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ABSTRACT

Groundwater flow and contaminant transport models have been widely used
for planning and design purposes in the past decade. The predictive ability
of these models is limited by the assumptions and approximations introduced in
the model governing equations and their solutions, the model parameters used,
and the availability and quality of the model calibration data. By combining
a parameter identification algorithm with the United States Geological
Survey's Method of Characteristics (USGS-MOC) Code and using two synthetic
aquifers, this study evaluated the effects of data availability and
uncertainty on groundwater contaminant transport prediction by a series of
numerical experiments. The study results indicate that the predictive ability
of USGS-MOC is limited unless relatively extensive and good quality data are
available. Extending the time Tength of observation was generally more
effective in improving parameter estimates than adding more observation wells.
Finally, provided that all boundary conditions are known, the accurate
estimation of transmissivity in an aquifer is by far the most important step
toward more reliable prediction of contaminant transport. The experimental
results showed that when only limited data were available for model
calibration, the predicted ﬁontaminant concentrations could be significantly
in error in just five years of simulation. Based on the study results, we
suggest that with typical data bases, groundwater flow and contaminant
transport model results should be accompanied by detailed uncertainty analysis

prior to implementation for planning or design purposes.
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CHAPTER 1
INTRODUCTION

Numerous computer simulation models have been developed in the last 20
years to aid in the prediction of groundwater and groundwater contaminant
movement, and to assist in the management of groundwater resources. These
models characterize groundwater flow and transport with varying levels of
simplification, and may be either deterministic or stochastic. The predictive
ability of the models is limited by the assumptions and approximations intro-
duced in the governing equations and their solutions, the model parameter
values used, and the availability and quality of the data for model calibra-
tion. For these reasons, different models may yield substantially different
results when applied to the same problem, and in fact, the use of the same
model by different users may lead to dissimilar results (McLaughlin, 1984).
The two principal reasons for these inconsistencies between models and model
users are dissimilarities in model structure, and the judgmental aspects of
the identification of model parameters. While the status of the model is
beyond the control of the user, once the model selection process has been
completed, data availability plays a strong role in the calibration process,
and the user generally maintains some control over this stage of the model
implementation process.

The objective of this study was to evaluate the effects of data avail-
ability and uncertainty on groundwater contaminant transport prediction.
Insofar as possible, it was desired to conduct the evaluation in a realistic
setting that reflected the conditions encountered in field applications.
However, due to the complexity of natural aquifers and the absence of
extensive field data that could be assumed to be representative of a "typical”
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aquifer, the use of field data was precluded. Instead, this study was

conducted with a hypothetical aquifer that had geologic and hydrologic
characteristics similar to selected real sites. The characteristics of the
hypothetical aquifer were defined independently by a hydrogeologist at the
beginning of the study. With the exception of some limited point estimates of
aquifer parameters at chosen observation sites, the aquifer's characteristics
were kept from the investigators until the end of the study.

Using externally defined aquifer characteristics and known boundary
conditions, pumping schedules, and contaminant source loading, the aquifer
responses were simulated using the United States Geological Survey's Method of
Characteristics (USGS-MOC) Code (Konikow and Bredehoeft, 1978). The aquifer
responses were taken to be the underlying (true) statistical population and,
like the aquifer characteristics, were unknown to the investigators until the
end of the study. The USGS-MOC Code was selected as the generating model
because it was thought to incorporate the essential detail that would be
present in a real aquifer response. From the USGS-MOC generated data, samples
of head concentration were taken, which were assumed to represent monitoring
data, such as would be available for model calibration in a real application.
The model parameters were calibrated based on these samples, and model
predictions using the estimated parameters were compared with the true heads
and concentrations. To provide a realistic representation of actual field
data, a spatially and serially correlated perturbation field was added to the
deterministic model realizations to represent realistic field samples. The
magnitude of the perturbations and their correlation structure was varied to
reflect a range of variabilities associated with model predictions of head and

concentration and the errors found in the sampling.



To assess the effects of data availability and quality on parameter
estimates and therefore model predictive accuracy, six sampling strategies
were investigated. Each strategy was defined by the length of record, and
number and spatial distribution of observation wells. Each of the sampling
strategies was evaluated with three levels of additive uncertainty in heads
and concentrations, and several assumed spatial variation patterns for
transmissivity.

Given the large number of cases to be evaluated, it was essential to
automate the parameter estimation procedure. This was accomplished using a
quadratic programming optimization method originally introduced to parameter
identification problems by Yeh (1975). Automation of the parameter estimation
process had the additional advantage that it eliminated most of the
variability in parameter estimates that would otherwise have been associated
with subjective factors. The parameter identification (PI) method was
formulated as an ordinary constrained least squares problem which minimizes
the discrepancies between model solutions and observations.

The next chapter of this report presents a literature review of some
recent groundwater contaminant transport studies and a review of calibration
methods with particular emphasis on data requirements and model predictive
uncertainty. Chapter 3 describes the USGS-MOC model and the assumptions made
by the model, while Chapter 4 describes the proposed Pl algorithm and the
numerical examples used to test the code combining the PI algorithm and
USGS-MOC model. Chapter 5 describes the random field noise generator that was
Created for this study. Chapter 6 outlines the experimental procedure,
including a description of the synthetic aquifer, the chosen sampling
strategies, parameterization of transmissivities, and the noise levels
superimposed on the synthetic observations. The numerical results from the

3



experiments are given and discussed in Chapter 7. The conclusions are

presented in Chapter 8.



CHAPTER 2
LITERATURE REVIEW

Many mathematical models of groundwater flow and solute transport have
been developed in the past twenty years (e.g. Remson et al., 1971; Bachmat et
al., 1980; Pinder and Gray, 1977; Wang and Anderson, 1982; and Javandel et
al., 1984). These models have been formulated to examine a variety of aquifer
properties and conditions. Numerical solution methods used include finite
differences (Remson et al., 1971), finite elements (Pinder and Gray, 1977),
the boundary integral method (Ligget and Liu, 1982), the integrated finite
difference technique (Narasimhan and Witherspoon, 1976), and the method of
characteristics (Reddell and Sunada, 1970), and random walk scheme (Prickett
et al., 1981).

ATl of these models contain some site-specific parameters that must be
calibrated with available observations of the aquifer. There are two
approaches to model calibration. The first approach is a trial and error
process, in which selected parameter values are varied until the match between
model predictions and observations are judged satisfactory. Numerous modeling
studies were reviewed; a]most all used conventional trial and error methods
for model calibration. A few recent examples of particular interest to con-
taminant transport modeling are reviewed below.

Cohen and Mercer (1984) used the two-dimensional, cross-sectional model,
SATUNA (Neuman, Feddes, and Bresler, 1974) to model flow through a typical
geological cross-section between Love Canal and Caysga Creek in New York. The
model was calibrated for steady-state and transient conditions. Predictive
simulations for 50 years were performed to evaluate the changes in the flow
field of a proposed synthetic cover and concrete cutoff wall. Qualitative
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remarks were made about the effect on contaminant migration of changes in the
flow field.

Bulier, Gradet, and Reed (1984) used the I1linois Random Walk Solute
Transport Model (TRANS) (Prickett et al., 1981) to help define the potential
plume geometry and determine the maximum well spacing for a proposed hazardous
waste facility located in the upper Gulf of Texas. Skaggs (1984) also used
the TRANS model to assess selected mitigation strategies to control
radionuclide migration in an aquifer located in the Gulf Coast plain of Texas.
Using limited data, a regional steady-state flow model was calibrated first;
Trial and error adjustments of hydraulic conductivity and recharge were made
to match model solutions with observations. Using the boundary conditions
determined from the regional flow model and assumed longitudinal and
transverse dispersivities, TRANS was used to determine the effects of
different mitigation strategies on contaminant migration over a 1000-year
horizon.,

Wang and Williams (1984), in a study of seepage from a uranium mill
slurry pond in Wyoming, found that field data are seldom, if ever, adequate to
define a unique solution from a mathematical model. VYakowitz and Duckstein
(1980) reached a similar conclusion from a theoretical analysis. Wang and
Williams contended that an extensive monitoring program would be required to
check the effectiveness of the proposed mitigation strategy, which had been
based on modeling results. They attempted to calibrate Prickett and
Lonnquist's (1971) transient groundwater flow model with a limited number of
steady-state well observations and a few pump test estimates.

The trial and error calibration procedure used in the above studies is
easy to implement. The actual process however, can be time-consuming and
frustrating. Further, trial and error calibration results will vary from user
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to user depending on the subjective choices of parameters and the fitting
criteria used. An alternative to trial and error calibration is the use of
search algorithms to identify those parameters that optimize some function of
the fitted and observed state variables (e.g., head and concentrations). This
approach, also known as parameter identification (PI), is an automated
procedure which searches for model parameters that minimize a function of the
discrepancies between model predictions and observations. The most commonly
used function is the sum of squares, which has a number of advantages
including compatibility with certain specialized optimization algorithms such
as quadratic progamming.

The idea of PI has been used in many scientific disciplines for more than
twenty years (Bard, 1974). Some of the more recent PI work in groundwater
modeling has been reported by Neuman (1973); Frind and Pinder (1973); Yeh
(1975); Cooley (1977); Umari, Willis, Liu (1979); Yeh and Yoon (1981);
Kitanidis and Vomvoris (1983); Sadeghipour and Yeh (1984); and Yeh (1985).
Although the effectiveness of the PI methods is also limited by the available
data, the approach is more efficient and objective than trial and error. Most
of the above PI applications deal only with groundwater flow modeling.

Sophocleous (1984) used the USGS-MOC model to study salt water
contamination from oil field salt brine on the Equus Beds aquifer in Kansas.

In the study, a PI method proposed by Cooley (1977) was used to calibrate

transmissivities, recharge, and leakage for the model. Data from

78 observation wells were used to calibrate the flow model under steady-state
conditions. Parameters were assumed to be constant over two transmissivity
zones and two recharge zones. Leakage was assumed constant over the entire
aquifer, For the contaminant transport part of the modeling effort, dis-

persivities were calibrated by trial and error to match observed 1980
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concentrations in the aquifer. Predictions to the year 2000 were subsequently
made to evaluate the potential threat to water supply wells. Sensitivity
analysis of the dispersivities, porosity, and pollutant seepage rates were
performed. The parameters found by the PI method produced significantly
better estimates of‘the velocity field than those found by the trial and error
method. Sophocleous (1984) also suggested application of the proposed PI
approach to field monitoring program design.

In each of the studies reviewed above, the model predictions were found
to be significantly affected by the quantity and space-time distribution of
the available data, the uncertainty in the data, and the simplifying
assumptions made in any model formulation. While improved model calibration
techniques, such as PI, can assure that the best use is made of the available
data, they are not a substitute for field data.

Gates and Kisiel (1974) considered the value of additional data in
calibration of a transient simulation of hydraulic heads in the Tucson basin
in Arizona by means of sensitivity analysis. They found the most useful data
for improving the model predictions were discharge and recharge information,
and transmissivities from pump tests. Having more data on initial water table
levels and storage coefficients was less helpful. Gates and Kisiel also noted
that the transmissivity values obtained from pump tests at the same well
varied greatly, suggesting considerable error in local transmissivity
estimates.

McLaughlin (1984) compared three different modeling efforts to assess the
effects of increased pumping on the San Andres-Glorieta aquifer in north-
western New Mexico. McLaughlin's study emphasized the predictive uncertainty
resulting from judgmental decisions made by each of the modelers in applying
the same groundwater flow model. The model used was the USGS two-dimensional
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finite difference model by Trescott et al. (1976). The modelers' choice of
boundary conditions, discretization of the aquifer, and the calibration effort
caused a great disparity in the results, as did the interpretation of
transmissivity values from pump tests.

The uncertainties in groundwater and groundwater contaminant predictions
are of more than academic interest. In many cases, model predictions form the
basis for management decisions that ultimately result in large expenditures.
This is particularly true in the area of groundwater contaminant and hazardous
waste management. Because of the limited data from which the models were
calibrated, the interpretation of such modeling results is subject to error.
This study attempts to evaluate the effects of data availability and model

uncertainty on the calibrated results of a groundwater contaminant model.






CHAPTER 3

GROUNDWATER FLOW AND CONTAMINANT TRANSPORT MODEL

The groundwater model selected for this study was the United States
Geological Survey Method of Characteristics Model (USGS-MOC; Konikow and
Bredehoeft, 1978). This model was selected because of its superior solution
scheme and its excellent documentation. The model is based on two governing
equations describing two-dimensional vertically averaged flow and transport
“through an aquifer. The flow equation is solved by an alternating direction
implicit finite difference method, and the mass transport equation is solved
by a combined particle tracking scheme (for convective transport) and a finite
difference procedure (for hydrodynamic dispersion). The governing equations
and the numerical solution techniques used by USGS-MOC are briefly introduced
here.

The equation describing two-dimensional vertically averaged transient
flow of a homogeneous incompressible fluid through a nonhomogeneous

anisotropic confined aquifer can be written as (Konikow and Bredehoeft, 1978):

3 oh oh
—(T,,—) = S— + W 1,J
X, 1 axj ot

1,2 (3.1)

Where

T.. = transmissivity (Lz/t)

1
h

hydraulic head (L)

S = storage coefficient
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t time

W= W(Xl,Xz)

source/sink term (L/t)

Xy Xj

two-dimensional Cartesian coordinates (L)

The source/sink term, W, which contains direct withdrawal or recharge, or

steady leakage may be described as:

K
WX 5X,) = Q(X],X,) - £2(H=h) (3.2)

Where
Q = is the rate of recharge or withdrawal (L/t)
KZ = vertical hydraulic conductivity (L/t)
m = thickness of the confining layer, stream bed, or lake
bed (L)
HS = hydraulic head in source bed lake or stream (L)

With the solutions of hydraulic head from Eq. (3.1), the velocity of the

groundwater flow is evaluated in the model by Darcy's Law as:

K, oh
v, = —ol — (3.3)
€ BXi



Where

<
n

i = seepage velocity in direction of X; (L/T)

Kij the hydraulic conductivity tensor (L/T)

™
]

effective porosity of aquifer (dimensionless)

The equation which describes two-dimensional areal transport and

dispersion of a conservative tracer can be written as (Konikow and Grove, 1977):

(s sy - BBy _ gy
aC 1 o aC aC at ot
= — (bD_I . —") - Vi + (3'4)
ot b X, J X, X, eb
i j i
i, =1,2
Where
) . 3
C = concentration (M/L")
Dij = dispersion coefficient (LZ/T)
b = saturation thickness (L)
C' = source concentration (M/L3)

The following assumptions have been made in the formulation of the

USGS-MOC model (Konikow and Bredehoeft, 1978):

1. Darcy's law is valid and hydraulic-head gradients are the

only significant driving mechanisms for fluid flow.
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2. The porosity and hydraulic conductivity of the aquifer are
constant with time, and porosity is uniform in space.

3. Gradients of fluid density, viscosity, and temperature do
not affect the velocity distribution.

4, No chemical reactions occur that affect the concentration of
the solute, the fluid properties, or the aquifer properties.

5. lonic and molecular diffusion are negligible contributors to
the total dispersive flux.

6. Vertical variations in head and concentration are
negligible.

7. The aquifer is homogeneous and isotropic with respect to the

coefficients of longitudinal and transverse dispersivity.

The flow equation (Eq. 3.1) is solved by an alternating direction
implicit finite difference method (Pinder and Bredehoeft, 1968; Remson et al.,
1971). The transport equation (Eq. 3.4) is solved in two steps. The
advection part of the solute transport equation is first solved by a particle
tracking scheme in which tracer particles are advected by velocities
determined from Eq. (3.3). Hydrodynamic dispersion effect is calculated in
the second step, in which the dispersive transport terms are solved by the
finite difference method. Because of the particle tracking scheme, the entire
solution procedure was called the Method of Characteristics (MOC) by Konikow

and Bredehoeft (1978).
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CHAPTER 4
PARAMETER IDENTIFICATION METHOD

The formulation of the parameter identification scheme used in this study

and its attachment to the USGS-MOC model is described in this chapter.

PI Formulation

Let us assume that there are M observation wells at which the piezometric
head (or water table) and solute concentration are taken over N time periods.
If we denote the calculated piezometric head and solute concentration at the
i'th observation well, in the j'th time period to be hij and C. .

ij’
respectively, then we can introduce two error functions Eij and n;

J

*
€15 = his - My for all i,j (4.1)

N

* -
i3 log Cij - log Cij for all i,j (4.2)

where hi; and Ci; are the observed head and concentration at the i'th well in
the j'th time period. The purpose of taking the logarithm of C in Eq. (4.2)
is to ensure that the differences between large concentration values (in the
near fie]d) and small concentration values (in the far field) are equaily
weighted in the calibration process.

If we further assume that the errors between the solutions and

observations are due only to the incorrect parameter values used in the model

(the effect of this assumption is discussed later), then we can write:

€.. = € .(p) for all i,j (4.3)
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- PR
Ni; = nij(p) for all i,j (4.4)
in which the vector B is the model parameter to be adjusted. In using the
USGS-MOC code, 3 could include, for example, transmissivity, aquifer

thickness, dispersivities, and other aquifer parameters.

Expanding Eqs. (4.3) and (4.4) to the first order around some known

conditions e?j(ﬁo), n?j(ﬁo), we get:
o .(p.)
L ijthe
> >
€;5(P) =€?j(p0)+ r (pz-pg)
=1 sz 0
Py
for all i,j (4.5)
on..(p,)
L i e
n(B) = om0+ (py-py)
J J 2=1 3p£ 0
Pe
for all 1,j (4.6)

in which L is the total number of parameters to be determined, the superscript

"0" denotes a known condition, and EO = (pg, pg, cees pE), an initial estimate

of the unknown parameters which are used to obtain E?j

0
and nij from Eqs.
(4.1) and (4.2).

If we seek to minimize the sum of the squares of the errors, then the

parameter identification formulation becomes a constrained least-squares

minimization problem which can be written as:

minimize % (8.2 + n.?) (4.7)
iy N ij
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subject to:

3e; +(p,)
L 1j %2
E'IJ = 513(30) + I (pz'po)s
Py
for all i,j (4.8)
L anij(Pz)
Ny = ngg(B) 4 3 (py-Py) s
=1 892 0
Py
for all i,j (4.9)
L U
and p _<__p2 < p- for all 2 (4.10)

where Eq. (4.10) defines the physical upper and Tower bounds (pU and pL,
respectively) of the parameters. The unknowns in the optimization are Eij’

Ny for all i,j, and p. Since the relationships between €4 and p, are

n..
1]
not explicitly known, the partial derivatives, ag—and 2-a-ﬂ-can only be estimated

ap 3p
by finite difference approximations:
%€ij %4y for all g (4.11)
Bpi ap, ‘
a”ij Anj 5 for all g (4.12)
sz Ap‘Q
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in which Ap2 is a small independent perturbation of the £th parameter, and
Aeij and ArHj are the corresponding changes of errors due to the change in
p,(ap,).

Substituting Eqs. (4.8), (4.9), (4.11), and (4.12) into Eq. (4.7), the

optimization problem becomes:

L A%
minimize t [ e?j(ﬁo) + I (Pz-Pg)]2
iJ =1 Apz 0
Py
Ans
L 1]
0 ,»0 0
+ Ly (P7) + 2 —— (pz-pg)]2 (4.13)
=1 Ap2 0
Py
. L U
subject to: p- < p, <P for all g (4.14)

Eqs. (4.13) and (4.14) form a standard quadratic programming (QP) problem

with 2xL constraints, and L unknowns. The QP problem can be solved by many

available software packages. The particular solution method used in this
study is introduced later in this chapter.
Note that because of the linearization of the error functions (Eqs. (4.5)

and (4.6)), the optimization problem (Egs. (4.13) and (4.14)) will be solved

iteratively from an initial estimate of BO (and egj,

solution is obtained. The convergence properties of the proposed algorithm

n?j), until a convergent

will be demonstrated in two numerical examples given later.

Solution
The PI formulation introduced above was coded in FORTRAN 77 and attached
to the original USGS-MOC code with only slight modifications. For convenience,
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the combined code is referred to as PI-MOC. The original USGS-MOC code has
been modified so that a longitudinal dispersivity (aL), and a transverse
dispersivity (aT) are now input parameters (instead of having a longitudinal
dispersivity and a factor which relate transverse to Tongitudinal
dispersivity). Further, the code has been so modified that the user can
choose the particular parameters he wishes to identify. Specifically, for
example, the user can choose to identify only transmissivity, or dispersivity
coefficients, or both. When identifying transmissivity only, the user can
specify that only the flow calculation part of the USGS-MOC code be used (all
n's and their expansions are dropped from Eq. (4.13)). The latter
modification is for convenience as well as numerical efficiency, as explained
below.

In this study, the parameter identification was done in two stages. In
the first stage, the PI algorithm was used to identify transmissivities from
only the piezometric head observations and the flow calculation part of the
USGS-MOC code. With the estimated transmissivity values, the PI algorithm was
used again (second stage) with the entire model to find dispersivity
coefficients from concentration observations. The reasons for doing so were to
ensure efficiency and stability. The majority of the computational
requirements in USGS-MOC code are for the solution of the transport equation
(particle movement). If head and concentration are used at the same time,
then the transport equation must be solved for every parameter perturbation
(Egs. (4.11) and (4.12)). Further, the iterative optimization solution of
Eqs. (4.13) and (4.14) converges slowly when head and concentration
observations are considered simultaneously. This is a numerical problem
caused by the orders-of-magnitude differences between the values of
Ae

, and those of ——-and-AD when T,

transmissivity (T) and dispersivities (a » ay) Ap Ap
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@ , and o5 are considered together. The primary concern over the use of the
two-stage approach is the accuracy of the estimated parameters. This will be

investigated in the following numerical examples.

Testing of PI-MOC

A hypothetical aquifer was created to test the effectiveness and
efficiency of the combined PI and USGS-MOC (PI-MOC) algorithms. The
hypothetical aquifer was 56,000 ft. by 36,000 ft., and had a uniform thickness
of 50 ft. The known boundary conditions, the locations of the source, six
pumping wells, and 23 observation wells are all shown in Figure 4-1. The
pumping schedules used are given in Table 4-1. The aquifer was designed to be

characterized by nine different transmissivity zones, as shown in Figure 4-2.

The storage coefficient was set to 3 x 10"5

, and porosity to 0.3. The initial
head values of the aquifer were obtained from a steady-state solution with the
given boundary conditions, but with no pumping. The initial concentration was

set to 20 units (USGS-MOC allows the input of any concentration unit the user

Table 4-1. Pumping Schedule for the Test Aquifer.

Well Number1 Pumping Rate(ft.3/s)
1 3.35
2 2.23
3 1.12
4 3.35
5 2.23

1. See Fig. 1 for their locations
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desires). The longitudinal and transverse dispersivity coefficients were set
to 175 and 70, Yespective]y. The aquifer was isotropic with respect to
transmissivity. The concentration of the source was 3000 units.

Using all the known aquifer parameters, the initial condition, and the
boundary conditions, the USGS-MOC code was run to generate "observations” of
piezometric head and concentration data at the 23 observation wells. Both
head and conéentration data were available at all the observation wells.
Using only these observations, the proposed PI algorithm with the USGS-MOC
code was run to uncover the known transmissivities (shown in Table 4-2) and
dispersiv{ty coefficients (given above), while assuming that the other
paréﬁeters and the initial and boundary conditions were all known. The test

results are given in two numerical examples below.

Table 4-2. Results of the First Example.

Transmissivity True
Found by PI-MOC Transmissivity
Transmissivity Zone (ft.z/s) (ft.2/s)
1 0.172 0.174
2 0.229 0.231
3 0.290 0.289
4 0.350 0.347
5 0.406 0.405
6 0.201 0.203
7 0.257 0.260
8 0.320 0.318
9 0.383 0.376
Dispersivities
‘aL o 173 175
aT 72 70
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Example 1

In the first example, it was assumed that the transmissivity zonation
pattern (Fig. 4-2) was known, but not the transmissivity values themselves.
Although this assumption was unrealistic,it was essential for verifying the
PI-MOC algorithm.

Using only the observations, the optimal parameters found by the PI-MOC
algorithm were compared with the true values in Table 4-2. From a uniform
initial estimate of 0.1 ft.z/s for transmissivities in all the zones, four
iterations (of solving Eqs. (4.13) and (4.14) without the n terms) were
required to reach the listed values which are all within one percent of the
true values. The dispersivity coefficients were also found by solving
Eqs. (4.13) and (4.14) (but without the € terms) in four iterations. The
results given in Table 4-2 confirm that the proposed PI procedure does

accurately recover the selected USGS-MOC model parameters under the rather

ideal conditions.

Example 2

In the second example, the same aquifer and observation data were used.
However, no knowledge of the zonation pattern of transmissivities was assumed
and the aquifer was treated as being homogeneous (characterized by one
transmissivity value).

The optimal parameter values found by the PI algorithm in this example
are shown in Table 4-3. From Table 4-3, the effect of the simplified
characterization of the aquifer on the estimates of dispersivities can be
seen. The dispersivities found were much greater than the actual values. The
ratio between longitudinal and transverse dispersivity was, however,
maintained within nine percent of the actual ratio. The large dispersivities
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Table 4-3. Results of the Second Example.

Transmissivity True
found by PI-MOC Transmissivity
Transmissivity Zone (ft.z/s) (ft.z/s)
1 0.273 0.174
2 0.273 0.231
3 0.273 0.289
4 0.273 0.347
5 0.273 0.405
6 0.273 0.203
7 0.273 0.260
8 0.273 0.318
9 0.273 0.376
Dispersivities
@ 403 175
at 175 70

indicate that with over-simplication of transmissivity characterization,
transport due to dispersion was overestimated. To further examine the results
of simple characterization, the predicted head and concentration values at the
end of the calibration period were plotted against the true head and
concentration values (obtained by running the USGS-MOC model with the true
parameters) in Figures 4-3 and 4-4. From the contour plots, it can be seen
that the differences between the true and the predicted heads are less
significant than the differences between the true and the predicted
concentrations. This example shows that with a simpler characterization of
the aquifer, the algorithm is still able to select a set of parameters that
can predictbthe contaminant plume shape fairly well, but the actual values of

concentration at various locations may be less accurate.
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The results from the computational examples show that a parameter
identification (PI) algorithm has been successfuily combined with the USGS-MOC
code. The algorithm has been tested and shown to work accurately and
efficiently for two hypothetical situations.

The development of the present PI method was based on an important
assumption. The model prediction errors were assumed to be caused only by
incorrect aquifer parameter values. The errors from the estimates of initial
conditions, boundary conditions, hydraulic and contaminant source information,
aquifer thickness, characterization, numerical errors, and measurement noise
were ignored in the P1 formulation. Incorporating all the possible sources of
prediction errors into a PI formulation is not trivial, and work of this
nature has not been reported. These other sources of error could lead to

significant parameter estimation errors and therefore model production errors.
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CHAPTER 5
BLOCK RANDOM FIELD GENERATOR

In the field, perfect data are never available for model calibration.
Initial and boundary conditions are never truly known, and localized
heterogeneities in aquifer parameters are not accounted for in numerical
models of groundwater flow and transport. Therefore, a realistic test of the
PI procedure and analysis of data requirements requires that the simulated
head and concentration observations reflect the various error sources and
micro-heterogeneities in aquifer parameters unaccounted for in model output,
but present in the field. To incorporate the data uncertainty into the
observations, a random field generator, which preserves spatial and serial
correlation, was created. This chapter describes the formulation and testing
of this random field generator.

Previous approaches to the parameter or model uncertainty problem have
assumed that. observations of heads and concentrations are the sum of a
deterministic component (model prediction) and a random, statistically
independent perturbation component (see for example, Yeh and Yoon, 1976). The
assumption that the perturbations are uncorrelated is not reasonable as many
of the sources of error are found throughout the aquifer and tend to give data
noise that is correlated both spatially and serially. Effects of correlated
noise on model calibration have been examined recently by Sadeghipour and Yeh
(1984).

When a numerical model is used to produce observation data for

calibration, data is produced at many more sites than the number of
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observation stations. For instance, in a non-steady-state groundwater flow
model, head values may be saved at selected time intervals and at all
computational nodes. To add correlated noise to all model output would be
computationally expensive if there were a large number of nodes. In past
studies, the noise has been added only to specific observations (Yeh and Yoon,
1976; Sadeghipour and Yeh, 1984). If sampling strategies such as number of
wells used, well location pattern, and length of the sampling record were to
be considered, a new set of noise terms would have to be generated for each
change in sampling strategy. The computational requirement would make
comparison of sampling strategies nearly impossible.

Various random field generation schemes have been proposed for water
resources research. These include the addition of harmonics of random
frequencies sampled from the spectral density function (Mejia and
Rodriguez-Iturbe, 1974), the turning bands approach (Delhomme, 1979), and an
n'th order nearest neighbor model (Whittle, 1963). The last model was applied
by Smith and Freeze (1979a, b). All of these schemes are somewhat limited by
the number of spatial nodal values which can be produced efficiently., The
scheme presented here is capable of creating a large set of spatially and
serially correlated noise terms efficiently and accurately. Noise terms

created by the method we propose are added to observations in order to reflect

model and data uncertainty.
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Generating Model

Because no information is available on the correlation structure of model

versus observation residuals following Mejia and Rodriguez-Iturbe (1974), the

assumption of time-space separability is made:
c(x,t) = a(x)8(t) (5.1)

where ¢, o, and g are zero mean processes, a(x) is time-independent, and g(t)
is spatially independent. In general, the problem addressed is the generation
of a random field over a uniform grid, where the spatial correlation structure
is an arbitrary function a(x), where x is the location separation vector, and
the spatial correlation function is therefore homogeneous. The temporal
correlation function is assumed to be of a lag one Markov form, p(t+l) = p(t).
The method described could be generalized to more complex forms (e.g., n'th
order auto-correlation models), however, in most hydrologic applications,
record lengths are not long enough to allow identification of more complex
models, so the lag one Markov correlation structure is preferred.

If one were interested only in generating a multivariate synthetic lag
one Markov sequence at N locations, with the same lag one correlation

coefficient at all sites, but with arbitrary spatial correlation between the

sites, a simple generation scheme could be used:

T Y B—»
Y, = AV, , + BE, (5.2a)
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where A = pl (5.2b)

and BB' = (1-p2)P (5.2¢)

where P is the NxN spatial correlation matrix of the observations, E is an Nx1
vector of standard (mean zero, variance one) independent normal random
deviates, A and B are NxN coefficient matrices to be computed, and p is the
constant (over the domain) serial correlation coefficient. A solution for B
satisfying Eq. (5.2c) can be found using a suitable matrix decomposition
method (Matalas, 1967). In this work, a Choleski decomposition, as
recommended by Salas et al. (1980) was used.

While such an approach is conceptually trivial, it has a major
disadvantage in application to generation of random fields when the N sites
correspond to N computational nodes. In the case of a groundwater model, N
can be quite large (typically greater than 400). Decomposition and
multiplication of such large matrices would be difficult, or at best, very
inefficient. A computationally more efficient algorithm would therefore be
desirable.

If the computational grid is uniform, or can be approximated uniform (for
instance, by ignoring 'imaginary' locations outside a physical boundary), a
much more efficient approach is possible. Consider the rectangular uniform
grid shown in Figure 5-1, which is subdivided into rectangular blocks as

shown. Then the proposed generating equation is:

Y = AY + BE + CY + DY (5.3)
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where A,B,C, and D are MxM matrices, M is the number of nodes in each block, n
is the block index, and b is the number of blocks in a row of the grid. The
matrix A preserves the serial correlation of the generated observations, C and
D maintain the spatial correlation with adjacent blocks, and B maintains the
spatial correlation within the block being generated. The spatial correlation
between blocks which are not adjacent is assumed to be preserved implicitly
(an assumption that will later be verified). The major advantage of this
formulation is that multiple computations (at each time step) involving MxM
matrices replace single computations involving NxN matrices.

Using the following definitions,

v Ml

E(Yy o Yoop,n) = T = oP (5.4a)

E(Yy oo Ye,n) = P (5.4b)
- >T _

E(Vy o Vi) = Py (5.4c)
7T -

E( £,n’ Yt,n-b) =P, (5.4d)
> ->T B

E(Yt,n"l’ Yt,n"b) - P3 (5.49)

and Eq. (5-3), the following set of equations,

T= AP+ CoPy ' + DoP' (5.5a)

1
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Py = RoPy + CP + DP,T (5.5b)

O
I

= ApP, + CP. + DP (5.5¢)

2 3

oAP + BB + CP, ' + DR, (5.5d)

©
]

I

can be solved to find A, BB, C, and D, with

A = oLP-My-M *M %M, THLP-p oM, o 24 M, * b, 17 (5.6)
C = [(1-Ap)*M,T*M, "t (5.7)
D = [(1-Ap)P, - CPT%p"! (5.8)
BB' = P - AP - CPT - DP,T (5.9)
where * is used as a matrix multiplication sign, and
My = P prip,t (5.10a)
M, = P - P, P‘1P3T (5.10b)
My = [P - Py P7lpTT7E © (5.10c)
My = Py - Py P TIRT (5.10d)
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BB' is decomposed to find B by the Choleski decomposition method. When a
block is generated which is either in the first row or the first column (with
the exception of block 1), the generation equation is

> > -+ -

Yt,n = AYt,n + BEt,n + CYt,n-c (5.11)

where C is the number of blocks in a row if the generated btock is in column
1, and is equal to one if the generated block is in row 1. With the above

definitions, A, BBT, and C are then:

A=o[p-p. P ip Tisrp - p2p, P71 op. 1771 (5.12)
1 PPy 1 1

c=[p, - ApPl]*[P]'l (5.13)

BB' = P - pAP - CP,' (5.14)

where P1 is now the spatial correlation matrix which preserves correlation
between the current block and a neighboring block.

The scheme of this generator is to first generate spatially correlated
terms in block one (Fig. 5-1), and create "one block" correlation for the rest
of the first row (blocks 2 and 3, Fig. 5-1) from Eq. (5.9). The process then
moves to the second row and creates "one block" correlation for the first
block in that row (block 4). The rest of the blocks (blocks 5 and 6) in the

second row are made spatially correlated from Eq. (5.3) with the block above

it and the block generated previously in that row. (This is called “two
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block" correlation.) This process continues row by row until a field at one
time step is completed. At each time step, the blocks are also made Yag one
serially correlated with the previous time step. The intention of this method
is that by maintaining correlations explicitly between adjacent blocks as they
are generated, spatial correlation is implicitly maintained between blocks

that are not adjacent.

Test Results of Block Random Multivariate Generator

To test the generator, random numbers with mean Zero and variance one
were generated at each of the nodes shown in Figure 5-1. The spatial
correlation matricies (P, Pys Py, and P3) were defined by a function which

decays with distance between nodes, as described by Rodriguez-Iturbe and Mejia

(1974):
r..(v..) = bv,.K (bv,.) (5.15)

Where r.. is the correlation between points i and j, v.. is the distance

ij iJ
between points i and j, b is a parameter to define the desired spatial
correlation, and K1 is a modified Bessel function. The above equation was
used because it was felt to be a more realistic decaying function than an
exponential decaying function. Exponential decaying functions are 'too
continuous' to be realistic (Matern, 1960). Both correlation curves are

monotonically decreasing, but the modified Bessel decaying function has a

slower rate of decay than the exponential decaying function (Whittle, 1954).
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For the test of the generator at one nodal distance away (straight across
or down), a spatial correlation of 0.90 (b = 0.90) was used to define the
decaying Bessel function. In this test, the serial correlation was specitied
to be zero, as the implicit preservation of spatial correlation was the
desired result of the generator.

Twenty-100-time step sequences were generated, and spatial correlations
between chosen blocks were calculated. Figure 5-2 shows the plot of
correlation with unit distance between nodes for block 1, which is explicitly
correlated in the scheme. Figures 5-3 through 5-6 show the correlation
structure between blocks (not including correlation among nodes in any one
block) which are never explicitly correlated {blocks which are not adjacent)
in the scheme.

By observing the results shown in Figures 5-3 to 5-6, it is apparent that
the generator successfully produced a field of random numbers whose spatial
correlation structure throughdUt the entire domain is quite similar to the
theoretical spatial correlation structure, which is preserved explicitly only
within each block and with adjacent blocks.

A Block Random Multivariate Generator has been presented in this chapter.
The proposed generator preserves the lag zero spatial correlation and lag one
serial correlation for the entire random field. It implicitly retains the
spatial correlation structure. The generator is computationally efficient and
does not require large computer memory. The generator was used to add

uncertainty to the observation data, as described in Chapter 6.
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Figure 5-2. Correlation Versus Nodal Distance, Comparing Specified
and Observed Correlation for Nodes in Block 1 (Figure 5-1).
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Figure 5-3. Comparison of Implied and Observed Correlation Between
Nodes in Blocks 1 and 3 (Figure 5-1).
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Figure 5-5. Comparison of Implied and Observed Correlation Between
Nodes in Blocks 3 and 5 (Figure 5-1).
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CHAPTER 6
DESIGN OF EXPERIMENTS

The design of the synthetic aquifer and the numerical experiments are
presented in this chapter. In order to achieve the goal of studying the data
requirement issue in a realistic setting, the hypothetical aquifer was
synthesized by a colleague, Margaret Michalek, without any participation from
the investigators. Except for the limited samples, the actual parameters used
in the creation of the aquifer were not known to the investigators until all
the planned calibration efforts of the aquifer were completed. Following is a
description of the synthetic aquifer, the data that was available to the

investigators, the data uncertainty levels investigated, and the sampling

strategies tested.

Synthetic Aquifer Description

The aquifer configuration and the boundary conditions are shown in Figure
6-1. The contaminant source area had a given constant head node of 540 ft.
The source concentration at this node was 5000 units. A1l other node cells
had a background concentration of two units at the beginning of the
simulation. The storage coefficient was .00001 and porosity was .20. The
distance between nodes in both the x and y directions was 1000 ft.

Selected observations of aquifer thickness and initial water table are
given in Table 6-1. The pumping schedule and point estimates of

transmissivity at 12 locations are shown in Table 6-2. These data are taken
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Table 6-1. Aquifer Thickness and Initial Water Table Elevation Data
Available for Calibration Effort.

ng;gion Confining Layer Initial Water Table
No. (x,y) Thickness (A) Elevation (ft)

Pump Well 1 (11,35) 112 550
Locations 2 (11,40) 106 534
3 (13,28) 113 528
4 (10,27) 113 524
5 (14,24) 108 516
6 (9,21) 110 504
7 (10,14) 111 478
8 (8,7) 97 455
9 (13,8) 94 458
Three Pump (13,13) 44 475
Test Sites (8,29) 68 530
(13,20) 114 501
Observation (17,35) 82 553
Wells (12,31) 113 536
(14,30) 114 532
(11,28) 114 524
(16,26) 75 522
(11,24) 113 515
(6,23) 52 509
(14,19) 109 498
(10,16) 115 485
(8,10) 110 465
(15,10) 73 463
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Table 6-2. Pumping Schedule and Point Estimates of Transmissivity

Available from Pump Test Data.

Location (x,y) Pumping Well No. Pumping Data (CFS) T (ft.zls)

(11,35) 1 0.10
(11,40) 2 0.50
(13,28) 3 1.00
(10,27) 4 0.75
(14,24) 5 1.20
(19,21) 6 1.40
(10,14) 7 0.50
(8,7) 8 0.50
(13,8) 9 0.50
Three Pump
Test Sites*
(13,13) — L
(8,29) - _
(13,20)

* These three locations contain transmissivity
pump tests.

a4

0.8
0.9
1.0
1.0
0.75
0.85
1.0
0.7
0.9

1.0
0.4

0.3

data determined from earlier



from the designed hypothetical aquifer. A1l of the above information
presented was known at the beginning of the experiment.

Although it was somewhat unrealistic that much of the above information,
such as boundary conditions, source concentration, porosity, and storage
coefficient was known, it was given to 1imit the computational scope of this
study. Calibration for these parameters, in addition to the selected
transmissivities and dispersivities, presented a much bigger problem.

For the benefit of the readers, the actual aquifer thickness, the initial
head distribution, and the actual transmissivity distribution constructed by
our enlisted geohydrologist are shown in Figures 6-2, 6-3, and 6-4,
respectively. The actual longitudinal and transverse dispersivities were 100
feet and 70 feet, respectively. The dispersivity values and the data shown in
Figures 6-2, 6-3, and 6-4 were kept from the investigators until the end of
the study.

Using the chosen parameters, five years of monthly (using 30.25 days per
month) head and concentration values were generated at each node by the
USGS-MOC model. These values were retained by the geohydrologist, but were
available for sampling. The sampling was done by a separate software which
avoided direct access to the generated data from the investigators. For
presentation purposes, the generated head distribution at the end of the fifth
year and the contaminant plume at the end of the second, third, fourth, and
fifth years are shown in Figures 6-5 and 6-6. The hydraulic heads in this
aquifer reached steady-state conditions withinbfwo months of changing the

pumping schedule,
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Figure 6-3. Initial Hydraulic Heads of Synthetic Aquifer (ft.).
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Uncertainty Generation

To make the generated data more realistic, noise terms for heads and
concentrations were produced from the block random field generator introducedt
in Chapter 5 and were added to the generated observations. The addition of
the noise terms was also done in a manner that did not allow easy access to
the data from the investigators.

To obtain the correlated error terms for the hydraulic heads, a serial
correlation of .95 and a spatial correlation which decays with distance
according to the modified Bessel function (Eq. (5.13)) were used. The decaying
pattern of the Bessel function was set such that the correlation was 0.90 at
one nodal distance (1000 feet). The error terms for the concentrations were a
combination of both correlated and uncorrelated random fields. The correlated
terms had a .90 serial correlation and spatial correlation according to the
modified Bessel function. The decaying pattern was set with .80 correlation
at one nodal distance (1000 feet). Both the correlated and the uncorrelated
terms had mean zero and variance one. The two terms were added together to
form a more realistic noise for concentration. The combination of a
correlated and uncorrelated random field was used to represent the expected
higher level of uncorrelated measurement errors for concentration,

The noise terms generated were five years in length. In sampling, the

corresponding noise terms at the same node and time step were added to the

observations, according to the following equations:

H 0= HO tagy (6.1)
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Cl

where,

Three types of uncertainty were investigated in the study.

error and was introduced as a control for the experiments.

Co * acbe

observed head at a particular node and time step

computed head at a particular node and time step from the
synthetic aquifer

random, correlated noise term for head, N(0,1)
standard deviation of noise
observed concentration at a particular node and time step

computed concentration at a particular node and time step
from the synthetic aquifer

random, correlated noise term for concentration, N(0,1)

(a' )(C)

c’t7o
percentage of concentration for standard deviation

(6.2)

Type 1 had no

The second type

(Type II) had a standard deviation of one foot for head values, and 10 percent

perturbation (ac = 0.10) for concentration values. The third type (Type III)

had a standard deviation of five feet for the hydraulic heads and 25 percent

perturbation (ac = 0.25) for concentrations. The three types of uncertainty

are shown in Table 6.3. All types of uncertainty have the same fixed

correlation structure introduced above.
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Table 6-3. Uncertainty Levels in Data.

Head ganl Conc (a' )

Type 1 0 0
Type II 1 .10 (10 percent)
Type 111 5' .25 (25 percent)

Sampling Strategy Design

Six sampling strategies were designed to assess the data requirements for
calibration of the USGS-MOC model. The strategies were also chosen to allow a

brief evaluation of space/time tradeoffs in additional data for model
calibration. The sampling strategies selected for this study are shown in
Table 6-4.

The locations of the selected observation wells are shown in Figure 6-1
for the 12 well case, Figure 6-7 for the 18 well case, and Figure 6-8 for the
eight well case. The locations were chosen to give a wide coverage of the
aquifer and also to capture enough information about the contaminant plume.

To investigate the effects of parameterization on the aquifers,
calibration attempts were made assuming that transmissivity in the aquifer
could be represented by ohe, three, and six zones. The zoning patterns were
determined from an estimated transmissivity map (to be discussed in Chapter
8).

For each of the cases in Tables 6-3 and 6-4, the parameter values which
gave the best fit between the model solutions and the observations were deter-
mined by the PI-MOC algorithm introduced in Chapters 3 and 4. The identified

parameters were then used in the model to predict the heads and contaminant
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Table 6-4. Sampling Strategies Used for the Study.

Sampling Number of Number of Years of
Strategy Observation Wells Monthly Observations
A 12 2 years of monthly head and

concentration values

B 12 3 years of monthly head and
concentration values

C 12 4 years of monthly head and
concentration values

D 18 2 years of monthly head and
concentration values

E 8 2 years of monthly head and
concentration values

F 12 Using interpolated
transmissivities (from the 12
point estimates in Table 6-2) and

2 years of monthly concentration
data

plumes for each case. The predicted results were compared with the “"actual

data" (Figs. 6-5 and 6-6) obtained by using the "true parameters" (in Figs.

6-2, 6-3, and 6-4). The results are given in the next chapter.
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CHAPTER 7

RESULTS AND DISCUSSION

To begin the parameter identification runs according to the designed
procedure described at the end of the last chapter, aquifer thickness and
initial water table at each grid point had to be estimated. Aquifer
thicknesses were estimated using the 23 point estimates (Table 6-1) and a
nearest neighbor interpolating scheme from the contouring package Surface II
(Sampson, 1984). The interpolated results are shown in Figure 7-1. Initial
heads, on the other hand, were linearly interpolated from the constant head
boundary conditions. The interpolated values were found to agree well with
the point estimates available from observation and pumping wells. In all the
runs of PI-MOC (to be described later), it was found that the aquifer reached
steady-state conditions within one or two months (time period used in USGS-MOC
simulations), and therefore an accurate estimate of initial hydraulic head
conditions was not important. A similar observation was also reported by
Gates and Kiesel (1974) in their study of the worth of additional data to the
calibration effort.

The next important information needed for running the experiments was the
transmissivity zoning patterns. Using the 12 point estimates of
transmissivity in Table 6-1, transmissivities at all the grid points were
estimated by the Surface II contouring package (Sampson, 1984). The
interpolated values are shown in Figure 7-2. From the generated contour map,

zones of constant transmissivity were drawn for the planned three and six zone

57



0. 0. o.

0. O.

0. 0. 0. 0. 0. oO.

0.

0.

0.

0. 0. 0.104.106,108.109.110.111.111.110.109.105. 99,
0.105.107.109.110.111.111.111,110.107. 99,
0.108.110.111.112,112.111,.108. 99.
0.106.109.111.112.112,112.109.100.
0.102.107.110.112.112.112.110.103.
0. 95.100.106.110.111.112.111.108.101. 91,
0. 85. 91.100.108.111.112.112.112.110.103.
0. 78. 81. 93.106.110.113.113.114.113.110.104.
0. 73. 72. 84.105.106.110,113.114.113.111.105.
0. 70. 68. 79.105.110.111.113.113.112.105.
0. 73. 75. 95.111.114,113.113.112.103. 91.
0. 82. 93.109.113.113.113.113.107. 86. 78.
72. 83. 99.110.113.113.112.109. 99. 81. 75,
61. 60. 62. 71. 91.109.113.113.112.106.105. 92, 79.
54. 60. 81.105.113.113,112.108.108.105. 92.
52. 57. 81.104.111.113.112,109.108.106.101.
55. 67. 98.108.110.111.112.111,110.108.105.102.
68. 87.107.110,110.111.113.113,112.110.109.
0. 73, 81. 96.107.110.110.112.,113.114,111.110.
0. 85. 92.101.107.110,111.112.113.112.109.110.
0. 0.101.107.111.113.114.113.112,111.110.110.
0. 0.108.112.113.114.315.114.112.110.109.109,
0. 0.111.113.114.114.115.114.111.107,106.105.
0. 0.112.112.112.113.113.112.107.101.
0. O0.111.111.111.111.111.110.100.
0. 0.110.110.110.110.110.106.
0. 0.109.109.109.109.107.102.
0. 0.108.109.109.108.105.100.
0. 0.107.109.110.109.104. 98.
0. 0.105.106.107,.106.102. 97.
0. 0.102.100. 99.100. 99. 96.

0. 0. 0.
0. 0. 0.
0. 0. o.
0. 0. O.
0. 0. 0.
0. 0. oO.
0. 0. 0.
0. 0. O.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. G. 63,
0. 0. 61.
0. 0. 59.
0. 0. 60.
0. 0. 63.

G. 0. O.

Figure 7-

0. O.
0. oO.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. oO.
0. O.
0. oO.

58. 55.
56. 54.
58. 56.
62. 62,

0. 0.
0. 0.
0. 99.
0. 99.
99. 99.
99, 99.
0. 0.

99. 98. 97. 95. 98. 96.
99. 98. 97. 98. 97. 96.
99. 98. 98. 98. 97. 96.
99. 98. 98. 97. 97. 96.
99. 98. 98. 97. 97. 96,
99. 98. 98. 97, 97. 96.
0. 0. 0. 0. 0. 0.

96.
96.
94.
92.
93.
94,
9.
94.
94 .
94.
95.
95.
0.

95.
94.
93.
88.
87.
92.
94.
93.
93.
93.
93.
93.
94,

0.

99.
95.
94.
90.
80.
7.
84.
9l.
92.
92.
92.
92.
92.
93.

0.

v.
92.
91.
89.
89.
92.

99.
94.
90.
84,
75.
73,
76.
84,
88.
89.
90.
91.
91l.
92.

0.

0.
88.

86.
84.

83.
84.

0.

0.
0.

76.
74,
76.
8l.

85.
87.

88.
89.

90.
9l.

0.

Ce
86.
84,
62.
82.
83.
86.
95.

97.
87.
78.
77.
79.
86.
95.

89,
90,
Q.

1. Interpolated Aquifer Thicknesses Used
Calibration Runs (ft.).

58

0.
85.

84,
83.

82.
83.

85.

79.

81.
86.

93.

0. O.
83. 0.

84, .
83, 0.
83. 0.

PI-MOC



.00 .00 .00 .0u .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0V .00 .00 .UU
.00 .00 .00 .76 .77 .78 .78 .79 .80 .80 .bG .BU .81 .B1 .81 .82 .B2 .83 .83 .00
.00 .00 .00 .00 .76 .77 .78 .79 .80 .8U .Bu .8O .8l .81 .82 .BZ2 .83 .83 .84 .00
.00 .00 .00 .00 .00 .00 .77 .79 .80 .80 .8C .BO .81 .81 .B2 .83 .B3 .84 .84 .00
.00 .00 .0V .00 .U0 .0V .76 .78 .79 .80 .80 .BU .81 .82 .83 .84 .B4 .B5> .85 .00
.00 .00 .00 .00 .00 .00 .74 .77 .79 .80 .8U .Bl .82 .83 .84 .85 .86 .86 .86 .00
.00 .00 .00 .00 .00 .00 .70 .74 .77 .8G .82 .83 .84 .85 .86 .87 .87 .87 .00 .00
.00 .00 .00 .00 .00 .OU .64 .68 .75 .81 .85 .86 .87 .88 .89 .89 .89 .00 .00 .00
.00 .00 .00 .00 .00 .0V .56 .59 .70 .54 .88 .89 .90 .91 .91 .91 .90 .00 .00 .00
.00 .00 .00 .0V .00 .00 .48 .47 .61 .85 .90 .90 .93 .94 .94 .93 .91 .00 .00 .00
.00 .00 .00 .00 ,OU LU .44 .40 .54 .82 .90 .94 .98 .98 .96 .94 .92 .00 .OU .00
.00 .00 .00 .00 .00 .00 .50 .50 .72 .92 .94 .981.00 .99 .96 .93 .91 .00 .00 .00
.00 .00 .00 .0V .00 .00 .62 .72 .921.00 .97 .97 .98 .96 .92 .89 .87 .86 .00 .00
.00 .00 .00 .0C .00 .69 .73 .82 .93 .97 .95 .92 .89 .86 .83 .83 .82 .81 .00 .00
<00 .00 .71 .72 .73 .75 .79 .84 .BE .91 .89 .84 .79 .76 .77 .77 .76 .77 .00 .00
.00 .00 .74 .75 .77 .79 .81 .83 .84 .84 .81 .77 .75 .75 .75 .74 .74 .74 .00 .00
.00 .00 .77 .79 .80 .82 .83 .83 .83 .80 .74 .70 .71 .73 .72 .71 .70 .69 .00 .00
.00 .00 .80 .81 .82 .83 .84 .B4 .B4 .B1 .69 .55 .53 .58 .61 .62 .63 .00 .00 .00
.00 .00 .81 .82 .82 .B3 .83 .84 .85 .82 .63 .40 .34 .38 .46 .52 .00 .00 .OC .00
.00 .00 .00 .00 .82 .83 .83 .84 .84 .78 .56 .35 .30 .33 .39 .00 .00 .00 .00 .00
.00 .00 .00 .00 .83 .83 .B2 .82 .80 .72 .54 .38 .33 .35 .40 .00 .00 .00 .00 .OU
.00 .00 .00 .00 .00 .85 .B4 .82 .80 .73 .61 .49 .42 .42 .46 .00 .00 .00 .00 .00
.00 .00 .00 .00 .0U .88 .88 .88 .87 .B4 .78 .70 .64 .62 .62 .00 .00 .00 .00 .0V
.00 .00 .00 .00 .CO .91 .93 .94 .95 .95 .92 .88 .85 .82 .80 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .93 .95 .97 .98 .99 .98 .96 .95 .94 .91 .00 .00 .0CU .00 .0O
.00 .00 .00 .00 .00 .93 .95 .98 .991.00 .99 .99 .99 .98 .96 .00 .00 .00 .0U .00
.00 .0U .00 .00 ,0U .92 .94 .97 .99 .99 .99 .991.00 .99 .97 .00 .00 .0U .00 .00
.00 .00 .00 .00 .00 .89 .91 .94 .96 .97 .97 .98 .99 .98 .97 .95 .00 .00 .00 .00
.00 .00 .00 .00 .00 .84 .B6 .B8 .91 .93 .94 .95 .96 .96 .95 .93 .92 .00 .00 .00
.00 .00 .00 .00 .00 .80 .80 .81 .84 .88 .90 .91 .92 .92 .92 .92 .92 .00 .00 .00
00 .00 .00 .00 .00 .76 .75 .75 .78 .83 .88 .90 .90 .90 .91 .91 .91 .00 .00 .00
.00 .00 .00 .0G .00 .73 .72 .71 .73 .79 .86 .89 .90 .90 .90 .90 .00 .00 .00 .00
.00 .00 .00 .00 .0V .72 .71 .70 .71 .77 .84 .89 .90 .90 .90 .90 .00 .00 .00 .00
.00 .00 .00 .00 .00 .72 .71 .71 .72 .76 .83 .87 .89 .89 .89 .89 .00 .00 .00 .00
.00 .00 .00 .00 .74 .73 .72 .72 .74 .77 .B2 .85 .87 .88 .88 .88 .00 .00 .00 .00
.00 .00 .00 .00 .75 .74 .74 .74 .76 .78 .81 .84 .86 .87 .87 .88 .88 .00 .00 .00
00 .00 .00 .76 .76 .75 .75 .76 .77 .79 .B1 .83 .85 .86 .87 .87 .87 .87 .00 .00
.00 .00 .00 .77 .77 .76 .77 .77 .78 .80 .81 .83 .84 .85 .86 .86 .87 .87 .00 .00
.00 .00 .00 .00 .OC .00 .00 .00 .00 .00 .00 .00 .OU .00 .00 .00 .00 .00 .00 .00

Figure 7-2. Interpolated Transmissivity Field Used for Del%neating
Transmissivity Zoning Patterns and for Data Strategy F (ft.“/s).
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cases described earlier. The shapes of the three and six zone transmissivity
zones are shown in Figures 7-3 and 7-4, respectively.

Once the above parameters and zone shapes were determined, the PI-MOC was
run for each of the selected combinations of sampling strategies, zoning
patterns, and data uncertainty levels. The identified transmissivities and
dispersivities for all the sampling stategies with uncertainty levels I, II
and III are shown in Tables 7-1, 7-2, and 7-3. A total of over 250 runs of
PI-MOC were completed for the selected combinations.

For most calibration runs with higher data uncertainty levels,
transmissivity upper and/or lower bounds had to be adjusted to insure that
parameter values were found which did not deviate radically from the
interpolated transmissivity map (Fig. 7-2). Bounds were also used at times to
keep the PI-MOC algorithm stable. For Type III uncertainty level, for
example, the PI algorithm was unable to find transmissivity values for the six
zone case with any sampling strategy. These results suggest that when data
are highly uncertain, the number of zones must be reduced. Sampling strategy
E (8 wells, 2 years) did not contain sufficient data to calibrate for six
zones of transmissivities and dispersivities. In fact, obtaining parameter
estimates with data from sampling strategy E was difficult for nearly all
cases,

The estimated parameters (Tables 7-1, 7-2, and 7-3) were used to predict
five years of hydraulic heads and concentrations at each computational node,
and were compared with the actual hydraulic heads and concentrations (shown in
Figs, 6~-5 and 6-6), which were made available to the investigator after all

the PI-MOC runs were completed. The comparison analysis was accomplished both
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Figure 7-3. Three Zone Transmissivity Characterization Used in PI-MOC
Calibration Runs.
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in graphical form, using the Surface II contouring package (Sampson, 1984),
and by a sum of squares analysis. The sum of squares analysis for the
hydraulic heads, concentrations, and the logarithm of concentration are
presented in Tables 7-4, 7-5, and 7-6 for uncertainty Types I, II, and III,
respectively.

Generally, for all the predictive simulations, the PI-MOC procedure was
able to find parameters which would preserve the plume shape well. The actual
concentration magnitudes, especially for higher concentrations (1000 units and
above), were underpredicted. The preservation of plume shape was the result
of using logarithms as a weighting function in the parameter identification
formulation. However, the weighting function did not tend to find
dispersivities that preserved large concentration magnitudes as well. In
formulation of the USGS-MOC model, advection was assumed to be the dominant
contaminant transport mechanism. If the weighting function had not been used,
PI-MOC would have found much higher dispersivities (as was observed in
preliminary testing of PI-MOC), possibly violating the advection dominant
transport assumption. A brief analysis of the experiments with different

transmissivity zoning patterns is given in the next section.

Effects of Transmissivity Zoning

None of the homogeneous (transmissivity assumed to be constant throughout
the aquifer) cases seemed to give satisfactory results in the sum of squares
analysis of concentration for any of the three data uncertainty cases tested.
The plume shapes for the homogeneous cases were generally shortened in the

longitudinal direction. The dispersivities identified for these runs were
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Table 7-4. Sum of Squares Analysis; Comparing Monthly Predicted
Hydraulic Heads and Concentrations Throughout the
Domain of the Aquifer Versus the Actual Values from
the Synthetic Aquifer for a Five Year Simulation.
Uncertainty Type I Data, and the Listed
Transmissivity Characterizations and Data Strategies
Were Used to Estimate the Parameters.

Number of
Tones Y Ctretegy s - )2 2 2
n~Ha)® E(C -C) z(1nC -1nC.)
(x109)
6 A 12w, 2 yr 9,549 216 3537
6 B 12 w, 3 yr 9,549 214 3682
6 C12 w, 4 yr 9,549 227 3486
6 D12 w, 4 yr 8,726 251 3181
6 E 8w, 2yr — —_ *
3 Al12 w, 2 yr 11,653 257 4635
3 B 12w, 3 yr 11,670 256 4665
3 D18 w, 2 yr 11,797 277 4625
3 E 8w, 2yr 13,184 322 16,385
1 Al2 w, 2 yr 25,409 413 12,301
1 B 12 w, 3 yr 25,173 397 12,575
1 D18 w, 2 yr 25,428 447 12,912
1 E8w, 2yr —_ *

Using Interpolated
Transmissivities 61,014 985 10,841

*  PI-MOC Unable to Identify Parameters
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Sum of Squares Analysis; Comparing Monthly Predicted
Hydraulic Heads and Concentrations Throughout the
Domain of the Aquifer Versus the Actual Values from
the Synthetic Aquifer for a Five Year Simulation,
Uncertainty Type II Data, and the Listed
Transmissivity Characterizations and Data Strategies
Were Used to Estimate the Parameters.

Table 7-5.

Number of

Transmissivity Sampling

Zones Strategy
6 Al2 w, 2 yr 13,388
6 B 12 w, 3 yr 10,287
6 C12 w, 2 yr 9,593
6 D18 w, 2 yr 10,542
6 E8w, 2yr
3 Al2 w, 2 yr 13,236
3 B 12 w, 3 yr 12,232
3 C 12w, 4 yr 13,872
3 D18 w, 2 yr 12,771
3 E8w, 2yr 15,888
1 Al2w, 2 yr 26,988
1 B 12 w, 3 yr 26,982
1 D18 w, 2 yr 26,494
1 E8w, 2 yr

Using Interpolated

Transmissivities 61,014

* PI-MOC Unable to Identify Parameters

Z(H -H_)?

68

z(c -c )% £(InC -1nc_)?
(x106)

367 4,792
197 4,596
183 3,933
308 3,940
S *
312 4,878
291 4,824
340 4,780
317 4,782
283 15,030
388 10,703
375 10,794
434 11,679
—_— *
991 10,548



Table 7-6.

Sum of Squares Analysis; Comparing Monthly Predicted
Hydraulic Heads and Concentrations Throughout the
Domain of the Aquifer Versus the Actual Values from
the Synthetic Aquifer for a Five Year Simulation.

Uncertainty Type III Data, and the Listed

Transmissivity Characterizations and Data Strategies

Were Used to Estimate the Parameters.

Number of

Transmissivity

Zones
6
3 A
3 B
3 C
3 D
3 E
1 A
1 B
1 C
1 D
1 E

Using Interpolated
Transmissivities

Sampling
Strategy
(x10
12 w, 2 yr 16,401 371
12 w, 3 yr 16,882 370
12 w, 4 yr 16971 399
18 w, 2 yr 18,457 494
8w, 2yr
12 w, 2 yr 40,378 405
12 w, 3 yr 39,455 392
12 w, 4 yr
18 w, 2 yr 34,010 427
8w, 2yr
61,014 949

* PI-MOC Unable to Determine Values
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z(H'-H )2 z(C - )2 £(InC -1nC )2

C
6

4,880
5,167
2,941
6,585

6,466
6,944

7,869

10,191



always very high (400 to 600 feet for longitudinal dispersivity), which
implies that the PI-MOC tended to determine values which were forcing
dispersion to be more dominant. The sum of squares analysis showed that even
the head predictions were poor when the aquifer was assumed to be homogeneous.
Treating this aquifer as homogeneous with respect to transmissivity was not a
good modeling approach and resulted in significant prediction errors.

The three zone case preserved the length of the contaminant plume better
than the homogeneous case. The sum of squares analysis also showed that
treating the aquifer as having three transmissivity zones significantly
improved the predicted results for data uncertainty Types I and I1. With Type
111 uncertainty level, the sum of squares concentration analysis for the
homogeneous case and the three zone case were about even. Using three
transmissivity zones, piezometric head predictions were greatly improved (over
the homogeneous case) for all uncertainty levels.

Among all the cases investigated, the six zone case gave the best
results, both in preserving plume shape and in predicting concentration
magnitudes. Transmissivity values, however, could be successfully determined
only from data with Type I and II uncertainty. This suggests that as the
uncertainty in data increases, the number of zones for transmissivity must be
reduced to obtain acceptable results. Calibrations with Type II uncertainty
were also difficult, as careful selection of upper and Tower transmissivity
bounds had to be established in order to obtain acceptable results. Once
transmissivities were found, dispersivity values were determined quickly by

PI-MOC, except for the most limited data case, E (eight wells, two years).

Figure 7-5 shows the predicted concentrations at the end of the second,
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fourth, and the fifth year, using parameters determined from strategy A (12
wells, two years), for six transmissivity zones, and Type I uncertainty. By
comparing these with the actual concentration plots (Fig. 6-5), it is apparent
that general plume shapes were again well preserved, but the high concentra-
tions (1000 units and above) were underpredicted in the latter years of the
five-year simulations.

To compare the effect of increased parameterization of transmissivities
on concentration predictions, the five-year prediction of concentrations using
parameters estimated with Type II uncertainty and sampling strategies A and B
are shown in Figures 7-6 and 7-7, respectively. A comparison with the actual
concentrations (Fig. 6-6) shows that as parameterization improves, so does the
contaminant plume prediction. The sum of squares analysis (Tables 7-4, 7-5,

and 7-6) also shows that improved parameterization of transmissivity again

improved parameter estimates.

Results Using Interpolated Transmissivities

In many actual applications, the transmissivity data for the model are
estimated using point estimates from well logs or pump tests. In order to
assess the effectiveness of using such interpolated transmissivity field data
in contaminant transport prediction, the following experiment was conducted.

Using the 12 point estimates of transmissivities (Table 6-1), an
interpolated field of transmissivities was first generated using the Surface
II contouring package (Sampson, 1984). With interpolated transmissivity

values, the PI-MOC algorithm was then used to identify only dispersivities
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with data from strategy A (12 wells, 2 yearé) for uncertainty Types I, II, and
II1.

The predictions made from the parameters determined by this method are
given in Tables 7-4, 7-5, and 7-6. As can be seen in the tables, the
predictions based on the interpolated transmissivities and the PI-determined
dispersivities did a poor job of estimating concentration magnitudes. The
predictions of the concentration plume and the head contours at the end of a
five-year simulation are shown in Figure 7-8. The overall plume shape was
correct for low concentrations, but the higher values were grossly
underestimated. In comparing the predicted head contours with the actual ones
in Figure 6-5, however, one can see that the two do not deviate significantly
from each other. The sum of squares analysis (Tables 7-4, 7-5, and 7-6)
indicated that this approach was the worst method for predicting heads for the
aquifer. The results of this experiment clearly show that the proposed PI
method is quite an attractive tool for model calibration. Even in the cases
where the aquifer was assumed as homogeneous, PI-MOC was able to determine

parameter values which were far more accurate than the interpolated estimates.

Comparison of Sampling Strategies

As expected, the most‘]imiting case (Case E, eight wells, two years) was
by far the worst sampling strategy in terms of predictive capability. The
PI-MOC algorithm had problems identifying not only transmissivities, but also
dispersivities. This was the only strategy where the PI-MOC algorithm had
difficulty identifying dispersivities. Using data from sampling strategy E,

Type I uncertainty, and three transmissivity zones, the predicted
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concentrations at the fifth year of simulation are shown in Figure 7-9. While
spreading of the high concentration area appeared to be better than that in
other cases, the transverse spreading of pollutants was too low. This was
caused by the low estimates of transverse dispersivity (25 ft. to 29 ft.). It
was interesting to note that the sum of squares analysis (Tables 7-4, 7-5, and
7-6) indicated that the concentration magnitudes were well preserved for large
concentrations. However, the logarithm concentration sum of squares analysis
(Tables 7-4, 7-5, and 7-6) showed that many smaller magnitude concentration
estimates were significantly off due to the low transverse spreading of |
contaminant.

Among the other sampling strategies tested, strategies B and C were the
best at giving parameters which preserved both plume shapes and concentration
values. Resu]ts using sampling strategies A, B, C, and D, with six zone
transmissivity parameterization and Type II uncertainty data are compared in
Figure 7-10. From Figure 7-10, it can be seen that although adding more wells
improved parameter estimates, it was not as effective as adding one year of
data (compare strategies B and D to A). By comparing Figures 7-6 and 7-7, one
can see that with increased observation over time, the predictions made by
greater parameterizations improved. With sampling strategy A (Fig. 7-6), the
improvement in concentration prediction at the fifth year of simulation with

Type III uncertainty data is not as noticeable as it is with Strategy B

(Fig. 7-7).
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Effects of Data Uncertainty

Increasing the uncertainty in the observations definitely made parameter
estimation, and therefore predictions, worse. Data uncertainty also caused
estimation difficulty for the PI-MOC algorithm. Particularly when the
uncertainty level was high, PI-MOC could not find reasonable parameter
estimates, uniess the upper and lower bounds on transmissivity were
manipulated. The choice of these bounds by the user had a significant effect
on the parameter estimates. To show the effect of uncertainty on calibration,
the actual plume shapes at the end of a five-year period are compared with
those predicted from three zone parameterization (with all three uncertainty
levels) in Figures 7-11 and 7-12. Generally, as uncertainty was increased,
the improvement in prediction with more data (Strategy A versus Strategy B,
for example) decreased with three zone transmissivity parameterization. By
comparing the six zone parameterization of transmissivity for sampling
strategies A and B in Figures 7-6 and 7-7, it can be seen that the additional
year's worth of data significantly improved the prediction of concentration in
five years. Given that a good characterization of the aquifer can be made,
additional data taken over time can improve the concentration predictions
significantly.

The PI1 method is formulated as an ordinary least squares approach which
does not account for correlated residuals. To account for the correlated
residuals, a generalized least squares approach would have to be used
(Sadeghipour and Yeh, 1984). A generalized least squares approach, however,
requires the estimates of serial correlation and the covariance matrix from

the residuals. When data is limited, as in most practical applications and in
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this study, the estimates of the covariance matrix are poor. Preliminary
tests with the proposed PI-MOC code indicated that at Teast four years of
monthly data (48 time steps) were required to get a reliable estimate of the
covariance matrix. Serial correlation of the residuals could be

estimated sufficiently well. Because of the limited data in all the cases
examined (one of the objectives of this study was to investigate the effects
of limited data), the generalized least squares approach to parameter

jdentification was not used here, but would be recommended in cases where

sufficient data was available.

83






CHAPTER 8
SUMMARY AND CONCLUSIONS

The data requirement issues in groundwater contaminant transport modeling
have been examined in this study. A hypothetical, but realistic aquifer was
created by an enlisted hydrogeologist. Using the synthetic aquifer data, the
USGS-MOC model was used by the hydrogeologist to generate monthly hydraulic
heads and concentration data for model calibration. The parameters and the
responses of the hypothetical aquifer were kept unknown to the investigator
until the end of the study. An automatic calibration (PI) algorithm was
attached to the USGS-MOC model to aid in making the model calibration process
more uniform and accurate. A special random field generator which preserves
serial (lag one) and spatial correlations was created to represent
uncertainties in the available observations. The noise generated by the
random field generator was added to the generated monthly hydraulic heads and
concentrations and became available for sampling. Three levels of uncertainty
were investigated for their effects on parameter estimation. Different
sampling strategies, which varied in the number of observation wells and
length of record, were evaluated for their effects on parameter estimation.
The effects of different parameterizations of aquifer parameters on model
prediction were also investigated.

The major findings from this study can be summarized as follows:

1) The proposed PI-MOC algorithm can be used as an efficient tool for
model calibration. The development of the algorithm was crucial for the

evaluation of data requirements for this study. The results show that under
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most of the realistic conditions examined, the algorithm was able to estimate
aquifer parameters which enable the accurate prediction of the contaminant
plume by USGS-MOC.

2) By using the estimated parameters from all the cases examined, each
of the five-year predictions by USGS-MOC was able to preserve the general
shape of the true hydraulic heads and contaminant plume contours. The
accuracy in predicting the high concentration values (1000 units or more),
however, varied from case to case. Most predictive runs underestimated high
concentration values.

3) The most limiting sampling strategy (having eight observation wells
with two years of monthly observations of hydraulic heads and concentrations)
was identified as inadequate for accurate model prediction. The minimum data
requirement for any reliable prediction in the synthetic aquifer was
determined to be sampling strategy A (two years of monthly data in 12
observation wells).

4) Extending the time length of observations was more effective in
improving parameter estimates than adding more observation wells. However,
the incremental improvement from extending the time length of observation
appeared to diminish over time.

5) It was found that, provided all boundary conditions are known, the
accurate estimation of transmissivity in an aquifer was by far the most
important step toward more reliable prediction of contaminant transport. The
reason that parameters determined by PI-MOC only preserved the plume shape
well (but not necessarily the actual concentration values) was due in a large

part to the logarithmic transformation of the concentrations in the PI
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objective function. However, further improvements to concentration estimates
depend not on any transformation adjustment, but on a more refined estimation
of transmissivity.

6) It was seen in this study that when calibration data were 1imited,
significant errors in contaminant transport predictions resulted inknnly five
years of simulations. We should be aware of the effects df limiting data on
long term simulations of contaminant transport in future app]ications. We
should also be aware that small errors in calibration results could be
amplified in future simulation periods. Uncertainty analyses of the simulated
results are imperative for future modeling applications.

7) It was found that the estimated transmissivity values from spatial
interpolation produced results that were significantly inferior to those
obtained from PI-MOC. It is felt that much improvement is to be gained by
using the PI procedure if extended head and concentration observations are
available. Additional pump test information will be very useful in
delineating parameter zoning patterns, for providing prior estimates of model

parameters, and for establishing upper and lower bounds on the parameters.

With the growing concern over our groundwater resources and the
increasing popularity of groundwater models, it is suggested, based on the
research results presented here, that extreme care be taken in using the
predicted results from the models when only limited observations are
available. It has been shown through carefully designed simulation
experiments that the predicted results in a realistic application were

significantly in error after only five years of simulation. Yet, in many
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recent modeling studies, simulation results of 50 or even more than 1,000
years were used as a basis for planning or design practices. The development
of digital simulation models offers an important and valuable avenue for
solving groundwater problems. But, until we have obtained adequate and
reliable data to properly calibrate these models, the use of their results for

any design and planning practices should always be accompanied by thorough

uncertainty analyses.
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