIATING SUBROUTINE
   SEP PROG
 ANALOG
   SEX CHANNEL
   OUT 5; DEC CHANNEL .. INITIATE CONV. REPAIAR CHAN. #
   SEX PROG
                     . . RETURN
   BR ANALOG-1
 .. THIS SUBROUTINE CHECKS TAPE STATUS BYTES
 STATBYT
 TRAK EQU FLAG+6
SEX PROG
   OUT 3;DC 1DH ... UART CONTROL REGISTER
   SEX SP
   INP 3; SHR; BNF A4
   INP 2;STXD ..DRIVE STATUS (DS)
 A5
   INP 3;SHR;BNF A5
   INP 2;STXD .. INTERFACE STATUS (IS)
   A.1(TRAK)->R8.1 ..TRAK #
A.0(TRAK)->R8.0 ..RAM LOC.
                         .. UART ROUTINE
   A.1(THRE)->UART.1
   A.O(THRE)->UART.O
   INC SP; INC SP ... CHECK 'DS' FIRST
   LDX
   SHR; SHR; SHR ..AT EOT ?
   BNF A3
   SEX PROG
   OUT 1;DC 10H
   OUT 6;DC OFFH
OUT 6;DC OFDH
   DEC SP; DEC SP
```

```
CALL SLEEP
         SEX PROG
         OUT 1;DC 04H
OUT 3;DC 1DH
          SEP UART
         OUT 2;DC 03H
         CALL BYTES
          CALL SLEEP
                                     .. EOT
         SEP UART
OUT 2;DC 03H
                                 ..WRITE 2 FMKS
          CALL BYTES
                         ..LOAD 'IS'
          INC SP;LDX
          .AND.O3H
                         ..ZERO ALL BITS EXCEPT TK
          . хок . озн
                         ..TK 4 ?
         BNZ A1
          STR R8
          ODOH:STXD
                         .. IF TK4, CHANGE TO TK1 AGAIN
         BR A2
       Al
          LDX; AND.O3H .. IF NOT TK4
          +OlH;STR RB
                       ..INC. TRAK AND STORE
          +ODOH;STXD
          CALL SLEEP
          SEP UART;
          INC SP; SEX SP
                         ..OUTPUT NEW MODE ARGUMENT
         OUT 2
         SEP UART
OUT 2;DC OOH ..POS. ARGUMENT
          SEP UART
          OUT 2:DC 43H
                        ..WRITE FMK
          CALL BYTES
          CALL SLEEP
                         .. AND
          SEP UART
          OUT 2;DC 07H .. REV. SPACE ONE FILE
          CALL BYTES
          CALL SLEEP
          SEP UART
          OUT 2;DC 02H ..NEW WRITE COMMAND OUT 1;DC 10H
          OUT 6;DC OFFH .. BEGIN INT.
          OUT 6;DC OFDH
          EXIT
       ΑЗ
          CALL SLEEP
        SEP UART OUT 2;DC 02H ..NEW WRITE COMMAND (WRT CURR. POS)
          EXIT
        .. AUXILLIARY TAPE ROUTINE
          A.1(TRAK)->R8.1
          A.O(TRAK)->R8.0
          A.1(THRE)->UART.1
          A.O(THRE)->UART.O
       A15
          INP 3; SHR; BNF A15
          INP 2;STXD
                      .. 'DS'
        A16
         INP 3;SHR;BNF A16
INP 2;STXD . 'IS'
INC SP;INC SP;LDX . 'DS'
                                  ..AT EOT ?
          SHR; SHR; SHR
```

```
BNF A20
  DEC SP; DEC SP
  CALL SLEEP
  SEP UART; OUT 2
  DC 03H
  CALL BYTES
  CALL SLEEP
  SEP UART; OUT 2
  DC 03H
  CALL BYTES
  INC SP;LDX
                             ..'IS'
                             ..OBTAIN TK#
  . AND. O3H
  . XOR . 03H
                             ..TK 4 ?
  BNZ A17
                             ..ZERO TK#
  STR R8
  ODOH:STXD
  BR A18
  LDX;.AND.03H
  +OlH;STR R8
  +ODOH; STXD
A18
  CALL SLEEP
  SEP UART
INC SP;SEX SP
  OUT 2
                              ..'MA'
  SEP UART
  OUT 2;DC OOH
SEP UART
                             ..'PA'
  OUT 2;DC 43H ..WRITE FMK AND CALL BYTES;CALL SLEEP .. REV. SPACE SEP UART;OUT 2;DC 07H .. OVER IT
  CALL BYTES
A20
  EXIT
.. THIS SUBROUTINE IMPOSES A 2 MS DELAY
SLEEP
                              .. SAVE R7 FIRST
  R7.1:STXD
  R7.0;STXD
  OOH->R7.1;66H->R7.0
  DEC R7;R7.0
  BNZ A9
  INC SP
  LDXA; -> R7.0
  LDX;->R7.1
                              ..RESTORE R7
  EXIT
.. THIS SUBROUTINE CHECKS WART STATUS BYTE 'THRE'
  SEP PROG
THRE
  SEX SP
A6
  INP 3; SHL; BNF A6
  SEX PROG
  BR THRE-1
.. THIS SUBROUTINE WRITES 10 TIME BYTES ON RAM CLOCK->RA.1; ODH->RA.O .. POINT TO YRS.
TIME
  LDN RA; .AND.OFH
STR R8; .XOR.OFH
  BZ TIME
  DEC RA; INC R8
  RA.O;.XOR.O3H
```

```
BNZ TIME
  EXIT
.. THIS SUBROUTINE WRITES CURRENT TIME (10 BYTES)
  CLOCK->RA.1;ODH->RA.O ..POINT TO 'YEARS'
L2
  LDN RA
                         .. READ TIME REG.
  . AND . OFH
                        . . REMOVE MOST SIG 4 BITS
  STR SP
  .XOR.OFH
                         .. CHECK WHETHER A OF
  BZ L2
                        .. IF SO RE-READ TIME
  DEC SP; DEC RA
                        .. POINT TO NEXT TIME REG.
  INP 3;SHL;BNF C2
  INC SP:OUT 2
                         .. WRITE TIME ON TO TAPE
  DEC SP
NO
  RA.O;.XOR.O3H
                       .. POINTER AT 'TENS OF SEC' ?
  BNZ L2
                        .. IF NOT REPEAT
  EXIT
                      ..RETURN
... CHECK WHETHER UART IS READY TO RECEIVE
RECV
  INP 3; SHR; BNF RECV
  EXIT
.. CHECK WHETHER WART IS READY TO TRANSMIT
TRANS
  INP 3; SHL; BNF TRANS
  EXIT
.. CHECK WHETHER A/D CONVERSION IS COMPLETE
 BN1 S
  EXIT
 . . . . . . .
BYTES
 INP 3; SHR; BNF BYTES: INP 2
 INP 3; SHR; BNF B1; INP 2
.. THIS ROUTINE WRITE ZEROS ON TAPE
.. TO COMPLETE 512 BYTES
 SEX PROG
 OUT 1;DC 04H
 OUT 3;DC 1DH
Q2
 SEX SP
 INP 3; SHL; BNF Q2
 SEX PROG
OUT 2;DC OOH
 DEC R8;R8.1
 BNZ Q2;R8.0
 BNZ Q2
 EXIT
.. ROUTINE TO FORCE MICROTERMINAL STATE
 SEX PROG
 OUT 1:DC OOH
 EXIT
          PAGE
```

.. SHORT SCAN OF A SINGLE CHANNEL

```
COUNT EQU OAH
RAM
        EQU OBOOOH
  REO
  R1.1;STXD;R1.0;STXD
                            .. SAVE RI
  A.1(RAM) \rightarrow MA.1; A.O(RAM) \rightarrow MA.O
  CLOCK->RD.1;OFH->RD.O
A.1(INTERRUPT)->R1.1
  A.O(INTERRUPT)->R1.0
  OOH; STR RD
  LDN RD; LDN RD; LDN RD
  SEX MA; OUT 1; DEC MA
                            ..GP #
  SEX SP
  09H;STR RD
CHEK
  COUNT.1; BNZ CHEK
  COUNT. 0; BNZ CHEK
  BR FINISH
. . SAMPLING
  RET
INTERRUPT
  DEC SP
  SAVE; DEC SP; STXD
  LDN RD; LDN RD
  SEO
                            .. SAMPLE & HOLD
  DEC COUNT
  R8.0; STR SP
  OUT 5; DEC SP
                            .. CHAN #
  EN1 $; SEX MA
  INP 3; IRX
                            ..READ BYTE(S)
  RB.1:BZ JUMP1
                            .. IF 8 BITS JUMP
  INP 2; IRX
JUMP1
  REQ; SEX SP
                            ..RESTORE D
  INC SP:LDXA
  BR INTERRUPT-1
                            .. END SAMPLE
FINISH
  OOH:STR RD
  LON RD; LDN RD; LDN RD
                            ..STOP INT.
  SEX PROG; OUT 1; DC OFOH
  SEX SP; INC SP
  LDXA;->R1.0;LDX;->R1.1..RESTORE R1
  EXIT
..REAL TIME DATA SCAN
COUNT EQU OAH
RAM EQU OBOOOH
  A.1(RAM)->RE.1; A.O(RAM)->RE.O
  REQ
  R1.1;STXD;R1.0;STXD
  CLOCK->RD.1;OFH->RD.0
  A.1(INTERR)->R1.1
  A.O(INTERR)->R1.0
  OOH; STR RD
  LDN RD; LDN RD; LDN RD
  O9H;STR RD
CHEK 1
  COUNT.1; BNZ CHEK1
  COUNT.0; BNZ CHEK1
  BR FINIS
.. SAMPLING
```

. .

```
RET
INTERR
  DEC SP
  SAVE; DEC SP; STXD
  LDN RD; LDN RD
  PROG.1;STXD;PROG.0;STXD
A.1(PC)->PROG.1;A.0(PC)->PROG.0
  SEP PROG
PC
  SEQ
                            .. SAMPLE & HOLD
  DEC COUNT
  SEX RE;OUT 1:DEC RE
  SEX SP;R8.0;STR SP
  OUT 5; DEC SP
                            ..CHAN #
  BN1 $
  INP 3;->RC.1
  R8.1:BZ JUMP2
                            .. IF 8 BITS JUMP
  INP 2;->RC.O
JUMP2
  SEX PROG; OUT 1; DC OFOH
  CALL TRANS
  RC.1;STR SP;OUT 2;DEC SP
  R8.1;BZ JUMP3
  CALL TRANS
  RC.O; STR SP; OUT 2; DEC SP
JUMP3
  A.1(PC1)->R1.1;A.0(PC1)->R1.0
  SEP R1
PC1
  INC SP;LDXA;->PROG.0
  LDX;->PROG.1
  REO
  INC SP;LDXA
                            ..RESTORE D
  BR INTERR-1
                            .. END SAMPLE
FINIS
  OOH; STR RD
  LDN RD; LDN RD; LDN RD
                          ..STOP INT.
  SEX SP; INC SP
  LDXA; ->R1.0; LDX; ->R1.1..RESTORE R1
  EXIT
         PAGE
.. TEST CDP18S643 MICROBOARD
         EQU 03H
EQU 02H
PROG
SP
TYPE1
         EQU 81A4H
         EQU OCH
TYPE2
AUX
CHAR
         EQU OFH
        R8.1;STR SP;OUT 1;DEC SP
R8.0;STR SP;OUT 5;DEC SP
                                            ..GP #
CONT
                                             .. CHAN #
         BN1 $
         INP 3
         ->AUX.1
         INP 2;->AUX.0
         SEX PROG
         OUT 1;DC O1H
         AUX.1->CHAR.1
         CALL TYPE2
         AUX.O->CHAR.1
         CALL TYPE
         ODH->CHAR.1; CALL TYPE1
         OAH->CHAR.1; CALL TYPE1
         BR CONT
```

TYPE

```
GHI CHAR
          SHR; SHR; SHR; SHR
          ADI OF6H
BNF $+04
ADI 7
          SMI OC6H;PLO RE
LDI 10H
PLO CHAR
          SEX R2
BEG
          INP 3
          SHL
          BNF BEG
          GLO RE
          STR R2
OUT 2
          DEC R2
          BR NEXCHAR
          ORG $+15
NEXCHAR
          GLO CHAR; ADI OFOH PLO CHAR
          BNF TEXIT
          SMI 10H
          BZ TEXIT
          BNF TEXIT
          PLO RE
          BR BEG
TEXIT
          EXIT
.. CDP18S 644/648/654
ADVAL
          EQU OCH
          R8.1;STR SP;OUT 1;DEC SP
R8.0;STR SP;OUT 5;DEC SP
                                                   ..GP #
START
                                                   ..CHAN #
          BN1 $
          INP 3;->ADVAL.O
          SEX PROG; OUT 1; DC O1H
          08H->RD.0;00H->RD.1
CONTINUE
          ADVAL.O*2->ADVAL.O
          OOH+"30H->CHAR.1
CALL TYPE1
          DEC RD; RD.O
BNZ CONTINUE
          ODH->CHAR.1; CALL TYPE1
          BR START
```

APPENDIX IIB COMPUPRO TAPE READING SYSTEM

PROGRAM SCRON

BASIC STATISTICAL CALCULATIONS

```
PROGRAM SRCON: STATIST RECORD CONVERSION
C
С
   REVISION 1.2 REVISED OCT 5 1983 TO INCLUDE CHS. 90,91, AND 92
   AIR TEMP, SCC TEMP (WHATEVER THAT MEANS), AND SYSTEM TEMP RESPCT.
C
   PROGRAMED BY ROBERT W. MILLER, U.W. SUMMER 1983
   DEPARTMENT OF CIVIL ENGINEERING
   FOR US ARMY CORPS OF ENGINEERS WEST POINT PROTOTYPE BREAKWATER PROGRAM
   FOR USE WITH SUPER-SOFT 16-BIT FORTRAN
С
   THIS PROGRAM TAKES TAKES 1 MIN RECORD FILES OUTPUT FROM PROGRAM
   QIF AND PRODUCES A READABLE SUMMARY OF STATISTICS. IN ADDITION,
   A MAP IS PRODUCED SHOWING LOCATION OF ALL HEADERS AS WELL AS ANY
   GLITCHES ON THE TAPE THAT MIGHT BE PRESENT.
C
C UNIT #
            FILES USED FOR I/0:
C
C
   6 - "GMAP.DAT"
                    TEMPORARY FILE WRITTEN BY PROGRAM QIF WHICH PROVIDES
C
                    INFORMATION FOR TAPE MAPS LISTED AT BEGINNING OF
C
                    TAPE SUMMARY. THIS FILE IS USED ONLY IN THE FIRST
C
                    PORTION OF THE PROGRAM.
C
   6 - "lMINREC.DAT"
C
                      TEMPORARY FILE WRITTEN BY PROGRAM QIF WHICH CONTAINS
C
                      AN ACTUAL COPY OF ALL "STATIST" HEADERS ENCOUNTERED
C
                      ON A TAPE DURING A TAPE SEARCH
C
C
   8 - "BW [TAPE #].lmr" OUTPUT FILE WRITTEN BY THIS PROGRAM WHICH IS
C
                         ASCII TEXT OF TAPE SUMMARIES. TO PRODUCE HARD
C
                         COPY IT IS ONLY NESSARY TO LIST THIS FILE OUT
C
                         TO PRINTER
C
C
    IMPORTANT VARIABLES:
C
    IBUF1(2,512) DATA ARRAY
C
    IBUF2 (512)
                  EQUIVALENT TO IBUF1 (2,512) (SEE BELOW)
C
                  DATE AND TIME TAPE PUT INTO BREAKWATER ACQUISITION SYST.
    IDATI
C
    IDATO
                  DATE AND TIME TAPE TAKEN OUT
C
    IDATC
                  DATE AND TIME OF CURRENT RECORD
C
    FNAME, SUBSTG, TRACK, SUFX,
C
    SR, TS, BW, TAPNUM,
C
    STRCHK
                   CHARACTER FILENAMES USED FOR FILENAME GENERATION & OPENING
C
    KOUNT
                  COUNT OF NUMBER OF ENTRIES ON CURRENT LINE
C
    MAPBUF
                  ARRAY CONTAING INTEGER CODES TO BE INTERPRETED IN MAKING MAP
C
                  THESE VARIABLES ARE INPUT FROM TEMPORARY FILE "GMAP.DAT"
C
                  WRITTEN BY PROGRAM QIF
C
C
    IGLTCH
                  COUNT OF NUMBER OF GLITCHES FOUND SINCE LAST TIME LINE
C
                  WAS WRITTEN
C
    NTS
                  TIMESERIES NUMBER READ FROM MAPBUF - 4
С
                  TRACK NUMBERS ARE INDICATED BY -1,-2,-3,-4 IN MAPBUF
C
                  TIMESERIES #'S MUST THEREFORE BE -5,-6....
C
                  WHILE 1 MIN REC #'S ARE 1,2,3,...
C
                  TAPE NUMBER
    ITAPE
C
    ITRK
                  TAPE TRACK RECORD TAKEN FROM
```

INTEGER IBUF2(512), MAPBUF(100)

```
INTEGER IDATI (5), IDATO (5), IDATC (5)
      INTEGER*1 IBUF1(2,512)
     CHARACTER*15 FNAME, SUBSTG
     CHARACTER*2 ASI, ASO, ASC
     CHARACTER*2 SR, TS, BW
     CHARACTER*6 TAPNUM, STRCHK
     CHARACTER*5 TRACK
     CHARACTER*4 SUFX
     CHARACTER*90 LABLIS
     CHARACTER*210 LABLS2
     EQUIVALENCE (IBUF2, IBUF1)
  HEADER BYTES AS DUMPED OFF QANTEX ARE LOADED DIRECTLY INTO IBUF1
  CONVERSION OF TWO-BYTE INTEGERS IS DONE BY EQUIVALENCING 2-BYTE ARRAY
  IBUF2 TO IBUF1. FOR FURTHER DETAILS, SEE DOCUMENTATION FOR
 PROGRAM BWSORT
  THIS PROGRAM FILLS THESE ARRAYS ONLY WITH 1 MINUTE RECORD HEADERS
C
     COMMON /ONE/ SR, TS, KOUNT, MAPBUF, IGLTCH, NTS
      COMMON /TWO/ IBUF2
      DATA TRACK /"TRACK"/
      DATA BW /"BW"/
      DATA SUFX /".lMR"/
      DATA SR /"SR"/
      DATA TS /"TS"/
      DATA MAPBUF /100*0/
      DATA IBUF2 /512*0/
      DATA LABLIS /"ANCH.FORCE (7) ANCH.FORCE (8) TIDE HT (16)
                                                             VERT.A
              WIND SP. (73) WIND DIR. (75) "/
     200 (61)
      DATA LABLS2 /"CURR.VEL.X(77) CURR.VEL.Y(
                                                     +10V (84)
     278) WIND SP. (74) WIND DIR. (75) -10V (83)
     324V (85) +24V (86) -5V (87)
                                                +5V (88)
                                                               WATER T
     4EMP (89)AIR TEMP (90) SCC TEMP (91) SYS TEMP (92) "/
502 FORMAT(A0)
C OPEN MAP FILE AND READ TAPE NUMBER, ITAPE
      IF (IOREAD (6,2,0,"GMAP.DAT")) GOTO 900
      READ (6,500) ITAPE
C GENERATE OUTPUT FILENAME BY WRITING TAPE NUMBER INTO ALPHA VARIABLE AND
C CONCATENATING PROPER PREFIXES AND SUFFIXES TO IT
      WRITE (TAPNUM, 525) ITAPE
  525 FORMAT(" ",16)
      TAPNUM=STRCHK (TAPNUM)
      CALL CONCAT (FNAME, BW, TAPNUM, SUFX)
  OPEN OUTPUT FILE
      IF (IOWRIT(8,2,0,FNAME)) GOTO 900
  WRITE MAP HEADING
      WRITE (8, 403)
      WRITE (8,400)
  400 FORMAT ("1 STATISTICAL RECORD AND GLITCH MAP"/
      WRITE (8,406)
C READ AND WRITE TAPE DATES & TIMES
      READ (6.503) (IDATI (I), I=1.5)
```

```
503 FORMAT (516)
      READ (6,503) (IDATO (I), I=1,5)
   CALL SUBROUTINE THAT ADJUSTS FROM 2400 HOUR FORMAT TO AM/PM
      CALL DADJS (ASI, IDATI (4))
   IDOI INSURES THAT 11:00, FOR EXAMPLE, IS WRITTEN WITH TWO ZEROS
      IDOI=1
      IF (IDATI(5) .LT. 10) IDOI=0
      IF (IDOI .EQ. 1) WRITE (8,401) (IDATI(I), I=1,5), ASI
                    TAPE IN: ",12,"/",12,"/",12,2X,12,":",12,1X,A2)
  401 FORMAT ("
      IF (IDOI .EQ. Ø) WRITE (8,422) (IDATI(I), I=1,4), IDOI, IDATI(5), ASI
                    TAPE IN: ",12,"/",12,"/",12,2X,12,":",11,11,1X,A2)
  422 FORMAT ("
      CALL DADJS (ASO, IDATO (4))
      ID00=1
      IF (IDATO(5) .LT. 10) IDOO=0
      IF (IDOO .EQ. 1) WRITE(8,402) (IDATO(I), I=1,5), ASO
                    TAPE OUT :",12,"/",12,"/",12,2X,12,":",12,1X,A2)
  402 FORMAT ("
      IF (IDOO .EQ. Ø) WRITE (8,423) (IDATO(1), I=1,4), IDOO, IDATO(5), ASO
  423 FORMAT ("
                    TAPE OUT :",12,"/",12,"/",12,2X,12,":",11,11,1X,A2)
      WRITE (8,410) ITAPE
      WRITE (8,403)
  403 FORMAT(/)
C BEGIN PRINTING OF MAP: START WITH TRACK ONE
      ITRK=1
      WRITE (8, 404) TRACK, ITRK
                  ",A5,1X,I2)
  404 FORMAT("
      WRITE (8,405)
  405 FORMAT ("
      WRITE (8,403)
  406 FORMAT (//)
      IGLTCH=Ø
      NTS=Ø
   20 CONTINUE
  READ AND ENTRY AND TEST IT TO SEE WHAT IT IS
      READ (6,500, ENDFILE=910) I
  500 FORMAT (16)
      IF (I .LT. Ø) GO TO 50
      KOUNT=KOUNT+1
C MAPBUF = ARRAY OF 1 MIN RECORDS THAT HAVEN'T YET BEEN PRINTED.
   KOUNT = ELEMENTS OF MAPBUF HAVE VALID ENTRIES
      MAPBUF (KOUNT) = I
   ONLY FOURTEEN ENTRIES CAN FIT ON ONE LINE: START NEW LINE IF NECESSARY
      IF (KOUNT .GE. 14) GO TO 70
   IF NO TIMESERIES HEADER HAS BEEN MAPPED, GO READ ANOTHER ENTRY
      IF (NTS .EQ. Ø) GO TO 20
   IF A TIMESERIES ENTRY HAS BEEN READ, GO PRINT IT AS WELL AS ANY 1 MIN
C
   RECORDS IN MAPBUF
   THE FOLLOWING FIDDLING WITH KOUNT IS NECESSARY BECAUSE SRPNT IS NOT CALLED
C WHEN A TIMESERIES IS DETECTED BUT ONLY AFTER THE NEXT ONE MINUTE RECORD
   HAS BEEN READ (SO THAT GLITCHES CAN BE RECORDED WITH THE TIMESERIES)
      KOUNT=KOUNT-1
      CALL SRPNT
      MAPBUF (1) =MAPBUF (KOUNT+1)
      KOUNT=1
      GO TO 20
   50 CONTINUE
```

```
C WE COME HERE IF A NEGATIVE 'I' WAS READ EITHER SIGNIFYING END OF A
C TRACK (-1 TO -4) OR TIMESERIES HEADER (-5 AND BELOW) OR A GLITCH
C (-999)
      I=-I
C IF I LT 5, END OF TRACK IS INDICATED
      IF (I .LT. 5) GO TO 60
      IF (I .EQ. 999) GO TO 95
  I=888 SIGNIFIES END OF RECORD
      IF (I .EQ. 888) GO TO 100
 ELSE, A TIMESERIES HEADER WAS ENCOUNTERED
C TIMESERIES NUMBERS ARE OFFSET BY -4 TO AVOID CONFUSION WITH TRACK NOS.
      NTS=I-4
      GO TO 20
   60 CONTINUE
C WE COME HERE IF END OF TRACK HAS BEEN DETECTED
C FIRST PRINT OUT ANY PENDING 1 MIN REC #'S
      IF (KOUNT .NE. Ø) CALL SRPNT
  NOW WRITE TRACK HEADING
      WRITE (8,403)
      I=I+1
      WRITE (8,407) TRACK, I
  407 FORMAT (4X, A5, I3)
      WRITE (8, 405)
      WRITE (8,403)
      KOUNT=Ø
      GO TO 20
   70 CONTINUE
      CALL SRPNT
C RESET KOUNT AND RETURN
      KOUNT=Ø
      GO TO 20
   95 CONTINUE
      IGLTCH=IGLTCH+l
      GO TO 20
  100 CONTINUE
C WE COME HERE IF END OF MAP FLAG WAS ENCOUNTERED:
C FIRST CLEAR MAPBUF OF ANY PENDING ENTRIES
      CALL SRPNT
   READ AND WRITE # OF 1 MINUTE RECORDS TO SCREEN
      READ (6,503) NREC
      WRITE (1,510) NREC
  510 FORMAT (" NUMBER OF RECORDS = ", I5)
      IF (IOCLOS (6)) GO TO 900
C*******************************
C OPEN FILE CONTAINING 1 MIN REC HEADER BYTES AND PROCEED TO WRITE NREC DATA
   SUMMARIES
      IF (IORAND(512,1,6,0,"1MINREC.DAT")) GO TO 900
   LOOP OVER NUM OF RECORDS
      DO 200 I=1,NREC
      WRITE (8,408)
  WRITE HEADING AT TOP OF PAGE
                   1 MIN. STATISTICAL DATA SUMMARY")
  408 FORMAT("1
      WRITE (8, 409)
  409 FORMAT ("
      WRITE (8,406)
```

```
WRITE(8,410) ITAPE
  410 FORMAT ("
                    TAPE # ",13)
      IF (IDOI .EQ. 1) WRITE (8,401) (IDATI (J), J=1,5), ASI
      IF (IDOI .EQ. \emptyset) WRITE (8,422) (IDATI (J), J=1,5), IDOI, ASI
      IF (IDOO .EQ. 1) WRITE (8,402) (IDATO(J),J=1,5),ASO
      IF (IDOO .EO. Ø) WRITE(8,423) (IDATO(J), J=1,5), IDOO, ASO
   READ IN 1th BLOCK
      READ (6/I) (IBUF1 (1,K), K=1,512)
C WRITE # OF SAMPLES
      IPVAL1=IBUF2(215)*256+IBUF2(216)
      WRITE(8,411) IPVAL1
  411 FORMAT ("
                    # OF SAMPLES = ".14)
  WRITE TAPE TRACK
      WRITE (8,412) IBUF2(12)+1
  412 FORMAT("
                    TAPE TRACK =", I2)
      IDA=IBUF2(17)*10+IBUF2(18)
      IHR=IBUF2 (19) *10+IBUF2 (20)
      IMIN=IBUF2(21)*10+IBUF2(22)
  CALL ROUTINE TO CALCULATE DATE AND TIME OF CURRENT RECORD BASED UPON
   DATE TAPE PUT IN AND TIME ELAPSED SINCE THEN
      CALL CURDAT (IDATC, ASC, IDATI, IDA, IHR, IMIN, ASI)
      IDOC=1
  NOW WRITE DATE AND TIME OF RECORD
      IF (IDATC(5) .LT. 10) IDOC=0
      IF (IDOC .EQ. 1) WRITE (8,426) IBUF2(8)*256+IBUF2(9), (IDATC(J)
     2,J=1,5),ASC
  426 FORMAT ("
                    1 MIN REC. No. =",13,6X,12,"/",12,"/",12,2X,12,":",
     212,1X,A2)
      IF (IDOC .EQ. Ø) WRITE(8,413) IBUF2(8)*256+IBUF2(9),(IDATC(J)
     2,J=1,4), IDOC, IDATC (5), ASC
  413 FORMAT ("
                    1 MIN REC. No. =",13,6X,12,"/",12,"/",12,2X,12,":",
     211,11,1X,A2)
      WRITE (8,406)
      WRITE (8,414)
C
C
   PROCESS MULTI-BYTE SAMPLING VALUES
  414 FORMAT ("
                                              MEAN
                    QUANTITY/CH.#
                                                           STD.DEV
     2
              MAX
                             MIN")
      WRITE (8,406)
      IARG=217
      ISP=-14
C
   K=1: PROCESS ANCH. FORCES AND TIDE HEIGHT
   K=2: PROCESS VERT ACCEL, WIND SP, WIND DIR
      DO 125 K=1,2
   J=1,2,3 = WHICH OF THREE CHANNELS CURRENTLY PROCESSING FOR GIVEN K
   ISP=STARTING POSITION OF LABEL STRING
   IEP=ENDING POSITION OF LABLE STRING
      DO 120 J=1,3
      ISP=ISP+15
      IEP=ISP+14
   VARIABLE FNAME BEING REUSED AS SCRATCH
      FNAME=SUBSTG (LABLIS, ISP, IEP)
      IFLAG=(K-1)*2
 FUNCTION CONVER DOES CONVERSION AND POINTER INCREMENTING IN THIS LOOP
```

```
PVAL1=CONVER (IFLAG, IARG)
      PVAL2=CONVER (IFLAG, IARG)
      IFLAG=IFLAG+1
      PVAL3=CONVER (IFLAG, IARG)
      PVAL4=CONVER (IFLAG, IARG)
      WRITE (8,415) FNAME, PVAL1, PVAL2, INT (PVAL3), INT (PVAL4)
  120 CONTINUE
  125 CONTINUE
C END OF MULTI-BYTE CHANNELS LOOP
  415 FORMAT (5X,A15,8X,F8.2,5X,F8.2,2(8X,I6))
      WRITE (8,406)
      WRITE (8, 416)
                    SINGLE SAMPLE VALUES")
  416 FORMAT ("
      WRITE (8,417)
  417 FORMAT ("
      WRITE (8,418)
  418 FORMAT (/)
      ISP=-14
  LOOP THROUGH SINGLE SAMPLE VALUES
      DO 150 J = 0.13
  CHECK TAPE # TO SEE IF IT'S RECENT ENOUGH TO HAVE CHS. 90-92
       IF ((ITAPE .LE. 75) .AND. (J .GT. 10)) GO TO 150
       ISP=ISP+15; IEP=ISP+14
      FNAME=SUBSTG (LABLS2, ISP, IEP)
      WRITE (8,419) FNAME, IBUF2 (IARG+J)
  419 FORMAT (5X, A15, 8X, I6)
  150 CONTINUE
  200 CONTINUE
C DONE
       GO TO 920
  ERROR TRAPS
  900 CONTINUE
      WRITE (1,511)
  511 FORMAT (" FILE IO ERROR")
       STOP
  910 CONTINUE
       WRITE (1,512) I
  512 FORMAT (" ENDFILE ERROR: LAST # READ =", 15)
  920 IF (IOCLOS(8)) GO TO 900
       WRITE (1,513)
   513 FORMAT (" ORDERLY HALT")
       STOP
       END
   SUBROUTINE DADJS ADJUSTS THE DAT FROM 2400 HR FORMAT TO AM/PM
       SUBROUTINE DADJS (AS, IDAT)
       CHARACTER*2 AS
       AS="AM"
       IF (IDAT .GE. 12) AS="PM"
       IF (IDAT .GT. 12) IDAT=IDAT-12
       IF ((IDAT .EQ. 0) .AND. (AS .EQ. "AM")) IDAT=12
       RETURN
       END
```

```
C
   SUBROUTINE SRPNT IS THE PRINTING SUBROUTINE FOR THE GLITCH
C
   MAPPING SEGMENT OF THE PROGRAM
      SUBROUTINE SRPNT
      INTEGER MAPBUF (100)
      CHARACTER*1 AST
      CHARACTER*2 SR, TS, BLK
      CHARACTER*80 LINE
      CHARACTER*6 STRCHK, CBUF
      COMMON /ONE/ SR, TS, KOUNT, MAPBUF, IGLTCH, NTS
      DATA AST /"*"/
      BLK=" "
      SR="SR"; TS="TS"
      LINE="
     2
      IF ((IGLTCH .NE. \emptyset) .AND. (NTS .EQ. \emptyset)) WRITE(1,100)
  100 FORMAT (" POSSIBLE ERROR: GLITCH OUTSIDE CONTEXT OF TIMESERIES")
      IF (KOUNT .EQ. Ø) GO TO 200
      KCOMP=1
      IPOS=3
   10 CONTINUE
      WRITE (CBUF, 103) MAPBUF (KCOMP)
  103 FORMAT (1X, 16)
      CBUF=STRCHK (CBUF)
      I=KLEN (CBUF)
      CALL SETLEN (CBUF, I)
      CALL INSERT (SR, LINE, IPOS)
      IPOS=IPOS+2
      CALL INSERT (CBUF, LINE, IPOS)
      IPOS=IPOS+2
      IF (MAPBUF(KCOMP) .GT. 9) IPOS=IPOS+1
      IF (KCOMP .EQ. KOUNT) GO TO 20
      KCOMP=KCOMP+1
      GO TO 10
   20 CONTINUE
      IF (NTS .EQ. 0) GO TO 40
      WRITE (CBUF, 103) NTS
      CBUF=STRCHK (CBUF)
      I=KLEN (CBUF)
      IPOS=IPOS+2
      CALL SETLEN (CBUF, I)
      CALL INSERT (TS, LINE, IPOS)
      IPOS=IPOS+2
      CALL INSERT (CBUF, LINE, IPOS)
   IGCOM COUNTS '*'S PUT ON MAP AND IS COMPARED TO IGLTCH
      IGCOM=1
      IPOS=IPOS+1
      IF (NTS .GT. 9) IPOS=IPOS+1
      IF (IGLTCH .EQ. Ø) GO TO 40
   25 CONTINUE
      IPOS=IPOS+1
      CALL INSERT (AST, LINE, IPOS)
      IF (IGCOM .GE. IGLTCH) GO TO 40
      IGCOM=IGCOM+1
```

```
GO TO 25
   40 CONTINUE
      WRITE (8, 105) LINE
  105 FORMAT (" ",A80)
      GO TO 220
  200 CONTINUE
      WRITE (1, 101)
  101 FORMAT (" IN SRPNT SR: 'KOUNT' SHOULD NOT EQUAL ZERO")
  220 CONTINUE
      NTS=Ø
      IGLTCH=Ø
      RETURN
      END
C-
      FUNCTION TO RETURN VALUE OF ALPHA STRINGS LEFT JUSTIFIED IN FIELD
C-
C-
      CHARACTER*6 FUNCTION STRCHK (ALPARG)
      CHARACTER*6 ALPARG, SUBSTG
      CHARACTER*1 ALPTST
      IPTR1=0
 20
      CONTINUE
      IPTRl=IPTRl+l
      ALPTST=SUBSTG(ALPARG, IPTR1, IPTR1)
      IF (ALPTST.EQ." ") GOTO 20
      IF (ALPTST.EQ."0") GOTO 20
      IF (IPTRl .GT.6) GOTO 50
      STRCHK=SUBSTG (ALPARG, IPTR1, 6)
      RETURN
 5Ø
      WRITE (1,100)
      FORMAT (" ERROR IN STRING OR BLANK STRING: SR STRCHK")
      IF (IOCLOS(8)) STOP
      STOP
      END
C
C FUNCTION TO DO INTEGER TO REAL CONVERSIONS WITH PROPER SCALING
   ISAD=STARTING ADDRESS IN IBUF ARRAY
   IFLAG=0 ==> XX.X; IFLAG=1 ==> XX.; IFLAG=3 ==> X.X; IFLAG=3 ==> X.
      REAL FUNCTION CONVER (IFLAG, ISAD)
      COMMON /TWO/ IBUF2 (512)
      SCRATC=0.
      IF (IFLAG .AND. 2) GO TO 20
      SCRATC=FLOAT (IBUF2 (ISAD)) *256.
      ISAD=ISAD+1
   20 CONTINUE
      SCRATC=SCRATC+FLOAT (IBUF2 (ISAD))
      ISAD=ISAD+l
      IF (IFLAG .AND. 1) GO TO 30
      SCRATC=SCRATC+FLOAT (IBUF2 (ISAD))/100.
      ISAD=ISAD+l
   3Ø CONTINUE
      CONVER=SCRATC
      RETURN
      END
```

C

```
SUBROUTINE TO PRODUCE DATE AND TIME OF INDIVIDUAL 1 MIN. REC.
   SUBROUTINE CURDAT (IDATC, ASC, IDATI, IDA, IHR, IMIN, ASI)
   INTEGER IDATC(5), IDATI(5), IDLIM(12)
   CHARACTER*2 ASC, ASI
   DATA IDLIM /31,28,31,30,31,30,31,30,31,30,31/
   IF (MOD(IDATI(3),4) \cdot EQ \cdot \emptyset) IDLIM(2)=IDLIM(2)+1
   DO 10 J=1.5
10 \text{ IDATC}(J) = 0
   IDUM=IDATI (4)
   IF (ASI .EQ. "PM") IDUM=IDUM+12
   IDATC(5) = IDATI(5) + IMIN
   IF (IDATC (5) .GE. 6\emptyset) IDATC (4)=IDATC (4)+1
   IF (IDATC(5) .GE. 60) IDATC(5)=IDATC(5)-60
   IDATC (4) = IDATC (4) + IDUM+IHR
   IF (IDATC(4) .GE. 24) IDATC(2) = IDATC(2) + 1
   IF (IDATC (4) .GE. 24) IDATC (4) = IDATC (4) -24
   IDATC(1) = IDATC(1) + IDATI(1)
   IDATC(2) = IDATI(2) + IDA + IDATC(2)
   IDATC(3) = IDATI(3) + IDATC(3)
   ILIM=IDLIM(IDATI(1))
   IF (IDATC(2) \cdot GT \cdot ILIM) IDATC(1) = IDATC(1) + 1
   IF (IDATC(2) .GT. ILIM) IDATC(2)=IDATC(2)-ILIM
   IF (IDATC(1).GT. 12) IDATC(3)=IDATC(3)+1
   IF (IDATC(1) \cdot GT \cdot 12) IDATC(2) = IDATC(2) - 31
   IF (IDATC(1) \cdot GT \cdot 12) IDATC(1) = IDATC(1)-12
   CALL DADJS (ASC, IDATC (4))
   RETURN
```

END

APPENDIX IIC COMPUPRO ANALYSIS SYSTEM
SPECTRAL ANALYSIS PROGRAM

```
SIMPLE STATISTICAL PROGRAM
                               v. 1.3 4-19-84
C
  PROGRAM WRITTEN FOR ANALYSIS OF BREAKWATER DATA
C
      Written in SuperSoft FORTRAN v.1.04cpm
C
C
C
               Guiding Philosophy
C
C
    This program was written viewing the subroutines as manipulating a
   common data base, rather than as functions being fed data as input.
   Because of this, all the control variables are in a common block
   (named CONTRL) and generally the subroutines take information only
   from this block and from the keyboard.
    The program is menu driven, with all the major functions being selectable
   from a single master menu. Typically, each subroutine will ask the user
   which array he wants to perform the selected function on, check his
   answer for validity (including making sure that the data are in the
   array in the proper form) then perform the function and return.
C
C
              Explanation of control variables
C
C
   COMMON BLOCK /CONTRL/
C
      NSATT
                 = NUMBER OF SAMPLES ATTEMPTED
C
     NSGOOD
                 = NUMBER OF SAMPLES SUCCESSFULLY TAKEN
C
     TAPENO
                 = TAPE NUMBER
C
     RECNO
                 = RECORD NUMBER
С
     TSNO
                 = TIME SERIES NUMBER
C
     TPTRAK
                 = TAPE TRACK (1 - 4)
C
                 = TIME TAPE PUT IN (J=1) AND TAKEN OUT (J=2)
     TIME(I,J)
С
                 = MONTH, DAY, YEAR, HOUR, MINUTE
        (I=1,5)
C
                 = ELAPSED TIME SINCE TAPE PUT IN (DAYS, HOURS, MINUTES)
      ELTIME(I)
C
      SMSTAT(I,J) = UNSCALED SUMMARY STATISTICS FOR DATA CHANNELS
C
         (I=1,5)
                 = MIN, MAX, MEAN, STANDARD DEVIATION, SCALE FACTOR
C
                 = CHANNEL NUMBER (1-80)
C
      STCOMP
                 = LOGICAL VARIABLE, TRUE IF SMSTAT HAS BEEN COMPUTED
C
     CHINF(I,J)
                 = CHANNEL INFORMATION FOR DATA IN ARRAY A
C
                 = ARRAY NUMBER (1 OR 2)
C
                 = CHANNEL NUMBER, SCALED (1=YES), FFT'ED (1=YES, 2=HALF-FREQ)
         (J=1,3)
С
     TITLE(I)
                 = 8 CHARACTER LABEL FOR CHANNEL I
C
     FILNAM
                 = NAME OF DATA FILE WITHOUT EXTENDER
C
                 = ARRAY OF STRING LENGTHS IN COMMON
     IL(I)
C
        I=1-80 --> TITLE
C
        I=81
               --> FILNAM
С
                 = SCRATCH CHARACTER VARIABLE, put here durung memory shortage
     FILE2
C
     HERTZ
                 = SAMPLING FREQUENCY IN HERTZ
C
     ARRSTS(I,J) = Scaled and transformed stats for data in arrays
C
                 = Min, Max, Mean, Standard Deviation, Scale Factor
             Ι
C
             J
                 = Array number (1 or 2)
C
                 = Input device (1 for console input, 9 for macros)
     INDEV
```

```
COMMON BLOCK/NOPLOT/
C
                  = True means suppress plotting of arrays with a zero
C
      PLOTP
                    standard deviation during macro files. This block
C
C
                    is common to only MACRO and PLOTR.
C
C
C
                    Blank Common (data)
C
C
                  = IN CORE REAL STORAGE OF TS DATA
      A(I,J)
C
                  = SAMPLE POINT (1 - 4096)
            Ι
C
            J
                  = ARRAY NUMBER (1 OR 2)
   ***********************
C
                            Files
C
C
C
                                  CONTENTS
      UNIT
              NAME
C
       1
            <console I/0>
                           Raw binary integer data (changed only by UPDATE)
C
       5
            file.DAT
C
                           Header information
       6
            file.HDR
                           Summary statistics (binary)
C
       7
            file.STS
                           Printable 80 channel statistical summary
C
       8
            file.OUT
                           SSP command macro (convention is type of .SSP)
C
       9
            <read in>
                           PLOTR output for channel xx (.Fxx for FFTs)
C
      10
            file.Cxx
                           Raw FFT coefficients in binary form
C
            <read in>
      11
                           Phase and coherency plotter file
C
      12
            <read in>
C
C
                     Required Input
C
C
      SSP requires two files for input: a file of two-byte binary integers
C
   that make up the data and a header file of ASCII text that contains
C
                                The format for the header file is:
   information about the data.
C
                              Variables
C
        Line No.
                    Format
C
                   4(5X, 15)
                              TAPENO, RECNO, TSNO, TPTRAK
           1
                              TIME(i,1) (mo.,day,yr.,hr.,min. tape put in)
C
           2
                     511Ø
                              TIME(i,2) (mo.,day,yr.,hr.,min. tape taken out)
C
           3
                     511Ø
                              ELTIME(i) (days, hrs., mins. since tape put in)
C
           4
                      3I1Ø
C
                     2110
                             NSATT, NSGOOD
           5
                              SMSTAT(i,5) (scale factors, -9999.=> use default)
```

The binary file must be a rectangular file with 80 blocks of NSATT two byte integers each. Any data past NSGOOD in each block is ignored, but must be present in order to preserve rectangularity.

Comment (ignored)

8F10.5

A8Ø

6-15

16+

C

С

C

С

C

C C C

COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),

- ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
- IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF REAL SMSTAT LOGICAL STCOMP

```
CHARACTER*14 FILNAM, FILE2
      CHARACTER*8 TITLE
      COMMON A (4098,2)
      COMMON/NOPLOT/PLOTP
      LOGICAL PLOTP
      DATA PLOTP/.FALSE./
      DATA INDEV/1/
      DATA SMSTAT/4*0.,.027,4*0.,.027,4*0.,.027,4*0.,.027,4*0.,.027,4*0.,.027,
     & 4*0.,.027,4*0.,.027,4*0.,
     & .027,4*0.,.019,4*0.,.019,4*0.,.019,4*0.,.019,4*0.,1.0,4*0.,
     & 1.0,4*0.,1.0,4*0.,.012,4*0.,1.0,4*0.,.031,4*0.,.031,4*0.,.031,4*0.,
     & .031,4*0.,.004,4*0.,1.0,4*0.,.004,4*0.,.004,4*0.,.004,4*0.,.004,
     & 4*0.,1.0,4*0.,.004,4*0.,.004,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,
     & 1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,
     & 1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.47,4*0.,1.47,4*0.,1.47,4*0.,
     & 1.47,4*0.,1.47,4*0.,1.47,4*0.,1.47,4*0.,1.47,4*0.,1.47,4*0.,
     & 1.47,4*0.,1.47,4*0.,1.47,4*0.,1.47,4*0.,1.47,4*0.,
     & 1.47,4*0.,1.47,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,
     & 4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,
     & 1.0,4*0.,.4,4*0.,
     & .4,4*0.,1.412,4*0.,1.412,4*0.,1.0,4*0.,1.0,4*0.,1.0,4*0.,1.0/
      DATA TITLE /"LNWC", "LNEC", "UNWC", "USWC", "UNEC", "USEC", "LSWC",
     & "LSEC", "LNT", "UNT", "UST", "LST", "FRS", "FRC", "FRN", "TIDE",
     & "INC BUOY", "WV-NW", "WV-NE", "WV-SW", "WV-SE", "P1-NU", "P2-NL",
     & "P3-BNC", "P4-BEO", "P5-BEI", "P6-BCC", "P7-BWI", "P8-BWO", "P9-BSC",
     & "Pl0-SCU", "Pl1-SW1", "Pl2-SW2", "Pl3-SW3", "Pl4-SCL", "Pl5-SE3",
     & "P16-SE2", "P17-SE1", "P18-EP1", "P19-EP2", "P20-EP3", "P21-EP4",
     & "P22-EP5", "P23-EP6", "NULE", "NBLE", "SBLE", "SULE", "NT1", "NT2",
     & "BT1", "BT2", "UT1", "UT2", "ST2", "ST1", "NULC", "NBLC", "SULC", "SBLC",
     & "W VERT", "W HORZ", "W ROT", "E VERT", "E HORZ", "E ROT", "WVR", "WHR".
     & "EVR", "EHR", "CLM", "CRM", "WIND SP", "WIND SP", "WIND DIR", "WIND DIR",
     & "N-S", "E-W", "CON1", "CON2"/
      DO 99 I=1,80
         IL(I)=KLEN(TITLE(I))
   99 CONTINUE
      CALL INIT (IERR)
      IF (IERR.EQ.1) GOTO 190
  101 CALL MENU(ISUB)
   ISUB = NUMBER OF DESIRED SUBROUTINE
      GOTO (111,112,113,114,115,116,117,118,119,120,121,122,190),ISUB
  LOAD A DATA ARRAY
  111 CALL READA
      GO TO 150
C SUMMARY STATISTICS
  112 CALL STATS
      GO TO 150
 SCALE A ARRAY
  113 CALL SCALE
```

```
GO TO 150
  CLIP AN ARRAY
  114 CALL CLIP
      GO TO 150
  Detrend an array containing time series data
  115 CALL DETRND
      GO TO 150
C
  Perform band-pass filtering on an array
  116 CALL FILTER
      GO TO 150
  Write an array of data to the master data file (.DAT)
  117 CALL UPDATE
      GO TO 150
  DO FAST FOURIER TRANSFORM
  118 CALL DOFFT
      GO TO 150
  WRITE OUT RAW FFT COEFFICIENTS
  119 CALL FFTOUT
      GO TO 150
  COMPUTE CROSS-SPECTRAL PHASE AND COHERENCY
  120 CALL CROSPC
      GO TO 150
  Execute a macro command file
  121 CALL MACRO
      GO TO 150
C
  PLOT DATA
  122 CALL PLOTR
      GO TO 150
C
  LOOP BACK TO MENU CALL
  150 GO TO 101
  END OF JOB PROCESSING
  190 WRITE(1,200)
  200 FORMAT (" Goodbye...")
      STOP
  195 WRITE(1,210)
  210 FORMAT(" Error exit")
      STOP
      END
C
C-
C
      SUBROUTINE INIT(IERR)
   THIS ROUTINE IS CALLED ONCE, AT THE BEGINING OF THE PROGRAM AND
```

```
C FIRST PROMPTS THE USER FOR THE NAME OF THE DATA FILE. AFTER THE
C NAME IS "NORMALIZED" FOR EASE OF USE, THE DATA FILE (.DAT) IS OPENED
C FOR READING AND THE ACCOMPANYING HEADER (.HDR) AND SUMMARY STATISTICS
C FILES (.STS) ARE READ INTO THE CONTRL COMMON BLOCK
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
          IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
       INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
       REAL SMSTAT
       LOGICAL STCOMP
      CHARACTER*14 FILNAM, UPCASE, FILE2
      CHARACTER*8 TITLE
       REAL TEMP (80)
      CHARACTER*1 ANS
       IERR = \emptyset
      WRITE(1)12
  101 WRITE(1,200)
  200 FORMAT(" Simple Statistical Program v. 1.3",//,
         "What is the name of your data file? "$
      READ (INDEV, 210, ENDFILE=180, ERREXIT=180) FILNAM
  210 FORMAT (A0)
      FILNAM=UPCASE (FILNAM)
  Modify FILNAM to <filname>"." so that extenders can be added easily
  103 K=INDEX(".",FILNAM,(1))
      IF (K.NE.Ø) GO TO 105
      K=KLEN (FILNAM)
      CALL CONCAT (FILE2, FILNAM, ".")
      FILNAM=FILE2
      GO TO 103
  105 CALL SETLEN (FILE2, (0))
      CALL SETLEN (FILNAM, K)
      IL(81)=K
C OPEN HEADER FILE
      CALL CONCAT (FILE2, FILNAM, "HDR")
      IF(.NOT.IOLOOK((0),FILE2))GO TO 170
      IF (IOREAD ((6), (2), (0), FILE2)) GO TO 170
   FILE OPENED, SO READ IT AND ISSUE MESSAGE
      WRITE (1,215) FILE2
  215 FORMAT (" Reading ", AØ)
      READ (6,217) TAPENO, RECNO, TSNO, TPTRAK, HERTZ
  217 FORMAT(4110,F10.0)
      IF (HERTZ.EQ.Ø) HERTZ=4.Ø
  220 FORMAT(5110)
      READ (6,220) (TIME (I,1), I=1,5)
      READ(6,220) (TIME(1,2), I=1,5)
      READ(6,220) (ELTIME(I), I=1,3)
      READ (6,220) NSATT, NSGOOD
C
```

```
Everything but the scale factors has now been read, so attempt to
   open and read .DAT (data) and .STS (statistics) files
      CALL SETLEN (FILE2, (0))
      CALL CONCAT (FILE2, FILNAM, "DAT")
      IF (IORAND (2*NSATT, (2), (5), (0), FILE2)) GO TO 170
      CALL SETLEN (FILE2, (0))
      CALL CONCAT (FILE2, FILNAM, "STS")
      IF(.NOT.IOLOOK((Ø),FILE2))GO TO 113
C
   JUMP TO 113 IF FILE.STS DOES NOT EXIST, OTHERWISE READ IT AND THE
   NEW SCALE FACTORS FROM THE HEADER FILE
      IF (IOREAD ((7), (0), (0), FILE2)) GO TO 170
      READ(7) ((SMSTAT(I,J),I=1,5),J=1,80)
      IF(IOCLOS(7))GO TO 170
      STCOMP=.TRUE.
  113 READ (6,230) (TEMP (I), I=1,80)
  230 FORMAT(9(8F10.5,/),8F10.5)
      DO 107 I=1,80
          IF ((TEMP(I).NE.-9999.).AND. (TEMP(I).NE.\emptyset.\emptyset)) SMSTAT(5,I)=TEMP(I)
  107 CONTINUE
      RETURN
C
C
   ERROR HANDLING CODE FOR FILE I/O ERRORS
  170 WRITE(1,250)FILE2
  250 FORMAT(" ***Unable to open file ",A0)
      IERR=1
      RETURN
  180 WRITE(1,260)
  260 FORMAT (" ***Huh? Please try again")
      GO TO 101
      END
C
C-
      CHARACTER*14 FUNCTION UPCASE(X)
      CHARACTER*14 X
      INTEGER*1 KHAR,K
C Function to convert filenames to uppercase
      UPCASE=X
      DO 110 I=1,KLEN(X)
          K=KHAR(X,I)
          IF((K.GE.97).AND.(K.LE.122))CALL PUTCHR(UPCASE,I,K-32)
  110 CONTINUE
      CALL SETLEN (UPCASE, KLEN (X))
       RETURN
       END
C
C-
       SUBROUTINE MENU (ISUB)
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
```

```
IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*8 TITLE
      CHARACTER*14 FILNAM, FILE2
      COMMON A (4098,2)
      CHARACTER*6 SCALED
      CHARACTER*3 FFTED
      DATA NSUB/13/
  THIS SUBROUTINE DISPLAYS THE OPTIONS OPEN TO THE USER AND READS HIS CHOICE
   NSUB == NUMBER OF ACTIVE SUBROUTINES PLUS 1 (FOR STOP)
   START BY LISTING OUT AVAILABLE SUBROUTINES IN A NUMBERED MENU FORM
  101 WRITE(1,200)
  200 FORMAT(//," 1 Load a channel into an array",/,
          2 Summary statistics on one or all 80 channels",/,
     & " 3 Scale an array",/,
     & " 4 Extreme value smoothing (clipping)",/,
     & " 5 Detrend a time series",/,
     & " 6 High/Low/Band pass filter on a time series",/,
     & " 7 Write an array to the master data file",/,
     & " 8 Perform a Fast Fourier Transform",/,
     & " 9 Write raw FFT coefficients to a file",/,
     & " 10 Compute and write cross-spectral phase and coherency",/,
     & " 11 Execute a macro file",/,
     & " 12 Plot an array",/,
     & " 13 Quit",//)
C
C WRITE CONTENTS OF ARRAYS A & B (THE TWO HALVES OF TRUE ARRAY A),
   INDICATING THE STATUS OF EACH
      DO 105 I=1,2
         SCALED=" "
         FFTED=" "
         IF (CHINF (I,1).EQ.0) GO TO 103
         IF (CHINF(I,2).EO.1) SCALED="Scaled"
         IF (CHINF(I,3).NE.Ø)FFTED="FFT"
         CALL SETLEN(TITLE(CHINF(I,1)), IL(CHINF(I,1)))
         WRITE (1,210) I+64, CHINF (I,1), TITLE (CHINF (I,1)), SCALED, FFTED
         FORMAT(" Array ",Al,":",I3,2X,A0,4X,A0,4X,A0$
  210
         IF (CHINF(I,3).NE.Ø)WRITE(1,211)CHINF(I,3)
         FORMAT(2X, 13$
  211
         WRITE (1,212)
  212
         FORMAT(1X)
         GO TO 105
         WRITE(1,220) I+64
  103
         FORMAT(" Array ",Al,": Unused")
  22Ø
  105 CONTINUE
C
C NOW PROMPT FOR AND READ THE USER'S CHOICE, CHECKING TO SEE THAT IT
C IS IN THE VALID RANGE OF 1 TO NSUB
```

```
C
      WRITE (1,230)
  230 FORMAT(//," Enter option desired: "$
      READ (INDEV, 240, ENDFILE=180, ERREXIT=180) ISUB
      IF((ISUB.LE.Ø).OR.(ISUB.GT.NSUB))GO TO 180
  240 FORMAT(I0)
      WRITE(1)12
      RETURN
  18Ø WRITE(1)12
      WRITE(1,250) NSUB
  250 FORMAT(" ***Response must be an integer between 1 and ", 12,/,
     & " ***Please try again")
      GO TO 101
      END
C
C-
C
      SUBROUTINE STATS
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*8 TITLE
      CHARACTER*14 FILNAM, FILE2
      COMMON A (4098,2)
      CHARACTER*1 ANS
   THIS SUBROUTINE CONTROLS THE COMPUTATION AND WRITING OF SUMMARY STATISTICS,
   CHECKING TO AVOID UNNECESSARY RECOMPUTATION OF THE SAME.
   Ask whether statistics are wanted for all 80 channels or just for a
C single array
      WRITE(1,190)
  190 FORMAT (" Enter A or B for statistics on a single array or <CR>",
         " for all 80 channels "$
      READ (INDEV, 200) ANS
  200 FORMAT (A0)
      IF (ANS.EQ."") GO TO 101
C Statistics are wanted for only a single array, so get them from the
   ARRSTS array and display them to the screen, then return
C
       IARR=ICARD (ANS)
       IF((IARR.NE.1).AND.(IARR.NE.2))GO TO 180
      IF (CHINF (IARR, 1). EQ. Ø) GO TO 182
      WRITE (1,205) ANS, CHINF (IARR, 1), (ARRSTS (I, IARR), I=1,4)
  205 FORMAT(/," Array ",A0," Channel",I3,/," Min. = ",G15.8,/,
          " Max. = ",G15.8,/," Mean = ",G15.8,/," StDev.= ",G15.8,
          //," Hit <CR> to continue"$
      READ (INDEV, 200) ANS .
       RETURN
C
```

```
C Statistics have been requested for the entire data file, so open output
C file for tabular data on all 80 channels. If statistics have already
C been computed then do not recompute but merely write them out without
C affecting the .STS file (to do this, call WRTSTS with an argument of 1)
  101 CALL SETLEN (FILNAM, IL (81))
      CALL SETLEN(FILE2, (0))
      CALL CONCAT (FILE2, FILNAM, "OUT")
      IF(IOWRIT((8),(2),(0),FILE2))GO TO 184
      IF (STCOMP) GO TO 130
   COMPUTE THE STATISTICS, UPDATING THE SCREEN EACH ITERATION
C IN THE WRITE BEFORE THE LOOP (WITH FORMAT 210) THE FINAL CARRIAGE
C RETURN IS SUPPRESSED AND THEN IN LOOP, J10 AND J ARE THE TENS AND
C ONES DIGITS OF THE CURRENT CHANNEL. THEN THE UNFORMATTED WRITE SENDS
C TWO ASCII BACKSPACES (THE 8'S) FOLLOWED BY J10 AND J CONVERTED TO
C CHARACTER BY THE ADDITION OF AN ASCII '0' (48)
  103 WRITE(1,210)
  210 FORMAT(" Computing statistics for channel 01"$
      DO 105 I=1,80
         J10=I/10
         J=I-(J10*10)
         WRITE(1)8,8,J10+48,J+48
         CALL READCH(I,1)
         CALL COMSTS(I,1)
         DO 104 K=1.4
            SMSTAT(K,I) = ARRSTS(K,1)
  104
         CONTINUE
  105 CONTINUE
      CHINF(1,1) = \emptyset
C
   Stats are now computed, so write them to output file
      WRITE (1,220)
  220 FORMAT(/," Writing output file...")
      CALL WRTSTS ((0))
      STCOMP=.TRUE.
      IF(IOCLOS(8))GO TO 186
      RETURN
  130 WRITE(1,220)
   Write a new page of statistics without rewriting the .STS file
C
   (program branches here only if stats have already been calculated)
      CALL WRTSTS((1))
      IF(IOCLOS(8))GO TO 186
      RETURN
C Error messages
  180 WRITE(1,230)
  230 FORMAT(" ***Array designator must be either A or B")
      RETURN
```

```
182 WRITE(1,240) ANS
  240 FORMAT(" ***Array ", A0, " is empty")
      RETURN
  184 WRITE (1,250) FILE2
  250 FORMAT(" ***Unable to open ",A0)
      RETURN
  186 WRITE(1,260)FILE2
  260 FORMAT (" ***Unable to close ", A0)
      RETURN
      END
C
C
      SUBROUTINE COMSTS (ICHAN, IARR)
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*8 TITLE
      CHARACTER*14 FILNAM, FILE2
      COMMON A (4098,2)
      DOUBLE PRECISION SUM, SUMSQ, DBLE, DSQRT
      REAL MAX, MIN
C
C This sub computes the min, max, mean and standard deviation of channel
   ICHAN in array IARR
   Double precision variables are used to prevent real overflow in the
   sum and sum of squares variables
      MAX = -10.
      MIN=30000.
      SUM=0.0D0
      SUMSQ=0.0D0
      DO 103 J=1,NSGOOD
          IF (A (J, IARR) .LT.MIN) MIN=A (J, IARR)
          IF (A(J, IARR).GT.MAX)MAX=A(J, IARR)
          SUM=SUM + DBLE(A(J,IARR))
          SUMSQ=SUMSQ + DBLE(A(J,IARR)*A(J,IARR))
  103 CONTINUE
      ARRSTS (1, IARR) =MIN
      ARRSTS (2, IARR) = MAX
      ARRSTS (3, IARR) = SNGL (SUM/DBLE (FLOAT (NSGOOD)))
      ARRSTS(4,IARR)=SNGL(DSQRT((SUMSQ-SUM*SUM/DBLE(FLOAT(NSGOOD)))) /
           DBLE (FLOAT (NSGOOD-1))))
      ARRSTS (5, IARR) = SMSTAT (5, ICHAN)
      RETURN
       END
C
C-
C
      SUBROUTINE WRTSTS (IBOTH)
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
```

```
IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
       INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
       REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2
      CHARACTER*8 TITLE
      COMMON A (4098,2)
      DO 101 I=1,80
          CALL SETLEN(TITLE(I), IL(I))
  101 CONTINUE
   WRTSTS writes out the summary statistics in SMSTAT to the output file.
   If IBOTH is passed in as 1 then the .STS file will not be written.
C Start by writing out the title
      WRITE (8,200) ((TIME (I,J), I=1,3), J=1,2), NSATT, HERTZ
  200 FORMAT ("ISummary of Statistical Data for West Point Floating",
     & "Breakwater Project ",I2,"/",I2,"/",I2," to ",I2,"/",I2,"/",
     & I2,/," Number of samples per event = ",I4,5X,
     & " Sampling Rate = ",F4.2," hertz")
      WRITE(8,210) (ELTIME(I), I=1,3), TAPENO, RECNO, TSNO
  210 FORMAT(IX,I2," Days ",I2," Hrs. ",I2," Min. from beginning of tape",
     & " (All Min, Max values Measured from Zero Mean)",/,
     & " Tape Number ",13,/,
     & " 1 Minute Record Number ", 13, /, " Time Series Number ", 13,
     & ///,36X,"SUMMARY OF SCALE FACTORS",/)
   WRITE PAGE OF SCALE FACTORS AND TITLES
      DO 103 I=1,80,10
         WRITE(8,220)((J),J=I,I+9)
          FORMAT(/," CH.NO.",5X,10(I2,7X))
  220
         WRITE (8,230) (TITLE (J), J=I, I+9)
         FORMAT(" L CODE", 4X, 10 (A8, 1X))
  230
         WRITE(8,240) (SMSTAT(5,J),J=I,I+9)
         FORMAT(" SFACT.", 4X, 10 (F5.3, 4X))
  103 CONTINUE
   WRITE PAGE OF STATISTICS
      WRITE (8,250)
  250 FORMAT("1")
      DO 107 I=1,80,10
         WRITE(8,220)((J),J=I,I+9)
         WRITE (8,270) ((SMSTAT (2,J) -SMSTAT (3,J)) *SMSTAT (5,J), J=I,I+9)
         FORMAT(" MAX. ",1X,10(F8.3,1X))
  270
         WRITE (8,260) ((SMSTAT (1,J) -SMSTAT (3,J)) *SMSTAT (5,J), J=I,I+9)
  260
         FORMAT (" MIN.
                         ",1ØF9.3)
         WRITE (8,280) (SMSTAT (3,J) * SMSTAT (5,J), J=I, I+9)
         FORMAT (" MEAN ", 1X, 10 (F8.3, 1X))
  280
         WRITE (8,290) (SMSTAT (4,J) * SMSTAT (5,J), J=I, I+9)
         FORMAT (" STDEV.", 1X, 10 (F8.3, 1X))
  29Ø
  107 CONTINUE
C
```

```
C Write <file>.STS of unscaled summary statistics in binary form, if
C IBOTH !=1
      IF (IBOTH.EQ.1) RETURN
      CALL SETLEN (FILNAM, IL (81))
      CALL CONCAT (FILE2, FILNAM, "STS")
      IF(IOWRIT((7),(0),(0),FILE2))GO TO 180
      WRITE (7) ((SMSTAT (I,J), I=1,5), J=1,80)
      IF(IOCLOS(7))GO TO 180
      RETURN
  180 WRITE(1,300)FILE2
  300 FORMAT(" ***Unable to write file ",A0)
      RETURN
      END
C
C-
C
      SUBROUTINE READA
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*8 TITLE
      CHARACTER*14 FILNAM, FILE2
      COMMON A (4098,2)
      CHARACTER*1 ANS
C READA reads a channel, computes the statistics and pads the array out
  to NSATT samples, if necessary.
  101 WRITE(1,200)
  200 FORMAT (" What data channel do you want to load? (1-80) "$
      READ(INDEV, 210, ENDFILE=180, ERREXIT=180) ICHAN
  210 FORMAT (I0)
      IF((ICHAN.LE.0).OR.(ICHAN.GT.80))GO TO 180
  103 WRITE(1,220)
  220 FORMAT (" And into what array? (A/B) "$
      READ (INDEV, 230, ENDFILE=183, ERREXIT=183) ANS
  230 FORMAT (A0)
      IARR=ICARD (ANS)
      IF((IARR.NE.1).AND.(IARR.NE.2))GO TO 183
      WRITE(1,240) ICHAN, ANS
  240 FORMAT(/," Reading channel ",I2," into array ",Al,"...")
      CALL READCH (ICHAN, IARR)
C
  Compute summary stats for this channel to eliminate effect of earlier
   transformations. Hence whenever a channel is in memory, summary
   stats for it are available, whether or not STCOMP is set.
      IF (.NOT.STCOMP) CALL COMSTS (ICHAN, IARR)
      IF (.NOT.STCOMP) GO TO 105
         DO 104 I=1,5
             ARRSTS (I, IARR) = SMSTAT (I, ICHAN)
```

```
104
         CONTINUE
C
C PAD ARRAY WITH MEAN VALUE (NULL LOOP IF # OF GOOD SAMPLES IS EQUAL
C TO # OF SAMPLES ATTEMPTED)
  105 DO 109 I=NSGOOD+1.NSATT
         A(I, IARR) = SMSTAT(3, ICHAN)
  109 CONTINUE
C
   REINITIALIZE CHANNEL INFORMATION ARRAY
      CHINF (IARR, 1) = ICHAN
      CHINF (IARR, 2) = \emptyset
      CHINF (IARR, 3) = \emptyset
      RETURN
C
 Error messages
  180 WRITE(1,250)
  250 FORMAT(/," ***Channel number must be an integer from 1 to 80,",
     & " please try again",/)
      GO TO 101
  183 WRITE(1,260)
  260 FORMAT(/," ***Array descriptor must be either A or B, please",
     & " try again",/)
      GO TO 103
      END
C
      SUBROUTINE PLOTR
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      COMMON/NOPLOT/PLOTP
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*8 TITLE
      CHARACTER*14 FILNAM, FILE2
      COMMON A (4098,2)
      COMPLEX B (2049,2)
      EQUIVALENCE (A,B)
      CHARACTER*1 ANS
      CHARACTER*3 TAIL
      LOGICAL PLOTP
     THIS ROUTINE IS MAINLY A PLACE KEEPER, REFLECTING THE CURRENT LACK
 OF PLOTTING SOFTWARE COMPATIBLE WITH SS FORTRAN. INSTEAD OF ACTUALLY
  DOING ANY PLOTTING, THE SELECTED DATA ARE WRITTEN OUT IN ASCII WITH A
  CONTROL RECORD ON TOP, IN A FORMAT THAT CAN BE READ BY THE F80 PROGRAM
  "PLOTR" WHICH IS ABLE TO ACCESS THE PLOTTER DIRECTLY.
      WRITE (1,200)
 200 FORMAT(" Plotting routine is not active, data will be written on",
```

```
& /," a file compatible with PLOTR",/)
 101 WRITE(1,210)
 210 FORMAT (" Which array do you want to plot? (A/B) "$
      READ (INDEV, 220) ANS
 220 FORMAT (AØ)
      IARR=ICARD (ANS)
      IF((IARR.NE.1).AND.(IARR.NE.2))GO TO 170
  PUT "CXX" INTO TAIL, WHERE XX IS THE CHANNEL NUMBER BEING PLOTTED
  AND THEN CONCATENATE THIS TO FILE2 TO FORM THE NAME OF THE FILE THAT
  THE DATA WILL BE WRITTEN ON
  FILE EXTENDER IS FXX FOR PLOTS OF FFT COEFFICIENTS
 103 CALL SETLEN (FILNAM, IL (81))
      CALL PUTCHR(TAIL, (1), (67#))
      IF (CHINF (IARR, 3) .NE.0) CALL PUTCHR (TAIL, (1), (70#))
      CALL PUTCHR(TAIL, (2), INT1 (CHINF (IARR, 1)/10 + 48))
      CALL PUTCHR (TAIL, (3), INT1 (MOD (CHINF (IARR, 1), 10) + 48))
      CALL SETLEN(TAIL, (3))
      CALL CONCAT (FILE2, FILNAM, TAIL)
      IF(IOWRIT((10),(2),(0),FILE2))GO TO 172
      CALL SETLEN(TITLE(CHINF(IARR,1)), IL(CHINF(IARR,1)))
      IF (CHINF (IARR, 3) .NE.0) GO TO 120
  FFT COEFFICIENTS MUST BE HANDLED DIFFERENTLY THAN RAW DATA, SO IF
  THE ARRAY HAS BEEN TRANSFORMED PROCCESSING JUMPS TO LINE 120.
  NOW THAT ONLY RAW DATA REMAINS, ASK ABOUT PLOTTING PARAMETERS.
      NPLOT=NSGOOD
  104 WRITE(1,232) NSGOOD
  232 FORMAT (" How many points do you want plotted? (max of ",I4,")"$
      READ (INDEV, 233) NPLOT
  233 FORMAT (IØ)
      IF (NPLOT.GT.0) GO TO 1047
         NPLOT=NSGOOD
         WRITE (1,234) NPLOT
         FORMAT(" Assuming ", I4, " points")
  234
 1047 IF (NPLOT.GT.NSGOOD) GO TO 104
      WRITE(1,235) NSGOOD-NPLOT+1
  235 FORMAT (" Starting at what point? (max of ",14,")"$
      READ (INDEV, 233) NSTART
      IF (NSTART.EQ.0) NSTART=1
      IF((NSTART.LT.0).OR.(NSTART+NPLOT-1.GT.NSGOOD))GO TO 104
C NOW THAT PLOTTING RANGES HAVE BEEN ESTABLISHED, WRITE THE DATA
  But if PLOTP is true and standard deviation is near zero,
   skip the plotting and return.
      IF (PLOTP.AND. (ARRSTS (4, IARR).LT.0.001)) GO TO 190
      WRITE(1,240)FILE2
  240 FORMAT (" Writing data to ",A0,"...")
      WRITE(10,250)0,CHINF(IARR,1),TITLE(CHINF(IARR,1)),NPLOT
  250 FORMAT (1X, I1, I4, A8, 2X, I5)
      DO 105 I=NSTART, NSTART+NPLOT
         WRITE(10,260)FLOAT(I)/HERTZ, A(I,IARR)
```

```
260
         FORMAT(1X,F9.4,1X,F15.8)
  105 CONTINUE
      IF (IOCLOS (10)) GO TO 175
      WRITE(1,270)
  270 FORMAT (" Writing finished")
      RETURN
  ERROR HANDLING CODE
  170 WRITE(1,280)
  280 FORMAT(" ***Array designator must be either A or B, please try again")
      GO TO 101
  172 WRITE (1,290) FILE2
  290 FORMAT (" ***Unable to open ", A0)
      RETURN
  175 WRITE(1,300)FILE2
  300 FORMAT(" ***Unable to close ",A0)
      RETURN
  190 WRITE(1,305)
  305 FORMAT(///, " ***Plotting suppressed because of zero standard deviation")
      I=IOCLOS(10)
      I=IODEL(Ø,FILE2)
      RETURN
  CODE FOR WRITING FFT COEFFICIENTS IN ARRAY B VERSUS FREQUNCY
  FIRST DETERMINE THE UPPER AND LOWER PLOTTING LIMITS
  120 DELTAF=HERTZ/FLOAT (NSATT)
      WRITE(1,310)
  310 FORMAT (" Enter the lower frequency bound for plotting",
     & " (hit <CR> for Ø Hz) "$
      READ (INDEV, 320) FROLOW
  320 FORMAT (F0.0)
      IF (FRQLOW.LT.Ø.Ø) FRQLOW=Ø.Ø
      WRITE(1,330) HERTZ/FLOAT(2*CHINF(IARR,3))
  330 FORMAT(" Enter the upper bound (hit <CR> for ",F4.2," Hz) "$
      READ (INDEV, 320) FROHI
      IF ((FRQHI.EQ.Ø.Ø).OR.(FRQHI.GT.HERTZ/FLOAT(2*CHINF(IARR,3))).OR.
          (FRQHI.LE.FROLOW))FRQHI=HERTZ/FLOAT(2*CHINF(IARR,3))
      IF (FRQLOW.GE.FROHI) FROLOW=Ø.
      NCOEFF=MINØ(NSATT, 2048)/2*CHINF(IARR, 3)
      NLOW=MAXØ (INT (FRQLOW/DELTAF),1)
      NHIGH=MINØ(INT(FRQHI/DELTAF),NCOEFF)
C DELTAF == DIFFERENCE IN FREQUENCY BETWEEN TWO ELEMENTS IN ARRAY B
   NCOEFF == TOTAL NUMBER OF RAW FFT COEFFICIENTS IN B
          == ARRAY SUBSCRIPT FOR FIRST POINT TO BE PLOTTED
   NHIGH == ARRAY SUBSCRIPT FOR LAST POINT TO BE PLOTTED
      WRITE (1,331)
  331 FORMAT(" Do you want the spectrum smoothed for plotting? (Y/N)"$
  If smoothing is selected, data will be "block smoothed" with a window
  of 16. With no smoothing, all coefficients will be written out.
```

```
C
      READ (INDEV, 220) ANS
      IF(PLOTP.AND.(ARRSTS(4,IARR).LT.0.001))GO TO 190
      WRITE(1,340) FRQLOW, FRQHI
  340 FORMAT (" Plotting from ",F6.3,"Hz to ",F6.3,"Hz")
      WRITE(1,240)FILE2
      IF((ANS.NE."Y").AND.(ANS.NE."Y"))GO TO 123
      NHIGH=MINØ(NHIGH,NCOEFF-15)
      WRITE (10,250) 2, CHINF (IARR,1), TITLE (CHINF (IARR,1)), (NHIGH+15-NLOW)/16
      AREA=0.
      DO 122 I=NLOW, NHIGH, 16
         SUM=0.0
         DO 121 J=I,I+15
             SUM=SUM+CABS (B (J, IARR) ) *CABS (B (J, IARR) )
  121
         CONTINUE
         SUM=SUM*2.0*FLOAT (NSATT) /HERTZ
         WRITE(10,260)FLOAT(I+7)*DELTAF,SUM/16.
         AREA=AREA+SUM
  122 CONTINUE
      AREA=AREA*DELTAF
      WRITE(1,345) AREA
  345 FORMAT (" Approximate area under plotted curve is ",E15.6," square units")
      GO TO 105
C
   Code for writing unsmoothed coefficients
C
  123 WRITE(10,250)2,CHINF(IARR,1),TITLE(CHINF(IARR,1)),NHIGH-NLOW+1
      DO 124 I=NLOW, NHIGH
         WRITE (10,260) FLOAT (I) *DELTAF,
                CABS (B(I, IARR)) *CABS (B(I, IARR)) *2.0*FLOAT (NSATT) /HERTZ
  124 CONTINUE
      GO TO 105
      RETURN
      END
C
C-
      SUBROUTINE DOFFT
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
          IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
       INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
       REAL SMSTAT
       LOGICAL STCOMP
       CHARACTER*14 FILNAM, FILE2
      CHARACTER*8 TITLE
      COMMON A (4098,2)
      COMPLEX B (2049,2)
       EQUIVALENCE (A,B)
       CHARACTER*1 ANS, ANS2
       REAL MEAN
       COMPLEX CMPLX
       LOGICAL POWOF2
   THIS IS THE DRIVER ROUTINE THAT PROMPTS FOR INPUT AND CALLS THE ACTUAL
```

```
FFT SUBROUTINE
C THE ARRAY B IS EQUIVALENCED TO A AND CONTAINS THE SAME DATA, BUT IN
C COMPLEX FORM. THE DATA ARE LEFT IN THIS FORM AFTER THE END OF THE
C ROUTINE AND MUST BE ACCESSED AS COMPLEX SUBSEQUENTLY.
   95 WRITE(1,200)
  200 FORMAT (" Which array do you wish to transform? (A/B) "$
      READ (INDEV, 210) ANS
  210 FORMAT (A0)
      IARR=ICARD (ANS)
      IF((IARR.NE.1).AND.(IARR.NE.2))GOTO 170
      IF (CHINF (IARR, 1).EQ.Ø) GO TO 172
      IF (CHINF (IARR, 3) .NE.0) GO TO 175
      WRITE(1,211)
  211 FORMAT(" If you want only a sub-range transformed, enter the beginning",/
     & , " and ending points, otherwise hit return "$
      READ (INDEV, 212) IBEG, IEND
  212 FORMAT (210)
      IF((IEND.LE.0).OR.(IBEG.LE.0))GO TO 96
C Move sub-range up to front of array, set rest of the array to the mean
   value of the subrange, convert to complex and go
         DO 951 I=1,IEND-IBEG+1
             A(I,IARR) = A(I+IBEG-1,IARR)
  951
         CONTINUE
         I=NSGOOD
         NSGOOD=IEND-IBEG+1
         CALL COMSTS (CHINF (IARR, 1), IARR)
         MEAN=ARRSTS (3, IARR)
         NSGOOD=I
         DO 952 I= IEND-IBEG+1,1,-1
             B(I,IARR) = CMPLX(A(I,IARR) - MEAN,0.0)
  952
         CONTINUE
         DO 953 I=IEND-IBEG+2,NSATT
            B(I,IARR) = (\emptyset.\emptyset,\emptyset.\emptyset)
  953
         CONTINUE
         CHINF (IARR, 3) =1
         NB=MINØ (NSATT, 2048)
         GO TO 100
   96 WRITE(1,219)
  219 FORMAT(" Hit <CR> for a full FFT, or n (any power of 2) for every ",
         "nth point "$
      READ (INDEV, 218) CHINF (IARR, 3)
  218 FORMAT(IØ)
      IF (CHINF (IARR, 3) .LE.Ø) CHINF (IARR, 3) =1
      IF (POWOF2 (CHINF (IARR, 3))) GO TO 965
         WRITE (1,217) CHINF (IARR,3)
  217
         FORMAT(1X, 15, " is not a power of 2, please try again")
         GO TO 96
C Remove mean from array and change to complex format before doing transform
  965 WRITE (1,220) ANS
```

```
220 FORMAT (" Removing mean from array ", A0)
      MEAN=ARRSTS (3, IARR)
      NB=MINØ(NSATT, 2048)/CHINF(IARR, 3)
      IF (CHINF (IARR, 3).EQ.1) GO TO 98
      DO 97 I=1.NB
         B(I,IARR) = CMPLX(A(CHINF(IARR,3)*I,IARR) - MEAN, 0.0)
  97 CONTINUE
      GO TO 100
  98 DO 99 I=NB,1,-1
         B(I,IARR) = CMPLX(A(I,IARR) - MEAN , \emptyset.\emptyset)
   99 CONTINUE
  100 WRITE(1,230)
  230 FORMAT (" Computing transform...")
      CALL FFT(IARR, NB,-1)
      RETURN
  Error messages
  170 WRITE (1,240) ANS
  240 FORMAT(" ***Array designator must be either A or B, please",
     & " try again")
      GO TO 95
  172 WRITE(1,245) ANS
  245 FORMAT(" ***Array ",Al," is empty")
      RETURN
  175 WRITE (1,250) ANS
  250 FORMAT(" ***Array ",Al," has already been transformed")
      RETURN
      END
C
C
      LOGICAL FUNCTION POWOF2(I)
   This function determines returns true if I is a power of 2
C
      N = I
      POWOF2= .TRUE.
      IF (N.EQ.Ø) RETURN
  101 IF (N.LE.1) RETURN
      IF (MOD(N,2).NE.Ø)GO TO 199
      N=N/2
      GO TO 101
  199 POWOF2= .FALSE.
      RETURN
       END
C
C-
C
       SUBROUTINE SCALE
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
          IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
     INTEGER NSATT, NSGGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
     REAL SMSTAT
```

```
LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2
      CHARACTER*8 TITLE
      COMMON A (4098,2)
      CHARACTER*1 ANS
      DOUBLE PRECISION DBLE, SCFACT
C
  THIS ROUTINE SCALES A CHANNEL IN ARRAY A BY ITS SCALE FACTOR.
   THE SUMMARY STATS IN ARRSTS ARE CHANGED AND SO THE MIN, MAX
   MEAN AND STANDARD DEVIATION NEED NOT BE SCALED FOR ANY FUTURE USE.
  101 WRITE(1,200)
  200 FORMAT (" Which array do you want to scale (A/B)? "$
      READ (INDEV, 210) ANS
  210 FORMAT (A0)
      IARR=Ø
      IF ((ANS.EQ."A").OR. (ANS.EQ."a")) IARR=1
      IF ( (ANS.EQ. "B") .OR. (ANS.EQ. "b") ) IARR=2
      IF (IARR.EQ.Ø)GO TO 170
C
C Check to see if the array has already been scaled or is empty
      IF (CHINF (IARR, 2).EQ.1) GO TO 175
      IF (CHINF (IARR, 1).EQ.Ø) GO TO 180
      WRITE (1,215) ANS
  215 FORMAT(" Scaling array ",A0,"...")
      SCFACT=DBLE (ARRSTS (5, IARR))
      DO 105 I=1,NSATT
         A(I,IARR) = SNGL(SCFACT*DBLE(A(I,IARR)))
  105 CONTINUE
      CHINF(IARR, 2) = 1
   Scale the summary statistics
      DO 106 I=1,4
         ARRSTS (I, IARR) = ARRSTS (I, IARR) * ARRSTS (5, IARR)
  106 CONTINUE
      RETURN
C
C
  Error messages
  170 WRITE(1,220)
  220 FORMAT(" ***Array designator must be either A or B, please try again")
      GO TO 101
  175 WRITE (1,230) ANS
  230 FORMAT(" ***Array ", A0," has already been scaled")
      RETURN
  180 WRITE (1,240) ANS
  240 FORMAT (" ***Array ", A0, " is empty")
      RETURN
      END
C
C-
C
      SUBROUTINE FFTOUT
```

```
COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2, UPCASE
      CHARACTER*8 TITLE
      COMMON A (4098,2)
      COMPLEX B (2049,2)
      EOUIVALENCE (A,B)
      CHARACTER*1 ANS
   THIS ROUTINE ALLOWS THE USER TO CREATE A DISK FILE CONTAINING FFT
  COEFFICIENTS IN RAW BINARY FORM
С
  101 WRITE(1,200)
  200 FORMAT (" Which array of coefficients do you want to output? (A/B) "$
      READ (INDEV, 210) ANS
  210 FORMAT (A0)
      IARR=ICARD (ANS)
      IF((IARR.NE.1).AND.(IARR.NE.2))GO TO 180
      IF (CHINF (IARR, 3).EQ.Ø) GO TO 182
      WRITE (1,220)
  220 FORMAT(" On what file? "$
      READ (INDEV, 210) FILE2
      FILE2=UPCASE (FILE2)
      IF(IOLOOK(Ø,FILE2))GO TO 184
  103 IF(IOWRIT(11,0,0,FILE2))GO TO 186
      WRITE(1,230)FILE2
  230 FORMAT(" Writing data to ",A0,"...")
      WRITE(11)(B(I,IARR),I=1,NSATT/(2*CHINF(IARR,3)))
      IF(IOCLOS(11))GO TO 188
      RETURN
C
   ERROR HANDLING CODE
  180 WRITE(1,240)
  240 FORMAT(" ***Array designator must be either A or B, please try again")
      GO TO 101
  182 WRITE (1,245) ANS
  245 FORMAT(" ***Array ",AØ," has not been transformed")
      RETURN
  184 WRITE(1,250)FILE2
  250 FORMAT(" *** ",A0," already exists, do you want it deleted? (Y/N) "$
      READ (INDEV, 210) ANS
      IF((ANS.EQ."Y").OR.(ANS.EQ."y"))GO TO 103
      RETURN
  186 WRITE(1,260)FILE2
  260 FORMAT (" ***Unable to open ", A0)
      RETURN
  188 WRITE(1,270)FILE2.
  270 FORMAT(" ***Unable to close "A0)
      RETURN
      END
```

```
C
C-
      SUBROUTINE CROSPC
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
          IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2, UPCASE, FILE3
      CHARACTER*8 TITLE
      COMMON A (4098,2)
      CHARACTER*1 ANS
      COMPLEX B (2049,2)
      EQUIVALENCE (A,B)
      COMPLEX CRSPEC, CONJG, CMPLX, CTEMP (32), AVG
      REAL PHASE, COHERE
      DOUBLE PRECISION DBLE, DSQRT
   COMPUTES CROSS SPECTRAL JUNK WITH THE TWO ARRAYS OF FFT COEFFICIENTS IN B
C
      IF ((CHINF(1,3).EQ.\emptyset).OR. (CHINF(2,3).EQ.\emptyset).OR.
          (CHINF(1,3).NE.CHINF(2,3)))GO TO 170
  101 WRITE(1,200)
  200 FORMAT(" Enter an averaging window size (hit <CR> for 16) "$
      READ (INDEV, 210) NWIN
  210 FORMAT (I0)
      IF (NWIN.EQ.Ø) NWIN=16
      IF (NWIN.LT.8) GO TO 172
      IF (NWIN.GT.32) GO TO 101
C NFREO == # OF FREOUENCIES AT WHICH COMPUTATION WILL TAKE PLACE
      NFREQ=NSATT/(2*NWIN)
  102 WRITE(1,225)
  225 FORMAT (" What file do you want the data written to? "$
  104 READ(INDEV, 230) FILE2
  230 FORMAT (A0)
      FILE2=UPCASE (FILE2)
      IF(IOLOOK(Ø,FILE2))GO TO 174
  105 IF(IOWRIT(12,2,0,FILE2))GO TO 176
  115 DELTAF=(HERTZ/FLOAT(NSATT))*FLOAT(NWIN)
      WRITE(1,220)
  220 FORMAT (" Computing cross-spectral phase and coherency...")
      WRITE(12,240)1,CHINF(1,1)," X spec ",NFREQ
  240 FORMAT (1X, I1, I4, A7, 3X, I5)
      WRITE (12,250) CHINF (2,1)
  250 FORMAT (1X, 15)
      DO 109 I=1,NFREQ
         J=(I-1)*NWIN+1
         FREO=DELTAF*I
         S1=AVGMAG(B(J,1),NWIN)
         S2=AVGMAG(B(J,2),NWIN)
         DO 107 K=1,NWIN
             CTEMP (K) =B (J+K-1,1) *CONJG (B (J+K-1,2))
```

```
107
          CONTINUE
          CRSPEC=AVG (CTEMP, NWIN)
          PHASE=CATAN (AIMAG (CRSPEC), REAL (CRSPEC))
          COHERE=SNGL (DBLE (REAL (CRSPEC)) *DBLE (REAL (CRSPEC)) +
             DBLE (AIMAG (CRSPEC) ) *DBLE (AIMAG (CRSPEC) ) ) / (S1*S2)
     &
          WRITE (12,260) FREQ, PHASE, COHERE
          FORMAT(1X,F9.4,1X,2G15.8)
  260
  109 CONTINUE
       IF (IOCLOS (12)) GO TO 178
       RETURN
C ERROR HANDLING CODE
  170 WRITE (1,280)
  280 FORMAT(" *** Both arrays must be identically transformed first")
       RETURN
  172 WRITE (1,290)
  290 FORMAT(" *** Window sizes less than 8 not supported, please try again")
       GO TO 101
  174 WRITE(1,300)FILE2
  300 FORMAT(" *** ",A0," already exists, do you want it deleted? (Y/N)"$
       READ (INDEV, 230) ANS
       IF ((ANS.EQ."Y").OR. (ANS.EQ."y"))GO TO 105
       GO TO 109
  176 WRITE (1,310) FILE2
  310 FORMAT(" ***Unable to open ", A0)
       GO TO 102
       RETURN
  178 WRITE(1,320)FILE2
  320 FORMAT(" ***Unable to close ",A0)
       RETURN
       END
C
C-
C
       FUNCTION CATAN(Y,X)
C
   ATAN2 FUNCTION THAT RETURNS AN ANGLE IN DEGREES AND DOES NOT DIE
   ON AN INFINITE TANGENT
       CATAN=0.0
       IF ((X.EQ.\emptyset.\emptyset).AND.(Y.GE.\emptyset.\emptyset))CATAN=90.
       IF ((X.EQ.\emptyset.\emptyset).AND.(Y.LT.\emptyset.\emptyset))CATAN=-9\emptyset.
       IF (CATAN.EQ.0.0) CATAN=ATAN2 (-Y,X) * 57.29577951
       RETURN
       END
C
C-
C
       COMPLEX FUNCTION AVG (ARR, N)
C
   AVG RETURNS THE AVERAGE OF ELEMENTS 1 THROUGH N OF THE COMPLEX ARRAY ARR
       COMPLEX ARR (N), CMPLX
       AVG=CMPLX(\emptyset.\emptyset,\emptyset.\emptyset)
```

```
DO 101 I=1.N
         AVG=AVG+ARR(I)
  101 CONTINUE
      AVG=CMPLX (REAL (AVG) /FLOAT (N) , AIMAG (AVG) /FLOAT (N))
      RETURN
      END
C
C-
C
      FUNCTION AVGMAG (ARR, N)
C
   AVGMAG RETURNS THE AVERAGE OF THE SOUARES OF THE MAGNITUDES
   OF ELEMENTS 1 THROUGH N OF THE COMPLEX ARRAY ARR
      COMPLEX ARR(N)
      DOUBLE PRECISION DBLE, DSUM, DR, DI, DSQRT
      DSUM=0.D0
      DO 101 I=1,N
         DR=DBLE(REAL(ARR(I)))
         DI=DBLE(AIMAG(ARR(I)))
         DSUM=DSUM + DR*DR + DI*DI
  101 CONTINUE
      AVGMAG=SNGL (DSSUM/DBLE (FLOAT (N)))
       RETURN
       END
 C
 C-
 C
       SUBROUTINE CLIP
 C
    This routine "clips" a data channel, setting all data values that are
 C
    outside of a given range to the appropriate value on the straight line
    between the two good values on either side of the clipped range.
       COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
          IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
       INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
       REAL SMSTAT
       LOGICAL STCOMP
       CHARACTER*14 FILNAM, FILE2
       CHARACTER*8 TITLE
       COMMON A (4098,2)
       CHARACTER*1 ANS
       REAL MAXVAL, MINVAL
   101 WRITE(1,200)
   200 FORMAT(" Which array do you want to clip? (A/B) "$
       READ (INDEV, 210) ANS
   210 FORMAT (A0)
       IARR=ICARD (ANS)
       IF((IARR.NE.1).AND.(IARR.NE.2))GO TO 180
       IF (CHINF (IARR, 1).EQ.0)GO TO 181
       IF (CHINF (IARR, 2) . EQ. Ø) GO TO 182
       IF (CHINF (IARR, 3) .NE.0) GO TO 184
       WRITE (1,220)
```

```
220 FORMAT(" Enter the maximum allowable value (<CR> for no clipping) "$
      READ (INDEV, 230) MAXVAL
 230 FORMAT (F0.0)
      IF (MAXVAL.EQ.Ø.Ø) MAXVAL=1.ØE3Ø
      WRITE(1,240)
 240 FORMAT(" Enter the minimum allowable value (<CR> for no clipping) "$
      READ (INDEV, 230) MINVAL
      IF (MINVAL .EQ. \emptyset.) MINVAL = -1.\emptysetE3\emptyset
      WRITE(1,250)CHINF(IARR,1),MINVAL,MAXVAL
 250 FORMAT (" Clipping values in channel ",I2," outside (",F7.4,",",
     & F7.4,") OK? (Y/N)"$
      READ (INDEV, 210) ANS
      IF((ANS.NE."Y").AND.(ANS.NE."y"))RETURN
  Clip the first point as a special case
      IF (A(1, IARR).GT.MAXVAL) A(1, IARR) = AMIN1 (MAXVAL, A(2, IARR))
      IF (A(1, IARR) .LT.MINVAL) A(1, IARR) =AMAX1 (MINVAL, A(2, IARR))
C
   Now clip the rest of the time series
      WRITE(1,131) NSATT
      FORMAT(" Series contains ", I4, " points")
131
      DO 105 I = 2, NSATT
                   = A(I,IARR)
         Al
         A2
                   = A(I+1, IARR)
   Test to see if only a single, isolated value is wild
         IFLAG
                   = \emptyset
         IF((Al .GT. MAXVAL) .AND. (A2 .GT. MAXVAL)) IFLAG = 1
         IF((Al .LT. MINVAL) .AND. (A2 .LT. MINVAL)) IFLAG = 2
         IF (IFLAG .NE. Ø) GOTO 108
   If only single value is wild then set it to the average of its neighbors
   and loop back to the next point
         IF (A (I, IARR) .GT.MAXVAL) A (I, IARR) = AMIN1 (MAXVAL,
             (A(I-1,IARR)+A(I+1,IARR))/2.)
     &
          IF (A (I, IARR) .LT.MINVAL) A (I, IARR) = AMAX1 (MINVAL,
             (A(I-1,IARR)+A(I+1,IARR))/2.)
     &
         GOTO 105
C We now know that multiple sequential points are bad, so first search
  for the next good point and put its subscript in K.
 108
           K = I
 109
           K = K+1
           IF (K .GT. NSATT) GOTO 105
           IF(IFLAG .EQ. 2) GOTO 110
           IF (A (K, IARR) .GT. MAXVAL) GOTO 109
           GOTO 111
           IF (A (K, IARR) .LT. MINVAL) GOTO 109
 11Ø
C Now determine the line between the two good points. Actually determine
```

```
C the increment that needs to be added to each successive point in order
C to form a straight line and store this in DEL.
 111
           ALOW = A(I-1,IARR)
           AUP = A(K,IARR)
          DEL = (AUP - ALOW)/FLOAT(K-I+1)
          WRITE(1,132) I,K
 132
          FORMAT(' Clipping pts. ',I4,' to ',I4)
C
C Now do the actual clipping, assigning the spurious points the
C calculated straight line interpolation.
          DO 116 J = I K
              A(J,IARR) = ALOW + DEL*FLOAT(J-I+1)
116
          CONTINUE
           I = K
105
      CONTINUE
  Clipping all done now, so compute statistics and go home
      CALL COMSTS (CHINF (IARR, 1), IARR)
      RETURN
C Error messages
  18Ø WRITE(1,28Ø)
  280 FORMAT(" ***Array designator must be either A or B, please try again")
      GO TO 101
  181 WRITE (1,285) ANS
  285 FORMAT(" *** Array ",AØ," is empty")
      RETURN
  182 WRITE (1,290) ANS
  290 FORMAT(" ***Array ", A0, " has not been scaled")
      RETURN
  184 WRITE (1,300) ANS
  300 FORMAT (" ***Array ", A0," contains raw Fourier coefficents")
      RETURN
      END
C
      SUBROUTINE READCH (ICHAN, IARR)
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2
      CHARACTER*8 TITLE
      COMMON A (4098,2)
C
   READCH reads channel ICHAN into array IARR
C
      READ (5/ICHAN) ITEMP
```

```
A(1, IARR) = FLOAT (ITEMP)
      DO 101 I=2,NSGOOD
         READ(5) ITEMP
         A(I,IARR)=FLOAT(ITEMP)
  101 CONTINUE
      RETURN
      END
C
C-
C
      FUNCTION ICARD (CHAR)
   Computes numeric value of characters, e.g. 'A'='a'=1, 'B'='b'=2, etc.
      INTEGER*1 TINT,KHAR
      CHARACTER*1 CHAR
      TINT=KHAR(CHAR,1) - KHAR("A",1) + 1
      IF (TINT.GT.26) TINT=KHAR(CHAR,1) - KHAR("a",1) + 1
      ICARD=TINT
      RETURN
      END
C
C-
      SUBROUTINE DETRND
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2
      CHARACTER*8 TITLE
      COMMON A (4098,2)
      CHARACTER*1 ANS
      REAL MEAN
C This subroutine computes and subtracts from the series in A either
  the series mean or the least squares straight line
  101 WRITE(1,200)
  200 FORMAT (" Which array do you want to detrend? (A/B) "$
      READ (INDEV, 210) ANS
  210 FORMAT (A0)
       IARR=ICARD (ANS)
       IF((IARR.NE.1).AND.(IARR.NE.2))GO TO 180
      IF ((CHINF (IARR, 1).EQ.0).OR. (CHINF (IARR, 3).NE.0))GO TO 182
      WRITE(1,220)
  220 FORMAT (" Enter 0 to remove the mean or 1 to remove the least ",
          "squares straight line "$
      READ (INDEV, 230) K
  230 FORMAT(IØ)
       IF(K.EQ.1)GO TO 105
       IF (K.NE.Ø) GO TO 184
C
```

```
C
 MEAN REMOVAL CODE
      DO 103 I=1,NSATT
         A(I,IARR) = A(I,IARR) - ARRSTS(3,IARR)
  103 CONTINUE
      CALL COMSTS (CHINF (IARR, 1), IARR)
      RETURN
C
C
  Code for least squares line removal
  105 SUMX=0.0
      SUMY=0.0
      SUMXY=0.0
      SUMX2=0.0
      SUMY2 = \emptyset.\emptyset
      DO 107 I = 1, NSATT
         XI = .25 * FLOAT(I-1)
         YI = A(I,IARR)
         SUMX = SUMX + XI
         SUMY = SUMY + YI
         SUMXY=SUMXY + XI*YI
          SUMX2=SUMX2 + XI*XI
         SUMY2=SUMY2 + YI*YI
 107
      CONTINUE
      SXX = SUMX2 - SUMX * SUMX / FLOAT(NSATT)
      SXY = SUMXY - SUMX * SUMY / FLOAT (NSATT)
      SYY = SUMY2 - SUMY * SUMY / FLOAT (NSATT)
      BB = SXY / SXX
      AA = (SUMY - BB* SUMX) / FLOAT (NSATT)
C
      DO 109 I = 1, NSATT
         XI = .25*FLOAT(I-1)
          A(I,IARR) = A(I,IARR) - (AA + BB*XI)
  109 CONTINUE
      CALL COMSTS (CHINF (IARR, 1), IARR)
      RETURN
C
  Error processing
  180 WRITE(1,240)
  240 FORMAT(" ***Array designator must be either A or B, please try "
          "again")
      GO TO 101
  182 WRITE(1,250) ANS
  250 FORMAT(" ***Array ", A0, " does not contain time series data")
      RETURN
  184 WRITE(1,260)
  260 FORMAT(" ***Detrending polynomial order must be either 0 or 1")
      RETURN
      END
C
C-
C
      SUBROUTINE FFT (IARR, NB, IFL)
```

```
COMMON B (2049,2)
      COMPLEX B
      COMPLEX U,W,T,CMPLX
   THIS ROUTINE IS TAKEN FROM "AN ITRODUCTION TO RANDOM VIBRATIONS AND
С
   SPECTRAL ANALYSIS" BY D.E. NEWLAND, 1975.
   IFL = -1 MEANS FORWARD TRANSFORM, IFL=+1 MEANS REVERSE TRANSFORM
      IF(IFL.GT.0)GO TO 107
      T=CMPLX (FLOAT (NB), Ø.)
      DO 101 J=1,NB
          B(J,IARR) = B(J,IARR) /T
  101 CONTINUE
  107 \text{ N=INT}(ALOG(FLOAT(NB))/ALOG(2.) + .05)
      NBD2=NB/2
      NBM1=NB-1
      J=1
      DO 104 L=1,NBM1
          IF(L.GE.J)GO TO 102
         T=B(J,IARR)
         B(J,IARR) = B(L,IARR)
         B(L,IARR) = T
  102
         K=NBD2
  103
         IF (K.GE.J) GO TO 104
         J=J-K
         K=K/2
         GO TO 103
  104 J=J+K
      PI = -SIGN(2., FLOAT(IFL))*1.570796327
      DO 106 M=1,N
         U = (1.0, 0.0)
         ME=2**M
         K=ME/2
         W=CMPLX(COS(PI/FLOAT(K)),-SIN(PI/FLOAT(K)))
         DO 106 J=1,K
             DO 105 L=J,NB,ME
                LPK=L+K
                T=B(LPK, IARR)*U
                B(LPK,IARR) = B(L,IARR) - T
                B(L,IARR) = B(L,IARR) + T
  1Ø5
             CONTINUE
  106 U=U*W
      RETURN
      END
C
C-
C
      SUBROUTINE FILTER
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2
```

```
CHARACTER*8 TITLE
      COMMON A (4098,2)
      COMPLEX B (2049,2), CMPLX
      EQUIVALENCE (A,B)
      CHARACTER*1 ANS
      REAL MEAN
C
  This subroutine performs an FFT band pass filter on an array of time
   series data
C
  Read in the array designator
      WRITE(1,200)
  200 FORMAT (" Which array do you want filtered? (A/B)"$
      READ (INDEV, 210) ANS
  210 FORMAT (A0)
      IARR=ICARD(ANS)
       IF((IARR.NE.1).AND.(IARR.NE.2))GOTO 180
      IF (CHINF (IARR, 1).EQ.Ø) GO TO 184
   Input cutoff frequencies
      WRITE (1,220)
  220 FORMAT(" Enter lower and upper cutoff frequncies "$
       READ (INDEV, 230) FLO, FHI
  230 FORMAT (2F0.0)
       IF (FHI.LE.FLO) GO TO 182
       IF (FLO.LT.Ø.Ø) GO TO 182
       IF (FHI.GT. (HERTZ/2.)) FHI=HERTZ/2.
C Convert data to complex and do FFT (Return with error if
  the array has already been transformed)
       IF (CHINF (IARR, 3) . NE. Ø) GO TO 184
      CHINF (IARR, 3) =1
      NB=MINØ (NSATT, 2048)
      WRITE(1,232)
  232 FORMAT (" Transforming data...")
      MEAN=ARRSTS (3, IARR)
  105 DO 106 I=NB,1,-1
          B(I,IARR) = CMPLX(A(I,IARR) - MEAN, \emptyset.\emptyset)
  106 CONTINUE
      CALL FFT (IARR, NB, -1)
C Filter transformed data
  109 DELTAF=HERTZ/FLOAT (NB)
       WRITE(1,234)
  234 FORMAT (" Filtering data...")
       Nl = 1 + IFIX(FLO/DELTAF)
       N2 = 1 + IFIX(FHI/DELTAF)
       IF(N1.EQ.1)GO TO 113
       DO 111 I=1,N1
          B(I,IARR) = (\emptyset.\emptyset,\emptyset.\emptyset)
          K=NB + 2 - I
```

```
B(K,IARR) = (\emptyset.\emptyset,\emptyset.\emptyset)
  111 CONTINUE
  113 IF (N2.EO.1) GO TO 117
       DO 115 I=N2,NB/2
          B(I,IARR) = (\emptyset.\emptyset,\emptyset.\emptyset)
          K=NB + 2 - I
          B(K,IARR) = (\emptyset.\emptyset,\emptyset.\emptyset)
  115 CONTINUE
C
C
   Transform data back to time domain
  117 WRITE(1,236)
  236 FORMAT (" Retransforming data...")
       CALL FFT(IARR,NB,1)
       CHINF (IARR, 3) = \emptyset
C
C
   Convert filtered time series data back to real form
       DO 119 I=1,NB
          A(I,IARR) = REAL(B(I,IARR))
  119 CONTINUE
C
C
   Compute summary statistics on filtered data
C
       CALL COMSTS (CHINF (IARR, 1), IARR)
       RETURN
C
   Error messages
  180 WRITE(1,240)
  240 FORMAT(" ***Array designator must be either A or B")
       RETURN
  182 WRITE(1,250)
  250 FORMAT(" ***Bad cutoff frequency")
       RETURN
  184 WRITE (1,260) ANS
  260 FORMAT(" ***Array ",Al," does not contain time series data")
       RETURN
       END
C
C-
C
       SUBROUTINE UPDATE
       COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
          ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
          IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
       INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
       REAL SMSTAT
       LOGICAL STCOMP
       CHARACTER*14 FILNAM, FILE2
      CHARACTER*8 TITLE
       COMMON A (4098,2)
       CHARACTER*1 ANS
   This subroutine allows the user to take a channel that he has filtered,
```

```
C clipped, etc. and write it to the master data file. This is the only
C place in the program that the .DAT file is written to and caution is
C highly recommened
  101 WRITE(1,200)
  200 FORMAT(" Which array do you want to write? (A/B) "$
      READ (INDEV, 210) ANS
  210 FORMAT (A0)
      IARR=ICARD (ANS)
      IF((IARR.NE.1).AND.(IARR.NE.2))GOTO 180
C Test for empty or transformed array
      IF ((CHINF (IARR, 1).EQ.Ø).OR. (CHINF (IARR, 3).NE.Ø))GO TO 184
      SCFAC=1.0
      IF (CHINF (IARR, 2) .NE.0) SCFAC=ARRSTS (5, IARR)
C Write UNSCALED data on to master file
      WRITE (1,220)
      FORMAT(/' Writing data to master file ')
220
      WRITE(5/CHINF(IARR,1))(IFIX(A(I,IARR)/SCFAC),I=1,NSATT)
      STCOMP=.FALSE.
      CALL SETLEN (FILNAM, IL (81))
      CALL CONCAT (FILE2, FILNAM, "STS")
      IF(IODEL(Ø,FILE2))GO TO 186
      WRITE (1,230)
  230 FORMAT(" Data file rewritten and statistics file deleted")
      RETURN
C
C
  Error messages
  180 WRITE(1,240)
  240 FORMAT(" ***Array designator must be either A or B")
      RETURN
  184 WRITE (1,250) ANS
      RETURN
  186 WRITE(1,260)FILE2
  260 FORMAT(" ***Please delete ", A0,", it is now outdated")
  250 FORMAT(" ***Array ",Al," does not contain time series data")
      RETURN
      END
C
C-
C
      SUBROUTINE MACRO
      COMMON/CONTRL/NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME (5,2),
         ELTIME(3), SMSTAT(5,80), STCOMP, CHINF(2,3), TITLE(80), FILNAM,
         IL(81), FILE2, HERTZ, ARRSTS(5,2), INDEV
      COMMON/NOPLOT/PLOTP
      INTEGER NSATT, NSGOOD, TAPENO, RECNO, TSNO, TPTRAK, TIME, ELTIME, CHINF
      REAL SMSTAT
      LOGICAL STCOMP
      CHARACTER*14 FILNAM, FILE2, UPCASE
      CHARACTER*8 TITLE
```

LOGICAL IOLOOK, IOREAD, IOCLOS, PLOTP CHARACTER*1 ANS

```
C
C This routine changes where SSP gets its commands from from the terminal
C to device 9 and back again. This allows the construction of "macro
C files" that contain SSP menu choices. Note that the macro file must
C end with either 13 (to end SSP) or 11<cr>ZZZZZ (to return control to
C the terminal. If the macro file does not end in one of these two ways,
   then the program will hang and ignore keyboard input.
      PLOTP=.FALSE.
      WRITE(1,200)
  200 FORMAT(" Enter the name of the macro command file ('ZZZZ' to quit)"$
      READ (INDEV, 210) FILE2
  210 FORMAT (A0)
      WRITE (1,211)
  211 FORMAT (" ")
C
C Check (in order) for command to return control to terminal, for
  non-existant file and for impossible to open file.
C ,
      FILE2=UPCASE (FILE2)
      IF (FILE2.EQ."ZZZZ") GO TO 185
      IF(.NOT.IOLOOK(Ø,FILE2))GO TO 180
      IF(IOREAD(9,2,0,FILE2))GO TO 190
  If file was successfully opened, then redirect input to device 9
      INDEV=9
      WRITE(1,212)
  212 FORMAT (" Suppress plotting of single-valued channels? (Y/N) "$
          READ (1,210) ANS
          IF ((ANS.EQ."Y").OR. (ANS.EQ."y")) PLOTP=.TRUE.
          RETURN
    C
    C
      Error messages
      180 WRITE(1,220)FILE2
      220 FORMAT(" *** ", A0," not found")
    C
       Ring bell to wake up the user and redesignate terminal as input.
      185 WRITE(1)7
          WRITE(1,230)
      230 FORMAT (" Control returned to terminal")
          INDEV=1
          I = IOCLOS(9)
          RETURN
      190 WRITE(1,240)FILE2
      240 FORMAT(" ***Unable to open ",A0," for input")
          INDEV=1
          I = IOCLOS(9)
          RETURN
          END
```

PLOTR 2.1

```
C PROGRAM PLOTE TO DO PLOTS OF DATA FROM PROGRAM SSP
                     3-28-84
C Version 2.1
C Written in Microsoft F80 FORTRAN and linked with Pacific Basin
   Graphics' PBG 100 supposedly CalComp compatible plotter subroutines
C
     This program is set up to read plotter files from SSP.
C
C
   information expected in the header record is:
C
       Col.
                          What
C
                  Code for row, FFT or phase plot
        1
C
       2-5
                   Channel number (I4)
                  Channel label (A8)
C
       6-13
C
      16-20
                   Number of data points (I5)
C
C
    N.B. For phase and coherency plots, the second record does not
        contain data but instead contains the second channel number. (I5)
C
C
        Also, the label field is ignored.
C
G
C
           Installation for different plotters
C
      Right now this program is set up for a C.Itoh CX-4800 plotter.
C
      To run it with a HP 7470A plotter, change CALL PLOTS ('CX4800') to
C
C
      CALL PLOTS('HP7470') and remove the CALL FACTOR(.7) that appear
      in each section. (Argument is probably not exactly .7, you can
C
C
      adjust it to suit you taste and paper size.
C
      REAL XARR (2050), YARR (2050)
      INTEGER*1 FILNAM(16), TITLE(16), ANS, TEMP(3)
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
      DATA TITLE /16*1H /
      WRITE (3, 199)
  199 FORMAT (' PLOTR v. 2.1')
      CALL PLOTS ('CX4800')
C
  Prompt for filename and convert it to F80 format
C
      WRITE(3,300)
3Ø5
      FORMAT(/' Enter:'/' <1> Open a new file'/' <2> Finish this page
300
     % (a plot should already have been made)'/' <cr> to quit'/)
      READ(1,301) IANS
3Ø1
      FORMAT(I1)
      IF (IANS .EQ. Ø) GOTO 310
      IF (IANS .EQ. 1) GOTO 303
      IF (IANS .EQ. 2) CALL PLOT (\emptyset, \emptyset, -999)
      GOTO 305
  303 WRITE(3,200)
  200 FORMAT(' What is the data file name?')
      READ(1,210) (FILNAM(I), I=1,16)
  210 FORMAT (16A1)
C
C Here starts the long and laborious process of converting a filename
C with a dot extender into a file name padded with spaces as is required
```

```
C by F80 FORTRAN.
C
C Find the dot
      K=0
      DO 101 I=1,13
         IF (FILNAM(I).EQ.46) K=I
  101 CONTINUE
C If dot was not found, jump to 170, otherwise store the extender in TEMP
      IF (K.EQ.0) GO TO 170
      DO 103 I=1.3
         J=I+K
         TEMP(I)=FILNAM(J)
  103 CONTINUE
C Blank FILNAM from the dot to the end
      DO 105 I=K,13
         FILNAM(I)=' '
  105 CONTINUE
C Insert extender into proper spot in FILNAM
      DO 106 I=9,11
         FILNAM(I) = TEMP(I-8)
  106 CONTINUE
C Make sure that everything is upper case
      DO 107 I=1,11
         IF(FILNAM(I).GT.91)FILNAM(I)=FILNAM(I) - 32
  107 CONTINUE
C
C
   Open file and read first record to determine proper kind of plot
C
     IFLAG = \emptyset --> row plot
C
     IFLAG = 1 -> combined phase and coherency plot
C
     IFLAG = 2 --> FFT plot
      CALL OPEN (5, FILNAM, Ø)
      WRITE(3,215) (FILNAM(I), I=1,13)
  215 FORMAT (' Opening ',13A1)
      WRITE (3,220)
  220 FORMAT(' Reading data...')
      READ(5,230)IFLAG, ICHAN, (TITLE(I), I=9,16), NPNT
  230 FORMAT(I1, I4, 8A1, 2X, I5)
      IF (IFLAG.EQ.Ø) CALL ROWPLT
      IF (IFLAG.EQ.1) CALL PHSPLT
      IF (IFLAG.EQ.2) CALL FFTPLT
      ENDFILE 5
      GOTO 305
  170 WRITE(3,290) (FILNAM(I), I=1,13)
  290 FORMAT(' No "." in ',13A1)
31Ø
      STOP
      END
C
C-
C
      SUBROUTINE ROWPLT
      REAL XARR (2050), YARR (2050)
      INTEGER*1 FILNAM(16),TITLE(16),ANS
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
C
```

```
Subroutine to do row plots lengthwise on paper
      WRITE (3,200) ICHAN, (TITLE (I), I=9,16), NPNT
  200 FORMAT(' Channel ',12,2X,8A1,3X,15,' points')
      SUM = \emptyset.
      DO 101 I=1,NPNT
         READ (5,210) XARR (I), YARR (I)
  21Ø
         FORMAT (F10.4, F15.5)
         SUM = SUM + YARR(I)
  101 CONTINUE
      SUM = SUM/FLOAT (NPNT)
      WRITE (3,511)
  511 FORMAT(' Type <cr> to remove mean, else type <1> ')
      READ (1,112) IANS
112
      FORMAT (I1)
      IF (IANS .EQ. 1) GOTO 513
      DO 502 I = 1,NPNT
502
      YARR(I) = YARR(I) - SUM
513
      WRITE (3,220)
C
   Scale data
  220 FORMAT(' Scaling data...')
      CALL SCALE (XARR, 9.0, NPNT, 1)
      CALL SCALE (YARR, 3.0, NPNT, 1)
C
   Prompt for plotting parameters
      WRITE (3,230)
  230 FORMAT (' Do you want a mean value line plotted? (Y/N)')
      READ (1,240) ANS
  240 FORMAT (A1)
      IMEAN=Ø
      IF ((ANS.EQ.89).OR.(ANS.EQ.121)) IMEAN=1
  109 WRITE (3,250)
  250 FORMAT(' Should this be plotted on the <T>op or <B>ottom of',
     & 'the page?')
      READ (1,240) ANS
C
   Set offsets (in inches) with information from above
C
   84='T'
            116='t'
C
   66='B'
             98='b'
      OFFSET=0.0
      IF ((ANS.EQ.84).OR.(ANS.EQ.116))OFFSET=5.5
      IF ((ANS.EQ.66).OR.(ANS.EQ.98))OFFSET=1.75
      IF (OFFSET.EQ.Ø.Ø)GO TO 109
      WRITE(3,260)
  260 FORMAT(' Hit <return> when the plotter is ready')
      READ (1,240) ANS
C
      CALL FACTOR (.775)
C
      CALL SYMBOL(.25,OFFSET+.375,2,FILNAM,90.0,8)
```

```
TITLE(1)=1HC
       TITLE(2)=1Hh
      TITLE(3)=1H.
      TITLE(5) = ICHAN/10 + 48
       TITLE(6) = MOD(ICHAN, 10) + 48
      CALL AXIS(1.0,OFFSET,TITLE,16,3.0,90.0,YARR(NPNT+1),YARR(NPNT+2))
      CALL AXIS(1.0,OFFSET,' ',1,9.,0.,XARR(NPNT+1),XARR(NPNT+2))
      CALL LINE (XARR, YARR, NPNT, 1, 0, 0)
      IF (IMEAN.EQ.Ø) GO TO 113
С
  Plot mean value line, if requested
      YMEAN= SUM
      YARR (1) = YMEAN
      YARR (2) = YMEAN
      YARR (3) = YARR (NPNT+1)
      YARR(4) = YARR(NPNT+2)
      XARR(2) = XARR(NPNT)
      XARR(3) = XARR(NPNT+1)
      XARR(4) = XARR(NPNT+2)
      CALL LINE (XARR, YARR, 2,1,0,0)
  113 WRITE (3,280)
  280 FORMAT (' Plotting finished')
      CALL FACTOR(1.0)
      RETURN
      END
C
      SUBROUTINE FFTPLT
      REAL XARR (2050), YARR (2050)
      INTEGER*1 FILNAM(16),TITLE(16),ANS,TEMP(3),HUNIT(6),VUNIT(20)
      INTEGER*1 TEXT1(16), TEXT2(16), TEXT3(16)
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
      DATA HUNIT/ 'H', 'e', 'r', 't', 'z', ' '/
      WRITE (3,200) ICHAN, (TITLE (I), I=9,16), NPNT
  200 FORMAT(' FFT of Channel ',12,2X,8A1,3X,15,' points')
   Input of data and calculation of variance (area under curve) and
  peak frequency
      FMAX=0.
      YSUM=0.
      YMAX=\emptyset.
      DO 101 I=1,NPNT
         READ (5,201) XARR (I), YARR (I)
  201
         FORMAT (F10.4,F15.5)
         YSUM=YSUM+YARR(I)
         IF (YARR (I).LE.YMAX) GO TO 101
         YMAX=YARR(I)
         FMAX=XARR(I)
  101 CONTINUE
      YMEAN=YSUM/FLOAT (NPNT)
      VAR=YSUM*(XARR(2)-XARR(1))
      Y1=5.
```

```
WRITE(3,203)VAR,FMAX,YMAX
  203 FORMAT(' var.=',G15.8,', Fmax=',G15.8,', S(Fm)=',G15.8)
C Convert variance and max frequencies into character for plotting
      DO 103 I=1,16
         TEXT1(I)=1H
         TEXT2(I)=1H
          TEXT3(I) = 1H
  103 CONTINUE
      ENCODE (TEXT1, 202) VAR
  202 FORMAT (7X,G9.3)
      ENCODE (TEXT2, 202) YMAX
      ENCODE (TEXT3, 204) FMAX
  204 FORMAT (7X, F7.4)
C
C
   Assign labels, one character at a time
C
      TEXT1(1)=1Hv
      TEXT1(2) = 1Ha
      TEXT1(3)=1Hr
      TEXT1(4)=1H.
      TEXT1(6)=1H=
      TEXT2(1)=1HS
      TEXT2(2)=1H(
      TEXT2(3) = 1HF
      TEXT2(4)=1Hm
      TEXT2(5)=1H
      TEXT2(6) = 1H =
      TEXT3(1)=1HF
      TEXT3(2)=1Hm
      TEXT3(3)=1Ha
      TEXT3(4)=1Hx
      TEXT3(6) = 1H =
      TEXT3(15) = 1HH
      TEXT3(16) = 1Hz
      FILNAM(9)=1H
      FILNAM(10)=1HC
      FILNAM(11)=1Hh
      FILNAM(12)=1H.
      FILNAM(13) = ICHAN/10 + 48
      FILNAM(14) = MOD(ICHAN, 10) + 48
   Prompt for plotting parameters
C
      WRITE (3,210)
  210 FORMAT(' Should this be plotted on the <T>op or <B>ottom of',
     & 'the page?')
       READ (1,220) ANS
  220 FORMAT (30A1)
       IF ((ANS .EQ. 66) .OR. (ANS .EQ. 98)) Y1=Y1+5.
       DO 105 I=1,20
          VUNIT(I)=lH
  105 CONTINUE
      WRITE (3,230)
```

```
230 FORMAT(' Input vertical label ')
      READ (1,220) (VUNIT (I), I=1,20)
C
   Plot
      WRITE (3,240)
  240 FORMAT(' Hit <return> when the plotter is ready')
       READ (1,250) ANS
  250 FORMAT (A1)
      COORD=Y1-4.5
      CALL SYMBOL (COORD, 5., 2, FILNAM, 90., 16)
      CALL SYMBOL (COORD, 6.75, 2, TITLE (9), 90., 8)
      COORD=COORD+.25
      CALL SYMBOL (COORD, 5., 2, TEXT1, 90., 16)
      COORD=COORD+.25
      CALL SYMBOL (COORD, 5., 2, TEXT2, 90., 16)
      COORD=COORD+.25
      CALL SYMBOL (COORD, 5., 2, TEXT3, 90., 16)
C Call to FACTOR forces fudging of Yl in order to place plots properly
      CALL FACTOR (.7)
C
      IF (Y1.GT.5.5) Y1=Y1+0.7
      CALL SCALE (XARR, 5., NPNT, 1)
      CALL SCALE (YARR, 4., NPNT, -1)
      CALL AXIS(Y1,2.5, HUNIT, -6,5., 90., XARR(NPNT+1), XARR(NPNT+2))
      CALL AXIS(Y1,2.5, VUNIT, 20,4.0, 180.0, YARR(NPNT+1), YARR(NPNT+2))
      CALL LINE (YARR, XARR, NPNT, 1, 0, 0)
      CALL FACTOR(1.0)
      RETURN
      END
C
      SUBROUTINE PHSPLT
      REAL XARR (2050), YARR (1025, 2)
      INTEGER*1 FILNAM(16), TITLE(16), ANS, TEMP(3)
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
C Subroutine to plot phase and coherency
      READ (5,200) ICHAN2
  200 FORMAT(15)
      WRITE (3,210) ICHAN, ICHAN2, NPNT
  210 FORMAT(' Phase and coherency of Chs.', 12, ' and ', 12, 18, ' points')
      NPNT=NPNT+2
      DO 101 I=3,NPNT
          READ (5,215) XARR (I), YARR (I,1), YARR (I,2)
  215
          FORMAT (F10.4,2F15.5)
  101 CONTINUE
C Dummy values are put into the first two spots in all three arrays
   to force the plotting routines to plot between -100 and 300 degrees
C
   and between 0 and 1 on the two plots.
C
      XARR(1) = \emptyset.
```

```
XARR(2) = \emptyset.
      YARR(1,1) = 290.
      YARR(2,1) = -90.
      YARR(1,2) = .9999
      YARR(2,2)=.0001
      BOUND=-70.
      DO 107 I=3,NPNT
          IF (YARR(I,1).LT.BOUND) YARR(I,1)=YARR(I,1)+36\emptyset.
  107 CONTINUE
  108 Y1=5.
      Y2=10.
   Create title, one character at a time
      TITLE(1)=1HC
      TITLE(2)=1Hh
      TITLE(3)=1H.
      TITLE(4) = 1H
      TITLE (5) = ICHAN/10 + 48
      TITLE(6) = MOD(ICHAN, 10) + 48
      TITLE(7)=1H
      TITLE(8) = 1H&
      TITLE(9)=1H
      TITLE(10) = ICHAN2/10 + 48
      TITLE(11) = MOD(ICHAN2, 10) + 48
C
   Do actual plotting
      WRITE (3,240)
  240 FORMAT(' Hit <return> when the plotter is ready')
      READ (1,250) ANS
  250 FORMAT (A1)
      YTEMP=Y1-4.5
      CALL SYMBOL (YTEMP, 3., 2, TITLE, 90., 11)
C
      CALL FACTOR (.7)
C
      CALL SCALE (XARR, 5., NPNT, 1)
      CALL SCALE (YARR (1,1),4., NPNT,-1)
      CALL SCALE (YARR (1,2),4., NPNT,-1)
      CALL AXIS(Y1,2.5,'Hertz',-5,5.,90.,XARR(NPNT+1),XARR(NPNT+2))
      CALL AXIS (Y1,2.5, 'Phase in degrees', 16,4.0,180.0, YARR (NPNT+1,1),
          YARR(NPNT+2,1))
      CALL LINE (YARR (1,1), XARR, NPNT, 1,0,0)
C
      CALL FACTOR (.7)
C
      CALL AXIS (Y2,2.5, 'Hertz',-5,5.,90., XARR (NPNT+1), XARR (NPNT+2))
      CALL AXIS(Y2,2.5, 'Coherency',9,4.0,180.0, YARR(NPNT+1,2),
          YARR (NPNT+2,2))
       CALL LINE (YARR (1,2), XARR, NPNT, 1,0,0)
       CALL FACTOR(1.0)
       RETURN
       END
```

PLOTR 2.0

```
C
C
   PROGRAM PLOTE TO DO PLOTS OF DATA FROM PROGRAM SSP
C
   Version 2.0
      REAL XARR (2050), YARR (2050)
      INTEGER*1 FILNAM(16), TITLE(16), ANS, TEMP(3)
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
      DATA TITLE /16*1H /
      WRITE (3, 199)
  199 FORMAT (' PLOTR ver.2.0')
C
   Prompt for filename and convert it to F80 format
      WRITE (3,200)
  200 FORMAT(' What is the data file name?')
      READ(1,210) (FILNAM(I), I=1,16)
  210 FORMAT (16A1)
      K=Ø
      DO 101 I=1,13
          IF (FILNAM(I).EQ.46) K=I
  101 CONTINUE
      IF (K.EQ.0)GO TO 170
      DO 103 I=1,3
          J=I+K
          TEMP(I) = FILNAM(J)
  103 CONTINUE
      DO 105 I=K,13
          FILNAM(I)=' '
  105 CONTINUE
      DO 106 I=9,11
          FILNAM(I) = TEMP(I-8)
  106 CONTINUE
C
   Open file and read first record to determine proper kind of plot
C
C
     IFLAG = \emptyset --> row plot
     IFLAG = 1 -> combined phase and coherency plot
C
C
     IFLAG = 2 -> FFT plot
C
      CALL OPEN (5, FILNAM, Ø)
      WRITE(3,215) (FILNAM(I), I=1,13)
  215 FORMAT ('Opening ',13A1)
      WRITE (3,220)
  220 FORMAT(' Reading data...')
      READ (5,230) IFLAG, ICHAN, (TITLE (I), I=9,16), NPNT
  230 FORMAT(I1, I4, 8A1, 2X, I5)
      IF (IFLAG.EQ.Ø) CALL ROWPLT
      IF (IFLAG.EQ.1) CALL PHSPLT
      IF (IFLAG.EQ.2) CALL FFTPLT
      STOP
  170 WRITE(3,290)(FILNAM(I),I=1,13)
  290 FORMAT(' No "." in ',13A1)
      STOP
      END
      SUBROUTINE ROWPLT
      REAL XARR (2050), YARR (2050)
```

```
INTEGER*1 FILNAM(16),TITLE(16),ANS
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
   Subroutine to do row plots lengthwise on paper
      WRITE (3,200) ICHAN, (TITLE(I), I=9,16), NPNT
  200 FORMAT(' Channel ', I2, 2X, 8A1, 3X, I5, ' points')
      DO 101 I=1,NPNT
          READ (5,210) XARR (I), YARR (I)
  21Ø
         FORMAT (F10.4,F15.5)
  101 CONTINUE
      WRITE (3,220)
C
C
   Scale data
  220 FORMAT(' Scaling data...')
      CALL PLOTS ('HP7470')
      CALL SCALE (XARR, 9.0, NPNT, 1)
      CALL SCALE (YARR, 3.0, NPNT, 1)
С
   Prompt for plotting parameters
      WRITE (3,230)
  230 FORMAT(' Do you want a mean value line plotted? (Y/N)')
      READ (1,240) ANS
  240 FORMAT (A1)
      IMEAN=0
      IF ((ANS.EQ.89).OR.(ANS.EQ.121)) IMEAN=1
  109 WRITE(3,250)
  250 FORMAT(' Should this be plotted on the <T>op or <B>ottom of',
     & 'the page?')
      READ (1,240) ANS
  Set offsets (in inches) with information from above
      OFFSET=0.0
      IF ((ANS.EQ.84).OR.(ANS.EQ.116))OFFSET=4.375
      IF ((ANS.EQ.66).OR.(ANS.EQ.98))OFFSET=0.75
      IF (OFFSET.EQ.Ø.Ø)GO TO 109
      WRITE(3,260)
  260 FORMAT(' Hit <return> when the plotter is ready')
      READ (1,240) ANS
      CALL SYMBOL(.25,OFFSET+.375,1,FILNAM,90.0,8)
      TITLE(1) = 1HC
      TITLE(2)=1Hh
      TITLE(3) = 1H.
      TITLE(5) = ICHAN/10 + 48
      TITLE(6) = MOD(ICHAN, 10) + 48
      CALL AXIS(1.0,OFFSET,TITLE,16,3.0,90.0,YARR(NPNT+1),YARR(NPNT+2))
      CALL AXIS(1.0,OFFSET,' ',1,9.,0.,XARR(NPNT+1),XARR(NPNT+2))
      CALL LINE (XARR, YARR, NPNT, 1, 0, 0)
      IF (IMEAN.EQ.0)GO TO 113
C
C
   Plot mean value line, if requested
```

```
SUM=0.
      DO 111 I=1,NPNT
          SUM=SUM+YARR(I)
  111 CONTINUE
      YMEAN=SUM/FLOAT (NPNT)
      YARR (1) = YMEAN
      YARR (2) = YMEAN
      YARR(3) = YARR(NPNT+1)
      YARR(4) = YARR(NPNT+2)
      XARR (2) = XARR (NPNT)
      XARR(3) = XARR(NPNT+1)
      XARR(4) = XARR(NPNT+2)
      CALL LINE (XARR, YARR, 2, 1, 0, 0)
  113 CALL PLOT(0.0,0.0,999)
      WRITE (3,280)
  280 FORMAT(' Plotting finished')
      RETURN
      END
C
   Subroutine to plot FFTs vertically on page
      SUBROUTINE FFTPLT
      REAL XARR (2050), YARR (2050)
      INTEGER*1 FILNAM(16), TITLE(16), ANS, TEMP(3), HUNIT(6), VUNIT(20)
      INTEGER*1 TEXT1(16), TEXT2(16), TEXT3(16)
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
      DATA HUNIT/ 'H', 'e', 'r', 't', 'z', ' '/
      WRITE (3,200) ICHAN, (TITLE (I), I=9,16), NPNT
  200 FORMAT(' FFT of Channel ',I2,2X,8Al,3X,I5,' points')
   Input of data and calculation of standard deviation and peak frequency
C
      FMAX=0.
      YSUM=Ø.
      Y2SUM=0.
      YMAX=0.
      DO 101 I=1,NPNT
          READ(5,201)XARR(I),YARR(I)
  2Ø1
          FORMAT (F10.4, F15.5)
          YSUM=YSUM+YARR(I)
          Y2SUM=Y2SUM + YARR(I)*YARR(I)
          IF (YARR (I) .LE.YMAX) GO TO 101
          YMAX=YARR(I)
          FMAX=XARR(I)
  101 CONTINUE
      YMEAN=YSUM/FLOAT (NPNT)
      VAR=ABS((Y2SUM - YSUM*YSUM/FLOAT(NPNT))/FLOAT(NPNT-1))
      Y1=5.
      WRITE (3,203) VAR, FMAX, YMAX
  203 FORMAT(' var.=',G15.8,', Fmax=',G15.8,', S(Fm)=',G15.8)
   Convert variance and max frequencies into character for plotting
C
C
      DO 103 I=1,16
```

```
TEXT1(I)=1H
          TEXT2(I)=1H
          TEXT3(I)=1H
  103 CONTINUE
      ENCODE (TEXT1, 202) VAR
  202 FORMAT (7X,G9.3)
      ENCODE (TEXT2, 202) YMAX
      ENCODE (TEXT3, 204) FMAX
  204 FORMAT (7X,F7.4)
      TEXT1(1) = 1Hv
      TEXT1(2)=1Ha
      TEXT1(3)=1Hr
      TEXT1(4)=1H.
      TEXT1(6)=1H=
      TEXT2(1)=1HS
      TEXT2(2) = 1H(
      TEXT2(3)=1HF
      TEXT2(4) = 1Hm
      TEXT2(5)=1H
      TEXT2(6) = 1H=
      TEXT3(1)=1HF
      TEXT3(2) = 1Hm
      TEXT3(3)=1Ha
      TEXT3(4) = 1Hx
      TEXT3(6)=1H=
      TEXT3(15) = 1HH
      TEXT3(16)=1Hz
      FILNAM(9)=1H
      FILNAM(10)=1HC
      FILNAM(11)=1Hh
      FILNAM(12)=1H.
      FILNAM(13) = ICHAN/10 + 48
      FILNAM(14) = MOD(ICHAN, 10) + 48
C
   Prompt for plotting parameters
      WRITE (3,210)
  210 FORMAT(' Should this be plotted on the <T>op or <B>ottom of',
     & ' the page?')
      READ(1,220) ANS
  220 FORMAT (30A1)
      IF ((ANS .EQ. 66) .OR. (ANS .EQ. 98)) Y1=Y1+5.
      DO 105 I=1,20
         VUNIT(I)=1H
  105 CONTINUE
      WRITE (3,230)
  230 FORMAT(' Input vertical label ')
      READ(1,220) (VUNIT(I), I=1,20)
С
  Plot
      WRITE (3,240)
  240 FORMAT(' Hit <return> when the plotter is ready')
      READ (1,250) ANS
  250 FORMAT (A1)
```

```
CALL PLOTS ('HP7470')
      COORD=Y1-4.5
      CALL SYMBOL (COORD, 5., 1, FILNAM, 90., 16)
      COORD=COORD+.25
      CALL SYMBOL (COORD, 5., 1, TEXT1, 90., 16)
      COORD=COORD+.25
      CALL SYMBOL (COORD, 5., 1, TEXT2, 90., 16)
      COORD=COORD+.25
      CALL SYMBOL (COORD, 5., 1, TEXT3, 90., 16)
      FAC=0.9
      CALL FACTOR (FAC)
      CALL SCALE (XARR, 5., NPNT, 1)
      CALL SCALE (YARR, 4., NPNT, -1)
      CALL AXIS(Y1,2.5, HUNIT, -6,5.,90., XARR(NPNT+1), XARR(NPNT+2))
      CALL AXIS(Y1,2.5, VUNIT,20,4.0,180.0, YARR(NPNT+1), YARR(NPNT+2))
      CALL LINE (YARR, XARR, NPNT, 1, 0, 0)
      CALL PLOT (\emptyset.,\emptyset.,999)
       STOP
       END
C
       SUBROUTINE PHSPLT
       REAL XARR (2050), YARR (1025, 2)
       INTEGER*1 FILNAM(13), TITLE(16), ANS, TEMP(3)
      COMMON FILNAM, TITLE, XARR, YARR, ICHAN, NPNT
C
C Subroutine to plot phase and coherency
       READ (5, 200) ICHAN2
  200 FORMAT(15)
       WRITE (3,210) ICHAN, ICHAN2, NPNT
  210 FORMAT(' Phase and coherency of Ch.', 12, ' and ', 12, 18, ' points')
       NPNT=NPNT+2
       DO 101 I=3,NPNT
          READ (5,215) XARR (I), YARR (I,1), YARR (I,2)
  215
          FORMAT (F10.4,2F15.5)
  101 CONTINUE
   Dummy values are put into the first two spots in all three arrays
   to force the plotting routines to plot between -100 and 300 degrees
   and between Ø and 1 on the two plots.
C
       XARR(1) = \emptyset.
       XARR(2) = \emptyset.
       YARR(1,1) = 290.
       YARR(2,1) = -90.
       YARR(1,2) = .9999
       YARR(2,2) = .0001
       BOUND=-70.
       DO 107 I=3, NPNT
          IF (YARR (I,1) .LT.BOUND) YARR (I,1) =YARR (I,1) +360.
  107 CONTINUE
  108 Y1=5.
       Y2=10.
```

```
C
C
   Create title, one character at a time
      TITLE(1)=1HC
      TITLE(2) = 1Hh
      TITLE (3) = 1H.
      TITLE(4) = 1H
      TITLE(5) = ICHAN/10 + 48
      TITLE(6) = MOD(ICHAN, 10) + 48
      TITLE(7)=1H
      TITLE(8)=1H&
      TITLE(9)=1H
      TITLE(10) = ICHAN2/10 + 48
      TITLE(11) = MOD(ICHAN2, 10) + 48
С
  Do actual plotting
      CALL PLOTS ('HP7470')
      WRITE (3,240)
  240 FORMAT(' Hit <return> when the plotter is ready')
      READ (1,250) ANS
  250 FORMAT (A1)
      YTEMP=Y1-4.5
      CALL SYMBOL (YTEMP, 3., 2, TITLE, 90., 11)
      CALL FACTOR (.9)
      CALL SCALE (XARR, 5., NPNT, 1)
      CALL SCALE (YARR (1,1),4.,NPNT,-1)
      CALL SCALE (YARR (1,2),4.,NPNT,-1)
      CALL AXIS(Y1,2.5,'Hertz',-5,5.,90.,XARR(NPNT+1),XARR(NPNT+2))
      CALL AXIS(Y1,2.5,'Phase in degrees',16,4.0,180.0,YARR(NPNT+1,1),
          YARR(NPNT+2,1))
      CALL LINE (YARR (1,1), XARR, NPNT, 1,0,0)
      CALL PLOT (\emptyset.,\emptyset.,-999)
      CALL FACTOR (.9)
      CALL AXIS (Y2,2.5, 'Hertz',-5,5.,90., XARR (NPNT+1), XARR (NPNT+2))
      CALL AXIS (Y2,2.5, 'Coherency',9,4.0,180.0, YARR (NPNT+1,2),
          YARR(NPNT+2,2))
      CALL LINE (YARR (1,2), XARR, NPNT, 1,0,0)
      CALL PLOT (\emptyset.,\emptyset.,999)
      RETURN
      END
```

PLOTR TO GRAFTALK CONVERSION PROGRAM v.1.0

```
PLT2GTK PLOTR to GrafTalk conversion program v.1.0 4-24-84
   Written by:
                Don Hacherl
C
                Floating Breakwater Project
C
                 Univ. of Wash. Dept. of Civil Engineering
C
  Written for: Coastal Engineering Research Center
C
                 U.S. Army Corps of Engineers
C
C
      This program gathers up all the .Cxx and .Fxx PLOTR files with a
   given stem and combines them into a single file with the same stem
C
   and an extender of .GTK which can be used as a GRAFTALK command file.
      LOGICAL IOLOOK, IOREAD, IOCLOS
      CHARACTER*11 FILSTM
      CHARACTER*14 INFILE
      CHARACTER*1 PLTYPE
      CHARACTER*2 ITOC
      CHARACTER*8 TITLE
      CHARACTER*30 LINE
      INTEGER*1 KHAR
  Start off by getting the file name and opening the output file as unit 6
C
      CALL INIT (FILSTM)
   Now write "processing" message and begin looping. Outside loop is on
   plot type (FFT or row), inside loop is on channel number.
      INFILE=""
      CALL CONCAT (INFILE, FILSTM, "
      WRITE(1) 13,10,"Processing ",INFILE
      DO 117 K=1,2
         IF (K.EQ.1) PLTYPE="C"
         IF (K.EQ.2) PLTYPE="F"
         DO 115 J=1,80
   Prepare next filename and test for its existence
             INFILE=""
            CALL CONCAT (INFILE, FILSTM, PLTYPE, ITOC (J))
             IF (.NOT.IOLOOK (Ø, INFILE)) GO TO 115
C File INFILE has been found, so write its name to the terminal and
   begin processing by reading first line of important information.
C
            WRITE(1)8,8,8,PLTYPE,ITOC(J)
             IF (IOREAD (5,2,0, INFILE)) GO TO 180
             READ (5,200) ITYPE, ICHAN, TITLE, NUM
            FORMAT(I1, I4, A8, 2X, I5)
  200
C
 Check to see if file contains supported plot type
  ITYPE == \emptyset \longrightarrow \text{row plot}
  ITYPE == 2 --> FFT plot
C
             IF((ITYPE.NE.0).AND.(ITYPE.NE.2))GO TO 182
```

```
WRITE (6,210)
            FORMAT (" DEVICE SCREEN", /, " @DATA")
  210
C
C
   Transfer X-Y coordinate pairs from source to destination as character
C
  without doing any reformatting.
            DO 101 I=1,NUM
                READ (5,220) LINE
                FORMAT (AØ)
  220
                WRITE (6,220) LINE
  1Ø1
            CONTINUE
            WRITE (6,230)
  230
            FORMAT (" @END")
C
C
  Reformat TITLE by replacing embedded blanks with underscores ()
C
            DO 103 I=1,KLEN(TITLE)
                IF (KHAR (TITLE, I) . EQ. 32) CALL PUTCHR (TITLE, I, !5f!)
  103
            CONTINUE
   Write titles and labelling information to GRAFTALK file
             IF (ICHAN.GE.10) WRITE (6,240) FILSTM, ICHAN, TITLE
  240
            FORMAT(" TITLE ",AØ," Channel ",I2," ",AØ)
            IF (ICHAN.LE.9) WRITE (6,250) FILSTM, ICHAN, TITLE
            FORMAT (" TITLE ", AØ, " Channel ", Il, " _ ", AØ)
  250
             IF (ITYPE.EQ.\emptyset)WRITE(6,26\emptyset)
            FORMAT (" X NAME Time in seconds")
  260
             IF (ITYPE.EQ.2) WRITE (\overline{6}, 270)
  270
            FORMAT (" X NAME FREQUENCY IN Hz")
C
   The next write statement produces code that should eliminate those annoying
   "Unable to determine scaling" messages that crop up on single valued
  plots. Unfortunately, although the functions used are described in all
  their glory in the GrafTalk manual, they do not work on the version of
 GrafTalk that is currently running on our system. (the CompuPro) When
  this code is moved to a new system or a new version of GrafTalk arrives
  that aagrees with the manual, the comment markers should be removed and
    the program recompiled.
C
 C
             WRITE (6,271)
 C 271
             FORMAT (" COMPARE C2[1] C2[10]",/,
 C
                 " IF TRUE C2[1] = C2[10] - 1.0")
 C
             WRITE (6, 280)
   280
             FORMAT (" PLOT C2 VS C1",/," DUMP UNIFORM PAGE",/," INITIALIZE")
   Close input file and loop back to next filename.
             IF (IOCLOS (5)) GO TO 180
          CONTINUE
   115
   117 CONTINUE
C
C Individual files have now been completely processed, so write an exit
C command to GrafTalk, close the output file and quit.
```

```
C
      WRITE (6,290)
  290 FORMAT (" EXIT")
      IF(IOCLOS(6))GO TO 180
      STOP
C
C
  Error massages
  180 WRITE(1,300)
  300 FORMAT(/," ***File open/close error")
      STOP
  182 WRITE (1,310) INFILE
  310 FORMAT(/," ***", A0," does not contain recognizable data")
      STOP
      END
C
C-
C
      SUBROUTINE INIT (FILSTM)
      CHARACTER*11 FILSTM
      CHARACTER*14 OUTFIL, UPCASE
      LOGICAL IOLOOK, IOWRIT
C
      WRITE (1,200)
                             PLOTR to GRAFTALK conversion program v.1.0",//,
  200 FORMAT (//," PLT2GTK
         " Enter the data file stem name "$
      READ(1,210)FILSTM
  210 FORMAT (A0)
C Convert FILSTM to upper case and make sure it ends with a dot.
      FILSTM=UPCASE (FILSTM)
      IF(INDEX(".",FILSTM,1).EQ.0)GO TO 103
      CALL SETLEN(FILSTM, INDEX(".", FILSTM, 1))
      GO TO 105
  103 CALL ADDSTG(FILSTM,".")
   Now generate output file name in OUTFIL and open the file.
C
  105 OUTFIL=""
      CALL CONCAT (OUTFIL, FILSTM, "GTK")
      IF(IOLOOK(Ø,OUTFIL))GO TO 180
      IF (IOWRIT (6,2,0,OUTFIL))GO TO 182
C
C Write the very first GRAFTALK command, a plea for patience.
      WRITE (6,215)
  215 FORMAT (" MESSAGE SSP plotting file_being_processed - please_wait...")
      RETURN
C
C
  Error messages
  18Ø WRITE (1,220) OUTFIL
  220 FORMAT(" ***", A0, " already exists")
      STOP
```

```
182 WRITE (1,230) OUTFIL
  230 FORMAT(" ***Unable to open ",A0," for output")
      STOP
      END
C
C
      CHARACTER*2 FUNCTION ITOC(I)
      CHARACTER*2 TEMP
      INTEGER*1 C
C
С
  Function to convert integer (00-99) into ASCII form with leading zero.
      TEMP="ØØ"
      C = I/10 + 48
      CALL PUTCHR (TEMP, 1, C)
      C = I - (I/10)*10 + 48
      CALL PUTCHR (TEMP, 2, C)
      ITOC = TEMP
      RETURN
      END
С
C-
      CHARACTER*14 FUNCTION UPCASE(X)
      CHARACTER*14 X
      INTEGER*1 KHAR,K
C Function to convert filenames to uppercase
      UPCASE=X
      DO 110 I=1, KLEN(X)
         K=KHAR(X,I)
         IF((K.GE.97).AND.(K.LE.122))CALL PUTCHR(UPCASE,I,K-32)
  110 CONTINUE
      CALL SETLEN (UPCASE, KLEN(X))
      RETURN
      END
```

MAKEMAC

```
Program MakeMac v.l.0 Creates simple macro files for SSP v.l.3
C
         4-12-84
   The macros created by this program take the form of columns of menu
   choices and answers to questions posed by SSP. Because of this, if
C
   any changes are made to SSP, such as renumbering the main menu or
C the addition of new options, that would change the commands needed,
   great care must be taken to make the corresponding change to the
   appropriate subroutine of this program.
      INTEGER ICHAN (80), PSTART, PNUM
      LOGICAL SCALEP, PLOTP, FFTP, FPLOTP, QUITP, IOLOOK, IOWRIT, IOCLOS
      CHARACTER*1 ANS
      CHARACTER*14 FILE, UPCASE
      DATA SCALEP, PLOTP, FFTP, FPLOTP, QUITP /5*.FALSE./
      WRITE (1,200)
  200 FORMAT (/," MakeMac v. 1.0
                                    SSP Macro Generator",/,
     & "Enter a name for the macro file "$
      READ(1,210)FILE
  210 FORMAT (A0)
      FILE=UPCASE (FILE)
      IF(IOLOOK(Ø,FILE))GO TO 180
      IF (IOWRIT (6, 2, Ø, FILE)) GO TO 185
C Output file is now open so give brief explanation and proceed to
C boring questions.
      WRITE (1,220)
  220 FORMAT(/," MakeMac creates simple macro command files for SSP v.1.3 ",/
         " The idea behind this is to perform an identical series",
         " of actions on",/,
         " a large number of channels. To do this you must first ",
         "specify what",/,
         " actions you want to take (scaling, plotting and/or ",
         "transforming) and",/,
     æ
         " then giving a list of which channels you want to do this to.",/)
C Begin asking point by point whether or not each action is to be performed.
  If the action is selected, then its predicate (e.g. SCALEP) is set to TRUE.
C This value is then tested in the next section to determine what code
C should be written.
C Ask about scaling
      WRITE (1,230)
  230 FORMAT (" Do you want the data scaled? (Y/N) "$
      READ (1,210) ANS
      IF ((ANS.EQ."Y").OR.(ANS.EQ."Y"))SCALEP=.TRUE.
C Ask about plotting raw data, getting more details if necessary
      WRITE (1,240)
  240 FORMAT (" Do you want the untransformed data plotted? (Y/N) "$
```

```
READ (1,210) ANS
      IF ((ANS.EQ."N").OR.(ANS.EQ."n"))GO TO 105
         WRITE(1,250)
  250
         FORMAT (" Starting at what point? "$
         READ (1,260) PSTART
  260
         FORMAT (IØ)
         WRITE (1,270)
  270
         FORMAT(" And for how many points? "$
         READ (1, 260) PNUM
         PLOTP=.TRUE.
C
  Ask about doing Fourier transforms
  105 WRITE(1,280)
  280 FORMAT (" Do you want the channel FFTed? (Y/N) "$
      READ (1,210) ANS
      IF ((ANS.EQ."N").OR.(ANS.EQ."n"))GO TO 107
         WRITE(1,290)
  290
         FORMAT (" Enter 1 for full frequency or 2 for every other point FFT "$
         READ (1, 260) N
         FFTP=.TRUE.
  If the channel has been transformed, ask about plotting the spectrum
         WRITE (1,300)
  300
         FORMAT(" Do you want to plot the spectrum? (Y/N) "$
         READ (1,210) ANS
         IF ((ANS.EQ."Y").OR.(ANS.EQ."y"))FPLOTP=.TRUE.
C All done asking about wwhat should be done, now ask about what it should
  be done to, specifically which channels. If the first number entered is
C negative then ignore the rest of the line and generate the channel
  numbers 1 to 80 instead.
  107 WRITE(1,310)
  310 FORMAT (" Enter the channel numbers, separated with commas.
         "Enter a negative",/,
     &
         " number for all 80 channels. Use 'E if input exceeds one line")
      READ(1,320) (ICHAN(I), I=1,80)
  320 FORMAT (8010)
      IF (ICHAN(1).GT.0)GO TO 111
         DO 109 I=1,80
            ICHAN(I)=I
  109
         CONTINUE
   Now ask whether the macro should end with a return or a quit
  111 WRITE(1,330)
  330 FORMAT (" When done processing this macro, should SSP <Q>uit or <R>eturn",
        /," control to the terminal? (Q/R) "$
      READ (1,210) ANS
      IF ((ANS.EQ."Q").OR.(ANS.EQ."q"))QUITP=.TRUE.
      WRITE(1,340)
  340 FORMAT(" Writing macro file...")
C
```

```
C
C Now write the actual macro. Start index I at 1 and increment stopping
  when it reaches 80 or finds an invalid channel number.
      I = \emptyset
  113 I=I+1
      IF((I.GT.80).OR.(ICHAN(I).LE.0))GO TO 117
         CALL LOAD (ICHAN(I))
         IF (SCALEP) CALL SCALE
         IF (PLOTP) CALL PLOT (PNUM, PSTART)
         IF (FFTP) CALL FFT (N)
         IF (FPLOTP) CALL FPLOT
         GO TO 113
C Now the entire macro has been written except for the quit or return
  command, so write that, close the file and stop.
  117 CALL QUIT (QUITP)
      I=IOCLOS(6)
      STOP
C
  Error messages
  180 WRITE (1,350) FILE
  350 FORMAT(lX,A0," already exists")
  185 WRITE(1,360)FILE
  360 FORMAT(" ***Unable to open ",A0," for output")
      STOP
      END
C
C-
      CHARACTER*14 FUNCTION UPCASE(X)
      CHARACTER*14 X
      INTEGER*1 KHAR,K
C Function to convert filenames to uppercase
      UPCASE=X
      DO 110 I=1,KLEN(X)
         K=KHAR(X,I)
         IF ((K.GE.97).AND.(K.LE.122))CALL PUTCHR (UPCASE, I, K-32)
  110 CONTINUE
      CALL SETLEN (UPCASE, KLEN (X))
      RETURN
      END
C
C*********************************
C Each of the following subroutines writes out enough to go from SSP's
   main menu into an option and then back out to the main menu again.
   In the interest of brevity, they will only be described as to what
   option they drive and what effects (if any) their argument has.
   Unless otherwise noted, all commands will use array A in SSP.
```

```
C
                        **************
C
      SUBROUTINE LOAD (ICHAN)
 Loads channel ICHAN into array A
      WRITE (6, 200) ICHAN
  200 FORMAT(" 1",/,13,/," A")
      RETURN
      END
C
C-
C
      SUBROUTINE SCALE
C Scales array A
      WRITE (6,200)
  200 FORMAT (" 3",/," A")
      RETURN
      END
C
Ç-
C
       SUBROUTINE PLOT(I,J)
 C Plots I points of raw data starting at point J
       WRITE(6,200)I,J
   200 FORMAT(" 12",/," A",/,15,/,15)
       RETURN
       END
 C
 C-
 C
       SUBROUTINE FFT (N)
 C Performs every Nth point FFT
       WRITE (6,200) N
   200 FORMAT (" 8",/," A",/,/,I3)
       RETURN
       END
 С
 C-
 C
       SUBROUTINE FPLOT
 C Plots smoothed spectrum (full range)
       WRITE (6,200)
   200 FORMAT(" 12",/," A",///," Y")
       RETURN
       END
 С
 C-
 C
       SUBROUTINE QUIT (QUITP)
 C
    If QUITP is true, then writes a quit command. If QUITP is false then
   writes a return command.
 C
 C
       LOGICAL QUITP
       IF (QUITP) GO TO 101
```

WRITE(6,200)

200 FORMAT(" 11",/," ZZZZ")

RETURN

101 WRITE(6,210)

210 FORMAT(" 13")

RETURN

END

PROGRAM QIF

QANTEX INTERFACE

```
PROGRAM QIF: QANTEX INTERFACE
  VERSION 1.4 LAST REVISED 1/23/84
   THIS PROGRAM IS WRITTEN TO OPERATE ON MICRO-SOFT 8-BIT FORTRAN
  UNDER CP/M 2.2 or MP/M 8/16.
   THE BULK OF THE SOURCE CODE WAS WRITTEN BY ROBERT W. MILLER OF
   OF U.W. ALTHOUGH THE MACHINE-LANGUAGE PATCH SEGMENTS WERE PROVIDED
  BY ALAN LINDSAY.
C IF ANY CHANGES ARE MADE TO THIS CODE, IT MUST BE COMPILED USING
C THE COMMAND " SUBMIT OTCOM QIF"
C FILES WHICH MUST BE PRESENT FOR THIS PROCESS: QTMAIN.MAC, PATCH.COM
C L80.COM, M80.COM, ACLLIB.IRL, FORLIB.IRL, QTU5.HEX, SUBMIT.COM, AND
C QTCOM.SUB
C
C THE FOLLOWING LOGICAL UNIT NUMERS ARE USED FOR FILE I/O:
C
C
                        READING FROM SCREEN
C
     3
                        WRITING TO SCREEN
С
         "GMAP.DAT"
                        TEMPORARY FILE CONTAINING NUMBER AND TYPE
C
                        AND ORDER OF ALL HEADERS READ DURING 1-MIN REC
C
                        SEARCH AND DUMP
                        TEMPORARY FILE CONTAINING ALL UNSORTED RAW DATA
С
    7
         "SCRATCH.DAT"
С
                        TEMPORARY COPY OF HEADER RECORD IN 'N' DRIVE
         "HEADR.DAT"
C
                        WHEN TIMESERIES BEING READ
C
         "lMINREC.DAT"
                        TEMPORARY COPY OF HEADER RECORDS IN DEFAULT DRIVE
C
                        WHEN 1-MIN RECORD SEARCH IS PROCEEDING
С
         "TEMP.DAT"
                        TEMPORARY STORAGE FOR ALPHA COMMENTS
    10
C*MAIN
      SUBROUTINE MAIN (ATUS ATUMEM, MEM)
      EXTERNAL ATUS
      BYTE ATUMEM (2), MEM (2)
      INTEGER*1 IMSK(16), IFLAG, IHD, IANS
      INTEGER RECNUM(2)
C-
C-
      MAIN PROGRAM IS SUPPLIED BY QTMAIN.MAC
C-
      ATUS = ENTRY POINT FOR QTU5 CODE
C-
      ATUMEM = BASE OF "COMMON" DATA AREA IN QTU5
C-
      MEM(2) = AN ARRAY THAT ACCESSES ABSOLUTE MEMORY
C-
         I.E. MEM(45) IS THE CONTENTS OF ADDRESS 45 DECIMAL
C-
C-
      THINGS HAVE BEEN ARRANGED TO CONFORM WITH THE INFORMATION
C-
      PROVIDED IN THE "TIP" MANUAL AS MUCH AS POSSIBLE. YOU CAN
C-
      ACCESS THE DATA AREA USING ATUMEM (....), AND INVOKE THE
C-
      CONTROLLER SOFTWARE BY DOING A "CALL ATUS":
C-
C-
C---
      BYTE JTST
C-
      OFFSETS INTO DATA AREA (SEE PAGE 36 OF TIP MANUAL)
C-
C-
      INTEGER*1 MENU, ALPHA (80), DDRV
```

```
INTEGER IDATI (5), IDATO (5)
C-
C-
      DATA RAREA
                  /z'76C'/
      DATA WRDCNT /Z'76E'/
                  /2'770'/
      DATA MA
                  /z'771'/
      DATA PA
      DATA CA
                  /Z'772'/
                  /2'774'/
      DATA DS
                  /Z'775'/
      DATA IS
      DATA ECODE
                  /z'77C'/
  'MASK' IS RELATIVE TO MEM, I.E. MEM (MASK)
                  /z'980'/
      DATA MASK
C-
    THE FOLLOWING THREE LINES ARE ASCII CODES IDENTIFYING INITIAL HEADER
C-
    SEQUENCES. A REVISION WAS MADE WHICH CHANGED THE HEADER STRUCTURE
C-
    FROM 'STATIST' AND 'TIMESER' TO 'STATHOR' AND 'TIMEHOR'
C-
    THEREFORE, IF THE TAPE NUMBER IS GREATER THAN 74 THE SEARCH IS FOR
C-
    '????HDR' RATHER THAN 'STATIST' OR 'TIMESER'
                                                   WHERE '?' IS A WILDCARD
C-
C-
      DATA IMSK /63,63,63,63,72,68,82,63,63,63,63,63,63,63,63,63/
C
      DATA IMSK1 /84,73,77,69,83,69,82/
C
      DATA IMSK2 /83,84,65,84,73,83,84/
      DATA ALPHA /80 * ' '/
C-
C.
C- THE FOLLOWING LINE DETECTS WHEN CONTROL DROPS IN FROM ABOVE FROM
   SUBROUTINE ATU5. THIS HAPPENS WHEN THERE IS NO MORE DATA ON THE
C
   TAPE DUE TO THE LACK OF FILE MARKS
      IF (MENU .NE. Ø) GO TO 960
      IFLAG=0
      IPASS=0
   IPASS = VARIABLE TO DETERMINE IF MENU HAS BEEN USED
C
   IFLAG = Ø NOTHING MUCH HAS HAPPENED YET
   IFLAG = 1 SEARCHING FROM CONSOLE
   IFLAG = 2 ONE MINUTE SEARCH AND DUMP
   IFLAG = 3 WRITING T.S. TO DISK
C
      WRITE (3,300)
  300 FORMAT(' Program QIF vers. 1.4 for use with Qantex model 150')
C-
   IDRV=DRIVE NUMBER (ALWAYS 1 UNLESS 2 OR MORE TAPE MACHINES HOOKED UP
C
   ITRK=TRACK NUMBER RANGING FROM 1 TO 4
   MA=MODE ARGUMENT (SEE TIP MANUAL)
   PA=POSITIONAL ARGUMENT RANGING FROM Ø TO 255
   CA=COMMAND ARGUMENT
      IDRV = 1
      ITRK = 1
C-
C-
      PRESET MODE AND POSITION
```

INTEGER RAREA, WRDCNT, MA, PA, CA, DS, IS, ECODE

```
C-
      ATUMEM(MA) = ((IDRV-1)*4) + (ITRK-1)
      ATUMEM(PA) = \emptyset
C-
    JUMP TO RESET INTERFACE COMMAND AND THEN COME BACK
C-
    INTERFACE MUST BE SET ONCE AT BEGINNING OF USE
C
C-
      GOTO 900
  988 FORMAT(' this tape is not write protected',/,'you may want to
     2remove it and turn write-protect screw on cartridge to safe')
C-
C-
   50 CONTINUE
C-
C- DISPLAY STATUS BYTES AND ERROR CODE IF ANY
C-
      CALL DSPVAL ('DS$', ATUMEM (DS), 1)
      CALL DSPVAL ('IS$', ATUMEM(IS),1)
      IF (ATUMEM (ECODE).NE.0) CALL DSPVAL ('ECODE$', ATUMEM (ECODE), 1)
C-
C-
    ENTRY POINT IF ERROR MESSAGES ARE HANDLED BY SUBROUTINE ALREADY
C-
   60 CONTINUE
C
C
   IF 'MENU'=0 I.E. IF THIS IS FIRST TIME THROUGH, LET OPERATOR KNOW
С
   IF TAPE IS NOT WRITE PROTECTED
C
      IF ((IPASS .EQ. 0) .AND. (DS .AND. 1)) WRITE(3,988)
      IF ((IPASS .EQ. 0) .and. (DS .AND. 1)) ipass=1
C-
C- RESET ERROR INDICATOR AND DISPLAY MENU
C-
      ATUMEM (ECODE) = \emptyset
      WRITE (3,303)
  303 FORMAT(' 1-Change Track or PA')
      WRITE (3, 313)
  313 FORMAT(
               2-Rewind Tape')
      WRITE (3,314)
  314 FORMAT('
                 3-Read next record & Display')
      WRITE(3,315)
  315 FORMAT(' 4-Forward Space record')
      WRITE (3,316)
  316 FORMAT('
                5-Reverse Space record')
      WRITE (3,317)
  317 FORMAT('
                 6-Search for record')
      WRITE (3,318)
  318 FORMAT('
                7-Write Timeseries to disk')
      WRITE (3,319)
  319 FORMAT(' 8-Reset Interface')
      WRITE (3, 338)
  338 FORMAT(' 9-1 min rec. Search & Dump')
      WRITE (3,320)
  320 FORMAT(' 10-Stop')
      WRITE (3,304)
  304 FORMAT(' enter choice ')
```

```
READ (1,201) MENU
  201 FORMAT(12)
      GOTO (550,600,650,700,750,800,850,900,1200,950),MENU
C-
   ERROR TRAPPING TO GUARD AGAINST DUFUSES
C-
C-
      WRITE (3, 331)
  331 FORMAT(' invalid menu entry: try the chicken salad')
      GO TO 60
C
   ROUTINE TO CHANGE PA AND MA
  550 CONTINUE
      WRITE (3,305)
  305 FORMAT (' enter track
      READ (1,201) ITRK
      IF ((ITRK .LT. 1) .OR. (ITRK .GT. 4)) GO TO 560
      ATUMEM(MA) = ((IDRV-1)*4) + (ITRK-1)
C
C
   PROMPT FOR PA
      WRITE (3,306)
  306 FORMAT ('enter positional argument (1-256)')
      READ(1.202) IPAV
  202 FORMAT(I3)
C
   SET DEFAULT VALUE OF PA TO Ø IN CASE OF ABSURD INPUTS
   NOTE: VALID PA'S ACCEPTABLE TO QANTEXT RANGE FROM Ø TO 255
   THIS PROGRAM HAS BEEN ARRANGED SO USER INPUTS VALUES FROM 1 TO 256
      IF ((IPAV .GT. 256) .OR. (IPAV .LT. 1)) IPAV = 1
      ATUMEM(PA) = IPAV-1
   NOW RETURN TO MENU
      GOTO 60
  560 CONTINUE
      WRITE (3,358)
  358 FORMAT(' not a reasonable track number; try again')
      GO TO 550
C-
C-
      SUBROUTINE TO REWIND TAPE
C-
  600 CONTINUE
      ATUMEM(CA) = Z'40'
      WRITE (3,982)
  982 FORMAT(' rewinding . . . ')
      CALL ATUS
      GOTO 50
C-
C-
      READ AND DISPLAY RECORD
C-
  65Ø CONTINUE
   SET WRDCNT TO 512 (SIZE OF DATA RECORD)
      CALL IPUT (ATUMEM (WRDCNT), 512)
C-
C-
      READ AND DISPLAY
C-
```

```
WRITE (3,302)
  302 FORMAT(' enter # of records to be read & displayed')
      READ (1, 202) KE
      K = 1
  100 CONTINUE
      IF (K.GT.KE) GO TO 60
      ATUMEM (ECODE) = \emptyset
   SET COMMAND ARGUMENT TO READ AND CALL ATU5
      ATUMEM(CA) = Z'01'
      CALL ATUS
C-
C
   DISPLAY STATUS BYTES
C
      CALL DSPVAL('DS$',ATUMEM(DS),1)
CALL DSPVAL('IS$',ATUMEM(IS),1)
      IF (ATUMEM(ECODE).NE.Ø) CALL DSPVAL('ECODE$',ATUMEM(ECODE),1)
C-
C
   NOW DISPLAY DATA
      IBUF = IGET(ATUMEM(RAREA))
      CALL DSPVAL ('DATA$', MEM (IBUF), 512)
C-
      K = K+1
      GO TO 100
C-
C-
C-
      FORWARD SPACE RECORD
  700 CONTINUE
      ATUMEM(CA) = 12
      CALL ATUS
      GOTO 50
C
С
      REVERSE SPACE RECORD
  750 CONTINUE
      ATUMEM(CA) = 14
      CALL ATUS
      GOTO 50
C-
      SEARCH UNDER MASK
C-
C-
  800 CONTINUE
   SET FLAG AND CALL ROUTINE TO GENERATE PROPER MASK (GOTO 1100)
      IFLAG=1
      GOTO 1100
C-
  810 CONTINUE
  PROMPT FOR 1-MIN. REC. NUMBER OF HEADER TO BE SEARCHED FOR
      WRITE (3,321)
  321 FORMAT(' input # for 1-min. rec. #, Ø for next header <FIELD IS
     2 12>')
      READ(1,203) I
  203 FORMAT(12)
C IF NUMBER OF 1-MIN. REC. IS ZERO, DISREGARD
```

```
IF (I.LE.0) GO TO 828
      MEM(MASK+7) = I/256
      MEM(MASK+8) = I.AND.255
C-
  828 CONTINUE
   NOW DISPLAY MASK TO BE SEARCHED FOR
      CALL DSPVAL ('MASK$', MEM (MASK), 16)
   SUBMIT SEARCH COMMAND
      ATUMEM(CA) = 11
      CALL ATUS
   CHECK FOR ERRORS
      IF (ATUMEM (ECODE) .EQ. 7) GO TO 960
      IF (ATUMEM(ECODE) .NE. Ø) GO TO 840
   DISPLAY RESULTS
      IBUF = IGET (ATUMEM (RAREA))
      CALL DSPVAL ('DATA$', MEM(IBUF), 512)
      GOTO 50
C
С
      ROUTINE TO RESUBMIT COMMAND IN CASE OF GLITCH
C
  840 CONTINUE
      WRITE (3,351)
  351 FORMAT(' suspected glitch: attempt to resubmit search',/,
     2' <CR> if you agree, any non-blank integer if not')
      READ(1,201) IANS
      ATUMEM(ECODE) = \emptyset
      IF (IANS .NE. 0) go to 60
      GO TO 828
C-
C- WRITE FILE TO DISK
  850 CONTINUE
C
   CHECK TO SEE IF QANTEX IS POSITIONED AT T.S. HEADER
C
   IF NOT, INQUIRE AS TO THE SANITY OF THE OPERATOR
C
      IF (.NOT.((MEM(IBUF).EQ.84) .AND. (MEM(IBUF+1) .EQ. 73).AND.
     2 (MEM (IBUF+2) .EQ. 77).AND. (MEM (IBUF+3) .EQ. 69))) GO TO 893
   OANTEX POSITION OK
  851 CONTINUE
      IFLAG = 3
      CALL IPUT (ATUMEM (WRDCNT), 512)
   CALCULATE NUMBER OF RECORDS CONTAINED IN TIMESERIES AND USE WITH PROMP
      INUM1=MEM(IBUF+214)
      INUM2=MEM (IBUF+215)
      IF (INUM1 .LT. Ø) INUM1=INUM1+256
      IF (INUM2 .LT. Ø) INUM2=INUM2+256
      INUM1 = ((INUM1 * 256 + INUM2) * 3) / 16
      WRITE (3,307)
  307 FORMAT(' enter number of records to be dumped')
      WRITE (3,987) INUM1
  987 FORMAT(' this timeseries contains ', I5, ' records')
      READ (1,202) KE
  FIND OUT WHAT DRIVE SORTED OUTPUT IS TO BE WRITTEN TO AND WRITE TO FILE
C FILE "CONTOL.TMP"
```

```
WRITE (3, 323)
  323 FORMAT(' enter drive letter for output of sort <Al field>')
      READ (1, 204) DDRV
  204 FORMAT (A1)
  FIND OUT DATE AND TIME TAPE PUT IN AND TAKEN OUT
      CALL GDATE (IDATI, IDATO)
   IF TAPE NUMBER NOT YET KNOWN, FIND OUT
      IF (ITAPE .LE. Ø) CALL GTAP(ITAPE, IHD)
   OPEN FILE 'TEMP.DAT' FOR N DRIVE
3
       CALL OPEN (10, 'TEMP
                              DAT', 14)
   OBTAIN AND WRITE ANY COMMENTS (5 LINES PROVIDED IN HEADER)
      DO 853 J=1.5
      WRITE (3, 327)
  327 FORMAT(' input alpha comments , (5 lines tot.)')
      READ (1,206, ERR=1000, END=853) (ALPHA (I), I=1,80)
  206 FORMAT (80 (A1))
      WRITE (10,328) (ALPHA (I), I=1,80)
  328 FORMAT (1X,80(A1))
  853 CONTINUE
     . ENDFILE 10
C-
C-
      TRANSFER HEADER FILE TO DISK
C-
C
      DO IT IN 128 BYTE BLOCKS FOR EFFICIENY
С
      CALL OPEN (8, 'HEADR
                             DAT', 14)
      IBUF=IGET (ATUMEM (RAREA))
      DO 855 LOOP=0,511,128
      Ll=IBUF+LOOP
      L2=L1+127
      WRITE (8) (MEM(J), J=L1, L2)
  855 CONTINUE
      ENDFILE 8
C-
      MAIN LOOP TO READ DATA AND WRITE TO FILE SCRATCH.DAT
C-
C-
      CALL OPEN (7, 'SCRATCH DAT', 14)
    IGCT = COUNT OF GLITCHES ENCOUNTERED
C
      IGCT=0
    K = COUNT OF RECORDS READ
C
      K=1
  860 CONTINUE
    WHEN RECORDS READ EQUAL TO RECORDS DESIRED TRANSFER CONTROL TO
C
C
    'FINISHING UP' ROUTINE
      IF (K.GT.KE) GOTO 870
    READ NEXT DATA RECORD
C
      ATUMEM (CA) = Z 'Ø1'
      CALL ATUS
C-
C-
      CHECK FOR GLITCHES & IF FOUND TRANSFER CONTROL TO SR GLITCH
C-
   FIRST DISPLAY ANY NON-COPISCETIC ERROR CODES
      IF (ATUMEM(ECODE).NE.0) CALL DSPVAL('ECODE$', ATUMEM(ECODE), 1)
      IF (ATUMEM(ECODE) .EQ. 7) GO TO 960
      IGLTCH= (48 .AND. ATUMEM (IS))
```

```
GLITCH DEFINED AS ABORT WITH ATTEMPT
C
      IF (IGLTCH .EQ. 32) CALL GLITCH (ATUMEM, CA, IGCT, K, IS)
   CHECK FOR END OF TRACK
C
      IF (4 .AND. ATUMEM(DS)) GO TO 880
C-
C
   NOW WRITE RECORD TO "SCRATCH.DAT"
      IBUF = IGET(ATUMEM(RAREA))
      DO 865 LOOP=0,511,128
      L1=IBUF+LOOP
      L2=L1+127
      WRITE (7) (MEM (J), J=L1, L2)
  865 CONTINUE
   INCREMENT RECORD COUNT
      K=K+1
      ATUMEM (ECODE) = \emptyset
   NOW LOOP BACK
      GOTO 860
   WE COME HERE WHEN WE HAVE READ ALL RECORDS
  870 CONTINUE
   IF THERE HAVE BEEN ANY GLITCHES, CALL GLPAD TO PAD LOST DATA SPACE WITH
   WITH ZEROS
      IF (IGCT .NE. Ø) CALL GLPAD(IGCT)
   CLOSE "SCRATCH.DAT"
      ENDFILE 7
   CALL ROUTINE TO WRITE CONTROL FILE FOR PROGRAM BWSORT USING CONTENTS
   OF VARIOUS TEMPORARY FILES WRITTEN. THIS PROCEDURE WAS USED SO ALL
   USER PROMPTS WOULD OCCUR AT BEGINNING OF PROCEDURE
      CALL CONFIL (KE, IGCT, ITAPE, IDATI, IDATO, ALPHA, DDRV)
   PRINT MESSAGE AND STOP
      WRITE (3,350)
  350 FORMAT(' write successfully completed')
      GOTO 950
  880 CONTINUE
C
C
   ROUTINE TO CHANGE TAPE TRACKS DURING A WRITE IF NECESSARY
C
      ITRK=ITRK+1
   ONLY 4 TRACKS EXIST
      IF (ITRK .EQ. 5) ITRK=1
      ATUMEM (ECODE) = \emptyset
   RESET MA AND CA
      ATUMEM(MA) = ((IDRV-1)*4) + (ITRK-1)
      ATUMEM(CA) = Z^{1}40^{1}
      WRITE (3,989)
  989 FORMAT(' end of track...starting next one')
      CALL ATUS
      IF (ATUMEM (ECODE) .NE. Ø) CALL DSPVAL ('ECODE$', ATUMEM (ECODE), 1)
      ATUMEM (ECODE) = \emptyset
      GO TO 860
  893 CONTINUE
C
   THIS IS THE NORM S. MEMORIAL ERROR-TRAPPING SEGMENT FOR THOSE WHO
   AREN'T CONVINCED OF THE IMPORTANCE OF STARTING A TAPE WRITE ON A
   TIMESERIES HEADER AND WONDER WHY THERE'S GARBAGE IN THEIR FILES
C
```

```
WRITE (3,355)
  355 FORMAT(' ahem! did you realize that what you are doing is highly
     2 questionable? ',/,' timeseries writes are best initiated when
     3 tape is positioned at a header.',/,' enter a 1 if you think you
     4 know what you are doing,',/,' a <CR> if you want to try again')
      READ(1,201) IANS
      IF (IANS .EQ. 1) GO TO 851
      GO TO 60
C-
C- RESET INTERFACE, THEN WASTE SOME TIME
  900 CONTINUE
      ATUMEM(CA) = Z'10'
      CALL ATUS
      K = \emptyset
   FOLLOWING LOOP EXITED BY OVERFLOWING
  910 CONTINUE
      K = K+1
      IF (K.NE.Ø) GO TO 910
      WRITE (3,301)
  301 FORMAT(' reset complete')
      GOTO 60
  950 STOP
  WE COME HERE IF 'MENU' IS NOT EQUAL TO ZERO BEFORE FIRST EXECUTABLE
   STATEMENT OF PROGRAM (CONTROL HAS DROPPED IN FROM ABOVE I.E. FROM ATU5
  960 CONTINUE
      WRITE (3,346)
  346 FORMAT(' tape machine has gone crazy: no more data?')
   DEPENDING UPON WHAT IS BEING DONE, TAKE VARIOUS ACTIONS
   IF 1-MINUTE SEARCH ONGOING, END IT
      IF (IFLAG .EQ. 2) GO TO 1270
   IF DATA BEING WRITTEN TO DISK, WARN OPERATOR OF PROBLEMS AND CLOSE
   FILES
      IF (IFLAG .EQ. 3) WRITE (3,347)
  347 FORMAT(' Closing files: no guarrantees as to what's in them')
      IF (IFLAG .EQ. 3) GO TO 870
   OTHERWISE, REDISPLAY MENU
      GO TO 60
   ERROR TRAP
 1000 CONTINUE
      WRITE (3,330)
  330 FORMAT(' problems with alpha write')
      GOTO 950
C
   ROUTINE TO GENERATE MASK FOR SEARCHES
C
 1100 CONTINUE
C
   CONTROL COMES HERE FROM 800 WITH IFLAG = 1 (SEARCH FROM CONSOLE)
C
                      FROM 1200 WITH IFLAG = 2 (1-MIN. REC. SEARCH $ DUMP)
C
C
C
   IHD=Ø
          TAPE # <=75
   IHD=1
          TAPE # >75
```

```
CALL IPUT (ATUMEM (WRDCNT), 512)
      Kl=MASK
      K2 = 1
 1105 CONTINUE
   ONLY 16 CHARACTER MASK IS CODED FOR IN THIS PROGRAM I.E.
   SET MASK CHARACTERS TO ????HDR??????? WHERE '?' IS WILD
      IF (K2.GT.16) GO TO 1110
      MEM(K1) = IMSK(K2)
      Kl = Kl+1
      K2 = K2+1
      GO TO 1105
 1110 CONTINUE
   GET TAPE NUMBER IF NOT KNOWN
      IF (ITAPE .LE. Ø) CALL GTAP(ITAPE, IHD)
   BRANCH DEPENDING UPON WHICH HEADER FORMAT IS TO BE USED
   IF TAPE # < 75 CHANGE MASK TO ???????????? AND COME BACK TO 1115
      IF (IHD .NE. 1) GO TO 1135
 1115 CONTINUE
   IF IHD = 0 THEN FIRST 4 MASK CHARACTERS ARE ALWAYS 'STAT' I.E. 83,84,6
   SINCE NO PRACTICAL WAY EXISTS ON THESE EARLIER TAPES TO SEARCH FOR BOTH
   'TIMESER' AND 'STATIST'
      IF ((IHD .EQ. 0) .AND. (IFLAG .EQ. 2)) GO TO 1120
   ELSE IF IHD=1 AND IFLAG=2 THEN MASK IS LEFT AS '????HDR???????' FOR
   PURPOSES OF MAPPING TAPE
      IF (IFLAG .EQ. 2) GOTO 1203
   WE COME HERE ONLY IF CONSOLE SEARCH IS BEING ATTEMPTED AND USER MUST
   SPECIFY WHICH HEADER IS BEING SEARCHED FOR
      WRITE (3,310)
  310 FORMAT (' input "T" for timeseries, "S" for one min. record')
      I=1
      READ(1,983) IANS
  983 FORMAT(A1)
      IF ((IANS .EQ. 83) .OR. (IANS .EQ. 115)) I=1
      IF ((IANS .EQ. 84) .OR. (IANS .EQ. 116)) I=\emptyset
C DEPENDING ON WHETHER 'STATIST' OR 'TIMESER' HEADER IS DESIRED, PUT IN
C CORRECT FIRST FOUR BYTES
      IF (I.EQ.0) GO TO 1125
C 1-MIN REC HEADER BEING SEARCHED FOR
 1120 \text{ MEM (MASK)} = 83
      MEM(MASK+1) = 84
      MEM(MASK+2)=65
      MEM(MASK+3) = 84
      IF (IFLAG .EQ. 2) GO TO 1203
   RETURN CONTROL TO CONSOLE SEARCH ROUTINE
      GO TO 810
   TIMESERIES HEADER BEING SEARCHED FOR
 1125 \text{ MEM}(MASK) = 84
      MEM(MASK+1) = 73
      MEM(MASK+2) = 77
      MEM(MASK+3)=69
   RETURN CONTROL TO CONSOLE SEARCH ROUTINE
      GO TO 810
   INSERT WILD CARD '?' IN MASK POSITION 5-7
 1135 CONTINUE
      MEM(MASK+4)=63
```

MEM (MASK+5) = 63 MEM (MASK+6) = 63 GO TO 1115

C-C-

C-

C-

THIS PORTION OF THE PROGRAM CONTROLS AN EXTENDED SEARCH FOR ONE ONE MINUTE RECORDS. THE 1-MIN. REC. DATA IS DUMPED TO DISK ALONG WITH A MAP OF WHAT IS ON THE TAPE AND WHERE.

DUE TO A LACK OF END-OF-FILE MARKS ON TAPE, IT IS DIFFICULT FOR PROGRAM TO ASCERTAIN WHEN DATA IS AT AN END AND INITIATE AN ORDERLY EXIT FROM THE ROUTINE, CLOSING FILES ETC.

C C C-

IF ORDERLY EXIT FROM SEARCH ROUTINE DOES NOT OCCUR, GENERATED FILES WILL BE LOST.

CCC

CURRENTLY PROGRAM ASSUMES THAT AN ECODE OF 7 IMPLIES NO MORE DATA AND SEARCH IS DISCONTINUED AT THIS POINT

CCC

C

C

C

C

OTHER CAUSES FOR A SEARCH DISCONTINUATION ARE IF CONTROL DROPS IN FROM ABOVE AT ANY OTHER TIME THAN AT PROGRAM INITIATION (BY USER) THIS SEEMS TO OCCUR OCCASIONALLY WHEN TAPE IS OUT OF DATA AND SOMETHING GOES WRONG IN ATUS. THIS CONDITION IS TRAPPED BY TESTING THE VARIABLE 'MENU' AT THE FIRST EXECUTABLE STEP, WHICH WILL ONLY BE ZERO IF THE PROGRAM HAS NOT YET RUN

CCCC

C

C

IF OTHER UNANTICIPATED ERROR CODES (OR DS OR IS CODES) APPEAR TO SIGNIFY THE END OF DATA OR OTHERWISE INDICATE THAT A SEARCH SHOULD BE DISCONTINUED, THEY SHOULD BE ADDED TO THE CONDITIONAL 3 LINES AFTER STATEMENT 1250. FOR THIS REASON, IT IS IMPORTANT FOR OPERATORS TO NOTE ANY ECODES, DS, OR IS CODES IN THE EVENT OF UNUSUAL BEHAVIOR

C C-

1200 CONTINUE

NOTE: IF BY SOME FANTASTIC COINCIDENCE, THE TAPE # IS GREATER THAN
75 AND A DATA RECORD (NOT A HEADER) HAPPENS TO HAVE ASCII 'HDR'
IN POSITIONS 5 6 & 7, THEN THIS PROGRAM WILL THINK THAT IT IS A
HEADER AND POSSIBLY GET VERY CONFUSED. THE CHANCES AGAINST THIS ARE
1 IN 255**3 BUT SOME PEOPLE ARE VERY LUCKY

C

GET TAPE DATES

CALL GDATE (IDATI, IDATO)

C GET TAPE NUMBER IF NOT KNOWN

IF (ITAPE .LE. Ø) CALL GTAP(ITAPE, IHD)

C OPEN TEMPORARY FILE TO STORE 1-MIN REC HEADERS CALL OPEN (8, '1MINREC DAT', Ø)

C OPEN TEMPORARY FILE TO STORE MAP OF HEADER POSITIONS

CALL OPEN (6, 'GMAP DAT', Ø)

WRITE(6,335) ITAPE

WRITE (6,344) (IDATI (I), I=1,5)

344 FORMAT (1X, 516)

WRITE (6,344) (IDATO(I), I=1,5)

- C SET FLAG INDICATING AUTOMATED 1-MIN REC SEARCH AND DUMP IFLAG=2
- C INITIALIZE COUNTER OF 1-MIN REC HEADERS READ NKNT=0

1202 CONTINUE

```
TRANSFER CONTROL TO ROUTINE TO GENERATE CORRECT MASK FOR SEARCH
      GOTO 1100
 1203 CONTINUE
   SET CA TO SEARCH AND CALL ATU5
      ATUMEM(CA) = 11
      CALL ATUS
   CHECK FOR ANY ERROR CODES
      IF (ATUMEM (ECODE) .NE. Ø) GOTO 1250
      IBUF = IGET (ATUMEM (RAREA))
   CHECK TO SEE IF HEADER READ BEGINS WITH 'TSER' AND IF SO GO TO 1210
      IF ((MEM(IBUF).EQ.84).AND.(MEM(IBUF+1).EQ.73).AND.(MEM(IBUF+2)
     2.EQ.77).AND.(MEM(IBUF+3).EQ.69)) GO TO 1210
 ELSE DUMP HEADER INTO FILE "IMINREC.DAT" (UNIT 8) SINCE IT MUST BE 1-MIN
 1204 CONTINUE
      DO 1205 LOOP=0,511,128
      L1=IBUF+LOOP
      L2=L1+127
      WRITE (8) (MEM(J), J=L1, L2)
 1205 CONTINUE
 CALCULATE RECORD NUMBER ENCODED IN HEADER
      RECNUM(1) = MEM(IBUF+7)
      RECNUM(2) = MEM(IBUF+8)
   COMPENSATE FOR FACT THAT THIS FORTRAN INTERPRETS INTEGER*1 FROM -128
   INSTEAD OF Ø TO 255 AS INTENDED
      IF (RECNUM(1) .LT. \emptyset) RECNUM(1) = RECNUM(1) + 256
      IF (RECNUM(2) .LT. \emptyset) RECNUM(2) = RECNUM(2) + 256
   NOW COMBINE BOTH BYTES TOGETHER
      RECNUM (1) = RECNUM (1) *256 + RECNUM (2)
   WRITE REC # TO SCREEN
      WRITE (3,334) RECNUM (1)
  334 FORMAT(' reading rec # ', 16)
      WRITE (6,335) RECNUM(1)
  335 FORMAT(' ',16)
   INCREMENT COUNTER
      NKNT = NKNT + 1
   SINCE LAST HEADER WAS 'STAT', READ NEXT RECORD AND SEE WHAT IT IS
      ATUMEM(CA) = 1
      CALL ATUS
      IF (ATUMEM (ECODE) .NE. Ø) GOTO 1250
      IBUF=IGET (ATUMEM (RAREA))
   CHECK TO SEE IF IT'S 'STAT' AND IF SO GO BACK UP ABOVE AND MAP IT IF ((MEM(IBUF) .EQ. 83) .AND. (MEM(IBUF+1) .EQ. 84) .AND.
     1 (MEM (IBUF+2) .EQ. 65) .AND. (MEM (IBUF+3).EQ.84)) GO TO 1204
   ELSE SEE IF IT IS 'TIME' AND IF SO GO BELOW AND MAP IT
      IF ((MEM(IBUF).EQ.84).AND.(MEM(IBUF+1).EQ.73).AND.(MEM(IBUF+2)
     2.EQ.77).AND.(MEM(IBUF+3).EQ.69)) GO TO 1210
   ELSE SOMETHING IS WRONG SINCE 'STAT' HEADER SHOULD ALWAYS BE FOLLOWED
   BY ANOTHER HEADER (EXCEPT ON MANUALLY ACTIVATED TEST TAPES)
      GO TO 1220
 1210 CONTINUE
  WE GET HERE IF TS HEADER HAS BEEN READ
C-
C-
      IF (MEM(IBUF+9) .LT. \emptyset) MEM(IBUF+9) = MEM(IBUF+9) + 256
      IF (MEM(IBUF+10) \cdot LT \cdot 0) MEM(IBUF+10) = MEM(IBUF+10) + 256
```

```
MV = -4 - 256 \times MEM (IBUF + 9) - MEM (IBUF + 10)
      WRITE (6, 335) MV
      GOTO 1202
 1220 CONTINUE
   FOLLOWING STATEMENTS HAVE CAUSED PROBLEMS ON TEST TAPES
      WRITE (3,337)
  337 FORMAT (' record just read should have been a header.'/
     l'either end of data or error: search discontinued.')
      GOTO 1270
 1250 CONTINUE
   WE COME HERE IF ERROR HAS BEEN DETECTED
   FIRST DISPLAY STATUS BYTES AND ERROR CODE
      CALL DSPVAL('DS$',ATUMEM(DS),1)
CALL DSPVAL('IS$',ATUMEM(IS),1)
      CALL DSPVAL ('ECODES', ATUMEM (ECODE), 1)
      IF (ATUMEM (ECODE) .EQ. 7) GO TO 1270
      ATUMEM (ECODE) = \emptyset
C- IF END OF TRACK GO TO 1280, INCREMENT MA AND RESUBMIT SEARCH
      IF (4 .AND. ATUMEM(DS)) GO TO 1280
C- ELSE ASSUME IT'S A GLITCH, MAP WITH -999 AND RESUBMIT SEARCH
      MV = -999
      WRITE (6,335) MV
      GOTO 1202
C- CLOSE FILES AND RETURN TO MENU: -888 SIGNIFIES END OF MAP
 1270 CONTINUE
      888 - VM
      WRITE (6,335) MV
   FINALLY, WRITE NUMBER OF RECORDS READ
      WRITE (6, 335) NKNT
C CLOSE BOTH FILES
      ENDFILE 6
      ENDFILE 8
      WRITE (3,336)
  336 FORMAT(' orderly exit from search routine')
   NOW STOP
      GO TO 950
C- WE GET HERE IF BIT 2 OF DS IS ON-END OF TRACK
 1280 CONTINUE
      ITRK=ITRK+1
   SINCE ONLY 4 TRACKS ON TAPE, ASSUME END OF SEARCH AT END OF TRACK 4
      IF (ITRK .GT. 4) GO TO 1285
      ITM1=ITRK-1
      WRITE (3,341) ITM1
  341 FORMAT (' END OF TRACK ', 15)
C MAP END OF TRACK ON GLITCH MAP WITH A NEGATIVE TRACK NUMBER
      ITM1=-ITM1
      WRITE (6, 335) ITM1
   RESET MA AND PA BEFORE REISSUING SEARCH
      ATUMEM (MA) = (IDRV-1)*4+(ITRK-1)
      ATUMEM(PA) = \emptyset
      GO TO 1202
 1285 CONTINUE
      WRITE (3,34\emptyset)
  340 FORMAT(' end of track four: end of dump')
```

GO TO 1270

```
END
C*IGET
      INTEGER FUNCTION IGET (IMEM)
      INTEGER IMEM
C-
C-
      IGET - FUNCTION TO FETCH WORD DATA FROM BYTE STORAGE
C-
      IGET = IMEM
      RETURN
C-
      END
C*IPUT
      SUBROUTINE IPUT (IMEM, IVAL)
      INTEGER IMEM, IVAL
C-
C-
      IPUT - ROUTINE TO STORE WORD DATA IN BYTE STORAGE
C-
      IMEM = IVAL
      RETURN
C-
      END
C-
C-
      SUBROUTINE TO CONTROL READ IN THE EVENT OF A GLITCH
C-
      TWO READS ARE PERFORMED AND THE RESULTS NOT STORED
C-
      WHEN DISKWRITE IS FINISHED, SUBROUTINE GLTPAD PADS REMAINING
C-
      SPACE WITH ZEROS
С
C
      THE TWO 'DUMMY' READS ARE NECESSARY TO KEEP CHANNEL SEQUENCING
C
      CORRECT
C-
      SUBROUTINE GLITCH (ATUMEM, CA, IGCT, K)
      INTEGER*1 ATUMEM(2)
      INTEGER CA, IGCT, K
  180 CONTINUE
C
   ISKP IS THE NUMBER OF DATA RECORDS SKIPPED WHEN GLITCH IS ENCOUNTERED
C
      ISKP=1
  200 CONTINUE
      IF (ISKP .EQ. 4) GOTO 220
      ATUMEM(CA) = 1
      CALL ATUS
      ISKP=ISKP+1
      GOTO 200
  220 CONTINUE
   WE COME HERE AFTER A GLITCH AND TWO ADDITIONAL READS
      K=K+3
   LOG GLITCH AS HAVING OCCURRED
      IGCT=IGCT+1
      IGTST=(ATUMEM(IS) .AND. 48)
   NOW CHECK TO SEE IF RECORD JUST READ IS ALSO A GLITCH: IF SO, START
C
   SUBROUTINE OVER
      IF (IGTST .EQ. 32) GOTO 180
      RETURN
      END
C-
```

```
SUBROUTINE TO PAD FILE WITH APPRORIATE # OF ZEROS TO REPLACE VALUES
C-
      LOST BY GLITCHES. THIS IS DONE AT END OF DISKWRITE
C-
C-
      SUBROUTINE GLPAD (IGCT)
      INTEGER*1 DUM(128)
      DATA DUM /128 * Ø/
   EACH GLITCH REQUIRES 1536 VALUES OR 16 SAMPLES/CHANNEL BE SKIPPED
   I.E. 12 X 128
      LOOP=12*IGCT
      DO 100 I=1,LOOP
      WRITE (7) (DUM (J), J=1,128)
  100 CONTINUE
      RETURN
      END
C-
C-
      SUBROUTINE TO WRITE CONTROL FILE FOR BWSORT
C-
      SUBROUTINE CONFIL (KE, IGCT, ITAPE, IDATI, IDATO, ALPHA, DDRV)
      INTEGER IDATI(5), IDATO(5)
     . INTEGER*1 ALPHA(80),DDRV
      CALL OPEN (8, 'CONTOL
                            TMP', 14)
   FIRST WRITE TAPE NUMBER
      WRITE(8,101) ITAPE
  101 FORMAT (1X, 16, 16)
  WRITE NUMBER OF SAMPLES SUCCESSFULLY READ = KES
   AND NUMBER OF SAMPLES ATTEMPTED = KEA
      KES=16*(KE-3*IGCT)/3
      KEA=16*KE/3
      WRITE (8, 101) KES, KEA
  WRITE DATE TAPE IN AND OUT
      WRITE (8, 102) (IDATI (I), I=1,5)
  102 FORMAT (1X,5(16))
      WRITE (8, 102) (IDATO (I), I=1,5)
 WRITE DISK DRIVE WHICH FINAL DATA DISK WILL BE IN WHEN BWSORT IS RUN
      WRITE (8, 103) DDRV
  103 FORMAT(1X,A1)
      CALL OPEN (10, TEMP
                             DAT',14)
   40 CONTINUE
   NOW TRANSFER ALPHA COMMENTS PREVIOUSLY WRITTEN IN 'TEMP.DAT' TO 'CONFIL.
      READ (10,104, ERR=200, END=50) (ALPHA(I), I=1,80)
  104 FORMAT (80A1)
      WRITE (8, 105) (ALPHA (I), I=1, 80)
  105 FORMAT (1X, 80A1)
      GOTO 40
   50 CONTINUE
   CLOSE FILES AND RETURN
      ENDFILE 8
      ENDFILE 10
      RETURN
 200 CONTINUE
  ERROR TRAP
      WRITE (3, 106)
  106 FORMAT(' problems with alpha reading in sr CONFIL')
      STOP
C
```

```
END
    SUBROUTINE GDATE (IDATI, IDATO)
SUBROUTINE TO PROMPT USER FOR DATES TAPE PUT IN AND TAKEN OUT OF BREAKWA
    DIMENSION IDATI (5), IDATO (5)
    WRITE (3, 325)
325 FORMAT(' input mo da yr hr min tape in '/' XX XX XX XX'/)
    READ (1,205) (IDATI(I), I=1,5)
205 FORMAT (5 (I2, 1X))
    WRITE (3,326)
326 FORMAT(' input mo da yr hr min tape out '/' XX XX XX XX'/)
    READ (1,205) (IDATO (I), I=1,5)
    RETURN
    END
 SUBROUTINE TO GET TAPE NUMBER AND DETERMINE WHICH OF 2 HEADER FORMATS
ARE APPLICABLE DEPENDING ON WHETHER TAPE # IS > OR < 74
    SUBROUTINE GTAP (ITAPE, IHD)
100 WRITE (3,324)
324 FORMAT(' input tape number <13 FIELD>')
    READ(1,202) ITAPE
202 FORMAT(I3)
    IF (ITAPE .LE. Ø) GO TO 120
    IF (ITAPE .GT. 75) IHD=1
    RETURN
120 CONTINUE
    WRITE (3, 327)
327 FORMAT(' PLEASE! Zero or negative tape numbers have been known
   2 to blow up the gantex and advance world communism. ')
    GO TO 100
    END
```

PROGRAM BWSORT

TO REFORMAT OUTPUT OF QIF FOR SSP

C- C- C	PROGRAM BWSORT TO SORT DATA INTO RANDOM ACCESS FILE FOR INPUT INTO PROGRAM SSO THIS PROGRAM IS NECESSARY DUE TO THE FACT THAT PROGRAM QIF MERELY TRANSFERS DATA DIRECTLY OFF QANTEX DRIVE BEFORE DATA IS USEFUL, IT MUST BE SORTED SO THAT THE DATA FOR EACH CHANNEL IS TOGETHER SOME CHANNELS (1-16) ARE TWO BYTE CHANNELS WHILE SOME (17-80) ARE ONE BYTE CHANNELS. THIS PROGRAM ALSO HANDLES THESE CONVERSIONS THESE FUNCTIONS ARE NOT HANDLED DIRECTLY BY PROGRAM QIF BECAUSE THIS IS THE MOST TIME-CONSUMING PORTION OF THE PROCESSING, AND IT THEREFORE HAPPENS MUCH FASTER WHEN A 16-BIT FORTRAN IS USED MORE RAM IS ALSO AVAILABLE FOR THIS PURPOSE			
00000				
000				
0000				
0000	PROGRAMMED BY ROBERT MILLER, UNIVERSITY OF WASHINGTON IN SUMMER OF 1983 FOR WEST POINT PROTOTYPE FLOATING BREAKWATER TEST PROJECT US ARMY CORPS OF ENGINEERS			
0 0 0 -	FINAL RANDOM ACCESS DATA FILE IS ARRANGED SO THAT EACH CHANNEL MAY BE OPENED AS A FILE RECORD BY PROGRAM SSP			
С	UNIT NUMBER	FILE	DESCRIPTION	
C C	1		CONSOLE	
0000	5	"N:SCRATCH.DAT"	INPUT FILE CONTAINING UNSORTED DATA	
С	6	" <d:>BW<tape #="">R<rec #="">.DAT"</rec></tape></d:>	FINAL OUTPUT FILE FOR DATA	
0000	7	"N:CONTOL.TMP"	TEMPORARY FILE LEFT BY PROGRAM QIF CONTAINING CONTROL INFO	
0000	9	"N: HEADR.DAT"	TEMPORARY HEADER FILE LEFT BY PROGRAM QIF	
CCC	11	" <d:>BW<tape #="">R<rec #="">.HDR"</rec></tape></d:>	HEADER CONTAINING CONTROL INFO	
C- C- C-	DFN=DUMMY FILENAME; IFN=INPUT FILENAME; FNAME=OUTPUT FILENAME TAPE=TAPE #; RECD=1 MIN-REC. #; FTYP=FILETYPE; FPFX=FILE PREFIX			
	CHARACTER*11 DFN CHARACTER*10 FTRAN CHARACTER*15 FNAME			
C-		CHARACTER*4 FTYP		
_	INTEGER*1 CHAN1B(2,256) INTEGER CHAN2B(256) INTEGER*1 IBUF(24576)			
C- C-	CONVERSION I	FROM ONE TO TWO BYTE INTEGERS IS	DONE BY MEANS OF EQUIVALENCE	

```
THIS AUTOMATICALLY WRITES TWO BYTE CHANNELS
C-
      OF ONE AND TWO BYTE ARRAYS.
C-
      AS ONE INTEGER AND RIDS NEGATIVE INTEGERS FROM ONE BYTE CHANNELS
C-
      EQUIVALENCE (CHAN1B, CHAN2B)
C-
      DATA FTYP /".DAT"/
      DATA DFN /"SCRATCH.DAT"/
C-
C-
      INPUT SIZE OF FILE AND CHECK IF NUMBER OF SAMPLES IS A MULTIPLE
C-
      OF 256 (SAMPLES = RECORDS * 16/3)
C-
C
      WRITE FINAL FORM OF HEADER ON DRIVE SPECIFIED BY USER FOR OUTPUT
C
      (THIS WAS DONE IN PROGRAM QIF)
      CALL HDRSR (FTRAN, ISAMP)
      IREC=(ISAMP*3)/16
      ICHK=IREC/48
      ICHK=ICHK*48
      IF (ICHK.NE.IREC) GOTO 900
C-
C-
      ISAMP=# OF SAMPLES IN TIMESERIES
C-
C-
      ATTEMPT TO OPEN AND/OR CREATE RELEVENT FILES
C-
      IF (IORAND (24576, 1, 5, 0, DFN)) GOTO 910
C-
C-
      ROUTINE TO CREATE OUTPUT FILE OF PROPER SIZE
      OTHERWISE SUPERSOFT FORTRAN SEEMS UNABLE TO PROPERLY WRITE
C-
C-
      RANDOM ACCESS FILES. THIS STEP IS A TIMEWASTER BUT WE HAVEN'T
C-
      FIGURED OUT A WAY AROUND IT YET
C
      CALL CONCAT (FNAME, FTRAN, FTYP)
C FOR REASONS OF EFFICIENCY IT IS CONVENIENT TO USE IMPLIED WRITES IIN
   IN BLOCKS OF 256 BYTES
      LC=ISAMP/256
      IF (LC*256 .LT. ISAMP) LC=LC+1
      DO 400 I=1,256
  400 CHAN2B(I)=0
C FILE IS FIRST OPENED AS SEQUENTIAL
      IF (IOWRIT (6, Ø, Ø, FNAME)) GOTO 915
      DO 407 I=1,80
             DO 405 K=1,LC
                 WRITE (6) (CHAN2B (J), J=1, 256)
  405
             CONTINUE
  407 CONTINUE
  NOW CLOSE FILE SO IT MAY BE REOPENED AS RANDOM ACCESS FILE
      IF (IOCLOS (6)) GOTO 920
C- RE-OPEN FILE AS RANDOM ACCESS WITH BLOCK SIZES OF 256 INTEGER*2
C- RECORDS
  410 IF (IORAND (512, 2, 6, 0, FNAME)) GOTO 905
C- ICHN = CHANNEL #; ITRN = SCRATCH INTEGER
    IOUTL = OUTER LOOP CONTROLLER
C
C- IOFFS = FUNCTION RETURNING STARTING ADDRESS WITHIN 24576 BYTE
```

```
RECORD TO ACCESS FIRST BYTE OF ICHN;
C-
C-
    ICHAMP = NUMBER OF ITERATIONS THAT MUST BE PERFORMED @ 256 SAMPLES
C-
C-
              PER ITERATION TO COMPLETE SORT
C
    IDUM
           = DUMMY VARIABLE TO STORE IOFFS
C
C
    RINP IS A SUBROUTINE THAT READS IN THE DATA
C
C
    WOUT IS A SUBROUTINE THAT WRITES OUT THE DATA
C
C
    NOTE THE DIFFERENT MANNER IN WHICH THE TWO-BYTE (17 TO 80) VERSUS ONE
C
    BYTE (1-16) CHANNELS MUST BE HANDLED.
C
C
   INPUT FILE IS BROKEN INTO CHUNKS OF 24,576 BYTES = 256 SAMPLES/CHANNEL
C
   ICHAMP IS TOTAL NUMBER OF ITERATIONS REQUIRED TO COMPLETE SPECIFIED
   NUMBER OF RECORDS
      ICHAMP=ISAMP/256
      DO 450 IOUTL=1, ICHAMP
            WRITE (1,360) IOUTL, ICHAMP
  36Ø
            FORMAT(" begining of iteration # ",I2," of ",I2)
            CALL RINP (IOUTL, IBUF)
C
C
   FIRST PROCESS TWO-BYTE CHANNELS
            DO 440 ICHN=1,16
                 IDUM = IOFFS (ICHN)
                 DO 435 K=1,256
                     INLOOP = IDUM + (K-1)*96
                     CHAN1B(2,K) = IBUF(INLOOP-1)
                     CHAN1B(1,K)=IBUF(INLOOP)
  435
                 CONTINUE
                 CALL WOUT (IOUTL, ICHN, CHAN2B, ICHAMP)
  440
            CONTINUE
C
C
   THE FOLLOWING LOOP NECESSARY TO INSURE THAT CONVERSION FROM ONE BYTE
C
   TO TWO BYTE INTEGER OCCURS WITHOUT NON-ZERO VALUES IN THE FOUR MOST
C
   SIGNIFICANT BITS
C
            DO 442 K=1,256
                  CHAN1B (2,K) = \emptyset \#
  442
            CONTINUE
C
C
   NOW PROCESS ONE-BYTE CHANNELS
            DO 447 \text{ ICHN} = 17.80
                  IDUM = IOFFS (ICHN)
                  DO 445 K=1,256
                      INLOOP = IDUM + (K-1)*96
                      CHAN1B(1,K)=IBUF(INLOOP)
  445
                  CONTINUE
                  CALL WOUT (IOUTL, ICHN, CHAN2B)
  447
            CONTINUE
  450 CONTINUE
C-
      PROGRAM FINISHED: CLOSE OUTPUT FILE AND WRITE MESSAGE
C-
```

```
C-
      IF (IOCLOS (6)) GOTO 920
      WRITE (1,305) FNAME
  305 FORMAT(" sort compleged: file ",A15)
      GOTO 1000
  900 CONTINUE
      WRITE (1,350)
  350 FORMAT(" # of records must be multiple of 48: reread record")
C
C
    ERROR TRAPS
.C-
  905 CONTINUE
      WRITE (1,351)
  351 FORMAT (" file opening error")
      GOTO 1000
C-
  910 CONTINUE
      WRITE (1,352)
  352 FORMAT (" error opening input file 'SCRATCH.DAT'")
      GOTO 1000
C-
  915 CONTINUE
      WRITE (1,353)
  353 FORMAT(" iowrit error: output file")
      GOTO 1000
C-
  920 CONTINUE
      WRITE (1,354)
  354 FORMAT (" ioclos error: output file")
      GOTO 1000
  922 CONTINUE
      WRITE (1,357)
  357 FORMAT(" error in ioread: file contol.tmp")
      GOTO 1000
C-
C-
1000
     CONTINUE
      WRITE (1,306)
      FORMAT (" orderly exit...")
      STOP
      END
C-
    SUBROUTINE TO DETERMINE OFFSET FOR LOOPING IN IBUF ARRAY
C-
C-
    IOFFS (CHANNEL NUMBER) IS THE NUMBER OF BYTES FROM THE BEGINNING OF THE
    ARRAY THAT THE FIRST OCCURANCE OF A BYTE OF CHANNEL NUMBER ICHN OCCURS
С
    THE FORMULA FOR CALCULATING THIS IS
C
    OFFSET= 6*(CHANNEL NUMBER) - 95*INT(((CH #)-1)/16) - 4
C
    THIS IS A CONSEQUENCE OF THE ORDER IN WHICH BYTES WERE ORIGINALLY
C
    WRITTEN TO TAPE (SEE INFO ON FIELD DATA AQUISITION SYSTEM)
С
      INTEGER FUNCTION IOFFS (ICHN)
```

```
ITRN=(ICHN-1)/16
      IOFFS = 6*ICHN-95*ITRN-4
      RETURN
      END
C-
C-
      SUBROUTINE TO READ BLOCK OF 24576 BYTES FROM INPUT FILE
C-
      SUBROUTINE RINP (IBLK, IBUF)
      INTEGER*1 IBUF (24576)
      READ (5/IBLK) (IBUF (I), I=1, 24576)
      RETURN
      END
C-
C-
      SUBROUTINE TO WRITE OUT DATA
C-
      SUBROUTINE WOUT (IOUTL, ICHN, CHAN2B, ICHAMP)
      INTEGER CHAN2B (256)
C
      ICHN=(IOUTL-1)*8+J
      IF (ICHN .GT. 16) GOTO 40
      WRITE (6/((ICHN-1)*ICHAMP+IOUTL))((ISHIFT(CHAN2B(I),-4).AND. 4095)
     2), I=1, 256)
      GOTO 50
  40 CONTINUE
      WRITE (6/((ICHN-1)*ICHAMP+IOUTL)) (CHAN2B(I), I=1, 256)
  5Ø
      CONTINUE
C
      WRITE (1,100) ICHN
ClØØ
      FORMAT (' UP TO CHANNEL # ',16)
      RETURN
      END
C-
C-
      SUBROUTINE TO WRITE HEADR IN ASCII FORMAT FOR USE WITH PROGRAM
C-
      SSP
      FORMAT FOR THIS FILE MAY BE SEEN IN DOCUMENTATION OF PROGRAM SSP
      SUBROUTINE HDRSR (FTRAN, ISAMP)
      INTEGER*1 HBlB(2,512)
      INTEGER*2 HB2B(512)
      INTEGER*2 IDATO (5), IDATI (5)
      CHARACTER*1 DRV, COL, PART
      CHARACTER*15 FNAME
      CHARACTER*10 FTRAN
      CHARACTER*2 FPFX
      CHARACTER*80 COMMNT
      CHARACTER*6 TAPE, RECD, STRCHK
      CHARACTER*4 FTYP
C-
      DATA FTYP /".HDR"/
      DATA FPFX /"BW"/
      DATA COL /":"/
      DATA HB2B /512 * Ø/
      DATA PART /"R"/
C-
      EQUIVALENCE (HB1B, HB2B)
C-
C-
      OPEN AND READ HEADR INPUT FILE
```

```
C-
      IF (IORAND (512,1,9,0,"HEADR.DAT")) GOTO 900
      READ (9/1) (HBlB (1,I), I=1,512)
      IF (IOCLOS (9)) GOTO 920
C-
C-
      READ IN CONTROL FILE TELLING HOW MANY SUCCESSFUL SAMPLES, DATES ETC.
C-
       (SEE DOCUMENTATION FOR PROGRAM QIF FOR MORE DETAILED EXPLANATION OF TERMS
      IF (IOREAD (7,2,0,"CONTOL.TMP")) GOTO 922
      READ (7,700) ITAPE
  700 FORMAT (2(16))
      READ (7,700) ICOMP, ISAMP
      READ (7,701) (IDATI (I), I=1,5)
  701 FORMAT (5 (16))
      READ (7,701) (IDATO (I), I=1,5)
      READ (7,702) DRV
  702 FORMAT (A1)
      WRITE (TAPE, 715) ITAPE
  715 FORMAT (1X, 16)
      IREC=256*HB2B(8)+HB2B(9)
      ITSREC=256*HB2B(10)+HB2B(11)
C
   RECD IS CHARACTER FORM OF 1-MIN RECORD NUMBER
      WRITE (RECD, 715) IREC
C-
C-
      GENERATE OUTPUT FILENAME
C-
      TAPE=STRCHK (TAPE)
      RECD=STRCHK (RECD)
      I=KLEN (TAPE)
      J=KLEN (RECD)
      CALL SETLEN (TAPE, I)
      CALL SETLEN (RECD, J)
      CALL CONCAT (FTRAN, DRV, COL, FPFX, TAPE, PART, RECD)
      CALL CONCAT (FNAME, FTRAN, FTYP)
      WRITE (1,309) FNAME
C-
C
   NOW OPEN FILE
C
      IF (IOWRIT(11,2,0,FNAME)) GOTO 910
C
   TRANSFER CONTENTS INTO FILE CONSISTENT WITH USERS MANUAL
      WRITE (11, 204) ITAPE, IREC, ITSREC, HB2B (12)+1
      WRITE (11,205) (IDATI (I),I=1,5)
      WRITE (11, 205) (IDATO (1), I=1,5)
      IDA=HB2B(17)*10 + HB2B(18)
      IHR = HB2B(19)*10 + HB2B(20)
      IMIN=HB2B(21)*10 + HB2B(22)
      WRITE (11, 203) IDA, IHR, IMIN
      WRITE(11,202) ISAMP, ICOMP
C
C
   THE FOLLOWING DUMMY VALUES ARE WRITTEN IN A SPACE THAT WAS ORIGINALLY
C
   INTENDED FOR SCALE FACTORS
C
      DUM=-9999.
```

```
DO 50 I=1,10
      WRITE (11, 201) DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM
  5Ø
      CONTINUE
C-
C-
      WRITE COMMENTS TO HEADR FILE
C-
  60
      CONTINUE
      READ (7,704,ENDFILE=70) COMMNT
  704 FORMAT (A80)
      WRITE (11,200) COMMNT
      GOTO 60
  70 CONTINUE
C NOW CLOSE ALL FILES AND RETURN
      IF (IOCLOS(7)) GOTO 940
      IF (IOCLOS (11)) GOTO 930
      RETURN
  80
      STOP
C ERROR TRAPS
 900 CONTINUE
      WRITE (1,304)
      GOTO 80
 910 CONTINUE
      WRITE (1,305)
      GOTO 80
 920 CONTINUE
      WRITE (1,306)
      GOTO6 80
      CONTINUE
      WRITE (1,310)
      GOTO 8Ø
 93Ø
      CONTINUE
      WRITE (1,307)
      GOTO 80
 940
      CONTINUE
      WRITE (1,308)
C-
C-
 101 FORMAT (510)
 102 FORMAT (A0)
 200 FORMAT (1X, A80)
 205 FORMAT (1X,5(110))
 201 FORMAT (1X, 8 (F10.0))
 203 FORMAT (1X, 3 (110))
 204 FORMAT (1X, 4 (110))
 202 FORMAT (1X, 2(I10))
     FORMAT (" error opening input header file")
 3Ø4
      FORMAT (" error opening output header file")
 3Ø5
 306 FORMAT (" error closing input header file")
      FORMAT (" error closing output header file")
 3Ø7
 308 FORMAT (" error closing contol.tmp file")
      FORMAT(" ",A15)
 3Ø9
 310
      FORMAT (" error opening control file")
      END
```

C-

```
C-
      FUNCTION TO RETURN VALUE OF ALPHA STRINGS LEFT JUSTIFIED IN FIELD
C-
      CHARACTER*6 FUNCTION STRCHK (ALPARG)
      CHARACTER*6 ALPARG, SUBSTG
      CHARACTER*1 ALPTST
      IPTR1=0
 20
      CONTINUE
      IPTR1=IPTR1+1
      ALPTST=SUBSTG (ALPARG, IPTR1, IPTR1)
      IF (ALPTST.EQ." ") GOTO 20
IF (ALPTST.EQ."0") GOTO 20
      IF (IPTR1 .GT.6) GOTO 50
      STRCHK=SUBSTG (ALPARG, IPTR1, 6)
      RETURN
 5Ø
      WRITE (1, 100)
 100 FORMAT(" error in string or blank string: sr STRCHK",/,"
     2 record number will be $$")
      STRCHK="$$"
      RETURN
      END
```

MODIFIED ALLOY DS100
TAPE CONTROL SOURCE CODE

```
.TITLE "{ALLOY QANTEX 401 TAPE UTILITY}- REV-{Q5.x1}"
.SBTTL "ASSEMBLY CONTROL"
.18080 ; ALLOW ONLY 8080 OPERATORS
.PABS ; ABSOLUTE ASSEMBLY FORMAT
.XLINK ; SUPRESS LINKER DATA
.PHEX ; HEXIDECIMAL OBJECT GENERATION
.XSYM : DELETE SYMBOL TABLE
.SALL ; INHIBIT MACRO EXPANSIONS
 COPYRIGHT 1981 BY:
; ALLOY ENGINEERING COMPANY, INC.
; COMPUTER PRODUCTS DIVISION
; 12 Mercer Road
; Natick, Ma. 01760
 (617) 655-3900
        This DOCUMENT contains INFORMATION
 which is PROPRIETARY to ALLOY ENGINEERING
 COMPANY, INC. REPRODUCTION or USE WITHOUT
 an EXPRESS WRITTEN CONSENT from the ALLOY
; ENGINEERING COMPANY IS PROHIBITED......
 DOCUMENT # {FW-100065:MM}
ï
• PAGE
.SBTTL "REVISION HISTORY"
   {REVISIONS:}
; REV----DATE----DETAILS
 Q5.x0 06/30/81 BASE VERSION FROM ATU4
                REV 4.x3 WITH MODIFICATIONS
                FOR BI-DIRECTIONAL OPERATION
 Q5.xl 04/25/83 CORRECT REWIND CIRCUIT TO
                PERFORM REW IF AT LOGICAL BOT
                IF FLG IS SET
. PAGE
.SBTTL "MISC EQUATES AND MAPPING"
;---- UNIQUE INSTRUCTIONS ----
.DEFINE CLA=[.BYTE ØAFH]
       ; CLEAR ACCUMULATOR (XRA A)
   --- ALLOY SPECIFIC EQUATES ----
       =1800H : ALLOY TAPE UTILITY
ATU
               ; PROGRAM START ADDR.
       =\"I/O PORT GROUP?"
```

```
; (16 LONG)
      =2900H ; MASK BUFFER AREA
R.MBA
R.MBL
      =16
               : MASK BUFFER LENGTH
R.DBA
      =3000H ; DATA BUFFER AREA
R_DBL
      =82Ø8
               ; DATA BUFFER LENGTH
    - PHYSICAL RECORD I.D.'S ----
               ; FILE MARK I.D.
FMKID =55H
               ; NORMAL RECORD I.D.
RID
       =22H
EORID
       =ØlH
               ; NORMAL END OR RECORD I.D.
              ; DEI SYNC I.D.
       =Ø8H
DSID
PSID
       =ØFFH
              ; PCI SYNC I.D.
               ; SINGLE SYNC MODE FOR PCI
MSYN1
       =ØBCH
               ; DOUBLE SYNC MODE FOR PCI
MSYN2
      =Ø3CH
       =25
               ; RETRY COUNT + 1
RCNT
       =5Ø
               ; READ RETRY COUNT
RRCNT
. PAGE
.SBTTL "PROGRAM OPERATION"
.REMARK
       THIS PROGRAM CONFORMS TO THE SPECIFICATIONS
OF THE 'Alloy Tape Utilities'. PLEASE REFER TO
THIS DOCUMENT FOR FURTHER INFORMATION"
- PAGE
.SBTTL "{ERROR CODES}"
.REMARK " WHEN THE SUBROUTINES RETURN TO THE CALLER,
  THE (B) REGISTER CONTAINS INFORMATION RELATED TO
  THE SOURCE OF THE ERROR. THIS ERROR CODE IS VALID
  ANY TIME THE SUBROUTINE RETURNS WITH THE (CY) SET."
;---- ERROR CODES FOLLOW: (B) ----
;**** CODES Ø-3 WILL "ABORT WITHOUT MOTION" ****
               ; WARNING-- SELECTED DRIVE HAS
ΕØ
       =Ø
               : EXECUTED AUTO-REWIND SEQUENCE
               ; SINCE PREVIOUS INIT OR REWIND
               ; CMD. ISSUE REWIND TO CLEAR.
El
       =1
               ; WRITE OPERATION REQUEST TO A
               ; WRITE-PROTECTED DRIVE.
E2
       =2
               ; CMD. TO NON-PRESENT DRIVE OR
               ; DRIVE WITH CARTRIDGE REMOVED.
E3
       =3
               ; DRIVE FAILED TO RESPOND TO THE
               ; REQUESTED COMMAND. I.E. BACK-
```

: SPACE AT BOT ETC.

```
**** CODES 6-13 WILL "ABORT WITH MOTION" ****
               ; FILE-MARK VERIFICATION FAILURE
E6
       =6
               ; AFTER WRITING IT.
E7
       =7
               ; TRANSPORT ABORT PRIOR TO COMMAND
               ; COMPLETION. I.E. SKIP RECORD ON
               : BLANK TAPE
Ë8
       =8
               ; READ FAIL- MISSING DATA OR FMK.I.D.
E9
       =9
               : READ FAIL- BAD LRCC
ElØ
       =10
               ; READ FAIL- SHORT RECORD ERROR
E11
       =11
               ; READ FAIL- BAD VERTICAL PARITY
E12
               ; WRITE FAIL- R-A-W VERIFY ERROR
       =12
E13
       =13
               ; WRITE FAIL- READ DATA NOT
               ; DETECTED PRIOR TO RECORD
               ; WRITE OPERATION COMPLETE.
;**** CODE 14 WILL REPORT A FILE MARK ****
E14
       =14
               ; READ FAIL- FILE MARK DETECTED
. PAGE
.SBTTL "{I/O ASSIGNMENTS}"
:NOTE: SEE DEI MANUAL FOR BIT EXPLANATIONS.
IDEIS1 =P+Ø ; INPUT DEI STATUS-1
                       ; DRIVE IS SELECTED
               SLD
      BØ-
                       ; DRIVE BUSY
      Bl-
               BSY
                       ; DRIVE WRITE LOGIC ON
      B2-
               WND
                       ; FILE IS PROTECTED (SAFE)
      B3-
               FUP
               FLG
                      ; REWIND HAS OCURRED
      B4-
                       ; TAPE EARLY END WARNING
      B5-
               EWS
      B6-
               LPS
                       ; TAPE IN LOAD-POINT AREA
                       ; DRIVE 'ON WITH CART.'
       B7-
               RDY
               ; OUTPUT DEI LATCH-1
ODEIL1 =P+5
       NOTE: THE SENSE OF THESE BITS IS LOW=TRUE
                       ; MOVE REVERSE
               REV*
      BØ-
                       ; MOVE FORWARD
      Bl-
               FWD*
               HSP*
                       ; MOVE AT HIGH-SPEED
      B2-
                       : SET WRITE-ENABLE
      B3-
               WEN*
               PASS-THROUGH BIT*; ALLOW FLG OP'S
       B4-
```

```
B5-
              RWD* ; REWIND THE DRIVE
       B6-
              NOT USED
       B7-
               SLG (HIGH TO SELECT DRIVE)
IMSR
       =P+1
               ; INPUT MISC. STATUS REG.
      BØ-B3
              NOT ASSIGNED
      B4-
              PASS-THROUGH BIT
      B5-
              DATA DETECTED
      B6-
              PCI1-TXRDY
      B7-
               PCI1-RXRDY
ODEIL2 =P+4
              ; OUTPUT DEI LATCH-2
      NOTE: THE SENSE OF THESE BITS IS LOW-TRUE
       BØ-
               LED1* (ON LINE)
       B1-
               LED2* (FAULT)
      B2-
              RESERVED
      B3-
              SL1*
      B4-
              SL2*
              TR1*
      B5-
      B6-
              TR2*
      B7-
              SL4*
. PAGE
;NOTE: SEE SIGNETICS SPECIFICATION (2651) FOR
      BIT ASSIGNMENTS ETC.
       ;
OPCIDR =P+12
              ; OUTPUT PCI DATA REGISTER
OPCISR =P+13
              ; OUTPUT PCI SYNC REGISTER
OPCIMR =P+14
               ; OUTPUT PCI MODE REGISTERS
OPCICR =P+15
              ; OUTPUT PCI COMMAND REGISTER
IPCIDR =P+8
              ; READ PCI DATA REGISTER
IPCISR =P+9
              ; READ PCI STATUS REGISTER
IPCIMR =P+10
               ; READ PCI MODE REGISTERS
IPCICR =P+11
              ; READ PCI COMMAND REGISTER
. PAGE
.SBTTL "{ATU PROGRAM ENTRY}"
**************
      .LCC
              ATU
```

```
; NOTE: SET-UP MA/PA/CA PRIOR TO CALL
       ALL PRIMARY REGISTERS SAVED U USED
        BUT RESTORED ON RETURN
ATUS:
       PUSH
               PSW
                        ; SAVE CALLING REG'S
       PUSH
               В
       PUSH
               D
       PUSH
               Н
       LXI
               H,Ø
                        ; SAVE CURRENT STACK LOC
       DAD
               SP
                           IN CASE OF TROUBLE
       SHLD
               SSAVE
       LDA
               CA
                        ; GET THE REQUESTED CMD.
       STA
               CSR
                        ; SAVE FOR COORDINATION
                        ; STRIP TO ACTUAL CMD
       ANI
               17H
       CPI
               2
                        ; WRITE COMMAND?
       JZ
               WDLRC
                        ; IF SO, GO CALCULATE LRC
       ANI
               10H
                        ; CHECK IF "RESET COMMAND"
       JΖ
               SAP
                        ; NO INIT IF ZERO
       CALL
               INIT
                        ; GO DO TAPE INIT THINGS
       JMP
               RTRAN
                        ; EXIT TO CALLER
. PAGE
:--- HERE WE CHECK IF RE-TRANSMIT COMMAND --
SAP:
       LDA
               CA
                        ; GET THE COMMAND
       ANI
                        ; CHECK IF RE-TRANSMIT
       JZ
                        ; IF SO, JUST DO IT
               RTRAN
    - HERE WE PRE-PROCESS MA ----
       LDA
               MA
                        ; GET CALLING MODE ARGUMENT
       ANI
               8FH
                        ; REMOVE TRANSIENT BITS
       ORI
               8ØH
                        ; SET DRS-232 COMPATIBLE BIT
                       ; SAVE INITIALIZED ISW
       STA
               IS
                        ; GET NAKED DRIVE STATUS
       IVM
               A,8ØH
                        ; SAVE INITIALIZED DSW
       STA
      HERE WE SELECT THE DRIVE & TRACK ----
       LDA
               MA
                        ; SET DRIVE & TRACK
       MOV
               B,A
       CALL
               SDAT
      HERE WE PRE-PROCESS CA ----
       LDA
               CA
                        ; GET THE COMMAND
       MOV
               B,A
                        ; SAVE FOR LATER
     HERE WE INIT THE RETRY COUNT ----
               2ØH
                        ; CHECK AUTO-REWRITE BIT
       ANI
                        ; IF FALSE, DONT'T DISABLE
       MVI
               A, RCNT
                ••B
       JZ
               RCNT-1 ; SET RETRY TO 1
       SUI
..B:
      STA
               RETRY
```

```
. PAGE
;---- HERE WE DECODE THE SPECIFIED COMMAND ----
                       ; GET COMMAND
       MOV
               A,B
                       ; RELATIVE TO BOT?
       ANI
               40H
       JZ
               ..C
                       ; IF NOT, NO REWIND
       CALL
                       ; IF SO, REWIND
               REWIND
                       ; CHECK ABORT CAUSE & REPORT
       JC
               ABORT
                       ; GET COMMAND BACK
..C:
      LDA
              CA
       MOV
                       ; STORE FOR LATER
               B,A
                       ; CHECK RESERVED COMMAND
       ANI
               8ØH
                       ; GO DO RAM DIAGNOSTIC READ
       JNZ
               RDIAG
                       ; GET CA BACK
       MOV
               A,B
                       ; MASK DOWN TO COMMAND
       ANI
               ØFH
       JΖ
               NOC
                       ; IF ZERO, GO SET THAT FLAG
       CPI
                       ; CHECK EXTENDED COMMAND BIT
               8
                       ; IF SET, GO EXTEND
       JNC
               EXT
       DCR
                       ; READ?
               Α
                       ; IF SO, GO READ
       JZ
               RR
       DCR
               Α
                       ; WRITE?
               WR
                       ; IF SO, GO DO THAT
       JZ
                       ; WRITE FILE MARK?
       DCR
               Α
       JΖ
                        ; IF SO, GO DO THAT
               WFMR
:-- HERE IS LOW SPEED COMMAND 4-7 DISPATCH ----
JTRLS: MVI
               D, ØFFH ; SET FOR LOW SPEED
   -- HERE WE DISPATCH ON CMD 4-7 ----
JTR:
               H.SRET
                      ; GET RETURN ADDR FOR SUBS
       LXI
       PUSH
               Н
                       ; SAVE AS RETURN PC
       LDA
               PA
                       ; GET POSITIONAL ARGUMENT
                       ; PUT IN C IN CASE IT'S USED
       MOV
               C,A
       MOV
               A,B
                       ; GET THE COMMAND BYTE
               7
       ANI
                       ; MASK TO COMMAND PROPER
       CPI
               6
                       : CHECK IF FORWARD OR REVERSE
       MOV
                       ; GET SPEED CALLING ARGUMENT
               A,D
       JC
               SRF
                       ; DO FORWARD ON 4 OR 5
       JMP
               SRR
                        ; DO REVERSE ON 6 OR 7
    - HERE WE RETURN FROM CMD 3-7 ----
SRET: JC
               ABORT
                       ; GO SORT OUT REASON ABORTED
;---- FALL INTO TRANSMIT ROUTINE ----
. PAGE
.SBTTL "{TRANSMIT} DATA CIRCUIT"
;---- HERE WE DEVELOP THE DS WORD --
               DS
                       ; GET THE DS WORD
CPRA:
     LDA
       MOV
               B,A
                       ; SAVE FOR LATER USE
               IDEIS1
       IN
       RRC
       RRC
```

```
RRC
       ANI
               1FH
                       ; ISOLATE DEI USABLE BITS
       ORA
               В
                       ; SAVE UPDATED STATUS
       VOM
               B,A
       ANI
               ØCH
                       ; CHECK FOR EOT OR BOT
                       ; NO MOD IF NEITHER
       JZ
               ..A
       LDA
               MA
                       ; CHECK THE TRACK
       ANI
               1
       JZ
                ..A
                        ; NO MOD FOR TK Ø OR 2
               A,ØCH
       MVI
                       ; REVERSE ROLES OF EOT
       XRA
               В
                        : AND BOT ON TK 1 OR 3
       MOV
               B,A
..A:
      VOM
               A,B
                       ; GET THE STATUS
       STA
               DS
                       ; SAVE DRIVE STATUS
       STA
               ODS
                       ; SAVE AS OLD DRIVE STATUS
    - WE ENTER HERE TO EXIT TO MAIN CALLER ----
RTRAN: LDA
               CSR
                       ; GET SAVE CA VALUE
                        ; RESTORE CALLERS'
       STA
               CA
               SSAVE
                       ; RESTORE STACK -IN CASE
       LHLD
       SPHL
       POP
                        ; AND ALL REG'S
               Н
       POP
               D
       POP
               В
       POP
               PSW
       RET
                        ; RETURN TO MAIN PROGRAM
. PAGE
.SBTTL "{COPY} SUBROUTINE"
       CALL
       RET
               CY=1 IF ABORTED
       DYNAMICALY D= DRIVE 1 SELECTOR
                  E= DRIVE 2 SELECTOR
COPYS: LXI
               D,0004H; DR1/2 TK 0 INITIAL VALUE
       CLA
                        ; CLEAR FMK/ DONE FLAG
       STA
               FMFLG
:--- HERE WE REWIND BOTH DRIVES ----
                       ; SELECT DRIVE 1
      VOM
               B,D
..A:
       CALL
               SDAT
       CALL
               REWIND
       LDA
               ODS
                       ; GET OLD DRIVE STATUS
                       ; CHECK RDY
       RLC
                       ; IF NOT, VERIFY MODE
       JNC
               ..Al
                       ; SELECT DRIVE 2
       VOM
               B_{r}E
       CALL
               SDAT
       CALL
               REWIND
     HERE WE CLEAR FLG CONDITION ON DRIVE 2 ---
       CALL
               WRDY
                        ; WAIT FOR DRIVE READY
               A, OFDH ; GET DRIVE FOWARD
       IVM
```

```
OUT
               ODEIL1
..Al: MVI
               A, ØEFH ; IDLE & PTB FOR DRIVE 1
       OUT
               ODEIL1
    - CHECK IF ALL DONE ---
       LDA
               FMFLG
                       : GET FILE MARK FLAG
                       : CHECK ALL DONE FLAG
       ANI
                       ; RETURN, JOB IS COMPLETE
       RNZ
       STA
                       ; IF NOT, CLEAR FMK FLAG
               FMFLG
    - HERE TO READ SOURCE RECORD -
      PUSH
..B:
              D
                       ; SAVE DE PAIR
       MOV
               B,D
                       ; SELECT SOURCE DRIVE
       CALL
               SDAT
       MVI
               A, RRCNT; GET RETRY CONSTANT
                     ; DO READ/RETRY
       CALL
               RRS
       POP
               D
                       ; GET SELECTOR BACK
                       ; BUT KEEP IT SAFE
       PUSH
               D
       JNC
               ••E
                      ; GO CONTINUE ON NO ERROR
       VOM
               A,B
                      ; GET ERROR CODE
      CPI
               14
                       ; WAS IT A FILE MARK
                      ; IF FILE MARK, WRITE SAME
       JZ
               ..C
       POP
               D
                       ; GET SELECTOR BACK
       STC
                       ; SET CARRY FOR ERROR RET
      RET
                       ; ABORT IF NOT FMK
. PAGE
    - HERE TO WRITE A RECORD ON DESTINATION ----
..E:
      CLA
                       ; CLEAR FILE MARK FLAG
       STA
               FMFLG
      LDA
               ODS
                       ; IF VERIFY MODE TO ..El
      RLC
       JNC
               ..E1
      MOV
               B,E
                       ; SELECT DESTINATION DRIVE
      CALL
               SDAT
                       ; GO SELECT
      MVI
               A, RCNT
                      ; GET RETRY CONSTANT
      CALL
               WRS
                       ; GO WRITE/RETRY
..El:
      POP
              D
                       ; GET SELECTOR BACK
       RC
                       ; ABORT IF CY=1
       JMP
                       ; LOOP TO GET NEXT RECORD
               ••B
    - HERE TO WRITE A FILE MARK ----
      LDA
               ODS
..C:
                       ; IF VERIFY MODE TO ..Cl
      RLC
       JNC
               ..Cl
                       ; GET DESTINATION DRIVE
      VOM
               B,E
                       ; SELECT IT
      CALL
               SDAT
               A, RCNT
                      ; GET RETRY COUNT
      MVI
              WFMRS
      CALL
                      ; GO WRITE FMK/RETRY
..C1:
      POP
                       ; GET SELECTORS BACK
              D
                       ; ABORT IF CY=1
      RC
;
```

```
;---- CHECK IF 1ST OR 2ND FILE MARK ----
       LDA
               FMFLG
                       ; FMK ALREADY SET
       ORA
                       ; SET PSW FOR LDA
                       ; IF SO, BUMP TRACK
       JNZ
                ..D
       ORI
               1
                       ; IF NOT, SET IT
               FMFLG
       STA
               ••B
                       ; GO GET ANOTHER RECORD
       JMP
      HERE SECOND FMK IN SUCCESSION ----
..D:
       INR
               D
                       ; BUMP SOURCE TRK.
               E
                       ; BUMP DEST. TRK.
       INR
               A,D
       VOM
                       ; GET DEST. TK
               4
       CPI
                       : CHECK IF LAST + 1
       JNZ
               ..A
                       ; IF NOT, GO DO THIS TRACK
       STA
               FMFLG
                       ; IF SO, SAVE IT
               D
                       ; DEC. TO PREV. TRK
       DCR
       DCR
               E
       JMP
               ..A
                       ; GO REWIND & EXIT
. PAGE
.SBTTL "{EXTENDED} COMMAND ROUTINES"
    - EXTENDED COMMAND HANDLER ----
EXT:
       ANI
               7
                       ; MASK TO COMMAND PROPER
       JZ
               WRRS
                       ; WAIT READY & SEND DS/IS
                          ON ZERO COMMAND
       CPI
                       ; SEE IF HSPD SEARCH
       JC
                       ; IF NOT, GO SEE WHAT
                ..A
       LDA
                       ; GET THE POSITIONAL ARG.
               PA
       ORA
               Α
                       ; SET THE PSW BITS
       JZ
               JTRLS
                       ; GO SET LOW SPEED ON
                       ; SINGLE SEARCH
                       ; SET HSP* TRUE
      IVM
               D,ØFBH
..B:
                       ; AND GO CALL THE ROUTINES
       JMP
               JTR
      CHECK IF COPY/MASK OR WRITE-RANGE -
;
      DCR
                       ; CHECK IF COPY COMMAND
..A:
              Α
                       ; IF NOT, TRY NEXT
       JNZ
                       ; CALL THE COPY SUBROUTINE
       CALL
               COPYS
                       ; IF BAD, SIGNAL ABORT/ATTMT
       JC
               AWA
               A,80H
                       ; INITIALIZE ISW & DSW
       MVI
               DS
       STA
               IS
       STA
               CPRA
                       ; AND GO RETURN
       JMP
                       ; CHECK IF WRITE-RANGE
..C:
      DCR
       JΖ
               SRE
                      ; IF SO, IT IS IN ERROR
; FALL INTO MASK SEARCH ROUTINE
.SBTTL "{MASK} ROUTINES"
;---- MASK DATA SEARCH ROUTINE ----
```

```
:---- CHECK IF 1ST OR 2ND FILE MARK ----
               FMFLG
                       ; FMK ALREADY SET
       LDA
                       ; SET PSW FOR LDA
       ORA
               Α
                       ; IF SO, BUMP TRACK
       JNZ
               ..D
                       ; IF NOT, SET IT
       ORI
               1
               FMFLG
       STA
                       ; GO GET ANOTHER RECORD
       JMP
               ..B
      HERE SECOND FMK IN SUCCESSION ----
..D:
       INR
               D
                       ; BUMP SOURCE TRK.
       INR
               E
                       ; BUMP DEST. TRK.
       MOV
                       ; GET DEST. TK
               A,D
                       ; CHECK IF LAST + 1
       CPI
               4
                       ; IF NOT, GO DO THIS TRACK
       JNZ
                ..A
                        ; IF SO, SAVE IT
       STA
               FMFLG
                        ; DEC. TO PREV. TRK
       DCR
       DCR
               E
       JMP
               ..A
                       ; GO REWIND & EXIT
. PAGE
.SBTTL "{EXTENDED} COMMAND ROUTINES"
:---- EXTENDED COMMAND HANDLER ----
EXT:
       ANI
                       ; MASK TO COMMAND PROPER
       JZ
               WRRS
                       ; WAIT READY & SEND DS/IS
                          ON ZERO COMMAND
       CPI
                       ; SEE IF HSPD SEARCH
       JC
                       ; IF NOT, GO SEE WHAT
                ..A
       LDA
               PA
                       ; GET THE POSITIONAL ARG.
                       ; SET THE PSW BITS
       ORA
               Α
       JΖ
               JTRLS
                       ; GO SET LOW SPEED ON
                          SINGLE SEARCH
                       ; SET HSP* TRUE
..B:
      MVI
               D.ØFBH
                        ; AND GO CALL THE ROUTINES
       JMP
               JTR
      CHECK IF COPY/MASK OR WRITE-RANGE ----
      DCR
                       ; CHECK IF COPY COMMAND
..A:
                       ; IF NOT, TRY NEXT
       JNZ
       CALL
               COPYS
                       ; CALL THE COPY SUBROUTINE
                       ; IF BAD, SIGNAL ABORT/ATTMT
       JC
               AWA
                       ; INITIALIZE ISW & DSW
               A,80H
       IVM
       STA
               DS
               IS
       STA
       JMP
               CPRA
                        ; AND GO RETURN
                       ; CHECK IF WRITE-RANGE
..C:
      DCR
                       ; IF SO, IT IS IN ERROR
       JZ
               SRE
; FALL INTO MASK SEARCH ROUTINE
.SBTTL "{MASK} ROUTINES"
;---- MASK DATA SEARCH ROUTINE ----
```

```
MDS:
                A.RCNT ; GET RETRY CONSTANT
       MVI
                        ; GO READ A RECORD
       CALL
               RRS
                        ; IF ERROR, ABORT/ATTMT
       JC
               ABORT
       LXI
               H,R.DBA; SET PTR TO RECORD
       LXI
               D,R.MBA; AND ONE TO MASK
                       ; GET MASK CHAR
      LDAX
..A:
               D
                       ; SAVE THIS
       MOV
               B,A
                "?"
                        ; IS IT A "?"?
       CPI
       JΖ
                ••B
                        ; IF SO, IT MATCHES
                        ; GET CHARACTER FROM REC
       MOV
                A,M
                        ; CONSIDER ON LS 7 BITS
       ANI
               Ø7FH
                        ; COMPARE WITH MASK CHAR
       CMP
               В
       JNZ
               MDS
                        ; GET NEXT REC. ON NO MATCH
      INX
               D
                        ; INC TO NEXT BYTE
..B:
       INX
               Н
       LXI
               B, R. MBA+R. MBL; FETCH END MARKER
       MOV
                A,C
                        ; GET LS BYTE
                        ; COMPARE TO DYNAMIC
       CMP
               Ε
       JNZ
                ..A
                        ; LOOP IF NOT EQUAL
       MOV
                A,B
                        ; GET MS BYTE
       CMP
               D
                        ; COMPARE TO DYNAMIC
                       ; LOOP TILL EQUAL
       JNZ
                ..A
                        ; GO SEND ON MATCHING REC.
       JMP
                CPRA
. PAGE
.SBTTL "MISC. {STANDARD} COMMAND ROUTINES"
;---- HERE WE DETERMINE LRC FOR RECORD ---
               WRDCNT ; GET DATA BUFFER LENGTH
WDLRC: LHLD
       XCHG
       LHLD
                        ; AND BUFFER LOCATION
               R.AREA
                        ; INITIALIZE LRC VALUE
       MVI
               B,Ø
                       ; GET THE DATA
               A,M
      VOM
..A:
                        ; UPDATE LRC
       XRA
               В
                        ; RESTORE IT
       MOV
               B,A
                        ; INC THE POINTER
       INX
               Н
       DCX
                        ; DECRAMENT COUNTER
               D
                        ; SEE IF DONE READING
       MOV
                A,D
       ORA
               E
       JNZ
                        ; IF NOT, LOOP A WHILE
                ..A
       VOM
                A,B
                        ; GET ACCUMULATED LRC
                        ; SAVE FOR WRITE USE
       STA
               LRC
       JMP
                SAP
                        ; GO SEND & PROCESS
      NOP ROUTINE ---
NOC:
       LDA
                DS
                        ; GET DRIVE STATUS
       ORI
                2ØH
                        ; SET REWIND FLAG
       STA
                DS
       JMP
                CPRA
                        ; AND EXIT
     - HERE IS RECORD/WRITE CALLER --
;
                B, 20H
                        ; SET EOT AS DEFAULT CHECK
WR:
       MVI
                        ; CHECK THE TRACK
       LDA
                MA
                1
       ANI
```

```
; USE DEFAULT FOR TK Ø OR 2
                ..A
       JZ
       IVM
               B.40H
                        ; CHECK LPS FOR TK 1 AND 3
                       ; GET DRIVE STATUS
..A:
       IN
               IDEIS1
                        ; CHECK LOGICAL EOT
       ANA
               В
                        ; ABORT W/O ATTEMPT IF TRUE
       JNZ
               AWOA
                        ; GET SPECIFIED RETRY COUNT
       LDA
               RETRY
                        : CALL WRITE/RETRY
       CALL
               WRS
       JC
               ABORT
                        ; ABORT IF ERROR
       JMP
                CPRA
                        : SEND & PROCESS
      HERE IS RECORD/READ CALLER ----
RR:
       MVI
               A, RRCNT; GET RETRY CONSTANT
                        ; CALL READ/RETRY
       CALL
               RRS
       JC
               ABORT
                        ; ABORT IF ERROR
               CPRA
       JMP
                        ; SEND IF DATA

    HERE IS THE WRITE FILE MARK CALLER ----

WFMR:
       MVI
                A,1
                        ; ONLY 1 RETRY ON FMK'S
       CALL
                        ; CALL WFMK/RETRY SUB.
               WFMRS
                        ; LET ABORT HANDLE ERRORS
       JC
               ABORT
                CPRA
       JMP
                        ; GO SEND & PROCESS
. PAGE
.SBTTL "{WRITE & WFM/RETRY} SUBROUTINES"
;---- HERE IS THE WRITE/RETRY SUBROUTINE -
       CALL
               A= RETRY COUNT
       RET
               CY=1 IF ABORT B= ABORT CODE
WRS:
       STA
               DRETRY
                       ; MOVE TO DYNAMIC COUNTER
      CALL
                       ; TRY TO WRITE PROPER
..A:
               WRITE
       RNC
                        ; RETURN IF NO ERROR
       LDA
               DRETRY
                       ; GET DYNAMIC RETRY COUNTER
       DCR
                        ; DEC RETRY
       RZ
                        ; ABORT. CY=1
       STA
               DRETRY
                       ; RESTORE UPDATED RETRY COUNT
               CLRTP
       CALL
                        ; ELSE CLEAR TAPE
       IVM
               B, 20H
                        ; SET EOT AS DEFAULT CHECK
       LDA
               MA
                        ; CHECK THE TRACK
       ANI
               1
       JZ
                ..B
                        ; USE DEFAULT FOR TK Ø OR 2
       MVI
               B,40H
                        ; CHECK LPS FOR TK 1 OR 3
..B:
       IN
               IDEIS1
                       ; GET DEI STATUS
       ANA
               В
                        ; CHECK LOGICAL EOT
                        ; SET ABORT JUST IN CASE
       STC
                            WITHOUT ATTEMPT SIGNAL
       IVM
                B,1
                        ; ABORT IF EWS PRESENT
       RNZ
                        ; IF NOT, TRY AGAIN
       JMP
    -- HERE IS THE WFM/RETRY SUBROUTINE ----
       CALL
               A= RETRY COUNT
```

```
CY=1 IF ABORT B= ABORT CODE
       RET
               FMK STATUS SET IN DSW IF OK.
               DRETRY ; MOVE TO DYNAMIC COUNTER
WFMRS: STA
      CALL
                       ; TRY TO WRITE FMK PROPER
..A:
                        ; RETURN ON NO ERRROR
       RNC
       LDA
                       : GET DYNAMIC RETRY COUNTER
               DRETRY
                        ; DEC RETRY
       DCR
                        ; ABORT. CY=1
       RZ
       STA
               DRETRY
                       ; RESTORE UPDATED RETRY COUNT
                        ; ELSE CLEAR TAPE
       CALL
               CLRTP
       JMP
                       ; AND TRY AGAIN
                ..A
. PAGE
.SBTTL "{READ/RETRY} SUBROUTINE"
       CALL
               A= RETRY COUNT
       RET
               CY=1 IF ABORT EXCEPT FMK. B=CODE
               NON-ZERO IF FMK
               DSW/ISW SET FOR DATA BLOCK/FMK ETC.
RRS:
       STA
               DRETRY ; SET IN DYNAMIC COUNTER
R.A:
      CALL
               READ
                       ; DO ACTUAL READ
       JC
                ••B
                        ; IF ERROR, HANDLE IT
       LDA
               IS
                        : GET INTERFACE STATUS
       ORI
               4ØH
                        ; SET DATA BLOCK FOLLOWS
       STA
               IS
       CLA
                        ; NO FMK, SO CLEAR ZERO
       RET
                        ; RETURN
..B:
      MOV
               A,B
                       : GET THE ERROR CODE
       CPI
               14
                       ; WAS IT FMK DETECTED?
       STC
                        ; SET CARRY FOR RETURN
       RZ
                        ; IF SO, RETURN WITH IT
      HERE ERROR, SO CLEAR TAPE AND TRY AGAIN .
R.C:
                        ; SET CY FOR ABORT
       STC
                       ; GET DYNAMIC RETRY COUNTER
       LDA
                        ; DEC RETRY COUNTER
       DCR
                        ; ABORT. CY=1
       RZ
                       ; RE-STORE COUNTER
               DRETRY
       STA
                        ; AND BACKSPACE
       MVI
               A,6
       STA
               CA
                        ; ONCE
       MVI
               C,0
               A,ØFFH
                      ; AT LOW SPEED
       MVI
       CALL
               SRR
       JMP
                        ; AND TRY AGAIN
               R.A
    - HERE FOR RAM DIAGNOSTIC READ ----
RDIAG: LDA
               IS
                        ; SET DATA FOLLOWS IS ISW
               40H
       ORI
       STA
               IS
       JMP
               CPRA
                        ; GO SEND THE DATA W/O READ
```

. PAGE

```
.SBTTL "{ABORT} ROUTINES"
;---- HERE ON SYNTAX/PARITY ERRORS ----
SRE:
       LDA
               IS
                       ; GET THE ISW
                       ; SET SYNTAX/PE BITS
       ORI
               3ØH
       STA
               IS
                       ; SAVE FOR SEND ROUTINE
               S.L
                       : SET ERROR LED
       CALL
                       ; CLEAR THE CA TO FAKE
TSTAT: CLA
       STA
               CA
                           A RE-TRANSMIT
       JMP
               SAP
                        ; GO SEND & PROCESS
    - HERE ABORT WITHOUT ANY ATTEMPT --
AWOA:
       MVI
               B, 10H
                       ; SET ABORT WITHOUT ATTEMPT
       JMP
               SFL
                        ; GO SET FAULT LED
;---- HERE TO DETERMINE IF ATEMPT WAS MADE ----
:--- B REG. = TAPE MODULE ABORT CODE
ABORT: MOV
               A,B
                       ; GET THE ABORT CODE
               ECODE
                       ; SAVE IT
       STA
                       ; CHECK IF MOTION
       CPI
               4
                       ; IF <4 THEN NO MOTION
       JC
               AWQA
                        ; IF >4 FALL TO AWA
    - HERE ABORT WITH CONCEIVABLE ATTEMPT -
AWA:
       MVI
               A, ØFFH ; STOP TAPE MOTION
               ODEIL1
       OUT
       MVI
               B,20H
                       ; SET ABORT WITH ATTEMPT
SFL:
       LDA
                       ; GET INTERFACE STATUS
               IS
                        ; CLEAR POSSIBLE BLOCK/FOL.
       ANI
               ØBFH
       ORA
                       ; SET ERROR CODE
               В
       STA
               IS
       LDA
               DS
                       ; GET THE DRIVE STATUS
       ANI
               4ØH
                       ; CHECK IF FMK DET.
       JNZ
               CPRA
                        ; IF SO, NO FAULT LED
       CALL
               S.L
       JMP
               CPRA
                        ; GO EXIT
      SET FAULT LED ----
S.L:
      LDA
               DTLS
                       ; GET DRIVE SELECT WORD
                       ; SET ERROR LED
       ANI
               ØFDH
       OUT
               ODEIL2 ; AND SEND THIS
       RET
                        ; BACK TO CALLER
. PAGE
.SBTTL "{INIT & REWIND}-PROGRAMS"
;---- HERE WE INIT THE PCI ----
               IPCICR ; READ IT TO CLEAR TO MR(1)
INIT:
       IN
               A,MSYN1; SET MODE TO SINGLE SYNC
       MVI
               OPCIMR ; SET IT
       OUT
       XRA
               Α
                       ; GET A CLEAR
```

```
OUT
              OPCIMR : CLEAR MR2
              IPCICR ; READ CR TO CLEAR TO SR(1)
      IN
              A.PSID ; DITTO ABOVE
      MVI
              OPCISR ; SET SYN1 TO A Ø1
      OUT
                      ; SET SYN2 TO REC. ID FOR RAW
              A,RID
      MVI
              OPCISR ; SET IT
      OUT
                      ; RESET ERRORS
      MVI
              A,10H
              OPCICR ; SET IN CMD. REG.
      OUT
     HERE WE INIT THE D.E.I. ----
              A, ØFEH ; REV. TO CLEAR ERA F/F
      MVI
      OUT
              ODEIL1
              A, ØEFH ; IDLE WITH PTB*
      MVI
      OUT
              ODEIL1
              DLY.5 ; ALLOW ERASE HEAD TO SETTLE
      CALL
              A,11010111B ; TK1, DRIVE 1,NO LEDS
      MVI
                      ; SAVE CODE
      STA
              DTLS
              ODEIL2
      OUT
     SET DEFAULT RECORD BUFFER LENGTH AND START ----
              H,R.DBL; GET DEFAULT LENGTH
      LXI
              WRDCNT ; SAVE AS ACTIVE
       SHLD
      LXI
              H,R.DBA; GET DEFAULT START
       SHLD
               R.AREA ; SAVE AS ACTIVE
     NORMAL -OK RETURN FOLLOWS ----
                       ; CLEAR (A) & CY
EOK:
      CLA
                       ; RETURN TO CALLER -OK
      RET
;
    - HERE TASK IS REWIND CMD. ----
               MVI
                       B,40H ; LPS CHECK IS DEFAULT
REWIND:
                      ; CHECK THE TRACK
      LDA
               MA
      ANI
               1
               ..C
                       ; USE DEFAULT FOR TK Ø OR 2
      JZ
                      ; CHECK EOT ON TK 1 OR 3
               B,20H
      MVI
              IDEIS1
                     ; CHECK THE STATUS
..C:
      IN
              B
                      ; AT LOGICAL BOT?
;[.xl] ANA
                      ; IF SO, GO RETURN
;[.xl] JNZ
               ..A
               7ØH
                       ;[.xl] MASK TO EWS,LPT,FLG
       ANI
                       ;[.xl] CHECK LOGICAL BOT SET
               В
       XRA
                       ; WITH NONE OF THE OTHERS
                      ;[.xl] IF SO, REW SUPERFLOUS
               ..A
       JZ
               A,ØEFH ; IDLE + PTB*
       MVI
       OUT
               ODEIL1
                       ; ALLOW SETTLEING
               DLY2
       CALL
                       ; CHECK READY STATUS
       CALL
               WRDY
               A.ØEAH ; PTB*, REV*, AND HSP*
       MVI
                      ; LOAD RETURN ADDRESS
       LXI
               H,..B
                       ; ONTO STACK FOR ERROR RETURN
       PUSH
               Н
```

```
CALL
               DCAC
       JC
               ..D
                       ; IF ERROR CONDITION,
..B:
                       ; STACK IS ALIGNED
                       ; ELSE REALIGN IT
       POP
                      ; WAIT FOR DRIVE NOT BUSY
      IN
               IDEIS1
..D:
       ANI
               2
               ..D
       JNZ
       MVI
               A, ØEFH ; DRIVE IDLE + PTB*
       OUT
               ODEIL1 ; SEND TO DRIVE
..A:
      CLA
                       ; EXIT OK
       RET
. PAGE
.SBTTL "{SDAT & CLEAR TAPE}"
:--- SELECT DRIVE AND TRACK ----
SDAT:
               IDEIS1 ; GET DRIVE STATUS
       IN
       ANI
               81H
                      ; CHECK RDY & SLD
       CPI
               81H
                       ; VERIFY BOTH TRUE
       JNZ
               ..A
                       ; IF NOT, ALLOW IMMEDIATE
                       ; RE-SELECT TO OCCUR
       IN
               IMSR
                       ; READ MISC. STATUS
       ANI
               1ØH
                       ; CHECK PTB
       JNZ
                       ; IF SO, IMMED. RE-SELECT
               ..A
       CALL
               WRDY
                      ; GO WAIT FOR READY
..A:
      VOM
               A,B
                       ; GET THE BYTE
       INR
               A
                       ; ADJUST TO DEI TRACK CODE
               3
       ANI
       RRC
       RRC
       RRC
                       ; STORE FOR LATER
       MOV
               C,A
       VOM
               A,B
                       ; GET MA BACK
       ADI
               4H
                       ; ADJUST DRIVE FOR DEI
       RLC
               18H
       ANI
       JNZ
                ..C
       ORI
               8ØH
..C:
      ORA
               С
                       ; COMBINE WITH TRACK CODE
                       ; COMPLEMENT
       XRI
               ØFFH
               7
       ORI
                       ; PRESERVE LEDS
       MOV
               C,A
                       ; STORE IT AGAIN
       LDA
               DTLS
                       ; GET OLD DRIVE/TRACK/LED
       ORI
               ØF8H
                      ; SAVE ONLY LED CODES
               C
       ANA
                       ; SET TO NEW DRIVE/TRACK
       STA
                       ; STORE AGAIN
               DTLS
       OUT
               ODEIL2
                       ; AND TELL IT TO THE TAPE
       XRA
                        ; EXIT OK
               Α
       RET
    - CLEAR TAPE GAP PROGRAM ----
CLRTP: MVI
               C, Ø
                       ; SET COUNTER FOR 1 REC
       MOV
               A,C
                       ; AND CA FOR RECS.
       STA
               CA
               A, ØFFH ; LOW SPEED PLEASE
       IVM
```

```
CALL
               SRR
                        : DO NORMAL REVERSE SPACE
       JMP
                        ; GO DO ERASE AT CMD. LEVEL
               ERASE
. PAGE
.SBTTL "{WRITE}-RECORD ROUTINE"
WRITE: CALL
               WRDY
                        ; CHECK READY STATUS
       CALL
               CWEN
                        ; CHECK WRITE ENABLED
               LRC
       LDA
                        ; GET PRE-DETERMINED LRC
       MOV
               C,A
                        ; SAVE IN C FOR LATER
ï
      HERE WE SET TO 2-SYN MODE TO RAW TEST ---
;
               IPCICR ; READ CR TO CLR TO MR1
       IN
       IVM
               A,MSYN2; DOUBLE SYNC MODE
       OUT
               OPCIMR ; SET MODE REG.
      HERE PREAMBLE IS WRITTEN ----
                       ; WRITE SEQUENCE 1
      CALL
               ws1
..A:
       MVI
               A, ØF5H ; WEN* + FWD*
       CALL
               DCAC
                       ; ISSUE CMD. AND CHECK
       CALL
                        ; WRITE SEQUENCE 2
               WS2
                        ; WRITE PREAMBLE
       CALL
               WPRE
                        ; GET NORMAL RECORD I.D.
       MVI
               A,RID
       OUT
               OPCIDR ; WRITE IT
       LHLD
                       ; GET THE DATA BUFFER LENGTH
               WRDCNT
       XCHG
       LHLD
                       ; DITTO STARTING ADDR.
                R.AREA
      WRITE RECORD BODY CIRCUIT W/O DAD ----
WCK:
       IN
               IMSR
                        ; GET TXRDY
       ADD
               Α
       ADD
                        ; TXRDY=CY, DAD=MINUS
                        ; IF DAD, GO TO NEXT LOOP
       JM
               WCKE
       JNC
               WCK
                        ; LOOP FOR XMT ALLOW
       MOV
                        ; GET BYTE FROM MEMORY
               A,M
       OUT
                      ; SEND IT
               OPCIDR
                        ; DEC. THE BYTE COUNTER
       DCX
               D
       INR
                        ; INC LS POS. INDEX
                        ; LOOP TILL COUNTER IS ZERO
       JNZ
               WCK
                        ; IF NOT, ERROR OUT
       JMP
               W.D
      WRITE RECORD BODY CIRCUIT WITH DAD ----
WCKE:
                IPCISR ; READ TO CLEAR TXDSG
       IN
WCK1:
       IN
               IMSR
                        ; GET TXRDY
       ADD 
               Α
                        ; MOVE IT TO SIGN BIT
       JΡ
                        ; LOOP FOR XMT ALLOW
               WCK1
;
       VOM
                        ; GET BYTE FROM MEMORY
               A_{\bullet}M
       OUT
               OPCIDR ; SEND IT
       INX
                        ; INDEX NEXT BYTE OF DATA
               Н
       DCX
               D
                        ; DEC. THE BYTE COUNTER
                        ; CHECK FOR ZERO COUNTER
       MOV
               A,D
```

```
ORA
               E
                        ; LOOP TILL COUNTER IS ZERO
       JNZ
               WCK1
. PAGE
     WRITE THE LRC / EOR / POSTAMBLE ----
;
      IN
               IMSR
                       ; GET TXRDY
..A:
       ADD
               Α
       JP
               ..A
                       ; LOOP TILL READY FOR LRCC
       VOM
               A,C
                        ; GET LRCC
       CALL
               WBYT
                       ; GO SEND IT
       LXI
               H, AMBLE ; GO SEND POSTAMBLE
       MVI
               B,8
       CALL
               WS
    -- HERE WE VALIDATE LRC & EOR ----
.REMARK "WE NOW REGAIN SYNC WITH THE WRITE OP.
       IN PROGRESS. THE RECEIVER HAS BEEN IN
       OPERATION DURING THE ENTIRE WRITE AND
       HAS RETAINED ANY PARITY ERROR HISTORY."
W.CS:
       MVI
                        ; RXEN ONLY
               A,4
               OPCICR ; STOP TRANSMITTING
       OUT
W.C:
       CALL
               RBYT
                       ; GO READ A CHAR.
..E:
      XRA
               С
                        ; IS THIS THE LRC?
       JNZ
                       ; IF NOT, LOOP
               W.C
       CALL
               RBYT
                       ; READ ANOTHER CHAR.
               RID
                       ; IS IT THE RECORD I.D.
..F:
      CPI
                ..E
       JNZ
                        ; IF NOT, FORGET LRC
       CALL
               RBYT
                        ; READ ANOTHER
                       ; IS IT THE EOR I.D.
       CPI
                EORID
       JNZ
                        ; IF NOT, TRY REC. ID.
                ..F
    - HERE WE VALIDATE VPE ----
       IN
               IPCISR ; GET THE PCI STATUS
       ANI
               ØCH
                       ; CHECK PARITY ERROR/TXDSG
       JNZ
               W.D
                        ; IF ERROR, EXIT
       CALL
               DLY2
       IVM
               A, ØF7H ; WEN* ONLY
       OUT
                       ; STOP THE DRIVE
               ODEIL1
                        ; RETURN SUCCESSFUL
       RET
    - HERE IS THE WRITE ERROR EXIT -
W.D:
       IVM
               A,1ØH
                        ; RESET PCI
       OUT
               OPCICR
       IVM
               B,E13
                        ; SIGNAL RCVR. FAILURE
WEE:
       IVM
               A, ØF7H ; WEN* ONLY
       OUT
               ODEIL1 ; STOP THE DRIVE
       STC
       RET
. PAGE
```

```
ORA
               E
       JNZ
               WCK1
                       : LOOP TILL COUNTER IS ZERO
. PAGE
     WRITE THE LRC / EOR / POSTAMBLE ----
;
                       ; GET TXRDY
..A:
      IN
               IMSR
       ADD
               Α
       JΡ
               ..A
                       ; LOOP TILL READY FOR LRCC
       VOM
                       ; GET LRCC
               A,C
       CALL
               WBYT
                       ; GO SEND IT
       LXI
               H,AMBLE ; GO SEND POSTAMBLE
       MVI
               B.8
       CALL
               WS
   - HERE WE VALIDATE LRC & EOR ----
.REMARK "WE NOW REGAIN SYNC WITH THE WRITE OP.
       IN PROGRESS. THE RECEIVER HAS BEEN IN
       OPERATION DURING THE ENTIRE WRITE AND
       HAS RETAINED ANY PARITY ERROR HISTORY."
W.CS:
      MVI
               A,4
                       ; RXEN ONLY
       OUT
               OPCICR ; STOP TRANSMITTING
W.C:
      CALL
               RBYT
                       ; GO READ A CHAR.
               С
                       ; IS THIS THE LRC?
..E:
      XRA
                       ; IF NOT, LOOP
       JNZ
               W.C
       CALL
                       ; READ ANOTHER CHAR.
               RBYT
                       ; IS IT THE RECORD I.D.
..F:
      CPI
               RID
                       ; IF NOT, FORGET LRC
       JNZ
               ..E
       CALL
               RBYT
                       ; READ ANOTHER
       CPI
               EORID
                       ; IS IT THE EOR I.D.
       JNZ
                ..F
                        ; IF NOT, TRY REC. ID.
     HERE WE VALIDATE VPE ----
       IN
               IPCISR ; GET THE PCI STATUS
                       ; CHECK PARITY ERROR/TXDSG
       ANI
       JNZ
               W.D
                       ; IF ERROR, EXIT
       CALL
               DLY2
       IVM
               A, ØF7H ; WEN* ONLY
                      ; STOP THE DRIVE
       OUT
               ODEILL
       RET
                       ; RETURN SUCCESSFUL
    - HERE IS THE WRITE ERROR EXIT --
W.D:
       IVM
               A,10H
                       ; RESET PCI
       OUT
               OPCICR
       IVM
               B,E13
                       ; SIGNAL RCVR. FAILURE
WEE:
       IVM
               A, ØF7H; WEN* ONLY
               ODEIL1 ; STOP THE DRIVE
       OUT
       STC
       RET
. PAGE
```

```
.SBTTL "WRITE SUBROUTINES"
    - WRITE SEQUENCE -1 ----
                A, ØF7H ; WEN* - ERASE POWER
WS1:
       IVM
                ODEILL
       OUT
                        ; RESET PCI ERRORS
                A,10H
       IVM
                OPCICR
       OUT
       CALL
                DLY2
                        ; RETURN TO CALLER
       RET
      WRITE SEQUENCE 2 ----
                        ; SET LPS AS DEFAULT CHECK
                B,40H
WS2:
       MVI
                        ; CHECK THE TRACK
                MA
       LDA
       ANI
                1
                         ; USE DEFAULT FOR TK Ø OR 2
       JZ
                ..B
                        ; EOT CHECK FOR TK 1 OR 3
                B,20H
       MVI
                       ; GET DEI STATUS
                IDEIS1
..B:
       IN
                        ; CHECK LOGICAL BOT
                В
        ANA
                        ; SKIP OVER LOAD POINT
                ..B
        JNZ
                        ; INIT 33 MS. CONSTANT
                B,66
        MVI
                        ; 33 MILLISECOND DELAY
                DLY.5
..A:
       CALL
                В
        DCR
        JNZ
                 ..A
        RET
       WRITE PREAMBLE ----
                         ; LOAD FIRST PCI DATA
        CLA
 WPRE:
                 OPCIDR
        OUT
                         ; TXEN+RXEN+RE+DTR
                 A,37H
        MVI
                 OPCICR
        OUT
                         ; SET BYTE COUNTER
        MVI
                 B,7
                 H.AMBLE+3; AND POINTER
        LXI
       SUB. TO SEND PRE/POST AMBLES ----
                         ; GET A BYTE
 WS:
        VOM
                 A,M
                         ; GO SEND IT
                 WBYT
        CALL
                         ; INC BYTE POINTER
                 Н
        INX
                         ; DEC BYTE COUNTER
        DCR
                 В
                         ; RETURN IF ALL SENT
        RZ
                          : ELSE LOOP SOME MORE
                 WS
         JMP
                  RID, EORID, Ø, Ø, Ø, Ø, Ø, Ø, DSID, PSID
 AMBLE: .BYTE
     - WRITE A BYTE OF DATA ----
                 OPCIDR ; SEND BYTE TO DRIVE
         OUT
 WBYT:
                         ; GET MISC. STATUS
                 IMSR
        IN
  ..A:
         ADD
                          ; RETURN WHEN READY FOR NEXT
         RM
                  ..A
         JMP
  . PAGE
 .SBTTL "{READ}-RECORD ROUTINES"
```

```
WRDCNT : GET THE DBUFFER LENGTH
READ:
       LHLD
       XCHG
       LHLD
                        ; DITTO STARTING ADDR.
                R.AREA
       CALL
               WRDY
                        ; WAIT FOR DRIVE READY
                       ; FWD*
       MVI
                A, ØFDH
                        ; ISSUE CMD. & CHECK TAKEN
               DCAC
       CALL
       MVI
                C,Ø
                        ; INIT LRC
   -- WAIT 24 MS. BEFORE ALLOWING READ ----
       MVI
                B, 12
                        : CONSTANT FOR 24 MS.
               DLY2
..G:
      CALL
       DCR
               В
       JNZ
                ..G
                        ; LOOP FOR 12 COUNT
    - HERE WE INIT. THE PCI TO READ ----
       MVI
                A, 10H
                        ; RESET ERRORS
       OUT
               OPCICR
       IVM
                A,4
                        ; RXEN
       OUT
               OPCICR
                        ; RETURN ON DAD
       IVM
                B,0
       CALL
               WDAD
                        ; WAIT FOR DATA DETECT
       CALL
               RBYT
                        ; GO GET FIRST BYTE
       CPI
               RID
                        ; CHECK IF DATA RECORD
                        ; IF -OK, CONTINUE
       JZ
                S.C
       CPI
                         CHECK IF FILE-MK ID.
                FMKID
                        ; IF NOT, USE E8 EXIT
       CNZ
                RBE
                        ; GET NEXT BYTE
       CALL
                RBYT
       CPI
                        ; IS IT EXPECTED
               EORID
                        ; IF NOT SIGNAL ERROR
       CNZ
                RBE
                        ; STOP THE DRIVE
       CALL
               RSTP
                        ; SIGNAL FILE MARK
FME:
       MVI
                B,E14
       LDA
               DS
                        ; GET DRIVE STATUS
       ORI
                4ØH
                        : SIGNAL FILE MARK
       STA
                DS
       STC
       RET
S.C:
       IN
               IMSR
                        ; CHECK RXRDY
       ADD
               Α
       JNC
                ..D
                        ; LOOP TILL READY
       IN
                IPCIDR
                       ; READ THE PCI DATA
       MOV
                M,A
                        ; PUT IN RAM
       XRA
               С
                        ; UPDATE LRC
       VOM
                C,A
                        ; RESTORE LRC
       INX
               Н
                        ; INC. MEMORY POINTER
       DCX
               D
                        ; DECR. THE WORD COUNT
       MOV
                A,D
                        ; CHECK FOR ZERO CONDITION
       ORA
                Е
       JNZ
                S.C
                        ; LOOP TILL IT HAPPENS
. PAGE
   -- HERE BODY OF RECORD IS READ ----
       CALL
               RBYT
                        ; GO READ LRCC
```

```
; CHECK AGAINST EXPECTED VALUE
       CMP
               ..A
                       ; IF OK, CONTINUE
       JZ
                       ; STOP THE DRIVE
       CALL
               RSTP
                       ; SIGNAL LRC ERROR
       MVI
               B,E9
       STC
       RET
     HERE RECORD OK ON SIZE & LRC ----
      MOV
..A:
               A,C
                       ; GET CALCULATED LRC
                       ; SAVE IN CASE OF COPY
       STA
               LRC
       IN
               IPCISR ; READ THE PCI STATUS REG.
                     ; CHECK VPE & OVER-RUN
       ANI
               18H
               ..B
                      ; IF OK, CONTINUE
       JZ
       CALL
               RSTP
                       ; STOP THE DRIVE
                       ; SIGNAL VPE ERROR
       MVI
               B.Ell
       STC
       RET
. PAGE
     HERE WE HAVE A "WINNER" ----
              RSTP
                       ; STOP THE DRIVE
..B:
      CALL
               IDEIS1 ; GET DRIVE STATUS
       IN
       ANI
               60H
                       ; CHECK LOGICAL EOT
       RZ
                       ; EXIT OK
                       ; SET MINUS FLAG ON EWS
               8ØH
       ORI
                       ; RETURN TO CALLER
       RET
                       ; CHECK DAD STILL TRUE
..D:
      ADD
               S.C
       JM
                       ; IF SO, LOOP
                       ; STOP THE DRIVE
               RSTP
       CALL
                       ; SIGNAL SHORT RECORD ERROR
               B,E10
       IVM
       STC
       RET
    - HERE TO READ A BYTE ----
                       ; GET THE MISC. STATUS
RBYT:
               IMSR
       IN
                       : CY = RXRDY
       RLC
                       ; GO INPUT ON RXRDY
       JC
               RBA
                       ; CHECK DAD
       ADD
               A
                       ; LOOP IF DAD STILL TRUE
       JM
               RBYT
                       ; SET RETURN DAD*
RBE:
       MVI
               B,40H
                       ; GO WAIT
       CALL
               WDAD
                       ; GET MISSING DATA/FMK ERROR
       IVM
               B,E8
               IDEIS1 ; GET DEI STATUS
       IN
                       ; WERE WE WRITING?
       ANI
               4
                       ; IF NOT, EXIT W/O WEN
       JZ
               SEE
               A, ØF7H ; IF SO, SET WEN/IDLE
       MVI
       JMP
               SEEl
               IPCIDR ; GET THE DATA
RBA:
       IN
       RET
                       ; AND BACK TO CALLER
```

```
--- STOP DRIVE MOTION SUBROUTINE ---
RSTP:
               B,40H
       IVM
                        ; RETURN ON DAD*
       CALL
               WDAD
       MVI
               A, ØFFH ; IDLE
       OUT
                       ; STOP THE DRIVE
               ODEILL
       RET
. PAGE
      "{WFM}-WRITE FILE MARK CIRCUIT"
.SBTTL
WFM:
                        ; WAIT FOR DRIVE READY
       CALL
               WRDY
       CALL
               CWEN
                        ; CHECK WRITE ENABLED
                        ; WRITE SEQUENCE 1
       CALL
               WSl
       IVM
               A, ØF5H ; WEN* + FWD*
                        ; ISSUE CMD. AND CHECK
       CALL
               DCAC
       CALL
               WS2
                        ; WRITE SEQUENCE 2
                        ; GET 2" CONSTANT
       MVI
               B,30
      CALL
               DLY2
..B:
       DCR
               В
       JNZ
                ..B
       CALL
               WPRE
                        ; WRITE PREAMBLE
               A,FMKID; GET FILE MK I.D.
       IVM
       CALL
               WBYT
       MVI
                B,7
                        ; SEND EOR & ZEROS.
       LXI
               H,AMBLE+1
       CALL
               WS
       IVM
               A,4
                        ; GET RXEN
       OUT
               OPCICR ; STOP THE WRITE
      HERE WE VERIFY THE FILE MARK ----
       MVI
               B,Ø
                        ; SET RETURN ON DAD
       CALL
               WDAD
                        ; LOOK FOR DATA DETECTED
       CALL
                        ; CHECK FOR FILE MARK I.D.
               RBYT
       CPI
               FMKID
                ..A
       JNZ
                        ; IF NONE, GO ERROR
       CALL
               FME
                        ; GO SET FMK IN DS
                        ; GET 2" CONSTANT
       IVM
               B,30
..C:
      CALL
               DLY2
                        ; AND CLEAR A GAP
       DCR
               В
                ..C
       JNZ
       JMP
               WSTOP
                        ; DO NORMAL WRITE STOP
                       ; GET ERROR
..A:
      IVM
               B,E6
       JMP
               WEE
                        ; USE WRITE ERROR EXIT
. PAGE
.SBTTL "FWD./REV. SPACE/ERASE CIRCUIT"
;--- SPACE FORWARD ----
                       ; FWD*
SRF:
       ANI
               ØFDH
                        ; SAVE THE DIRECTION
SSTRT: MOV
               D,A
                       ; GET THE COMMMAND
       LDA
               CA
                        ; SAVE IT FOR LATER
       MOV
               E,A
       MVI
               H,Ø
                        ; CLEAR FMK FLAG
                        ; CHECK DRIVE RDY
       CALL
               WRDY
S.A:
       VOM
               A,D
                        ; GET THE DIRECTION
```

```
; ISSUE CMD & CHECK TAKEN
      CALL
               DCAC
      MVI
               B.Ø
                       ; SET RETURN ON DATA DETECT
      CALL
               WDAD
                        ; CALL DATA DETECT SUB
     HERE TO CHECK IF FILE MARK ----
      CALL
               DLY2
                        ; DELAY 4 M.S.
               DLY2
      CALL
               IPCISR ; GET PCI STATUS
       IN
                       ; CHECK DAD*
       ADD
               Α
       JM
                       ; GO DO RECORD IF HI
                ..A
                       ; NON-ZERO THE FMK FLAG
       MOV
               H,E
                       ; GET THE COMMAND
       MOV
               A,E
                       ; RECORD OR FILE SEARCH?
       RRC
                       ; IF RECORD SEARCH, ABORT
       JNC
               S.E
..B:
      CLA
       ORA
                       ; CHECK COUNTER
                       ; IF ZERO, GO STOP
       JZ
               SDONE
                       ; ELSE DEC THE COUNTER
       DCR
               C
                       ; IF NOT LAST, LOOP
               S.A
       JNZ
       MOV
               A,D
                       ; GET THE COMMAND
               4
                       ; SET SLOW SPEED
       ORI
                       ; RESTORE COUNTER
       MOV
               D,A
               S.A
                       ; GO SEARCH AGAIN
       JMP
      HERE FOR RECORD -
;
               B, 40H
                       ; SET RETURN NO DATA DETECT
..A:
      MVI
       CALL
               WDAD
       VOM
                       ; GET THE COMMAND
               A,E
       RRC
                       ; RECORD OR FILE SEARCH?
       JC
               S.A
                       ; LOOP IF FILE SEARCH
                       ; IF REC, DEC THE COUNTER
       JMP
                ..B
    - SEARCH EXIT -
                       ; GET THE DIRECTION BACK
SDONE: MOV
               A,D
                       ; SEE IF REVERSE
       ANI
               1
                       ; IF NOT, SKIP RVRS THING
               S.E
       JNZ
      MVI
               B, 32
                        ; GET 16.0 MS. COUNT
..F:
               DLY.5
      CALL
..E:
       IN
               IPCISR ; READ THE PCI STATUS
               40H
                       ; CHECK DAD
       ANI
       JNZ
                ..F
                       ; IF DATA, LOOP TO SKIP IT
                        ; LOOP FOR THE COUNT
       DCR
               В
       JNZ
                ••E
      STOP THE DRIVE AND EXIT LOGIC ----
               A, ØFFH ; IDLE
       IVM
S.E:
               ODEIL1 ; STOP THE DRIVE
       OUT
                        ; CHECK FMK FLAG
       CLA
       ORA
               Н
       RZ
                        ; RETURN OK IF LOW
                        ; GO SET FMK STATUS
               FME
       CALL
```

```
; SEE IF REC. SEARCH
       VOM
               A,H
       ANI
               1
       RNZ
                       ; IF NOT, RETURN OK
       STC
                       ; ELSE SET CARRY
       RET
                       ; FOR ERROR RETURN
     SPACE REVERSE -
SRR:
       ANI
               ØFEH
                       ; REV*
       JMP
               SSTRT
                       ; GO DO IT
     ERASE ---
ERASE: CALL
               WRDY
                       ; WAIT FOR DRIVE READY
       CALL
               CWEN
                       ; CHECK WRITE ENABLED
       CALL
               WSl
                       ; WRITE SEQUENCE 1
       MVI
               A, ØF5H ; GET FORWARD COMMAND +WEN*
       CALL
               DCAC
                       : ISSUE CMD. & CHECK TAKEN
    - ERASE 1/3 REC SIZE PER R.DBL ----
       MVI
               B, (R.DBL>8)<2; B= APPROX COUNT
..A:
      CALL
               DLY2
       DCR
               В
       JNZ
                ..A
    - WRITE STOP CIRCUIT ---
WSTOP: MVI
               A, ØF7H ; WEN* ONLY
       OUT
               ODEIL1 ; STOP THE DRIVE
       XRA
                       ; SIGNAL SUCCESSFUL ACTION
       RET
. PAGE
.SBTTL "MISC. SUBROUTINES"
;---- WAIT FOR DRIVE READY -
WRDY:
       IN
               IPCICR ; READ CR TO CLR TO MR1
               A,MSYN1; REVERT TO SINGLE SYN
       MVI
       OUT
               OPCIMR ; SET IT
       IN
               IDEIS1 ; READ DRIVE STATUS
               81H
       ANI
                       ; CHECK RDY + SLD
       CPI
               81H
       JNZ
               ..C
                       ; SIGNAL ERROR
                      ; GET STATUS AGAIN
      IN
               IDEISL
..A:
               2
       ANI
                       ; CHECK BSY
       JNZ
                       ; LOOP TILL NOT BUSY
               ..A
               IDEIS1 ; GET DRIVE STATUS
       IN
       ANI
               1ØH
                       ; CHECK FLG BIT
                       ; IF NOT CONTINUE
       JZ
               ..B
       IN
                       ; GET MISC. STATUS
               IMSR
       ANI
               1ØH
                       ; CHECK PTB
                       ; IF SET, ALLOW OPERATION
       JNZ
               ..B
                      ; IF NOT, SIGNAL WARNING
       MVI
               B,EØ
```

```
JMP
               SEE
..B:
               IDEIS1 ; GET DEI STATUS
      IN
                       ; CHECK IF WRITING
       ANI
                        ; IF NOT, NO UN-LATCH
       JZ
                ..D
       LDA
               CSR
                        ; GET THE CMD ARG. AGAIN
               47H
                        ; ISOLATE REAL BITS
       ANI
               2
       CPI
                        ; WRITE-CMD. QUEUED?
                        ; IF SO, NO UN-LATCH
       JZ
                ..D
                        ; UNLATCH ERA F/F
       MVI
               A, ØFEH
                            BY PULSING REV.
       OUT
               ODEIL1
                        ;
                        ; GET DRIVE IDLE
       MVI
               A, ØFFH
                       ; SET IT
       OUT
               ODEIL1
                       ; ALLOW COMMAND TO TAKE
       CALL
               D.A
..E:
      IN
               IDEIS1 ; WAIT TILL NOT BUSY
       ANI
               2
       JNZ
                ..E
;
                       ; ALLOW SETTLEING
..D:
      CALL
               DLY2
                        ; GET STORED SELECT WORD
       LDA
               DTLS
                        ; SET IT TO CLEAR FAULT LIGHT
       ORI
               2
       OUT
               ODEIL2
                        ; AND PRESERVE CODE
       STA
               DTLS
                        : RETURN TO CALLER
       RET
;
..C:
      NVI
               B,E2
                        ; CMD. TO BAD DRIVE
               SEE
       JMP
• PAGE
      CHECK WRITE ENABLED ----
CWEN:
                IDEIS1 ; READ DRIVE STATUS
       IN
       ANI
                8
                        ; CHECK FUP
                        ; RETURN IF OK
       RNZ
                        ; WRITE NOT ENABLED
       MVI
                B,El
                        : SET FOR ERROR RETURN
       POP
                PSW
;
      SUBROUTINE ERROR EXIT ----
                A, ØFFH ; GET DRIVE IDLE CMD.
SEE:
       MVI
                       ; SET IT
SEE1:
       OUT
                ODEILL
                        ; DELAY AT LEAST 2 MS.
       CALL
                DLY2
                        ; POP TO CMD. LEVEL
       POP
                PSW
                        ; SET CY TO SIGNAL ERROR
       STC
                        ; RETURN TO CALLER
       RET
    -- DRIVE COMMAND AND CHECK ----
                        ; SAVE THE COMMAND
DCAC:
       PUSH
                PSW
                MA
                        ; CHECK THE TRACK
       LDA
                1
       ANI
                        ; NO MOD TO TK Ø OR 2
                ..A
       JZ
                PSW
                        : GET THE COMMAND
       POP
                        ; BUT KEEP IT SAFE
                PSW
       PUSH
                        ; CHECK FOR FWD* OR REV*
       ANI
                3
```

```
CPI
                3
                        ; NO MOD IF NEITHER
       JΖ
                ..A
       POP
                PSW
                        : GET THE COMMAND
                3
       XRI
                        ; EXCHANGE REV* AND FWD*
       PUSH
                PSW
                        ; SAVE MODIFIED CMD
..A:
       POP
               PSW
                        ; GET THE COMMAND
                        ; NOW DO DRIVE SELECT
       OUT
                ODEILl
       IVM
                A,2
                        : DELAY FOR SLEW
                        ; DELAY 20 MICROS
       CALL
                D.A
                IDEIS1
       IN
                        ; GET DRIVE STATUS
       ANI
                2
                        ; CHECK BSY
       RNZ
                        ; RETURN TO CALLER -OK
       MVI
                B,E3
                        : DRIVE -CMD. REJECTED
       JMP
                SEE
                         : ERROR SIGNAL ETC.
. PAGE
   -- WAIT FOR DATA DETECTED -
        B = \emptyset
                TO RETURN ON DAD TRUE
       B= 40H TO RETURN ON DAD FALSE
WDAD:
       XRA
                        ; CLEAR DEADMAN
       STA
               WCTU
       STA
               WCTT
       STA
               WCTH
                        ; GET PCI STATUS
..W:
       IN
               IPCISR
       ANI
                40H
                        ; DCD=DAD*
       XRA
               В
                        ; CALLER OPTION
       JNZ
                        ; IF GOOD, VERIFY AFTER WAIT
                ..A
       LDA
               WCTU
                        ; INCRAMENT DEADMAN
       ADI
                1
       STA
               WCTU
                ••B
       JNC
       LDA
               WCTT
       ADI
               1
       STA
               WCTT
       JNC
                ..B
       LDA
               WCTH
       INR
               Α
       STA
               WCTH
       CPI
                Ø7H
                        ; TIMEOUT?
                        ; CONTINUE IF NOT
       JNZ
                ..B
               CA
       LDA
                        : GET CALLING COMMAND
       ANI
                Ø7H
                        ; ISOLATE COMMAND BITS
                        ; IS IT FILE SEARCH?
       CPI
                5
       JZ
                ..W
                        ; IF SO, DON'T ABORT
                        ; DO STACK ADJUST
       POP
                PSW
                ..C
                        ; AND SIGNAL ERROR
       JMP
               IDEIS1
                        ; READ DEI STATUS
..B:
      IN
       ANI
                2
                        ; CHECK BSY FALSE
                ..W
                        ; LOOP IF STILL MOVING
       JNZ
                        ; SIGNAL TRANSPORT ABORT
..C:
      MVI
               B, E7
                SEE
                        ; USE SUBROUTINE ABORT EXIT
       JMP
..A:
      MVI
               A,10
                        ; GET 100 MICRO-SEC. CONSTANT
       CALL
                D.A
```

```
IPCISR ; READ THE STATUS AGAIN
      IN
      ANI
              40H
      XRA
              В
                      ; RETURN IF NOT FALSE ALARM
      RNZ
      JMP
                      ; LET'S TRY IT AGAIN, FOLKS
    - DELAY 2 MILLI-SECONDS ----
:-- ASSUMES 4MHZ Z-80 -NO WAIT STATES
              A, 205 ; GET 39 STATE CONSTANT
DLY2:
      MVI
                      ; KILL 9.75 MICRO-SECS.
D.A:
      NOP
      NOP
      NOP
      NOP
      NOP
      DCR
              Α
      RZ
      JMP
              D.A
;---- DELAY 0.5 MILLISECONDS ----
                      ; GET CONSTANT FOR .5 MS.
              A,52
DLY.5: MVI
                      ; USE ABOVE CIRCUIT TO TIME
       JMP
              D.A
;
    - WAIT READY AND RETURN CURRENT STATUS ----
                      ; LOWER PGM LEVEL FOR ABORT
WRRS:
       CALL
               ..A
                    ; IF ABORT, SIGNAL SAME
       JC
              AWQA
              CPRA
                      : SENT CURRENT DRIVE STATUS
       JMP
                      ; WAIT FOR DRIVE READY
              WRDY
      CALL
..A:
                      ; CLEAR CY FOR RETURN
       CLA
                      : RETURN TO PSEUDO CALLER
       RET
. PAGE
.SBTTL "{RAM VARIABLES}"
**************
       .LCC
              ATU+769H
   -- RESERVED RAM ----
       .BYTE
                     ; WDAD DEADMAN COUNTER - UNIT
WCTU:
                      ; WDAD DEADMAN COUNTER - TEN
              Ø
       BYTE
WCTT:
                      ; WDAD DEADMAN COUNTER - HUNDRED
              Ø
       BYTE
WCTH:
                      R.DBA ; READ/WRITE RECORD AREA - START
              .WORD
R.AREA:
                     R.DBL ; READ/WRITE RECORD SIZE (BYTES)
               .WORD
WRDCNT:
                      ; MODE ARGUMENT
              Ø
MA:
       BYTE
                      ; POSITIONAL ARGUMENT
PA:
       BYTE
              Ø
                      ; COMMAND ARG.
              Ø
       BYTE
CA:
                      ; CA INTERMEDIATE STORAGE
            Ø
CSR:
       BYTE
                      ; DRIVE STATUS
              Ø
DS:
       BYTE
                      ; INTERFACE STATUS
              Ø
IS:
       .BYTE
              Ø
                     ; INTERNAL RETRY LITERAL
RETRY: BYTE
                             ; DYNAMIC RETRY COUNTER
               BYTE
                      Ø
DRETRY:
```

```
; LRC STORAGE
LRC:
       BYTE
ODS:
                       ; OLD DRIVE STATUS
       .BYTE
               Ø
               Ø
                       ; DRIVE/TRK/LED STORAGE
DTLS:
       .BYTE
                       ; INTERNAL FMK COORD.
FMFLG: .BYTE
                       ; ERROR CODE STORAGE
ECODE: .BYTE
               Ø
                       ; VERSION NUMBER (LSB)
VER:
       BYTE
               "1"
                       ; STACK SAVE LOCATION
SSAVE: .WORD
               Ø
.END
```

APPENDIX III

TAPE SUMMARY

ω
9
2
_
m
9
₹
_

Π

Dates of	Interest 10/29	18/0					91/11			
General Remarks Da	600] = GU, 6000 = OF		System removed 11/1-	Tide gage not working caused triboing	1-min. rec. printout summary exists, no tape found - low wind speeds.	Low wind speed		Lost power question about WS staff.Tide gage not working caused tripping.	Track 1 - last 3/4 is blank. Track 4 - prob.	
Remarks on Cartridge	10-12 km N. on first several hrs. large swell	Written over by accident - dead battery	No tape	Nothing on track 4		No power	20 mph, 1 T.S. at beginning of record		1 T.S. 1 mph	
Time Series Record				**2 *9,10,13-19		6,7	-		**3	
1-Minute Record	no printouts	no printouts		**19 *9,10,13-19		9-	1-10		*15,5,6-10,12 **14	when
Time	5:50p 12:15p	1:00p		4:51p 1:00p		3:00p	3:15p 2:00p		4:40p 2:30p	- tape stops
Date	10/28/82 10/30/82	10/30/82 11/01/82		11/11/82		11/12/82 11/15/82	11/15/82		11/23/82	- ta
Tape No.	-	7	m	,		S.	'	•	-	

searching. Glitches on Track 4. Tide gage not working caused

11/26	11/29			a:		12/15		12/24		
6006 = 01 10 = 40 13 - 2d Appears to have over- written	No reset	Looks like a test tape	Copy over first records	No printout, references, or tape may not be a tape		Glitches	10 mph wind speed Copy over 1st records	Wind speed 25 mph + on SR 27-29, 31-36 or else zero		Copy over 1st records. Try reading #79
	No reset, 6006 = 3 6010 = 00, 6011 = 61 6013 = 26	1 T.S., 1-min. Rec. (degaussed)	6009 = 26, 10 = 0,11 = 8E, 13 = 53 (degaussed)			50 + mph wind 06 = 3, 11 = 06, 12 = 06		06 = 02, 11 = 30, 13 = 09	06 = 02, 11= 16, 13 - ?	06 = 0, 11 = SE, 13 = 1d
	4 *I don't think so	-	129 at least *2		2	1-11	&	4	7,9 at least	56,64-69, 76-79
45-61	57-97		*122-142		3-35	<u>-</u>	30-58	1-48	1-22	54-94
3:30p 9:00a	9:40a 11:30a		3:15p 1:36p		1:00p	3:30p 3:00p	3:10p	3:02p 4:07p	4:30p 1:00p	4:40p 11:00a 11:11p
11/23/82	11/26/82 11/30/82	11/30/82	11/30/82	12/06/82 12/10/82	12/10/82 12/15/82	12/15/82 12/16/82	12/16/82 12/23/82	12/23/82 12/27/82	12/27/82 12/29/82	12/29/82 01/06/83
œ	o	10	Ξ	12	13	4	35	91	11	82

	1/2 to 1 1/10/83			1/24	72/1							
	Wind speeds 25 mph + on this tape some some prob. With glitches	No tape		Low power. Copy over first records - Wind gage not working tripping				Removed system. Wind gage not working, tripping DAS	Sent to DC - good data on Ch. 18		Don't know if this tape ever existed	
	06 = 1, 11 = 36, 12 = 26		Low temperature cartridge			Boat wake test runs 1-8 see notes	Boat wake test II			1 manual T.S. Wind 12 - 15		Test tape, T.S. + 1-min. + T.S. WS 12-15
	40-52		142	24-49						11		
	40-59		1-20	24-49	44-70			10-34		=		
	1:40p 11:50a		3:40p	2:30p	3:20p 11:00a			*3:00p 3:30p 12:00n	7:00p	3:45p	3:55p 1:00p	6:00p
	01/06/83 01/11/83	1/11/83 1/12/83	01/12/83 1/19/83	01/19/83 01/25/83	01/25/83 01/31/83	01/31/83	01/31/83	01/31/83 02/03/83 *12/05/83	03/16/83 03/30/83	03/30/83 04/01/83	04/01/83	04/02/83
٠	61	02	12	22	23	24	52	56	27	88	53	8

No out date recorded Wind gage	I think this should really to to 4/17 Wind gage/tripped DAS		Wave gages 16,18,19,20 working		?Wind Gage	Wind gage/tripped DAS		-	Lots of good data/storm 5 accelerometers working		
	06 = 3, 7 = 1, 11 = 14, 13 = 14	WS 15 Test tape		Tr = 1, 1-min. Rec = 224 T.S. = A, N = 0800	06 = 3, 11 = 22, 13 = 16 T.S. was running when opened	Restarted - original date = 4/17 @ 5:30p	Test tape 1 T.S. & 1 -min. rec.	A006 = 0, 11 = 16, ? - 6		Other note in box Test tape 1512, ITS	Boat Wake 8 T.S.'s
19	50		14	~ 0	124 *0	01	,	90	lots 16 *0	-	1-8
1-19	1-20		1-34	1-34	1-34	1-10	-	1-22	1-50	_	
6:15p 5:00p	5:15p 2:15p	6:10p	5:00p 2:00p	4:15p 2:20p	5:15p 1:30p	5:45p 3:15		5:30p 2:00p	11:00a 4:45p		
04/04/83 04/5/83	04/05/83 04/06/83	04/07/83	04/07/83 04/11/83	04/11/83 04/14/83	04/14/83 04/17/83	04/18/83 04/19/83	04/19/83	04/19/83 04/21/83	04/22/83 04/26/83	04/21/83 4/22/83	04/22/83
ا	33	ಜ	*	35	98	37	88	39	\$	4	45

Π

		No T.S.	1 T.S. = 1-min. Rec. # 7	2 rec. with boat waves #1 ch's 45-60 org. gain. #2 Ch's 45-60 new gain.			Problem reading 1-min. rec. on Macsym		10 rec. in this period overwrote rec. from previous	Wind gage wrong gain	Wind gage/wrong gain Good tire BW loads
Track 0, 1-min. rec. = 52, T.S. = 2	Lower power	Batteries were dead good wind Saturday night	Batteries were dead	Restart tape, original date = 5/24 Ø 5:00p Test Tape		Dead batteries	Dead batteries Tr = 4 hrs	Test tape 1-T.S., 1-T.S. stopped short		Restart, was 7/7 0 4:30p	
7,66 *4 *2	ထတ္	•	*37 *	~	8 [13	2	24 38–52	27	2
1-82	1-49	1-22	1-53	0	1-33		1-21		1-52 *1-10 & 38-52	3:30p 22-47 2:30p	1-21
5:00p 2:00p	5:00p 11:00a	1:35p 2:50p	7:45p 3:30p	5:00p	6:00p 4:00p	4:15p 9:30a	1:55p 2:50p	4:15p	12:00n 10:00a	3:30p 2:30p	5:00p 11:30a 11:00a
04/26/83 05/03/83	05/03/83 05/12/83	05/12/83 05/17/83	05/17/83 05/24/83	05/26/83	05/26/83 06/03/83	06/03/83 06/08/83	06/08/83 06/13/83	06/13/83	07/06/83 07/07/83	07/08/83 07/12/83	07/12/83 07/14/83
43	4	45	46	4	84	49	82	5	25	83	\$

Good tire BW loads	Good tire BW loads	Wind gage/wrong gain Good tire BW loads	Wind gage/wrong gain Good tire BW loads	gage/wrong gain tire BW loads			C	<u>د</u> ق	~	~	~
ă T	ă Ħ	₽ ₽ #	2.5 2.5	8 ±			Wind gage?	Wind gage?	Wind gage?	Wind gage?	Wind gage?
909	909	M.T.	M.T.	Mind			Wind	Wind	Pu.	Wind	Mind
	Wet! (not the tape)		I think I wrote over Track I		REMOVED TIRE BREAKWATER 8/1/83	Pull test and boat wake 12 T.S. only				Bravely retrieved by Dan on 09/26/83	
. 23			6	15			23	o,	6	56	20
1-23		1-10	6-[1-12			1-23	1-9	6-	21-46	1-20
3:00 1:00 d	1:20p 10:00a	2:30p 11:00a	4:15p 10:20a	12:00n 12:22p			12:12p 12:32p	5:35p 10:50a 11:50a	4:15p 10:30a *12:00p	1:20p 12:00p	6:00p
07/14/83 07/16/83	07/16/83 07/19/83	07/19/83 07/20/83	07/20/83 07/21/83	07/21/83 07/22/83		08/18/83	08/27/83 08/29/83	08/29/83 08/30/83 *11/50a	08/30/83 08/31/83	09/02/83 09/06/83	08/31/83 09/02/83
22	26	21	88	69		99	9	62	63	64	99

09/06/83 10:35a 1-23 23 Wind gage? 09/08/83 9:40a .	09/08/83 1:50p 1-20 1 73 and 74 = 74 09/09/83 10:30a *1-10	09/09/83 3:35p 1-34 6 74 74 09/12/83 11:55a	09/12/83 3:50p 1-20 20 Wind speed not working 09/14/83 9:45a	09/15/83 4:00p 1-44 5 Restart was 9/14 @ Wind speed not working 09/19/83 9:00a	09/19/83 3:35p 1-20 3 Wind speed not working 09/21/83 7:52a	09/21/83 Test tape 3-T.S. Princess Margarette on 1st. 1 one-min. rec. which triggered T.S. North wind/white caps just beginning 10-12 mph	09/22/83 6:32p 1-8 no tser 6/23/83 11:15a	09/23/83 3:35p 2 1 Power out when removal 09/27/83 12:00n	09/29/83 1 8 Test tape, waves - white Wind 18 - 25 mph caps breaking over break-water, WS 18-25 mph from north.	09/29/83 12:30p 2 1 Batteries were low 10/03/83 1:00p at first
	09/08/83 09/09/83	09/09/83 09/12/83	09/12/83 09/14/83	09/15/83 09/19/83	09/19/83 09/21/83	09/21/83	09/22/83 09/23/83	09/23/83	09/29/83	
99	29	89	69	70	וג	718	27	73	74	75

				No 1-min. rec.	No 1-min. rec.	Continuous 1 hr records. See note in tape box	Manually activated 1-min. rec. and time caries one after the	other. Check the times in the header for actual time of sampling start.			
				24 hr tape - WS offset to 1.0 volts		Last 1-min. rec. & T.S. manually activated	Tape #2 for 10/19 Tr = 2 min 20, TS = 8	Tape #3 for 10/1	Tape #4, All 6 directional arrays working on last 2 records	Manually activated - T.S.#6 is the best No.	
	m		0	N.		4	œ	8	ശ	9	9
4	1-1	1-1	<u>-</u> :	8	0	==	1-20	1 & 2	1-5	1-7	1-12
4:30p 1:25p	3:55p 1:55p	6:20p 4:05p 10:50a 10:10a	6:20p 10:10a	1:30p 12:35p	4:40p 8:55a	11:00p 10:20a	10:20a 1:00p	1:00p 1:30p	3:10p 5:15p	11:40a 1:45p	1:55p 12:10p
10/06/83 10/09/83	10/09/83 10/10/83	*10/11/83 10/10/83 10/11/83 10/13/83	10/11/83 10/13/83	10/13/83 10/14/83	10/03/83 10/04/83	10/18/83 10/19/83	10/19/83 10/19/83	10/19/83 10/19/83	10/19/83 10/19/83	10/20/83 10/20/83	10/20/83
92	11	78	79	80	* 81	82	83	2	88	98	81

					Bad tape - reset system 10/28/83 5:00p					
			Light north WS 4-5 mph	S. WS 12 mph started 1-min. rec., T = 1 T.S 05 ₁₆ , MR = 0C	Reset system ll = 6 Boatwake ? ll = 8	1-min. rec. = 1916 T.S. = 9 Started manually	Continuous hour	INSTALLED RUBBER CONNECTION	Lab test tape T.S. #1, 1 volt in T.S. #2 - sys.	00, 08, 01
S		-	ო	ĸ	5	on .	14		8	
1-5		1-9	=	1-12		*1-25	1-14			8
12:15p 2:45p	2:00p 2:45p	5:00p 11:00a	3:35p 1:30p	4:45p 2:45p	*5:50p 5:05p 5:00p 8:43a	1:00p	*4:44a 4:40p 6:27a			*3:35a 3:35p 8:35p
10/21/83 10/21/83	10/21/83	10/24/83 10/25/83	10/25/83 10/26/83	10/26/83 10/27/83	10/27/83 10/28/83 10/29/83 10/29/83	10/29/83 10/31/83	10/31/83 11/01/83		11/29/83	12/01/83 12/02/83
88	88	8	6	95	g \$	95	96		97	86 —

8 <u>9</u>	12/02/83 12/06/83	1:45p 2:35p	61	· •	Test tape T.S. #1, Boatwake T.S. # last 1ight So. wind - relative motion working	
	12/06/83 12/08/83	4:05p 2:55p 2:25p	8	9+2 *8+2	Two time series manually ran	
	12/08/83 12/09/83	3:00p 11:45a	1-8 *1-9**1-5	ဖု ဇူ		Bad tape
	12/09/83 12/12/83	4:10p 9:00a	1-33	14		BW103R5 reco highest wind
	12/12/83 12/1 4/ 83	12:55p 10:50a	1-23	14		
	12/15/83 12/10/83	3:15p 12:00p	1-10			
	12/16/83 12/21/83	4:00p 3:35p	16 & 17 27-59	11-36		
	12/21/83 12/28/83	4:20p 8:20a	88	19		
	12/28/83	10:35a 12:25p	12	2		

Some problems at beginning of tape* had to forward space in 100 recs. to get past it		Tape out of order unable to read									Tow in
50	14		4.	8	27	m	50	52	=	52	7
21-63	1-57		1-58	1-8	7-31	1-3	1-20	1-25	=	23-48	-
1:45p 1:45p	1:30a 11:50a	16:40	2:05p 10:30a	5:00p 10:40a	3:45a 11:40a	*12:15p 11:40a 12:00a	12:15p 11:45a	10:55a 11:30a	11:40a 9:55 9:45a	10:00a 9:45a	12:00a 12:00a
12/29/83 01/05/84	01/06/84 01/11/84	01/05/84	01/12/84 01/07/84	01/19/84 01/20/84	01/20/84 01/23/84	01/23/84 01/23/84	01/23/84 01/24/84	01/24/84 01/26/84	01/26/84 01/27/84	01/27/84 01/31/84	01/31/84
110	Ξ	112	113	114	115	116	711	118	119	120	121

APPENDIX IV

SCALE FACTOR SUMMARY

TRANSDUCER INPUT SUMMARY SHEET

Anchor Forces

Channel	No. Location	n Code	1	Location	
1 2 3 4 5 6 7 8 9 10 11	LNWC LNEC USWC UNEC USEC LSWC LSEC LNT UNT UST LST	Low Upp Upp Upp Low Low Low Upp Upp	er Northeas er Northwes er Southwes er Southeas er Southwes er Southeas er Southeas er North Ti er North Ti	t on Concret t e Breakwate re Breakwate re Breakwate	e Breakwater r
Fix	ed References				
13 14 15	SOUT CENT Nort	TER			
	Waves				
16 17 18 19 20 21	TIDE INC NW NE SW SE namic Pressure	Inc Nor Nor Sou	e Gage ident Wave thwest Wave theast Wave thwest Wave theast Wave	Buoy Buoy Buoy	
-		No.	4 b 11		
22 23 24 25 26 27 29 31 33 33 34 35 37 38 40	NU NL BNC BEI BWO SWI SW2 SW1 SW2 SE3 SE3 SE1 EP1 EP2	Nor Bot Bot Bot Sou Sou Sou Eas	th Upper th Lower tom North C tom East Ce tom East In tom West In tom West Ou tom South C th Center U thwest Numb thwest Numb th Center L theast Numb theast Numb theast Numb t Pontoon N	nter ner ter enter pper er 1 er 2 er 3 ower er 2 er 1 umber 1	

TRANSDUCER INPUT SUMMARY SHEET (Continued) 41 EP3 East Pontoon Number 3 42 43 EP4 East Pontoon Number 4 EP5 East Pontoon Number 44 EP6 East Pontoon Number 6 Concrete Strain 45 NULE North Upper Longitudinal on East End of Pontoon 46 North Bottom Longitudinal on East End of Pontoon NBLE 47 SBLE South Bottom Longitudinal on East End of Pontoon 48 SULE South Upper Longitudinal on East End of Pontoon 49 NTI North Transverse Number 1 50 NT2 North Transverse Number 2 51 BT1 Bottom Transverse Number 1 52 BT2 Bottom Transverse Number 2 Upper Transverse Number 1 Upper Transverse Number 2 53 UTI 54 UT2 55 South Transverse Number 2 ST2 56 STI South Transverse Number 1 57 NULC North Upper Longitudinal at Center of Pontoon 58 North Bottom Longitudinal at Center of Pontoon NBLC 59 SULC South Upper Longitudinal at Center of Pontoon 60 SBLC South Bottom Longitudinal at Center of Pontoon Accelerometer 61 WVA West Vertical 62 WHA West Horizontal 63 WRA West Rotational 64 EVA East Vertical 65 EHA East Horizontal East Rotational **ERA** Relative Motion 67 WVR West Vertical Rotational Displacement 68 WHR West Horizontal Rotational Displacement 69 EVR East Vertical Rotational Displacement 70 East Horizontal Rotational Displacement EHR 71 Center Longitudinal Motion Center Rotational Motion CLM CRM Wind Speed and Direction 73 WS1 Windspeed at Tide Gage Windspeed at Instrument House Windspeed Direction at Tide Gage 74 75 WS2 WDI Windspeed Direction at Instrument House 76 WD2 Current Velocity North South

East West

78

E-W

TRANSDUCER INPUT SUMMARY SHEET (Continued)

Not Committed

79 80

Single Scan Only Not Committed

81 82

Internal System Voltages

83 -15 84 +15 85 -24 86 +24 87 +5 88 +5

Temperature

89 Water
90 Air
91 SCC At Signal Conditioning Bar
92 DAS At Data Acquisition System

Not Committed

	Scale Factor = $\frac{\text{kips}}{\text{mv}} \times \frac{5000 \text{ mv}}{4095 \text{ cts}} \times \frac{1}{6ain}$												wave buoys 10/11/83	\Rightarrow
	11/30/83	New	666	1005		5 1005	0001 0	ŧ	1003	٠	9 1.0	1.0	.156 1.0	0.1 76.
		<u> </u>	980	955	1005	1005	000	<u>'</u>	1024	<u> </u>	- 66	<u> </u>	-	6.
	8/31/83	New	1000	1000	1000	1000	1000	2000	•	'	_	cards		
	8/3	PlO	1000	1000	1000	1000	1000	3000		'	_	ავ)
GAIN SETTING	7/14/83		1000	1000	1000	1000	1000	1000	1000	1000	0001	1000	1000	1000
GAIN	/83	New	new	card	001	24		,	95	85	86		28	82
	5/26/83	PIO	96	ı	,	,	,	•	,	•	•	•	,	1
-	2/21/83		001	100	· <u>6</u>	100	100	100	100	100	100	100	100	100
	10/4/82		1000	1000	1000	1000	1000	1000	1000	1000	300	300	300	300
	9/29/82		300	-	300	300	300	300	300	300	300 (1000)	300 (1000)	300 (1000)	300 (1000)
	Scale Factors kips	ΛШ	2.293	2.284	4.112	2.397	2.623	2.533	2.353	2.288	1.504	1.555	1.501	1.524
	Channels		_	2	٣	4	2	9	7	ø	6	10	=	12

Nctes: 8/31/83 LC4-Ch 4 Rewired (by passed) two sides of bridge Gain = ½ x original Gain - not sure when changed back.

LC5-Ch 5 Added extra bridge to cut noise - not sure why or what this does to scale factor.

9/22/83 Ch 3 Rewired Rl & R2 Gain = 1/2 x original Gain.

10/17/83 Ch 10 & 12 Reset Gain = 1000 not sure why. 12/5/82 Pulltest [Ch's 9 x 12 G set to 400] [Ch's 11 & 12, changed resistor on 101 Amp] . [Ch' 11 G~111, reset to 1000] Ch's 9-12 Were well under 1000, when recalibrated.

WAVES

Π

and a confus

П

 \prod

П

					4										
8/29/83	8/31 1.0				new staff	G = 1.0								· .	
8/24/83 These Were Off	reset to 1.0		reset 1.0			reset 1.0									
/83 New	(9/22 reset)				6.0			1.0				1.0	.93		
10/31/83 01d New	(9/22				0.9		•	1.16				1.9	.93		
83 New	1.0	1.0	1.0	1.0	1.0	1.0		1.00	1.0	0.1	1.0	1.0	1.0	1.0	1.0
11/83 01d Ne	1.0	.53	1.0	.93	.92	1.07		66.	1.0	.156	76.	.53	.93	1.07	.92
2/21/83	1.0	_	-	-	_	_								_	
Orig.	1.0		_	_	-	-			_		٠				
Scale Factor (ft/count)	.00611		.0313	.0313	.0313	.0313		0.00195	0.00195	0.00195	0.00195	.0313	.0313	.0313	.0313
Channels	Tide 4/83	1	3	뵘	MS	SE		A6	A4	A3	A2	A8	A5	A1	A7
Cha	16	17	18	19	20	21		6	2	=	12	17	19	21	22

Scale Factor = $\frac{ft}{count} \times \frac{1}{Gain}$

10/30/84	Set at 20 ft = 0.5 volts
11/15/84	≃8 ft <u>≃</u> 0.58 volts
12/23/82	≃0.9v at 2:20 pm
12/29/84	≃0.69 at 3:40 pm
01/6/83	0.73 at 1:27 pm
01/11/83	.78 at 1:39 pm
01/14/83	Accidently moved offset
	12:55 pm = $10\frac{1}{2}$ ft from top of support
	set V _o = 1.0 volts
	2:37 pm \simeq 10 ft tide $V_0 = 0.85$
01/25/83	.75 at 2:18 pm
03/15/83	0.305v = 9.7 ft
03/16/83	1.10v ≃7 ft at 4:20 pm
03/30/83	1.98v ≃17 ft from top of bracket
04/ 5/83	2.11v≃ 2:53 pm
04/08/83	1.45v at 4:30 pm
04/11/83	1.25v at 1:55 pm
04/14/83	1.45v at 2:42 pm
04/14/83	1.00v at 5:09 pm
04/26/83	4:40 pm tide gage at peir read 10.6 ft
	4:49 pm Ch 6 = 0.91 ±0.01 volts
06/13/83	out

Mid April, 1983 S.F. changed from .006 to .01288

PRESSURE

			PKE220KE				
Channe1s	Original Scale Factors psi/mv	Original Gains 02/21/83	Newer Scale Factors 3/84 Lab psi/volt	8/29/83 01d New	10/3/83	11/83 In Lab	12/6/83
22	.424	1000		-/2000		.92/1.0	
. 23	.471	1000		1000/2000		?/1020	
24	.425	1000		0K/2000		1698/2005	
25	.0471	1000		800		-	
26	.480	1000		2000/2000		2043/2002	
27	.538	1000		4000/2000		-	
28	.448	1000		1800/2000		-/1006	
29	2.09	1000		1000/2000		-/1016	
30	.556	1000		1000/2000	:	2025/2005	
31	.168	1000	0.334	2000/2000	٠	2011/2011	2000/50
32	.588	1000	.909	2600/2000	2000/500	609/490	
33	.404	1000	1.68	470/2000	-	-	
34	.419	1000	-	50/2000	-	-]
35	.504	1000	0.957	2000/2000	2000/500	281/500	
36	.433	1000	1.199	64/2000	2000/500	-	
37	.433	1000	1.180	42/2000	2000/500	491/491	
38	.464	1000	1.044	1068/2000	2000/500	444/496	
39	.469	1000	1.015	1040/2000	2000/500	555/513	
40	.426	1000	0.280	4390/2000	-	-	ŀ
41	.418	1000	1.015	1000/2000	2000/500	530/504	
42	.508	1000	0.251	60/2000	-	-	
43	.433	1000	-	13000/2000	2000/500	530	
44	.374	1000	1.209	2900/2000	2000/500	483/504	

Scale Factor = $\frac{psi}{mv} \times \frac{2500 \text{ mv}}{count} \times \frac{1}{Gain}$

CONCRETE STRAIN

Channel	Scale Factor (<u>µs</u>) count)	2/21/83	5/26/83	8/30/83	11/83
45	1458.6	988	501/1000	2000	2015/2015
46	1458.6	9 88	478/1000	2150/2000	1951/2006
47	1458.6	493	509/1000	2000/2000	147/2017
48	1458.6	494	520/1000	2000/2000	-/2018
49	1458.6	248	267/1000	-	526/1998
50	1458.6	bad	543/1000	2000	1989/1989
51	1458.6	488	623/1000	2000	2097/1992
52	1458.6	480	419/1000	2000	1961/2016
53	1458.6	492	-	950/2000	1967/2010
54	1458.6	512	546/1000	2000/2000	1956/2006
55	1458.6	426	488/1000	2000	1997/1997
56	1458.6	439	520/1000	2000	2039/2008
57	1458.6	496	467/1000	2000	1955/1996
58	1458.6	508	542/1000	2000	2018/2018
59	1458.6	468	506/1000	2000	2017/2017
60	1458.6	491	539/1000	2000	2057/2012

5/3/83 Channels 45 and 46 Vex = 5.0 already
Channels 47 thru 60 reset Vex from 2.5 to 5.0 volts

Scale Factor = $\frac{\mu_S}{\text{count}} \times \frac{1}{\text{Gain}}$

ACCELEROMETER

Channel	Scale Factor f	Gain Up to March 15, 1983	Gain 8/30/83	
61	0.0631 fps ² /c	1/2	1/2	
62	0.0631 fps ² /c	1	1	
63	0.0098 fps ² /c	1	1	
64	0.0631 fps ² /c	1/2	1/2	
65	0.0631 fps ² /c	1/2	1	
66	0.0098 fps ² /c	1	1	
62	replacement hor	izontal		1
79	outer vertical		7	
80	outer vertical			7

RELATIVE MOTION

$$Vex = 5v$$

$$Gain = 1$$

 $V_o = output voltage signal$

 C_0 = output counts

Channe		11/83	12/2 - 12/16
67	WX	2.0	10
68	WZ	2.0	10
69	Ex	2.0	10
70	Ez	2.0	10
71	Ext	12	1/2
72	Rot	2.0	10

12/2/84 Ch's 67-70 and 72 changed Gain from 2 to 10

S.F. = 0 =
$$\cos^{-1}(y)$$
 $y = (\frac{V_0 - \overline{V_0}}{2.5}) = (\frac{C_0 - \overline{C_0}}{127.5})$

$$\frac{\text{S.F.}}{(67-70)} = \cos^{-1}(\frac{\sqrt[9]{0}-\overline{\sqrt{0}}}{2.5}) = \cos^{-1}(\frac{\frac{C_0-\overline{C}}{0}}{127.5}) \text{ degrees}$$

Ch 71 S.F. =
$$\frac{8 \text{ inches}}{5 \text{ volts}}$$
 x $\frac{2.5 \text{ volts}}{255 \text{ count}}$

Ch 72 S.F. =
$$\frac{360^{\circ}}{5 \text{ volts}} \times \frac{2.5 \text{ volts}}{255 \text{ count}}$$

WIND SPEED AND DIRECTION (Cont.)

	 	
1/11/83 Ch	75 →	E 1.5 volts SE
		•
1/14/02		SE = 1.53 volts
1/14/83		
Ch		0.37 = North at 15 mph
	75	V ₀ = 1.27
2/22/83		Calibrate WS and D 73, 74, 75 and 76 - see attached sheet Checked 75 and 76 with two anemometers
		checked 75 and 76 with two anemometers
3/15/83		6-10 mph = 0.214v
3/16/83		19 mph = 0.25v
5/26/83	Ch	73 - out
		75 OK 2.09
:		74 = 0.17-0.19γ≃ 9.5 to 10 mph
6/18/83	Ch	73 OK
্স		,
9/8/83	Ch	74 Hard wired to Ch 73
		∴ Ch 73 = Ch 74
10/11/83	Ch	75 Gain at ½ offset = 0 76 Gain at ½ offset = 0
1/14/84		set 73, 74 to 1.0 volts ral notebook shows this on 9/18/83
9/15/83		ired Ch 73 recalibrated to original

TEMPERATURE

Read Direct

1 Degree count

CONNECTOR LOAD BOLTS

12/83 - 1/31/84

Channel		Gain 11/83	S.F. <u>1bs</u> <u>2500 mv</u> <u>255</u>
23	N outer	1020	$15.7 = 153.9 \frac{1b}{c}$
28	N inner	1006	15.9 = 155.9
29	S inner	1016	15.7 = 154
43	S outer	503	31.8 = 312

$$\frac{100000 \text{ lbs}}{1.250 \text{ mv}} = \frac{100000 \text{ lbs}}{6.25 \text{ mv}} = 16000 \frac{\text{lbs}}{\text{mv}}$$

12/12/83

Change Gain back to 1000

Not sure what it was

S.F. =
$$\frac{16000 \text{ lbs}}{\text{mv}}$$
 x $\frac{2500 \text{ mv}}{255 \text{ correct}}$ x $\frac{1}{\text{Gain}}$

APPENDIX V
BOAT WAKE AND PULL TEST

APPENDIX V

BOAT WAKE AND PULL TESTS

VII.l Boat Wake Tests

Boat wake tests were conducted on April 4, August 18, and October 29, 1983. Vessel chatacteristics for each of the three tests are listed below. Then, for each test, the individual run characteristics are listed. Vessel directions (sailing line) are given in approximate azimuth bearings; distances are approximately minimum distances between the vessel and the closest corner at the west end of the pontoon breakwater.

Table V-1. Vessel Characteristics

Date .	April 4	August 18	October 27
Vessel Type	Coast Guard Cutter	Marine Tug	Harbor Tug
Length, ft.	40	110	73
Beam, ft.	10	34	17
Draft, ft.	3.5	10	11
Displacement, tons	10 (approx.)	193 (gross)	67
Speed, knots	12,16,20	11	10
Wave period range, seconds	2.5 - 3.5	2.8	2.8
Wave height max, feet	2.2	2.8	2.8

Table V-3. August 18 Test Conditions

Run No.	Sailing Line	Speed-kn	Distance-ft.
1	345 ⁰	5	5Ø
	135 ⁰	8	5Ø
	345 ⁰	11	5Ø
2	3450	11	5Ø
	135 ⁰	11	5Ø
3	33ø°	11	5Ø
	150°	11	· 6ø
4	325°	11	5Ø
	135 ⁰	8	5Ø
	3450	11	200
5	345 ⁰	8	200
6	ø٥	11	15Ø

Table V-4. August 29 Test Conditions

Run No.	Sailing Line	Speed-kn	Distance-ft.
Ø	90°	6-7	200
1	9ø°	6-7	250
1 2 3	315 ⁰	10	25 Ø
3	315 ⁰	not recorded	not recorded
4	315 ⁰	10	400
4 5	315 ⁰	10	250
6 7	33ذ	10	50-100
7	18ذ	10	100
8	315 ⁰	10	150
9	18ذ	10	100
10	315 ⁰	10	150
11	200°	1 Ø	150
12	315 ⁰	10	100
13	215 ⁰	10	250
14	130°	10	200
15	215 ⁰	10	200
16	1300	10	not recorded
17	225 ⁰	10	250-300
18	1300	8	150
19	225 ⁰	10	150-200

Note: Vessel sailing lines for each of the three tests were dictated in part by vessel draft and water depth. Limited serial photographs were taken during the April 4 and August 18 tests, and 8-mm motion pictures of the breakwater response were taken during the October 29 tests.

V.2 Pull Tests

APPENDIX VI

LABORATORY TESTING

UW Laboratory Test - 3/8", 6 x 7 Structural Bridge Rope

Kips	Inches	
Ø		
10	.350	
20	.353	
30	.366	
40	.387	
50	.397	
60	.412	
70	.430	
80	.443	
90	.458	
100	.474	
110	.492	
120	.507	
130	.536	
140	.567	
150	.611	
160	.660 load popping soun	d
170	.741	
180	.860	
185	.945	
190	.059	
195	1.188	
198	1.289	
200	1.372	
201	1.427	
204	2.162 failure	

Laboratory Test 1 3/8 - 6 x 7 Structured Bridge Rope
Scale Factor = 2.1575 ft/volt x 12/ft = 25.89 inches/volt

	up	down	up volt	down	up	inches
Ø	Ø					
1ø	.0080	.0104				Ø.2693
20	.0090	.0111	.0105			Ø.2718
30	.0101	.0118	.0110			Ø.2848
40	.0112	.0121	.0118			Ø.3Ø55
5Ø	.0120	• •	.0122	.0162		Ø.3159
60			.0134	.0168	.0159	Ø.4117
7Ø			.0142	.0174	.0166	Ø.4298
80			.0222	.0179	.0171	0.4427
90			.0160	.0185	.0177	Ø.4583
100			.0172	.0192	.0183	Ø.4738
110			.0182	.0194	.0190	Ø.4919
120			.0193		.0196	0.5074
130					.0207	Ø . 5359
140					.0219	0.5670
150					.0236	0.6110
160	poppin	g sound			.0255	Ø.66Ø2
168						
170					.0286	0.7405
174						
176						
178						
179						
180					.0332	Ø.8596
181						
182						
183						
184						
185					.0365	0.9450

186				
187				
188				
189				•
190			.0409	1.0590
191				
192				
194				
195			.0459	1.1883
196				
197				
198			.0498	1.2893
199				
200		•	.0530	1.3722
201			.0551	1.4265
204	•		.0835	2.162

П

П

1 3/8 - 6 x 7 Structured Bridge Rope

Load Kips	Volts	Inches	Inches
	(-1,3944)		
Ø	Ø		
10	.0104	Ø.269	
20	.0105	.272	.003
30	.0110	.285	.013
40	.0118	.306	.021
50	.0122	.316	.010
60	.0159	.412	.096
70	.0166	.430	.018
80	.0171	.443	.013
90	.0177	. 458	.015
100	.0183	.474	.016
110	.0190	.492	.018
120	.Ø196	.507	.015
130	.0207	•536	.029
140	.0219	.567	.031
150	.0236	.611	.044
160	.0255	.660	.049
168		•	
170	.0286	.741	.081
174			
176			
178			
179			
180	.0332	.860	.119
181		•	
182			
183			
184	.0365	.945	.085
185			
186			

187			
188			
189			
190	.0409	1.059	.114
191			
192			
194			
195	.0459	1.188	.129
196			
197			
198	.0498	1.289	.101
199			
200	.0530	1.372	.083
201	.0551	1.427	.055
2014	. Ø835	2.162	. 735

WIND SPEED AND DIRECTION

Channe1

S.F. =
$$40 \frac{mph}{volt}$$

11/3/82

but have changed
$$\pm Vax$$
 from 10 to 15 volts

Ch 74

Due South O

Ch 73 ground input and set zero

11/15/82

$$10-12 \text{ mph} = 0.234 \text{ volts}$$

11/23/82

Ch 73 5 mph =
$$0.18v$$

$$4 \text{ mph} = 0.173 \pm .003$$

was out 🦿

11/30/82

$$0.22 \text{ v} \approx 12 \text{ mph}$$

$$0.27 v = 13 mph$$

$$0.31 v = SE$$

12/23/83 Recalibrate W.S. at lab

S.F. =
$$40 \text{ mph/volt}$$

$$12/27/83$$
 10 mph $\approx 0.25v$

bunmary or mic	chor Cable Test	6/21/82
Dry	45900#/4.37 ft. 46600#/4.62 ft. 39750#/4.38 ft.	(14% reduction)
Dry		(1 month) (11% reduction)
	en Hard and Soft l	ay.
_	4.32 ft/volt v 2.16 ft/volt v Dry Dry Wet Dry Dry Wet	4.32 ft/volt nylon 2.16 ft/volt wire rope Dry

Calibration - Cable Transducer

 $V_{in} = 5.000 V$ (HP power supply)

	vin costs.	(mr Femer rupper)	
Extension (ft)	Vo	4.3197	ft/volt
8.0	1.858	4.3197	
7.Ø	1.624	4.326	
6.0	1.392	4.329	
5.Ø	1.163		
4.	.929		
3.	.698		
2.	.463		
1.	.231		
Ø.	.006		

_	,	_	-	,	o	_
h	/	Z	1	/	ช	4

Run 2

1 1/4 Nylon Rope Nylon Rope Test Hard Lay - Dry

	Load (Kips)	Vo (Volts)		
Initial setting	3.000	4.32 ft/volt	10	
	4.000	1.408	12	.842
	5.000	1.327	14	.823
	6.000	1.222	16	.807
	7.000	1.158	18	.790
	8.000	1.099	20	.767
•	9	1.050	22	.740
	10	1.007	24	.719
	11	965	26	.699
	12		28	.675
	13	913	30	.653
	15	872	32	.630
	17	833	34	.607
	19	.797	36	.584
	20	.777	38	.559
	18	.784	40	.534
	16	.795	42	.508
	14	.808	44	.477
	12	.829	46	.445
	10	.853	48	.403
			48200	.397
•			2300	failure

Run 3	Soft La	y - Dry	corre	cted failure 3	7,450
Load	Vo	Time	Load	Vo	Time
(kips)	(volts)	(minutes)	(kip	s) (volts)	
initial	setting Ø				
3000	1.633	Ø	30	.867	15.5
5000 '	1.471				
6000	1.361		32	.847	16.5
8000	1.263				
10000	1.178		34	.828	17.5
12000	1.134				
14000	1.082		36	.803	
16000	1.043	3m	38		
18000	1.005		40		
20000	.976	4 m			
18000	.984				
16000	.995				
14000	1.008				
12000	1.026	5m	fai	lure at 36 (on	e strand)
10.	1.049	6m	at 36	drop to 22.50	Ø
12	1.031	7 m			
14	1.023		26	.786	19
16 .	1.006	8	28	.776	20
18	.989	9m	30	.765	20.75
20	.969	10	32	.755	
22	.947	11	34	.744	22
24	.925	12	36	.731	22.5
26	.905	13.5	*38650	.707	24
28	.885	14.5	-1200	*	
			37450		

Run 4		Hard Lay -	- Wet	6/21,	/82
Load	Vo	Time	Load	Vo	Time
(kips)	(volts)	(min)	(kips)	(volts)	(min)
Initial 1	oad Ø				
3000					
4000	1.208	1	26	.385	7.0
6	.942	1.5	28	.353	8.0
8	.807	2.0	30	.328	9.0
10	.714	2.5	-32	.301	9.5
12	.650		34	.277	10.0
14	.600	3.0	36	.250	11.0
16	.550	3.25	38	.223	11.75
18	.512	3.50	40	.193	12.5 failure
20	.475	3.75	42		
18	.483	4.00	44		
16	.499	4.25	46		
14	.519	4.50	48		
12	.543	4.75			
10	.576				
12	.555				
14	.532	5.5			
16 .	.509				
18	.487	6.0			
20	.463				
22	.437				
24	.411				

Run 5		Soft Lay	- Wet	6/21/84	
Load	Vo	Time	Load	Vo	Time
(kips)	(volts)	(min)	(kips)	(volts)	(min)
Initial	load Ø				
3000		Ø			
4000	1.621	1	24	.979	6.5
6000	1.412	1.5	26	.959	
8	1.304	1.75	28	.933	9.0
10	1.230	2.00	30	.912	9.5
12	1.173	2.25	32	.891	10.25
14	1.126	2.50	34	.869	
16	1.086	2.80	34500	.859	11.00
18	1.054	3.00	-1100		
20	1.028	3.50	33400		
18	1.036	4.00			
16	1.048				
14	1.065	4.5			
12	1.087				
10	1.111	5.0			
12	1.093				
14	1.075				
16	1.058	5.5			
18	1.041				
20	1.021	6.0			
22	1.001				

Run 6

Hard Lay - Dry

Load	Vo	Time	Load	Vo	Time
3000					
4	1.290	• 5	24	.539	7.5
6	1.052		26	.516	8.0
8	.922	1.75	28	.484	9.0
10	.835		30	.461	10.5
12	.769		32	.440	10.5
14	.710	2.5	34	.416	12.0
16	.664	3.0	36	.393	13.75
18.	.628		38	.368	14.5
20	.596	3.5	40	.341	15.5
18	.602		42	.314	16.5
16	.613	4.0	44	.285	17.5
14	.629		48		
12	.650	4.5	5Ø		
10	.675	5.Ø	failure	:	
12	.664		47,400	.221	19.75
14	.644	5.5	-800		
16	.625	6.Ø	46,600		
18	.606	6.5			
20	.585				
22	.564	7.Ø			

1 3/8 - 6 x 7 Structural Bridge Rope

 $v_{in} = 2.500$

Load	Volt	Time	Load	Volt	Time
Ø.	1.3944		110	1.3762	
2.0	1.3918		120	1.3751	
10	1.3864		110	1.3750	
20	1.3854		100	1.3752	
30	1.3843		90	1.3759	
40	1.3832		80	1.3765	
50.	1.3824		70	1.3770	
40	1.3823		60	1.3776	
30	1.3826		50	1.3782	
20	1.3833		60	1.3785	
10	1.3840		70	1.3778	
20	1.3839		80	1.3773	
30	1.3834		90	1.3767	
40	1.3826		100	1.3761	
50	1.3822		110	1.3754	
60	1.3810		120	1.3748	
70	1.3802		130	1.3737	
80	1.3722		140	1.3725	
90	1.3784		150	1.3708	
100	1.3772	•	160	1.3689	(popping
					sound)

Br to displ device change from 5V to 2.5 volts

168	1.3663	200	1.3414
170	1.3658	201	1.3393
174	1.3642	*failure	
176	1.3632	204	1.3109
178	1.3622		
179	1.3616		
180	1.3612		
181	1.3605		
182	1.3600		
183	1.3593		
184	1.3587		
185	1.3579		
186	1.3571		
187	1.3562		
188	1.3555		
189	1.3544		
190	1.3535		
191	1.3526		
192	1.3516		
193	1.3506		
194	1.3495		
195	1.3485		
196	1.3471		
197	1.3456		
198	1.3446		

199

1.3430

Br to displ device change from 5V to 2.5 volts

200

1.3414

170	1.3658	201	1.3393
174	1.3642	*failure	
176	1.3632	204	1.3109
178	1.3622		
179	1.3616		
180	1.3612		
181	1.3605		
182	1.3600		
183	1.3593		
184	1.3587		
185	1.3579		
186	1.3571		
187	1.3562		
188	1.3555		
189	1.3544		
190	1.3535		
191	1.3526		
192	1.3516		
193	1.3506		
194	1.3495		
195	1.3485		
196	1.3471		
197	1.3456		
198	1.3446		
199	1.3430		•

1.3663

168

Calibration

Distance from top of displacement unit to clip (ft)

Disp.	0.00	.01	.008	
	1.00	. 29	.287	
	2.00	.57	.569	
(5)	3.00	.86	.852	
(4)	4.00	1.14	1.133	
(3)	5.00	1.42	1.416	
(2)	6.00	1.70	1.697	
(1)	7.00	1.99	1.982	
(Ø)	8.00	2.27	2.264	

above of a real

Disp Trans Reading	Load	Disp Trans Reading	Load
2.262		1.166	21000
2.205 (zero)	5.000	1.152	22000
1.659	8.000	1.138	23000
1.361	14.000	1.125	24000
1.307	15.000	1.108	25000
1.365	10.000	1.089	26000
1.304	15.000	1.072	27000
1.260	17.500	1.050	28000
1.224	18.000	1.042	29000
1.212	19.500	1.030	30000
1.190	20.000	1.015	31000
1.302	10.000	1.002	32000
1.267	14.000	.985	33000
1.252	15.000	.972	34000
1.240	16.000	.958	35000
1.227	17.000	.942	36000
1.215	18.000	.929	37000
1.200	19.000	.917	38000
1.185	20.000	.900	39000
1.166	21.000	.882	40000
			break

Vo = 6.050

NOTE

- Started zero at 5,000 actual reading 1,800 pounds.
- Noted rotation at 8,000 several revolutions.
- 3. After relaxation (20,000 10,000) load would creep up with fixed strain.
- 4. Noted "snapping" at 10K 15K (appeared to be in splice)

End reading 3,200 initial load Zero = 5,000-3,200 = 1,800

Adjusted "zero" to (5,000 dial) (No actual load)

h = 5

At breaking (40,000 dial)

No load = 3,200 dial

Add 33#/inch

From reading sub 5,000 + 33#/inch

Broke at 40,000- 5,000 + 1,800 = 36,800

APPENDIX VIIB DYNAMIC RUBBER CONNECTOR TESTING

Laboratory Test on Rubber Connector (Tension and compression MTS 110 Kip Machine)

Test Procedure

A. LOAD CONTROL

- Constant peak loads versus frequency.
 Fix loads at 5, 10, 15 and 20 kips.
- 2. Constant frequencies versus varying peak loads.
- 3. Constant load rates.
 Alter peak loads and frequencies such that the plus to minus peak slope stays constant

Vary load such that

B. DISPLACEMENT CONTROL

- 1. Constant peak displacement versus frequency.
- 2. Constant frequency versus varying peak displacement.
- Constant load rate.

Dynamic Testing Sequences

6/29/82

Set Zero at $-1.00 \times DCR2$ (1K comp) adjust = 4.50

Note: Strain value increases with load in compression

Constant Loading

A/T = Constant

+	2.5K	at	2.5 sec	(.4)
+	5K	at	5 sec	(.2)
+	10K	at	10 sec	(.1)
+	15K	at	15 sec	(.Ø67)
+	20K	at	20 sec	(.05)

CALIBRATION (TAPE MEASISTE) 3.60 v 2.5 "= 10 V S 10.6cm <u>`</u>_1 .. 2.5" = x0CR1 96. ·67< 1/4" ハスカ 10.53 このズー Tension 5 ROK-2.5K-10K 15K 20K-4 Zero =

رجي

Sec. Sec.

Π

	**************************************			Y 1. La company of the company of th					
						212	•	·	
	•		1.0 .5	1.05		o wan upper Limit of mits			
		· · · · · · · · · · · · · · · · · · ·			*	1.0 (wen			
				Andrew Comment of the	۲.	50.			
Production of the Control of the Con	20,0	15,0	0.01	2,5	5,5-	-10.0	-16,0	-20.0	
				16.0° -10.0° × 20.0° ×					
) (X 16	1				

 $\widetilde{\bigcup}$

2 X X I 15.K ROK TENSION 5 Constant Cond ampl. 2.5K-| O k 15K-20K f = variable 18

- variable

EFFICIENCY® LINE NO. 996
10 SQUARES TO CENTIMETER

Rubber	fender -	-	Tension/Compression	6/23/82
--------	----------	---	---------------------	---------

Displ	Load V	Displ
(tape measure)	
(in)		
33 1/4	+1000	33 1/16
33.25	Ø	33 15/16
33 7/32	-1000	33 3/4
33 3/16	-2000	33 11/16
33 1/8	-4000	33 9/18
33 1/16	-6000	33 7/16
32 31/32	-8000	33 5/16
32 13/16	-1000	33 3/16
32 3/4	-12000	33 1/32
32 5/8	-14000	32 7/8
32 1/2	-16000	32 3/4
32 7/16	-18000	32 5/8
32 3/8	-20000	32 1/2
32 1/4	-22000	32 7/16
32 1/4	-24000	32 11/32
32 9/32	-26000	33 1/4
32 5/16	-24000	32 1/4
32 11/32	-22000	32 1/4
32 3/8	-20000	32 5/16
32 7/15	-18000	32 9/32
32 1/2	-16000	32 3/8
32 17/32	-14000	32 13/32
32 11/16	-12000	32 1/2
32 3/4	-1000	32 17/32
32 27/32	-8000	32 5/8
32 29/32	-6000	32 11/16
32 15/16	-4000	32 3/4
33 1/6	-2000	32 13/16
33 1/8		32 9/32 1000
33 1/4		32 15/16 Ø
33 1/2	+2000	33 1/16
	(tape measure (in) 33 1/4 33.25 33 7/32 33 3/16 33 1/8 33 1/16 32 31/32 32 13/16 32 3/4 32 5/8 32 1/2 32 7/16 32 3/8 32 1/4 32 9/32 32 1/4 32 9/32 32 5/16 32 11/32 32 3/8 32 7/15 32 1/2 32 17/32 32 11/16 32 3/4 32 27/32 32 15/16 33 1/8 33 1/8 33 1/4	(in) 33 1/4 +1000 33.25 0 33 7/32 -1000 33 3/16 -2000 33 1/8 -4000 33 1/16 -6000 32 31/32 -8000 32 13/16 -1000 32 3/4 -12000 32 5/8 -14000 32 7/16 -18000 32 3/8 -20000 32 1/4 -22000 32 1/4 -24000 32 9/32 -26000 32 11/32 -22000 32 3/8 -20000 32 17/32 -18000 32 17/32 -14000 32 17/32 -14000 32 17/32 -14000 32 27/32 -8000 32 29/32 -6000 32 15/16 -4000 33 1/6 -2000 33 1/8 -2000

+10000	33	23/32	+4000	33	1/8
+12000	34		+6000	33	11/32
+14000	34	1/4	+8000	33	1/2
+16000	34	15/32	+10000	33	13/16
+18000	34	23/32	+12000	34	1/16
+20000	34	15/16	+14000	34	5/16
+22000	35	1/4	+16000	34	1/2
+24000	35	7/16	+18000	34	13/16
+22000	35	7/16	+20000	35	
+20000	35	3/8	+22000	35	1/4
+18000	35	1/4	+24000	35	15/32
+16000	35	5/32	+22000	35	15/32
+14000	35		+20000	35	15/32
+12000	34	7/8	+18000	35	9/32
+10000	33	23/32	+16000	35	3/16
+8000	34	17/32	+14000	35	1/32
+6000	34	11/32	+12000	34	29/32
+4000	. 34	1/8	+10000	34	3/4
+8000	34	8/16			
+6000	34	13/32			
+4000	34	7/32			
+2000	34	1/32			
+1000	33	29/32			

Rubber Fender - Vertical Shear Test

Calibration

 $v_{in} = 5.000v$

Dis	stance	Y	V	out
- 1	2011		,	2527
5 '	10"		Τ.	3537
5 '	9"		1.	3344
5 '	ø۳		1.	1602
4 '	ø"			9282
4 '	6"		1.	.0446
4 '	9"		1.	.1022
5 '	3"		1.	.2183
5 '	6"		1.	2755

Rubber Fender Shear, Vert. Without Parallel

 $v_{in} = 5.000$

Ø

100#	;	1.2802		
500		1.2796		
1000		1.2787		•
1500		1.2777		
2000		1.2766		
2500		1.2755		·
3000		1.2740		
4000		1.2703		
4500		1.2681		
5000		1.2655		
4000		1.2651		
3000		1.2662		
2000		1.2683		
1000		1.2707		
Ø		1.2740		
cycle				
Ø		1.2776		
5		1.2660		
Ø				
5		1.2658		
Ø		1.2748		
5		1.2658	Ø	
5		1.2648	15	secs
5		1.2644	45	
5		1.2640	1.5	m
load				
6		1.2603		
7		1.2555		
8		1.2491		

9		1.2408
-		

approx 3 degrees
rotation
•

5	1.2464
4	1.2492
3	1.2517
2	1.2455
1	1.2590
Ø	1.2980

Rubber Fender Shear, Vert. With Parallel Bars

$v_{in} = 1$	5.	Ø.	Ø	Ø
--------------	----	----	---	---

Load	(K)	Vo
Ø		1.3049
1		1.3043
2		1.3029
3		1.3012
4		1.2982
5		1.2953
4		1.2950
5		1.2940
6		1.2918
7		1.2875
8		1.2800
8		1.2787
9		1.2749
1Ø		1.2702
6		1.2738
7		1.2730
8		1.2720
9		1.2707
1Ø		1.2688
11		1.2642
12		1.2591

Rubber Fender Horizontal Shear With Parallel Bars

$v_{in} =$	5.	ØØØ	V
------------	----	-----	---

Load	Vo
Ø	1.1761
5ØØ	1.1755
1.000	1.1746
1.500	1.1738
2.000	1.1725
2.500	1.1710
3.0	1.1696
3.5	1.1678
4.0	1.1660
4.5	1.1640
5.Ø	1.1614
5.0	1.1596
5.5	1.1582
6.0	1.1564
6.0	1.1540
7.0	1.1518
7.5 ·	1.1494
8.0	1.1468
8.5	1.1442
9.0	1.1413
10.0	1.1352
	1 1222
9.0	1.1328
8.0	1.1334
7.0	1.1349
6.0	1.1365
5.0	1.1385

4.0	1.1410
3.0	1.1434
2.0	1.1464
1.0	1.1496
Ø.Ø	1.1542
Ø.Ø	1.1562
1.0	1.1556
2.0	1.1539
3.0	1.1519
4.0	1.1498
5.0	1.1472
6.0	1.1449
7.0	1.1422
8.Ø	1.1395
9.0	1.1369
10.0	1.1334
9.0	1.1311
8.0	1.1321
7.0	1.1333
6.Ø	1.1350
5.0	1.1369
6.Ø	1.1379
7.0	1.1367
8.Ø	1.1350
9.0	1.1332
10.0	1.1310
11.0	1.1277
12.0	1.1226
13.0	1.1160
14.0	1.1080
15.0	1.1009
16.0	1.0934
17.0	1.0859
16.0	1.0853

*			
	15.0		1.0850
•	14.0		1.0864
	13.0		1.0881
1	12.0		1.0899
	11.0		1.0920
1	10.0		1.0945
7	9.0		1.0967
	8.0		1.0994
•	7.0		1.1018
	6.0		1.1053
,	7.0		1.1089
	4.0		1.1130
1	. 3.0		1.1175
7	2.0		1.1223
	1.0		1.1274
7	Ø.Ø		1.1324
	0.0	•	1.1393
	1.1		1.1377
,	2.0		1.1360
	3.Ø		1.1341
	4.0		1.1320
	5.Ø		1.1292
	6.Ø		1.1261
7	7.Ø		1.1231
	8.0		1.1194
-	9.Ø		1.1157
	10.0		1.1115
'	11.0		1.1077
	12.0		1.1036
	13.0		1.1002
	14.0		1.0959
1	15.0		1.0920
	16.0		1.0876
	17.0		1.0835
	16.0		1.0816

15.0
14.0
13.0
12.0
11.0
10.0
9.Ø
8.0
7.Ø
6.Ø
5.Ø
4.0
3.0

2.0 1.0 0.0

1.0814
1.0829
1.0846
1.0864
1.0886
1.0912
1.0935
1.0962
1.0994
1.1021
1.1060
1.1096
1.1141
1.1187
1.1239
1.1297

Rubber Fender Tension/Compression 6/23/84 7:39 pm 110k MTS

Load	Tape Measure
V	
Ø	33 1/8
1.30	
-24k	32 3/8
+20.5	34 7/8
+21.3	35.Ø
+24	35 7/16
-24	32 3/8

Load	Disp.
(#)	(volts)
 ,	• •
1010	1.026
2040	.954
4070	.788
6000	.577
8000	.347
10130	.016
	295
13110	805
16000	-1.198
18020	1.680
20300	2.169
22000	2.472
24000	-2.790
26000	-3.157
24000	-3.169
22000	-3.082
20000	-2.981
18000	-2.854
16000	-2.701
14000	-2.507
12000	-2.292
10000	-2.053
6000	-1.458
4000	-1.085
2000	724
1000	474
000	266
+2000	.239
4000	.558
6000	1.247
8000	2.055
10000	3.048

		4 300
the state of the s	12000	4.180
, m-1	14000	5.141
	16000	6.083
· ·	18000	7.061
	20000	8.042
# Y	+22000	9.103
97 -	24000	10.077
	22000	9.889
n	20000	9.600
	18000	9.214
	16000	8.751
	14000	8.203
• 1	. 12000	7.580
	10000	7.033
[1]	8000	6.211
П	6000	5.518
	4000	4.661
	2000	3.924
	Ø	3.334
_		
	-1000	2.972
	-2000	
П	-4000	2.187
1 1	-6000	1.600
n	-8000	1.060
	-10000	.611
n	-12000	.066
	-14000	.680
_	-16000	1.199
	-18000	1.737
1	-20000	2.180
	-24000	3.218
	-22000	3.140
	-20000	3.026
	-18000	2.888
	16000	2.715

14000	2.546
12000	2.236
10000	2.040
8000	1.741
6000	1.432
4000	1.107
2000	.742
1000	.472
000	.290
2000	.221
4000	.750
6000	1.437
8000	2.260
10000	3.442
12000	4.463
14000	5.383
16000	6.380
18000	7.445
2000	8.351
22000	9.254
24000	10.073
22000	10.026
20000	9.720
18000	9.298
16000	8.851
14000	8.317
12000	8.779
10000	7.097
8000	6.380
6000	5.607
4000	4.771
2000	4.149
000	3.524
-1000	3.129

Calibration (proving ring) Zero from Rubber Fender Tests = .008 Re-Zero to .002

Load	Kips	Proving Ring
XDCR2		
.100	1	14.5
.200	2	27.3
.400	4	53.8
.600	6	80.0
.800	8	106.0
1.000	lø	131.5
1.200	12	157.4
1.400	14	183.0
1.600	16	208.8
1.800	18	235.2
2.000	20	262.0
2.200	22	288.4
2.400	24	314.5
2.600	26	340.0
2.200	22	289.0
1.800	18	236.5
1.400	14	183.0
1.000	10	132.5
.600	6	80.5
.200	2	28.0

APPENDIX VII
SUPPLEMENTAL DATA

