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Abstract
MULTIOBJECTIVE DECISIONMAKING UNDER UNCERTAINTY:
AN APPLICATION OF FUZZY SET THEORY

By Douglas Marshall Johnston

Chairperson of the Supervisory Committee:

Professor Richard N. Palmer
Department of Civil Engineering

Decision problems occur in settings in which objectives and
constraints are only vaguely or imprecisely stated and in
which the judgment of the decision maker forms an integral
component of the problem's solution. This study evaluates
the application of fuzzy set theory to problems of this
nature. Fuzzy set operations are shown to support axioms of
classical sets and probability. Probability is a special
case of fuzzy set theory.

Three methods for aggregating judgments of preference in
multiobjective problems are evaluated. They are: Saaty's
hierarchical scaling method, Yager's fuzzy decision making
method, and Tsukamoto and Terano's fuzzy logic method.
Essential differences are in consistency requirements and
propagation of uncertainty. .

A questionnaire based experiment to evaluate the performance
of the methods in predicting decision behavior is described.
The questionnaire was administered to civil engineering
students. Rankings of preference for alternatives generated
by each method are compared with rankings obtained directly
from test subjects. 1In this test setting all methods
performed poorly. Factors which may contribute to these
results include methodological limits to inconsistent
judgment and the quality of responses elicited from test
subjects.
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Facts all come with points of view,

Facts don't do what we want them to.

Talking Heads
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INTRODUCTICN

The value of a rational, analytical approach to decision
making has long been recognized within the engineering
profession. Decision analysis is concerned with the
formulation of a procedure for selecting an alternative
within the context of a set of objectives and constraints.
Any procedure for decision making must be consistent, and
must at least in part, reflect human behavior. Many
procedures for decision making have been developed for rather
narrowly defined problems. For example, various methods are
concerned with solving problems with single objectives and
known constraints and alternatives. As an illustration, an
objective of maximizing profit might be sought, conditioned
by known production capacity, costs, and product demand.
Situations as simple as these are rare in practice. More
commonly, problems consist of multiple objectives, uncertain

variables, and subjective judgment.

Many methods for decision making under conditions of
complexity and uncertainty appear to be based upon
prescriptions developed for more simple problems. For
example, many methods considering uncertainty require
assumptions permitting uncertainty to be described as random
in nature. In many settings, these assumptions restrict the

applicability of the methods.



Fuzzy set theory has been explicitly developed to consider
non-random forms of uncertainty (Zadeh, 1973) and complexity
introduced by necessary applications of approximation and
subjective judgment. By examining decision making methods
incorporating elements of fuzzy set theory, it may be
possible to support the use of these methods for ill—defined
problems. This study explores several methods using fuzzy

set theory.

H hesi
Decision problems occur in settings in which objectives and
constraints may be only vaguely or imprecisely stated and in
which the judgment or subjective beliefs of the decision
maker form an integral component of a problem's solution. A
procedure for decision making based upon idealizations of the
decision problem and decision maker may not reflect actual

behavior in problems of this nature.

This study examines the premise that a procedure for decision
making must not only follow axioms of rationality but must
reflect actual decision behavior. Assumptions examined in
this study include that the model of the decision problem is
complete, decision makers sampled in the study represent
themselves and are not necessarily representative of the

coulation, and solutions for one decision problem and
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decision maker are not generalizable. The Study hypothesis
is first that methods based upon fuzzy set theory support
accepted axioms of rational decision making and second that
rankings of alternatives génerated by fuzzy set based
techniques are Positively correlated to ranks obtained
directly from decision makers in problem settings comprising
subjective judgment and uncertainty. The first part of the
hypothesis will be examined through a comparison of the
axioms of fuzzy logic with those of classical sets and
probability theory. The second part will be examined with an

experiment.

Framework.

Decision making in the context of this study is concerned
with the selection of an alternative from a set of
alternatives, employing a set of evaluation criteria that
relates the attributes of the alternatives to the objectives
of the decision makers. The components of a decision problem
are a global Objective, a set of evaluation criteria, and a
set of alternatives. The structure of such & problem is

illustrated through a hierarchical diagram (Figure 1).

Decision making is assumed to occur along a continuum between
decisions arising from certain information and decisions
arising from uncertain information (Baird, 1978). Within

this continuum 1lie methods which vary in their information



OBJECTIVE

Figure 1. Hierarchical Structure of Decision Problem
(Buckley, 1984)

requirements and quality of solution. Here quality is
interpreted as 2 measure of the degree of certainty in the

solution.

Uncertainty may assume many meanings within thé context of
decision analysis. Uncertainty may be defined as that which
is characterized by the absence of sufficient information, or
may be characterized by vagueness or doubt. A dictionary
definition includes the characteristic that "uncertainty
ranges in implication from a mere lack of absolute sureness
to such vagueness as to preclude anything more than
guesswork™” (Websters, 1982). A more restricted definition

frequently used in decision analysis focuses on uncertainty
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as the chance (usually measured by probability) that any one
of n possible outcomes of a decision will occur (Raiffa,
1968) . For the purposes of this study, the form of
uncertainty of interest is generally that of vagueness or
"lack of sureness" rather than the probabilistic definition.
Both definitions are considered, however, in the discussion

within Chapter One.

‘Each point along the continuum imposes varying requirements
upon the decision maker and requires varying assumptions
about the behavior of the decision maker. Such a structure
is presented and information requirements and assumptions are

discussed.

In a simple setting, the set of alternatives to be evaluated
are known and the preferences of the decision maker with

respect to the alternatives are also known. Let

A1, A2, ...,Ap represent the set of alternatives, while
€1, €2r ..., ep represents the preferences associated with
Ay, A2, ...,Ap respectively. This deterministic decision

model is represented in Figure 2. A possible decision

prescription (e.g., Baird, 1978) is to order the alternatives

such that ej 2 ej4+1, for all i's, to select the alternative

with the largest preference:

*

D" = MAX; (ei) .



Figure 2. Decision Problem With Deterministic Outcomes

Implicit in this model are several informational and

behavioral assumptions. First, it assumes all information is

perfect information, that is, every time alternative A; is

selected, preference e; will be obtained. Second, it assumes

the decision model does not change. In this sense, the value
to the decision maker of the preference associated with
alternative A; remains constant. Third, it assumes the
decision model contains all the relevant information, that
is, all the information that is required by the decision
maker to select an alternative. Finally, it assumes the
decision maker is "rational" and will always strive to
maximize preference and will only cohsider the preferences
explicitly incorporated into the decision model. These
assumptions may severely restrict the applicability of a

deterministic model.



Now assume that the preferences associated with an
alternative are uncertain, that is, the possible outcomes
arising from the selection of an alternative are uncertain
and therefore the preferences for an alternative are

uncertain. For example, if the information is not perfect

information, then each time alternative A; is selected it is

possible that some preference other than preference e; may be

obtained. This outcome leaves many possible prescriptions
for decision making. To illustrate, consider the
hypothetical decision problem given in Figure 3. 1In this
problem the selection of alternative one results in either of
two outcomes with the outcomes not equally preferred. The
same holds for the selection of alternative two. Using the
decision rule from the deterministic example, the decision
maker selects the alternative that contains the outcome that
is most preferred in the expectation that it is possible to
obtain that outcome. For example, given the preference
relation

€11 > €21 > e > ej
the decision would be to select alternative one because that
alternative may result in the outcome that is most preferred.

The decision rule may be stated as:

D*

= MAXj (MAXJ (elj))
A potential problem with this decision rule is that while it

is possible to obtain the outcome that is most preferred
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Figure 3. Decision Problem With Uncertain Outcomes

through the selection of alternative one (ej1 ), it is also

possible to obtain the outcome that is least preferred (ej3).

The decision maker might therefore be unwilling to select

that alternative.

If, among other assumptions, it is assumed that the decision
process may be repeated many times then it is possible to
measure the likelihood of a particular outcome resulting from
the selection of an alternative. 1In particulér, it may be
possible to assess probabilistic measures. Given this
information, a possible prescription would be to select the

alternative that will most likely result in the most



preferred outcome. A composite measure of these
considerations is expected value; the magnitude of the
preference weighted by the probability of occurence. Assume
a decision médel as illustrated in Figure 3. The selection
of alternative one will result in an outcome of preference
e1] with probability pjj or ej with probability P12 - The
expected value from the selection of alternative i may be

expressed as:
m

E(A;) =X pis*eiy.
3=1

A possible decision rule (Raiffa, 1968) might be to select
the alternative with the largest expected value for its
outcomes:

m
= MAX; (E(A4)) = MAX; (X pjj*e;s).
j=1

D*

This prescription for decision making requires several
assumptions regarding the structure of the model and the
behavior of the decision maker. One assumption, stated
above, is that the decision problem is repeatable or is at
least similar enough to other decision problems so that
probabilistic measures of the occurence of outcomes may be
assessed. In unrepeatable decisions, subjective
probabilities may be assigned but it is arguable as to
whether that would constitute a violation of the method's
theoretical basis in that numerous repetitions of the

experiment are required for the expectation to assume its
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value. Another difficulty in assessing probabilities is that
all the outcomes may not be known. In this instance it is
again strictly not possible to assign probabilities to
unknown even£s (Blockley, 1985). Finally, the prescription

assumes that probabilistic measures adequately represent the

decision maker's perception of the likelihood of an outcome.

While the requirement for perfect information has been
relaxed in this setting, the other assumptions attributed to
deterministic settings remain. 1In addition, the possible
outcomes from the selection of an alternative must now be
known and the utilities associated with each outcome must
also be assessed. Furthermore, the decision must be
repeatable so that the probabilities associated with each

alternative may be assessed.

It may be desirable (or necessary) to further relax some of
the assumptions in the decision model. For example, if the
decision may not be repeatable, then at best it is only
possible to obtain subjective estimates of probabilistic
measures of the likelihood of an outcome. Also, all possible
outcomes arising from a decision may not be known nor may the

magnitude of the utilities associated with the alternatives.

Another decision approach is one of examining the least

preferred outcome of an alternative rather than the most
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preferred. In the example given, the worst outcome from

alternative one has a preference of ej) while the worst
outcome from alternative two has a preference of ejs.

Outcome e3> is preferred to outcome ej2 so a decision

prescription might be to select alternative two as the worst
outcome from that alternative is still better than the worst
outcome from other alternatives. The decision rule may be

expressed as

D* = MAX; (MIN; (ej5))

commonly known as the MAXIMIN prescription for decision
making (Hillier and Leiberman, 1980). This rule demands
relatively little information regarding preferences, but may
require the decision maker to be conservative in the

selection of an alternative.

An additional complexity introduced by multicriteria problems
may be illustrated as follows. Consider the decision problem
in which there are three alternatives and two evaluation
criteria. The preferences may be expressed in the form of a
preference relation

Ci: e17 > ez > e3;

Cz: e22 > e12 > e3;.
Alternative one best satisfies criterion one .(C7) while

alternative two best satisfies criterion two (C» ). Note

that alternative three least satisfies both criteria. This

alternative may be considered to be dominated by the other
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two alternatives, while alternatives one and two are non-
dominated alternatives (Hillier ang Leiberman, 1980). 1t is

conceivable that either a maximizing or g maximin decision

8@ model of an "ideal" decision maker to guide the real
decision maker toward a solution to the real problen. This

approach depends upon a "macroanalytic" view of the world in

assumption of ideal behavior, that 1s, behavior that is
consistent and follows ceértain axioms of rationality. For
€xample, the decision rule of maximizing expected utility

under uncertainty assumes the rational decision maker will
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seek alternatives that will return the greatest payoff,
weighted by the probabilities of the possible outcomes. It
is necessary to assume that the probability of an outcome is
an accurate ﬁeasure of the decision maker's perception (or

belief) of the likelihood of an outcome.

Decision making under a normative model identifies
inconsistencies in the analysis by the actual decision maker
(French, 1984). The decision maker is then expected to
modify his or her behavior toward that of the ideal decision
maker thus reducing inconsistency. If a decision maker's
perception of the likelihood of an event is not equivalent to
the probability, then under the normative model, the decision

maker is expected to reconsider and accept the probabilities.

A prescriptive model of a decision process contains an
idealized decision problem. This model implies several
factors of importance in decision analysis. First, it is
implied that the model accurately, and as completely as
necessary, represents the actual decision problem. For
example, in the hierarchical decision model of Figure 1, a
prescriptive model assumes that all relevant alternatives,
criteria and objectives are contained in the model of the
problem. It is further assumed that all necessary measures

may be obtained from the model.
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The application of a descriptive model is centered on the
ability to predict how an actual decision maker will behave
under a given set of circumstances. In this sense it
requires a "microanalytic" approach. A descriptive theory is
(initiallY) focused on making conjectures about the behavior
of individual decision makers. If the theory is reinforced
through empirical evidence then the theory may become

accepted as a predictive model.

The perceptions and preferences of the decision maker are
assumed to be given in descriptive analysis. The decision
maker has no expectation of being required to modify
perception to be consistent with some ideal. For example, if
the perception of the likelihood of an event is not
equivalent to the probability, then the model is expected to

change to reflect the decision maker's perception.

Even a normative model must possess some descriptive
capability. The ideal decision maker must possess beliefs
similar to the actual decision maker if the normative model
is to be perceived as desirable or useful, although the
beliefs of the decision maker are expected to evolve toward
those of the model. Questions (French, 1984).- that might be
asked of a normative model include:

1) Is the model decision problem a suitable

representation of real problems?
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2) 1Is the "ideal" behavior of the model decision maker
desirable?
3) Is the construction of the_model decision maker both
feasible and‘informative?
Essentially what is being questioned is the success of the
descriptive component of a normative approach and the
usefulness of the resulting model with respect to its ability

to guide the evolution of preferences.

Bellman and Zadeh (1970) maintain that
much of the decision making in the real world takes
place in an environment in which the goals, the
constraints, and the consequences of possible
actions are not known precisely.
In this context Bellman and Zadeh contend that a method based
on fuzzy mathematics better models both problem settings and
decision makers. Thus a fuzzy normative process is founded
upon a descriptive model that is maintained to better

represent actual decision making processes. This assertion

is examined and tested in this thesis.

A criticism of normative methods of fuzzy reasoning is that
the uncertainty described and assessed in the model
development stage is not maintained through the decision
process (French, 1984). That is, the solution generated by
fuzzy set methods based upon the decision model presented by

Bellman and Zadeh (1970) result in decisions that are
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themselves certain. An alternative model based upon fuzzy
sets and fuzzy logic is thus proposed as a means to convey or

propagate uncertainty through the decision process.

Outline of Subsequent Chapters.

While it has been‘argued that fuzzy set theory is
theoretically similar to more traditional methods based upon
classical sets and probability, it has also been asserted
that fuzzy sets provide fundamental differences with respect
to the measurement of uncertainty that affect the
applicability of fuzzy set based methods. Chapter One
examines the relationship between fuzzy sets and classical
sets and shows that classical sets is a subset of fuzzy sets.
The similarities between logics based upon fuzzy and
classical sets are also examined and it is shown that the
axioms of probability are a special case of those of fuzzy
logic. Finally, essential differences between the two
methods are examined and necessary assumptions about the

decision maker's behavior are identified.

Fuzzy set methods based upon the decision model proposed by
Bellman and Zadeh (1970) are shown in Chapter Two to possess
undesirable characteristics with respect to the propagation
of uncertainty through the decision process. BAn alternative
approach based upon fuzzy logic is proposed. The derivation

of a method to solve decision problems from Tsukamoto and
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Terano (1975) is given, along with the derivation of an
extension to the method to resolve inconsistent solutions

arising from insufficient information.

In Chapter Three an experiment is designed to determine the
relative ability of several decision methods to describe or
predict individual behavior under uncertainty and multiple
objectives. The methods examined inclﬁde the fuzzy
multiobjective method of Yager (1978), the hierarchical
scaling method of Saaty (1977) and the fuzzy logic method
described in Chapter Two. Results from the experiment are

presented in Chapter Four.

Chapter Five contains an evaluation of the experiment and
further analysis of the decision methods, including group
decision making. Chapter Six provides summaries and

conclusions. Future research needs are also identified.



CHAPTER ONE

AXIOMATIC FRAMEWORK

In this chapter are reviewed basic concepts of classical set
theory and probability as a measure on sets. Fuzzy set
theory is introduced followed by a description of fuzzy logic
as a measure on fuzzy sets. Classical and fuzzy sets and
their respective logics are compared to identify requirements

imposed upon decision makers using these approaches.

Interest in probability measures arises from its broad
application in decision analysis techniques. While its best
use may be within a rather carefully defined area of
application, its success in characterizing some aspects of
decision analysis has led to wide spread application in areas
where it may be desired to measure less quantitative aspects
of decision models, including elements of human decision

behavior.

Fuzzy set methods, on the other hand, have been developed
rather specifically to address less numerical representations
used in decision analysis (Zadeh, 1973)f Because fuzzy set
theory may address more general aspects of symbolic
representation, it is important to identify what restrictions

are imposed on the types of problems to be considered.
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Both probability theory and fuzzy set theory arise from
similar axiomatic origins and have been applied to similar
types of decision problems. The two theories are claimed to
be fundamentally different, however (Zadeh, 1975; Gaines,
1978) . To illustrate the nature of problems addressed by the
different approaches, consider the following problem setting

(adapted from Hillier and Leiberman, 1980).

An oil company owns land that may contain oil. The company
does not know whether in fact the land contains oil or how
much oil it is expected to produce, but the company assumes
four outcomes of the action of drilling a well: no oil; a
50,000 barrel well; a 200,000 barrel well; and a 500,000
barrel well. The profit per barrel of oil is $1.50. The
cost of drilling a dry well is $75,000, and the cost of
drilling a producing well is $100,000. In addition to
drilling, the company has the option of leasing the land for
$45,000 or conditionally leasing the land for a $.50 per
barrel fee on wells larger than 200,000 barrels. The
possible profits to the company from these alternatives are

given in Table 1.
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Table 1 Profits (in dollars) for Oil Company

No 0il 50,000 200,000 500, 000

T Barrels Barrels Barrels

Drill -75,000 -25,000 200,000 650, 000
Lease 45,000 45,000 45,000 45,000
Conditional 0 0 100,000 250,000

Lease

Assuming this property is similar to other properties with
which the company is familiar, the probabilities that the

land will actually produce the given outcomes are given as

P(0 = 071, dry well) = .50

pP(8 = 8, 50,000 bbl.) = .25
p(0 = 63, 200,000 bbl.) = .15
P(0 = 84, 500,000 bbl.) = .10

Using the criterion of maximum expected value, the company

calculates the gains from each alternative g(aj) as

g(ay) = E[ g(aj), 61] = 650,000(.10) + 200,000(.15)
= 25,000(.25) - 75,000(.50)
= 51,250

g(az) = E[ g(ap), 62] = 45,000(.10) + 45,000(.15) +
45,000(.25) +45,000(.50)
= 45,000

g(a3) = E[ g(a3), 63] = 250,000(.10) + 100,000(.15)
= 40,000

Therefore the oil company's alternative of choice would be

ai, drill for oil.
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manager was unable to hire the preferred drilling crew.

There is insufficient evidence to suggest that probabilistic
measures would be accurate, but the company's geologists and
engineers ha&e a fair idea of the possible outcomes from
drilling. They might be quite certain that the well would be
dry and somewhat uncertain that the approximate yields from
the wells would be obtained. They have not eliminated the
possibility, however, that a much larger yield may be
obtained. Decisions in this setting are a function of
partial knowledge and the application of judgment and

intuition, in addition to available quantitative measures.

The above example is for a single criterion problem, that of
maximizing profit. It is of course possible to extend the
problem setting to one of multiple criteria where complexity
adds another dimension of difficulty to be addressed by
analytic methods. More specifically, these additional
criteria may require subjective judgment or other less

quantitative aspects of decision making.

Rationale for Comparison.

This chapter examines in detail the foundations of
probabilistic and fuzzy set based methods for decision making
and indicates limitations imposed upon decision makers and
decision problems by these foundations. It is shown that

fuzzy set based methods are in theory less restrictive than
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This example contains many assumptions that make the use of
probabilistic methods feasible (Raiffa, 1968). The first
assumption is that there exists only four possible outcomes.
That is, because other lands have resulted in these outcomes,
it is assumed that no other outcome will occur, for example a
one million barrel well. Another assumption is that allbthe
parameters (e.g. costs) are known with certainty, that is,
the cost of drilling a producing well will be exactly
$100,000. Clearly, there is sufficient variation in reality
to question this assumption. Variations in the levels of
these values may, in some problems, significantly affect the
rankings of the alternatives. Third, it is assumed that
there has been sufficient experimentation (i.e. other well
fields) under controlled conditions, to make statistically
significant statementé about the probability of each possible
outcome. Fuzzy set methods have been claimed to address the

types of problems indicated in the last two assumptions

stated above.

As an illustration of a problem in a fuzzy set context,
consider again the oil well problem. 1In this case, the
profit per barrel of oil is approximately $1.50, while the
costs of drilling a dry well and a producing well are high
and very high, respectively, because the geology of the site

is likely to be different from previous sites and the field
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those of probability, and in fact, that probability is a more

restrictive special case of fuzzy sets and fuzzy logic.

It is desired to test the argument that probability and
classical set theory are special cases of fuzzy set theory.
This is important to establish both a consistent and
continuous line of reasoning in decision making problems, to
identify the essential differences between the theories, and
to describe some limitations to application imposed by these
differences. Because the differences are embedded in basic
axioms and assumptions, it is necessary to consider and
expand upon discussion of the relationship between fuzzy and
classical sets provided by Gaines (1978), and others (Deluca

and Termini, 1972; Blockley, 1985).

Classical Sets.
A set may be defined as a collection of objects, where the
objects (aj) are said to be elements or members of a set (S)
denoted

a; € S.
The negation of membership (an object is not a member of the
set) is denoted

aj € S.
In decision making, there may exist the set of alternatives

(A) to be evaluated

A = {al, az,..., an}’ aie A,
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the set of evaluation Criteria
C = {Cl, C2,.-., Cm}, CjEC,
and perhaps sets of decision makers and preferences (or

outcomes) rélating the alternatives to the criteria.

Set Operations.

The union of two sets, denoted AUB is the set that contains
all elements of sets A and B:
AUB = {x: xe A, and/or x e B}.
The intersection of two sets, denoted A M B, is the set that
contains elements that are contained by both A and B:
AﬁB={x:xeA, and x € B}.
The complement of a set (A€) is the set that contains all
elements which are not contained by the set A:
AC = (x: x e U, x & A},
Using these operations, it can be shown that the laws and
identities of propositions (e.gq. Larson, 1974) are satisfied,

resulting in the laws of the algebra of sets (Table 2).

Fuzzy Sets.
In classical set theory, the membership of an element to a

set is denoted by a binary relation:
(1 if a is a member of the set S

ae S{
lO otherwise.
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Table 2. Laws of Algebra of Sets

1. Reflexive Law:

A VA =2 A NA =A

2. Associative Law:

(AUB) U C =AU (BUC) (AMB) N C = A N (BNC)

3. Commutative Law:

AUB=BUA-A ANB=BNA7A

4. Distributive Law:

A U (BNC) = (AUB) N (AWLC) AN (BUC) = (ANB) U (ANC)
5. 1Identity Law:

AUg=2A ANS =2

AUS =35 ANg=9g

6. Complement Law:

A U AC =5 ANAC =g
(A€ )C = 1 S¢ =g, 2¢ =g
7. DeMorgan's lLaw:

(AUB)C = AC N BC (AMB)C = AC U BC

In fuzzy sets, membership is extended to include elements
that only partially belong to a set. Thus the relation of

membership would become:

fl if a is a member of the set S
a€es { 0 if a is not a member of the set S
lu otherwise (0 < u < 1).



26

Sets in which elements may be only partially contained are
said to be fuzzy sets (Zadeh, 1965). A fuzzy set is a set of

ordered pairs

{x, ua(x)} Vxe s
where

Ha(x) is a membership characteristic function which

denotes the degree of membership of x in A (A being a fuzzy

subset of S).

For instance, using the oil well example (p. 21), the "very
high cost" of drilling a producing well can be defined as:

A = "very high cost"

it

[01$80k, .2]$100k, .5|$120k, -91$150k, 1.|$170k].
To interpret, a cost of $100,000 is given weak support for
belonging to the set "very high cost" while $120,000 is
assigned stronger support. With a support of unity the cost
$170,000 is unambiguously a member of the set while $80,000,
with a support of zero, is unambiguously pnot a member of the
set. The membership support should not be interpreted as a
statement of the likelihood that any particular producing
well will cost if it is drilled. Rather, it is a more
general description, or mapping, of the dollar values

associated with the concept of "very high cost".

To demonstrate that classical sets are a special case of

fuzzy set theory, fuzzy set operations must be shown to
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contain the operations and propositions supported by
classical sets. Similarly fuzzy logic must be shown to at

least contain the propositions supported by probability

logic.

In the next several sections, the relationship between fuzzy
and classical sets, and between fuzzy logic and probability,
are examined. It is shown that classical sets and
probability are special cases of fuzzy set theory. &an
interpretation of the differences between these theories in

the context of decision making is given.

Algebra of Fuzzy Sets
Before the relationships are considered, it is necessary to
define permissible operations on fuzzy sets. The operations
for union, intersection and complementation proposed by Zadeh
(1965) are used here:
Union: HM(A U B) = MAX (Ua (%), Hp(x))
Intersection: Hn(A N B) = MIN (Ha (%), Hg(x))
Complementation: WaAC(x) = 1 - pa(x).
for example, let A = {.211, .512, .93}, and B = {.111, .4)2,
1]3}. Then the union of fuzzy sets A and B is equal to
{ MAX(.2, .1)]1, MAX(.S5, .4) 12, MAX(.9, 1)|3} or
AUB={.2]1, .5]2, 1.]3}.

The intersection of fuzzy sets A and B is equal to

ANB-={.111, .412, .93},
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and the complement of A is equal to

AC = (.81, .512, .1|3}.
The validity of these operations under some operational
assumptions is proven by Bellman and Giertz (1973) in which
they analyze operations for the compound statements of union
and intersection, and seek to identify restrictions that must

be observed when assigning supports to such compound

statements.

Their analysis is initiated by two assumptions. The first
assumption is that the supports assigned to a compound
statement, A N B, or A U B, for example, depend only on the
supports assigned to the individual elements of the compound
statement. Letting Wu(S) be the support for a statement then

the support for a compound statement is

K(S; and S3) = f[U(Sy), K(S,)] or

H(S; or S3) = g [K(Sy), MH(Sy)].
The implication is that the support for a compound statement
is soley a function of independent elements and cannot be
obtained from joint statements (e.g. H(S1S5)). This
assumption, in fact, reveals the "truth functionality"”

requirement of fuzzy set operations, which is discussed in a

later section.

The second assumption stated by Bellman and Giertz

generalizes the functions of the first assumption by assuming
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that compound forms of arbitrary statements S and T are
governed by the same functions as in the first assumption:
H(S and.T) = f[U(S), U(T)] or
H(S or T) = g [U(S), M(T)].
In addition to these assumptions, Bellman and Giertz impose
the following restrictions on the functions f and g:

(1) f and g are non-decreasing and continuous in both

variables,
(2) f and g are symmetric, i.e. f(x,y) = f(y,x) and
g(x,y) = gly,x),

(3) f(x,x) and g(x,x) are strictly increasing in x,

(4) f(x,y) € min{x,y} and g(x,y) 2 max{x,y},
that is, f and g are constrained to be at least minimal and
maximal functions respectively (they are not averaging
operations),

(5) f(1,1) =1 and g(0,0) = 0,
that is, the end points of possible membership functions are
an exception to (4), and

(6) logically equivalent statements have equal supports.
Using N to represent intersection, U to represent union, and
the commutative, associative, and distributive axioms
identified in the next section, along with the restrictions:

X Ny and x U y are continuous and non-decreasing,

X M x and x U x are strictly increasing in x,

X Ny < min{x,y}, and x Uy 2 max{x,v},

lhl=1,andOUO=0,
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obtained from the above assumptions, Bellman and Giertz prove

that

X Ny =min{x,y} and x U y = max{x,y}.
Their proof broceeds as follows. Let h(x) = x N x. From (1)
and (3), h maps on the interval (0,1). If h(x) = a then

XNx=asaU (ana) =(auvUa N (a U a)
so that x £ a U a. Also,

X2XxXN (XUX = (xNx) U (x N X) =auva
S$O0 X must equal a U a. Thus

XN X=ae& x=auUa.
Therefore, it follows that

XN (XU X)=xU (xNZX) =x x €(0,1]
Substituting x = a U a in x = x U (x N x) gives

aua=(aua)u[(aua)h(aua)]=(aua)ua,
or using the associative axiom,

auva-=a.
Also, a N a = a which further implies that

alU(anNnb) =an(aub) =a a,b e{0,1]

v

Now assume a and b are given in the interval [0,1] with a

b. Since a N a = a, then according to Bellman and Giertz,
there must be some ¢ that satisfies a N ¢ = b, Use of the
latter equation results in

auUb=auU(anc =a=max{a,b} and

anb=an (anc

(aMa) Nc=anNnc=>Dp = min{a,b}
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thus providing proof that the maximum and minimum operators
are the only valid operators for fuzzy union and intersection

under the given assumptions.

The importance of this conclusion is that it constrains the

range of operations that may be performed on fuzzy sets, and
begins to define what is and is not a fuzzy set or operation.
From the results of Bellman and Giertz important similarities
and differences between fuzzy sets and probability logics are
shown in the next several sections. This contributes to the
determination of what constraints are to be placed on the use

of these logics.

Fuzzy Sets Restricted to the Unit Interval.

The operations of fuzzy sets, when the fuzzy supports are
constrained to {0,1} (i.e. elements are unambiguously members
or non-members of the set), are equivalent to classical sets.
This is demonstrated by showing that the restricted
operations support the algebra of classical sets as
illustrated in Table 2. The demonstrations are given in
Table 3. First, for each law of algebra of classical sets,
the classical formulation is stated, for example A U A = A.
Second, the equivalent fuzzy set formulation is given. This
is obtained by substituting fuzzy set operations for

classical set operations. From the results of Bellman and

Giertz, the union operator U must be replaced by the fuzzy
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operator MAX (maximum). 1In the example the formulation
becomes MAX(A,A) = A. Third, because the fuzzy set
operations are temporarily restricted, the fuzzy set may
assume two values, 0 or 1. To illustrate the fuzzy
operations under all cases, tables similar to truth tables

are presented. For the example, the table:

a_ MAX(a;a) = a
1 1 1
0 0 0

shows that under both cases the formulation is true,
confirming the support of this law of algebra of classical
sets by the constrained form of fuzzy sets. To simplify the

notation in these tables, let 'a' denote the fuzzy support

Ha(a), etc.

Thus it is shown here that under the stated restriction,
fuzzy sets are equivalent to classical sets, with respect to

their satisfaction of the algebra of classical sets.

The behavior of fuzzy sets when not restricted and allowed to
range on the full interval [0, 1] is now examined. The
membership function of a set A is denoted

A= {0, b, a, 1}
where 0, a, b, and 1 are supports for membership in the set
A. The cases of a or b equal to one and zero were examined
above. Other possible valuations are now considered here

with algebraic demonstrations given in Table 4.
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Table 3. Algebraic Properties of Fuzzy Sets
Constrained to {0,1}

AUA=A2A ANA-=A

MAX (a,a) = a MIN(a,a) = a

2 MAX(aya) a a MIN(a,a) a
1 1 1 1 1 1
0 0 0 0 0 0

2. Associative Law.

(AUB) UC=AU (BUUZC)

MAX (MAX(a,b), c¢c) = MAX (a, MAX(b,c))

MAX(MAX(a,b), ¢) MAX(a, MAX(b.

O OCOOKRPR R
COoOrRPORORRD
QOORRLRHORN
ORRPRREPRP
ORRPRERRPRP

(ANB) N"C=AN (BN C)
MIN (MIN(a,b), c) = MIN(a, MIN(b,c))

MIN(MMIN(a D), c) MIN(a, MIN(b,c))

OFRPOOCORRKERREP
OCOROFHOKRRD
CoorrroORp
CO0OO0COCOO0OOR
OO0OO0COOO0OOR
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Table 3. continued.

3. Commutative Law.

AUB=BUA : ANB=BANA

MAX(a,b) = MAX(b,a) MIN(a,b) = MIN(b,a)

a b MAX(a,b) MAX(b.a) a b MIN(a,b) MIN(b,a)
1 1 1 1 1 1 1 1

1 0 1 1 1 O 0 0

0 1 1 1 0 1 0 0

0 0 0 0 0 0 0 0

4. Distributive Law.

AU (BNC = (AUB) N (AUDCC

MAX[a, MIN(b,c)] = MIN (MAX(a,b), MAX(b,c)]
(1) (2) (3) (4) (5) (6)
MIN(b,c) MAX(a,b) MAX(a,c) MAX((1l), (4)) MIN((S), (6))

COOROHRRFN
OCOHORORRD
OrOORrRRORN
OCOO0OO0OrHOOr
COHRRRPREE
ORORRRLRP R
COOR KR
COOKRR MR

AN (BUC) = (ANB) U (A N C)

MIN[a, MAX(b,c)] = MAX [MIN(a,b), MIN(b,c)]
(1) (2) (3) (4) (5) (6)
b MAX(b,c) MIN(a,b) MIN(a,c) MIN((1),(4)) MAX((S5), (6))

COOrOoORRRrp
COrRrORORK
oOroorromhn
OHRPROR R M
OCOOCOOORH
COoOO0OoOOrOR
o NeNoNoNoN ol Eg
(eNoNoNeNao Nl



Table 3.
5. Identity Laws.

AUgZg=2

continued.

MAX(a,0) = a

a 0 MAX(a,0) a

1 0 1 1
0 O 0 0
ANGg=g¢g

MIN(a,0) =0

a 0 MIN(a,0)
1 O 0
0 © 0

6. Complement Laws

AUAC =09

MAX(a, l-a) =1

a _ l1-a MAX(a, 1-a)
1 0 1

0 1 1

(A€ )T = 7

l1 -4(1-~-a) =a

(A LU B)C = A€ N~ BC

1- MAX[a,b] = MIN[l-a, 1-b]

(1) (2) (3) (4)
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a_1 MIN(a,1) a
1 1 1 1
0 1 0 0
AU S =S8

a 1 MAX(a,l)
1 1 1
0 1 1

ANAC =g

MIN(a, l-a) = 0
a_l-a MIN(a,l-a}
1 0 0

0 1 0

a b 1-a 1-b 1- MAX((1),(2)) MIN((3),(4))
11 0 -0 0 0
1 0 0 1 0 0
0 1 1 0 0 0
0 O 1 1 1 1
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Table 3. continued.
(A N B)C = AC u BC

1- MIN[a,b] = MAX[1l-a, 1-b]
(1) (2) (3) (4)

a_b_ 1-a 1-b 1- MIN((1),(2)) MAX((3), (4))
1 1 0 0 0 0
1 0 0 1 1 1
0 1 1 0 1 1
0 O 1 1 1 1

The operations of fuzzy sets are shown to support the laws of
classical sets with the exception of complementation, that
is, a fuzzy set and its complement are not mutually
exclusive. Some implications of this result are discussed in
a later section. Intuitively, this result states that if an

element only partiaily belongs to a set (Lp(x) < 1), then it

cannot be said that the element does not belong to the set.

Probability is a measure on sets. It may be interpreted as a
measure of the occurence of an outcome or a set of outcomes.
Let S (the sample space) denote the set of all possible

outcomes of some event. An event (a) is a set of some

possible outcomes (a € S).
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Table 4. Algebraic Properties of Unconstrained Fuzzy Sets

AUA =2 ANA=R2n

MAX (a,a) = a MIN(a,a) = a

a MaX(a,a) a a_ MIN(a,a)
a a a a a

2. Associative Law.

(AUB) UC=AU (BUC)

MAX (MAX(a,b), c) = MAX(a, MAX(b,c))

a_ b ¢ MAX(MAX(a.b), c) MAX(a, MAX (b, c)

a =b =c a,b,c a,b,c
a >b =c a a

a =b >c a,b a,b

a >b >c a a

(AN B) "C=2anN (BNC)

MIN (MIN(a,b), c) = MIN(a, MIN(b,c))

a_ b b MIN(MIN(a,b), ¢c) MIN(a, MIN(b.c))
a =b =c a,b,c a,b,c

a >b =c b,c b,c

a =b >c c c

a >b >c c o]

3. Commutative Law.

AUB=BUA-A ANB=BNA

MAX(a,b) = MAX(b,a) MIN(a,b) = MIN(b,a)
a_b MAX(a,b) MAX(b.,a) a b MIN(a,b) MIN(b,a)
a =b a,b a,b a =b a,b a,b

a >b a a a >b b b

a <b b b a <b a a



38

Table 4. continued.

4. Distributive Law.

AU (BNC = (AUB) N (AUC

MAX[a, MIN(b,c)] = MIN [MAX(a,b), MAX (b, c) ]

(1) (2) (3) (4) (5) (6)

a b ¢ MIN(b,c) MAX(a,b) MAX(a,c) MAX ( (1), (4)) MIN((5), (6))
a =b =c b,c a,b a,c a,b,c a,b,c

a >b =c b,c a a a a

a =b >c c a,b a a a(b)

a >b >c c a a a a

AN (BUC) = (ANB) U (A NC

MIN[a, MAX(b,c)] = MAX (MIN(a,b), MIN(b,c)]

(1) (2) (3) (4) (5) (6)

a b ¢ MAX(b,¢c) MIN(a,b) MIN(a.c) MIN((1), (4)) MAX((5),(6))
a =b =c b,c a,b a,c a,b,c a,b,c

a >b =c b,c b c b,c b,c

a =b >c b a,b o] a,b a,b

a >b >c b b c b b

5. Identity Laws

AUZ=2A ANU=2A2A

MAX (a,0) = a MIN(a,l) = a
a_0 MaX(a,0) a a_1_ MIN(a,1) a
a o0 a a a 1 a a
ANG =0 AUS =258
MIN(a,0Q0) =0 MAX(a,l) =1

a_ 0 MIN(a,0) a 1 MAX(a,l)

a o0 0 a 1 1

AU A = U~ AN A =@

MAX(a, 1l-a) =1 MIN(a, 1-a) =0
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Table 4. continued.

a 1l-a MAX(a, 1-a) 1 a 1-a MIN(a,l-a) 0
O<a<l 1>ac>0 O<MAX(a,a®)<1 1 O<a<l 1>a®>0 0<MIN(a,ac)<l 0
Therefore, MAX(a, l-a) # 1, and MIN(a, 1-a) # 0.
(A )c = A
1 - (1~ a) =a

a = a

7. DeMorgan's Law
(A U B)S = AS N Bc

1- MAX[a,b] = MIN[1l-a, 1-b]

(1) (2) (3) (4)

a_ b l-a 1-b 1- MAX((1), (2)) MIN((3),(4))
a=b 1-a 1-b l1-a, 1-b l-a, 1-b
a>» 1-a 1-b l-a l-a

a <b 1l-a 1-b 1-b 1-b

(A N B)S = AC U Be

(1) (2) (3) (4)
a b l-a 1-b 1- MIN((1),(2)) MAX((3), (4))

a=b 1l-a 1-b l-a, 1-b l-a, 1-b
a>» 1-a 1-b 1-b 1~-b
a<b 1l-a 1-b l1-a l-a

Probability Axioms.

Letting S be a finite sample space: S = {ay, az,... ap} and
assigning to each point aj € S a real number pj called the
probability of aj with the properties (Rescher, 1969; Larson,
1974) :

i) piZ 0
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n
ii Zpi =1
i=1

then the axioms of probability may be given as:

(7) P(S) =1
(8) P(A) 20
(9) P(Ap U A UA3 U ...) = P(A]) + P(Ry) + P(A3) +...
iff Ajng = 0, i#J
with the resulting theorems:
(10) P(@) =0
(11) P(AC) =1 - P(Aa)
(12) P(A© U B) = P(B) - P(A N B)
(13) P(A U B) = P(A) + P(B) - P(A N B).
The complement theorem (11) is derived from the premise that

the members of AC are the members in the sample space S that

are not contained in A, that is, A U AC = S, or:
P(A U AC ) = P(S)
P(A) + P(A®© ) =1 (from Al and A3)

P(AC€ ) =1 - p(a).

fuzzy Logic.

Fuzzy logic may be interpreted as a measure on fuzzy sets,
that is, it is concerned with defining consistent measures of
the truth of fuzzy propositions. Gaines (1976) presents
three different definitions for fuzzy logic as it is used in

the literature:
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1. "A basis for reasoning with vague or imprecise
statements.” 1In this very general definition its use is
primarily restricted to the description of sets that
have no well defined borders and includes hedges on
these sets.
2. "A basis for reasoning with imprecise statements
using fuzzy sets theory for the fuzzification of logical
structures."” Gaines feels that this definition comes
Closest to that implied by Zadeh and while it implies a
somewhat independent logic structure, it is still
related to classical logics.
3. "A multivalued logic in which truth values are in
the interval [0,1], and the valuation of a disjunction
is the maximum of those of the disjuncts, and that of a
conjunction is the minimum of those of the conjuncts."
This very restricted definition assumes union and
intersection operators, but does not necessarily assume
its derivation from fuzzy set theory.
The second definition may be the most appropriate in that it
is more specific than the first and incorporates the
implications of the third, without assuming or requiring
specific operators. The second definition also provides a
basis for comparing fuzzy logics to probabiliﬁy logic. 1It
has been argued (e.gq. Blockley et al., 1983) that fuzzy sets

is a generalization of classical sets and that fuzzy logic
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would then be implied to be a generalization of probability

logic. The second definition includes this implication.

Fuzzy Logic Axioms;

The multivalued logic widely used for fuzzy reasoning is that
of Lukasiewicz' infinitely valued logic. Lukasiewicz (1930)
extended the classical two-valued logic to include a third,
indeterminate truth value "I". The motivation for
introducing the indeterminate value was to provide a truth
value for propositions of an essentially unknown state. That
is, a proposition may be formulated, but it is not known at
the present whether the outcome will be true or false. The
truth values assigned to these three states became v(T) = 1,
v(I) = .5, v(F) = 0, and the truth tables associated with the
introduction of this third value are shown in Table 5

(Rescher, 19693).

Table 5. Truth Tables for Lukasiewicz'
Three-Valued Logic

q pNg pUq p—qg p&q
R ol PN T _ I F T I F T_1 F T 1 F
T F T | T I F T T T T I F T I F
I I I | I I F T I I T T I I T I
F T F | F F F T I F T T T F I T

Subsequent to the introduction of the three valued logic,
Lukasiewicz extended the idea to n-valued, and ultimately

infinitely-valued (continuous) logic. Dividing the interval
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from 0 to 1 into n values results in the general form given

in Table 6

({Rescher, 1969).

Table 6. General Form of Lukasiewicz'
- Multi-Valued Logic

o Truth Values

2 111, 0 ] 1 (1, 0)

3 212,112, 017]2 (1, 1/2, 0)

n a=l, n-=2, . . . r 2 r -1 r 0
n-1 n-1 n-1 n-1 n-1

The truth tables for the three-valued, the n-valued, and the

infinitely-valued logic may be obtained from the algebraic

propositions (Rescher, 1969):

pe=1-p
P VU g = max(p,q)
P N g = min(p,q)
1 if P<gqg

p—q

P& g
The result

continuous

1

ll - pt+tq if p>q

= (P3q N(gop) =1-p - q.
of these extensions of classical logic is a

range of truth values that may be attributed to

uncertain (or indeterminate) propositions.

Zadeh (1975) adopts the logic system of Lukasiewicz as the

base logic

of fuzzy sets. Zadeh is concerned primarily with

representing linguistic expressions of truthfulness such as



44

true, very true, not true, false, etc. He maintains the

is a continuum (although, as shown above, Lukasiewicz's logic
is also based upon a discrete set of truth values); that
fuzzy logic is more efficient in that it represents
pPropositions using a smaller number of truth-values; ang that
fuzzy logic addresses pPropositions which are themselves fuzzy
rather than precise €.g. 'Vera is "highly intelligent"',

'Berkeley is "close" to San Francisco® (zadeh, 1975) .

Logical connectives between Propositions (e.g. x and y) are
defined in terms of truth or belief rules (Gaines, 1978). ~a
Statement, or Proposition of the eévent x, has a truth value

K(x). The axioms which fuzzy logic support (Gaines, 1978)

are:

(14) 0 < p(x) <1

(15)  w(x®) =1 - p(x)

MIN(L(x), p(y))

MAX (L(x), p(y))

(18) u(x = y) = MIN(1, 1 - p(x) + KH(y))

(16) p(x N y)

(17) p(x U y)

(19) u(x = y) = MIN(1 - H(x) + pu(y), 1 + R(x) - p(y)).
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indicates that there is complete truth in the statement (the

statement is true).

The second axiom (Eg. 15) implies that because an event A is

defined by a membership function {x, Ha(x)} x € A, the

complement of an event AC is defined by {x, 1 - Ha(x)} x € A.

The third and fourth axioms (Eq. 16 and 17) state that the
truth value of the conjunction of two events is no stronger
than the weakest truth value of an event and the truth value
of the disjunction of an event is no less than that which may

be obtained from the individual events.

Gaines' Standard Uncertainty Logic.
Gaines (1978) examines the relationship between fuzzy and
probability logics. Gaines concludes that there are
significant differences between the two but that they share a
set of common axioms which he has designated a standard
uncertainty logic. He demonstrates that the addition of a
single axiom - the law of the excluded middle p(x U x¢) = 1,
(or the law of contradiction) results in a standard
pProbability logic. The addition of a different axiom - a
truth functionality requirement, results in a Lukasiewicz or
fuzzy logic. The fifteen axioms constituting‘the standard
uncertainty logic posited by Gaines are:

(20) x Ux =xNx=x :Reflexive

(21) x Uy=yUZX xNy=ynNx :Commutative
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(22) x U (y U 2) = (xVUy Uz :Associative
xr\(yhz)=(xﬁy)hz

(23) x U (x NYy) =x; xN (x Uy) =x :Absorptive

(24) x'F\(y Uz) = (xnNny) u (x N z) :Distributive

(25) xUT=T;, xA 7T = X :Identities
XUF =x; xNF=F (Definition of max,

min elements)
(26) vy 2 x iff 3 , 'y =x U z :0rdering criterion

In the previous sections, axioms 20 through 24 were shown to
hold true for both fuzzy and probability logics. The others

are also shown to hold under both logics.

Further mapping functions are defined by Gaines:

(27) p(F) = 0; p(T) = 1 (unambiguous cases
define the endpoints of allowable range of supports)

(28) y 2 x implies P(y) 2 p(x)

(29) p(x N y) + p(x U ¥Y) = p(x) + p(y)

(30) x =y iff P(xXNy) =px v y)

(31) d(x, Y) =p(xuy) - P(x N y) :Metric on distance

between sets
(32) p(x =y) =1 - d(x,y) = 1 - p(x VYY) +pxny)
(33) p(x = y) =1 - P(x) + p(x N y)
=1l+py) -pxuUy)

(34) p(x¢) =1 - p(x).

An additional formula may be obtained from Equations 29 ang

34. Let y = xec, Then (29) is
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P(x N x%) + p(x U x%) = p(x) + p(x°)
But from (34) p(x°) = 1 - p(x). Therefore,
P(X.N x°) + p(x U x°) = p(x) + 1 - p(x)

(35) p(x N x°) + p(x U x¢) = 1.

From Equation 35 the law of the excluded middle (p(x U x¢) =

1) is not a tautology and must therefore constitute an
assumption when it used in probability logic. From this
result Gaines shows that the addition of this law to the
standard uncertainty logic will result in the probability

logic defined previously.

Gaines further shows that the addition of the postulate

P(x = y) =1 0R p(y = x) =1
to the standard uncertainty logic yields the Lukasiewicz
infinitely valued logic which has been taken by Zadeh (1975)
as the fuzzy logic identified in the previous section. The
connection between the standard uncertainty logic and fuzzy

logic is shown by Gaines as:

Given the postulate: p(x = y) = 1 OR ply = x) =1,
and p(x = y) =1 - p(x) + p(x N y)
then, p(x = y) =1 - p(x) + p(x N y) OR
ply = x) =1 - p(y) + p(xnNy).
But p(x = y) = 1 OR p(y = x) = 1, therefore

1=1-p(x) +pxNy) OR1=1-p(x) +p(xnNy,
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P(x) =p(xNy) ORDP(y) = p(x N y)
But p(x) = p(x N Y) implies that P(x) < p(y) and
P(y) ='p(x Fiy) implies that p(y) < p(x).
In other words
P(x N y) = p(x) if p(x) € p(y) and
P(x N y) = p(y) if p(y) < p(x).
Therefore, p(x N y) implicitly equals MIN(p(x), pP(y)) and

Gaines argues that the remaining axioms follow.

The results of Gaines' work show that fuzzy and probability
logics are very similar. It is the difference between the
two logics that is important in the context of this study.
From the differences identified by Gaines, it is possible to
identify characteristics of decision problems that limit the
applicability of either of the two approaches. In the next
sections, examinations of the similarities and differences
between the two logics are expanded leading to the conclusion
that probability logic is not a parallel logic, but is a

subset of fuzzy logic.

Relationship Between Fuzzv Logic and Probabilitv.

iAs an extension to Gaines' work, further examination of the
relationship between fuzzy and probability logics is now
developed. vIn a manner similar to the relationship between
fuzzy sets and classical sets, the following is stated: the

axioms of fuzzy logic will support the theorems of
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probability when the values of the characteristic function

are constrained to {0,1}.

The validity of this statement is demonstrated by the
following:
Axioms 1, 2, 4, and 5 (Eq. 7, 8, 10, and 11) follow directly
from the definition of fuzzy logic axioms. Next, the sixth
axiom is evaluated: |
P(A* " B) = P(B) - P(A N B).
Representation in fuzzy logic format:
R(A° N B) = W(B) - H(A N B)
MIN(l1-a, b) = b - MIN(a, b)

l-a MIN((3),(2)) (2) — MIN((1),(2))

oor—-&-—-p)
ororpy
=00
oOrOO
oroOoO

The seventh axiom,

P(A UB) =P(A) + P(B) - P(A N B),

is represented in fuzzy logic as
H(A U B) = H(A) + u(B) - p(A N B), or
MAX(a, b) = a + b - MIN(a, b)

with proof in the truth table:

MAX ((a), (b)) (a)+ (D) -MIN((a), (b))
1 1

oor—'r-'pa
oroORrp

1 1
1 1
0 0
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Finally, the third axiom of additivity is evaluated:
P(A; U By UA3 U ...) = P(A)) + P(Ay) + P(A3) +

First, examine the constraint Ajn~g = 2, i#j. The fuzzy logic
equivalent is

H(Aitﬁ Aj) = 0, or

MIN(A;, B5) = O.

This implies that if any Aj = 1, then all others are equal to
0. This result follows from the definition of inclusion in
fuzzy logic:

If two events have full support (L(x) =1, u(y) = 1) then

each is fully included in the other:

R(x = y) = MIN(1, 1-f(x)+u(y))
=1

H(y = x) = MIN(1l, 1-p(y)+p(x))
=1,

and would violate the constraint for Axiom 3.

Therefore, the fuzzy equivalent of Axiom 3 is:

H(Al () AZ (O A3 U ...) = u(Al) + u(Az) + l.l(A3) +
iff H(Ai)tﬁ H(Aj) = g, i#j

MAX (L (A1), KR(Ay), H(A3) ...) = W(A;) + H(Az) + H(A3) +
iff MIN(A;, Aj) =g, i#j.
From the constraint, only two cases are'possible:
1 iff 31 p(ay) =1

MAX (W(R1), H(Ap), W(R3), ...) =%
lo i£f n(a;) = 0, Viea
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Therefore,

MAXMA]_-)—L—“—(.AZ-L&—*L.‘.A:{)--..) U.(A]_! + u162! <+ “‘33! +
1 1
0 0

and Axiom 3 is shown to be supported by fuzzy logic. To
arrive at this conclusion, the operation of fuzzy inclusion
was used. It should be shown to be equivalent to the
probability definition of inclusion so that it is seen to not
be an exception to the above comparisons. The probability
defintion of inclusion is:

P(A = B) = p(A°) + p(A N B).
The fuzzy set equivalent is:

l-p(a) + MIN(pu(a), p(b)).

Inclusion in fuzzy sets is:

H(A = B) = MIN(1, 1 - p(a) + p(b)).

Evaluating the two forms:

(V]

MIN(1, 1 - p(a) + u(b)) = 1- p(a) + MIN(p(a), n(b))

results in the comparison:

l-x MIN(]l, (3)Y+(2)) (3) + MIN((1), (2))

(
p. A"
1 1 0
1 0 0
c 1 1
0 © 1

RO
=

where it is shown that the constrained fuzzy version of

inclusion is equivalent to the probabilistic definition of

inclusion.



52

It was shown that fuzzy set operations do not support
complement-ation in probability logic. A derivation of
complementation, the law of the excluded middle, may be
interpreted as requiring an individual to vote false for AC

whenever the individual votes true for A. 1In a decision

making context, assume a set of alternatives A = {a1, az, a3z,
ag}t. If the decision maker assigns a probability p that ag
is the preferred alternative, then the decision maker must
also assign a probability of 1-p that aj is not preferred (or
that {ap, a3, ag} includes the preferred alternative), and if
the preference for aj; changes, then the preference for {ap,

a3z, aq} must change proportionately.

Rather than examine the formal requirements imposed upon the
decision maker, it is useful to consider conditions arising
in decision making problems in which the law of the excluded
middle may not be supported. Two cases will be considered:

borderline decisions and intransitivity.

In the case of borderline decisions, a decision maker is
unable to state strict preference. For instance, a decision
maker stating that alternative A is preferred "somewhat" to
alternative B indicates that the individual is unwilling to
state that B is pot preferred to A. Probability logic

requires that if the truth value of the proposition "A is
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preferred to B" is greater than zero, then the truth value of

the proposition "B is preferred to A" must equal zero.

In the instance of intransitivity, a decision maker may
prefgr alternative A to B and alternative B to C, but then
state that alternative C is equally or more preferred than A.
To see that this violates probability logic, the following
proposition is stated:

(A > B) and (B > C) implies (C 2 A), or

PI((A>B) N (B>C)) = (C2A)] = P[(A>B) N (B>C)] +

P[((A>B) N (B>C)) N (C2Aa)]
1 =P[((A>B) N (B>C)) N (C2a)]
1 #P[(A>C) N (C2a))

therefore, A > C.

Having shown that probability logic supports neither
borderline cases nor intransitivity, it remains for fuzzy set
operations to support these conditions. For the borderline
case, consider again the condition A > B indicating that
alternative A is preferred to alternative B. 1In probability,
if A > B then B > A. To examine fuzzy set operations, let
R(x) equal the proposition

H(A > B) >0
that is, A is preferred to B to some degree greater than
zero, and let U(y) equal the proposition’

R(A £ B) 20
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that is, A is less or equally preferred to B to some degree
greater than or equal to 2ero. Of interest then is the
examination_of the proposition that

KH(x) implies pu(y)
or, if (A > B) is true to some degree then (A < B) may be
true to some degree. Using the fuzzy implication operation,
H(x) implies K(y) is rewritten as

H(x implies y) = min(1l, 1 - H(x) + p(y)).
To test if borderline cases are permitted under fuzzy sets,
it is necessary to when when H(x implies y) is false, that
is, M(x implies y) = 0:

O =min(l, 1 - p(x) + H(y)).
Since 0 # 1, the cases are restricted to

0 =1-pu(x) + n(y) or,

pix) =1 + H(y).
There exists only one case where this equality will hold:
when pH(x) = 1 and H(y) = 0. This condition is a special case
of fuzzy sets and is equivalent to classical two-valued
statements. The interpretation is that only when it is
completely certain that A is preferred to B (R(x) = 1) can it
be said that B is not preferred to A to Some degree (U(y) =
0). 1In all other cases, if there is some uncertainty
regarding the preference of A, then B may be preferred to A

to some degree. Thus fuzzy logic Supports borderline cases.
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For fuzzy sets to permit intransitivity it is necessary to
examine comparisons between fuzzy numbers. Dubois and Prade
(1980) define the degree of possibility of M 2 N where M and

N are two fuzzy numbers as

V(M2N) = sup min(py(x), Hy(y))
X,y: x2y

To illustrate this definition, consider the fuzzy numbers
defined in Figure 4. Fuzzy number A might be interpreted as

"approximately 3", number B "approximately 4", etc. The

.8 p(a>p)

-------------------------------------------

O =

Figure 4. Intersection of Fuzzy Numbers A and B

question of "which is the greater, A or B?" is answered in
the following manner. The degree of possibility that B 2 A
is equal to unity as the largest support for A and B is unity

where y 2 x. The next question is whether it may be said
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that some possibility exists that A > B. 1If v (A>B) can be
shown to be greater than zero for any case then it must be
concluded that fuzzy set operations allow some degree of
intransitivity. The degree of possibility that A > B is
defined as

v(A>B) = hgt(A N B)
which in Figure 4 is the support of the intersection of A and

B, which is greater than zero.

Restrictions on Truth Functionalitv.

It was shown that unconstrained fuzzy sets do not support the
law of the excluded middle (P(x U x¢) = 1) . It is not yet
demonstrated that probability logic will support fuzzy logic,
that is, the truth functionality requirement. It may be
inferred from the derivation of fuzzy logic using the
postulate p(x = y) = 1 OR p(y = x) = 1 that connectives

(P(x N y) or p(x U y)) in fuzzy logic are a function of
individual truth values. It was shown that p(x N y) = p(x)
or p(y). For probability logic to support fuzzy logic, it
must be able to define connectives with respect to individual
valuations on the elements (x, Y) . Taking the law of the
excluded middle as the probability defining axiom, it can be

shown to be inconsistent with truth functionality:

P(x U x¢) =1

but, P(x N x°) P(x) + p(x®) - p(x N x°)

therefore,
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P(x) + p(x°) - p(x N x°) = 1.
But, p(x°) =1 - p(x)
therefore,
P(x) + 1 - p(x) - p(x N xS) =1
p(x N x¢) = 0,

which is the law of contradiction.

The law of the excluded middle thus cannot be expressed as a
function of only p(x) and p(y) and is therefore inconsistent
with the truth functionality requirement of fuzzy logic.
This implies that fuzzy sets can support all the axioms of
probability while probability is constrained from supporting
all axioms of fuzzy logic. Rather than being similar, but
independent, logics these results show that probability is a

special case of fuzzy logic.

There may exist conditions under which truth functionality is
viclated. The derivation of fuzzy logic by Gaines showed the
operators for conjunction and disjunction implied to be
minimum and maximum, respectively. That minimum and maximum
are the only possible operators under truth functionality
restrictions is shown by Bellman and Giertz (1973) and

discussed earlier.
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Conclusjions.
This chapter introduced the operations of fuzzy sets and
fuzzy logic'that are pertinent to the development of a method
for decision analysis and evaluated these operations relative
to classical set operations and probability logic. It was
shown that fuzzy sets are related to classical sets in that
classical sets (and probability) are special cases of fuzzy
sets. This has several implications. First, if
probabilistic techniques are too restrictive for the problem
to be solved, then fuzzy sets becomes a logical candidate for
the solution of the problem. Because probability is only a
special case, there is no guarantee that other logics besides
fuzzy logic may not be applied. Second, while the theory of
fuzzy sets is less restrictive in its assumptions, it still
places demands upon the decision maker that may or may not
reflect human behavior. This issue will be examined in
Chapter Three. The third implication is that while the
theory may be appropriate and desirable, it is important to
test the theory through application. Several methods of
application will be examined in the next chapter. The first
contends to incorporate uncertainty in a manner similar to
fuzzy sets. The second method is based directly on fuzzy
sets and fuzzy set operations. The third method is proposed
as a possible candidate for decision making problems. Based
upon fuzzy logic, its development is given in the next

chapter.



CHAPTER TWO

METHODOLOGICAL FRAMEWORK

To apply fuzzy set operations to decision making problems, it
is first necessary to establish a methodology. 1In this
chapter, several possible methods are considered. 1In
addition to approaches based upon the Bellman-Zadeh (1970)
model of decision making, the method proposed by Tsukamoto
and Terano (1975) is described in detail. Tsukamoto and
Terano's approach uses fuzzy logic operations introduced in
the previous chapter. The method, based upon the multivalued
logic of Lukasiewicz, is possibly of importance for several
reasons. First, several investigators (Zadeh, 1975;. Gaines,
1978) have maintained that methods based upon fuzzy
implication may more closely model human decision behavior
than traditional techniques of decision theory including
probability theory. Second, the method developed by
Tsukamoto and Terano has the feature of providing bounds on
the uncertainty of a conclusion where other methods provide a
single value. These other methods are shown in a later
section to appear less sensitive to uncertainty in a decision

problem.

The next portion of this chapter will discuss fuzzy set based

and related methods. The operations of fuzzy implication are
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then examined in greater detail with respect to both
classical and fuzzy logics. Later sections discuss desired
characteristics of a fuzzy logic algorithm in the context of
decision making, the solution algorithm by Tsukamoto and
Terano is presented, and the derivation of a proposed
extension of the algorithm to resolve inconsistencies is

given.

Saaty's Method.

The method for decision analysis proposed by Saaty (1977) and
in the context of fuzzy sets (Saaty, 1978) is based on the
use of scaling ratios to determine relative priorities of
elements of a decision problem evaluated within a
hierarchical structure of objectives, criteria, and
alternatives. The relative priorities constitute a matrix of
pairwise comparisons indicating the relative dominance of one
element over another with respect to a criterion against

which they are compared.

The elements may be denoted Aj,..., Ay and their weights

Wi1;...sWp. The pairwise comparisons form a matrix (Figure
5). 1If the matrix is multiplied by the transpose of the
vector wl = (wy,...,wy) the vector nw is obtained. The

problem may be expressed as:

Aw = nw.
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In application the matrix A exists a priori and it is desired
to find w, requiring the solution of the system (A-nI)w = 0.
The system has a nonzero solution only when n is an
eigenvalue of A. In this case the matrix A has a rank of one

and all eigenvalues except one equal zero. The remaining

eigenvalue, denoted Apsy equals n. If the matrix A is
consistent then ajjajk = ajk- If the matrix is not

consistent then Apzx > n.

The construction of a consistent matrix is important to the
validity of results obtained from Saaty's method. While
perfect consistency between pairwise comparisons (which is
equivalent to transitivity among preferences) is not an
absolute requirement, large perturbations from a consistent

matrix yield unreliable results (Saaty, 1977).

Al Ay ... AL
Wy w1 w1
Aq — _ cee—
w1 w2 Wn
Wo wo Wo
A> — —_ e
A= W1 Wo Wn
Wn Wn wn
Ap —_— - el
w1 Wo Wn

Figure 5. Pairwise Comparison Matrix



62

To derive the ratio scales used in defining the pairwise
comparison matrix A, Saaty uses a scale valued on the range 1
to 9 representing judgments between elements in a particular
level of the heirarchy with respect to an element in a higher
level of the hierarchy. The suggested scale is:

1: element i is equally important as element 3,

3: element i is weakly more important than element 7,

5: element i is strongly more important than element j,

7: element i is demonstrably more important than i,

9: element i is absolutely more important than J.
Even numbers (2, 4, 6, 8) represent intermediate values if
necessary. Inverse values (e.g. 1/3) reflect a valuing of 3

greater than 1i.

The problem of combining priority vectors (Saaty, 1978) is
one of obtaining a single vector for the highest level in the
hierarchy from the cumulative effects in the lower levels of

the hierarchy, through successive weighting and aggregation.

Let Lx denote the kth level in the hierarchy with h levels.
Lx+1 denotes the level below Ly, and Ly_; the level above.
Assume that Y = {y1, y2/-..-s Ymk} € Lx and X = {xX1, X2,...,
Xmk+1} € Lk+1- Assume further that there exists an element
Z € Lx-1 which ensures thét the vector Y does not represent
the top level of the hierarchy. Priority functions are

defined as:
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wy: Y— [0,1] and Wy X (0,11 J=1,2,..., m.
The priority function of the elements in X with respect to z,
denoted w,w:. X— [0,1] is defined by

my

W(xi) =X wWys(xi)wy(y;) 1 =1, 2,..., M-
j=1

The influence of y on the priority of x is weighted by
multiplying it by the importance of y with respect to z.
Letting B = bij = Wyj(xi)r Wi = w(x3j), and Wj' = w,(y3j) then
the above equation becomes

My
Wi=2bijo' i=1, 2,..., My 41 -
j=1

In this manner, the priority vector of the lowest level with

respect to the highest element b is given by

W = ByBn_1...BoW'".

A simple three level hierarchy could be defined to determine
the priority vector for a set of alternatives given a set of
criteria in the upper level and the sets of weights obtained
by evaluating the relative dominance of the alternatives

relative to each criterion and the relative priority of each

criterion.

The method for obtaining the priority of a set of
alternatives using Saaty's technique is fundamentally

different from methods of fuzzy sets. Where in fuzzy set
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methods the supports for an alternative are determined by
extreme values in the sets defining performance, the supports

in Saaty's method are a multiplicative weighting.

Saaty's method is applied to hierarchical decision problems
of the nature illustrated in Figure 1. For each evaluation
criterion the decision maker is required to rate the relative
dominance of one alternative over another using a scale such
as the one given earlier. It is not required that this
particular scale be used exclusively (several variants are
used for different problems in Saaty (1977)). Saaty does
suggest that the scale be able to "represent as much as
possible all distinct shadés of feeling that people have"
subject to human limits to simultaneous comparison, and that
there exist a unit difference between successive scale values

(Saaty, 1977).

The use of Saaty's method in the experiment described in
Chapters 3 and 4 is illustrated through the following
example. Given a decision setting in which four alternative
solutions have been identified it is desired to determine the
best alternative by comparing their performance with respect
to a set of evaluation criteria. Saaty's method dictates
that the decision maker make pairwise evaluations of
alternatives with respect to each evaluation criterion, and

make pairwise comparisons of each criterion with respect to
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the overall goal of choosing the best alternative available

to resolve the decision problem.

Each group of pairwise comparisons form a matrix. For
example, for the first criterion the matrix of judgments
about the performance of the alternatives elicited from a
decision maker is:

1 2 3 4

1 [ 2 4 1/3 ]
2 | 5 173 |
3 | 1/5 |
a 1

Comparing alternative 1 with alternative 2 for this criterion
the decision maker has assigned a value of 2 which is
interpreted as alternative 1 may be preferred to alternative
2. 1In comparing alternatives 3 and 4 the decision maker
assigned a value 1/5 indicating alternative 4 is probably
preferred to 3. The particular scale used in the experiment

is given in Appendix 1.

The matrix is completed as described before resulting in:

Cl: 1 2 3 4

1 1 2 a4 1737
2 | 1721 s 173 |
31 174 175 1 175 |
a L 3 3 s5 1 |
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The remaining matrices are:

c2: 1 2 3 4
1 1 1 173 1]
2l 1 1 15 1 |
3} 145 1 176 |
4 L 1731 6 1 ]
c3: 1 2 3 4
1 1 4 174 5 ]
2 | 141 175 175 |
31 ¢ 5 1 6 |
4 L 155 176 1
ca: 1 2 3 4
17 1 1 1,7 ]
2]l 1 1 1/a |
3 7 4 1 1 |
4l 1741 8 1 ]
Criteria:

1 3 4

2
1 1 1/8 4 ]
1 1 1/6 4 |
8 6 1 1/7 |
1/4 1/4 7 1 |

_ow N
= = "

Computing the eigenvector of the maximum eigenvalue for each
of these matrices yields:

Cl: [ .2468, .1877, .0623, .5032 ]

c2: [ .2038, .1043, .3326, .3593 ]

c3: [ .2632, .0558, .5633, .1177 ]

C4: [ .2336, .0980, .2996, .3689 ]

Criteria: [ .1824, .1839, .3298, .3039 ]
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The final vector of weights for the preference of the
alternatives with respect to the criteria and the overall

objective is given by:

W(a;) = CiqWy-

1

™M

J

For alternative one the final weight is:

A; = .2468(.1824)+.2038(.1839)+.2632(.3298)+.2336(.3039)

= ,2403.
Likewise:
Az = .10
A3 = 35
A4 = .31.

The calculations to obtain the eigenvectors and final weights
in the decision experiment were performed by the computer

program CHOICE described in Mar et al. (1983).

z ision in
Many techniques for decision making using fuzzy sets are an
outgrowth of Bellman and Zadeh (1970). The authors define
decision making in a fuzzy environment as a process in which
the goals and/or constraints are fuzzy. That is, the exact
formulation of goals and constraints are uncertain or

flexible.

Bellman and Zadeh define a decision as a fuzzy set resulting

from the intersection of the goals and constraints. The
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source of this definition arises from the definition of a
decision as a solution that satisfies both the set of goals
and the set of constraints. It is claimed by the authors
that the goal and constraint sets may be mapped to the same
space. Thus a decision, in the Sense of defining a feasible
Space, is that which satisfies both the goals (or performance
criteria) apnd the constraints:

D = Gy, and Go, and -+-Gp, and C;, and Co, and e .Cpq
from which is derived the definition of the decision space as
the (fuzzy) intersection of goals and constraints (where D

equals the optimal decision, G; = set of goals, and C; = set

of constraints) .

The goal and constraint sets may be mapped to the same

decision space when the goals are fuzzy in much the same
manner as goal pProgramming formulations. To illustrate,
consider a water quality management problem adapted from

Loucks et al. (1981). A stream with three monitoring sites

receives wastes at sites 1 and 2. Let Q; represent the post-
treatment water quality at site i, and dj the pre-treatment
water quality. Wi represents the unit waste load at site 1i,
and a@j4 the improvement in quality at site i per unit waste
removed at site j. Finally, Xi represents the fraction of

waste removed at site i at a cost of c; per unit Xq.
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Assuming there is a mandatory water quality level at site 3,
and the objective is to meet the quality level at minimum
cost, then the problem is to find the level of treatment at
sites one and two that meet the requirement at least cost.
The problem may be formulated as a linear program as

MINIMIZE Z = c3xX1 + CyX»p

Subject To

q2 + azwixy 2 Qp

q3 + aziwix; + azawyxp 2 Q3
The bounds of waste removal operations may be added as:

X1, %2 2 0.3

X1, X2 £ 0.95
Now assume an additional objective is added to the problem.
If the water quality targets are replaced by a budget (b)
then the objective may become one of finding the level of
treatment at sites one and two that maximizes the water

quality at sites two and three, within the budget limits.

There now exists a problem with two objectives (G1, and Gj)
and a set of constraints (Cy, Cp, ..., Cn). It may be that
these goals are somewhat flexible or fuzzy. The problem may
be expressed as a goal programming problem by defining levels
of acceptable deviation from the stated goals (targets). In

general, the goal programming model is given as

p
MIN X | Fij(x) - T4l
i=1



70

ST

where

T; = a target or goal identified for the ith objective
F; (x) = feasible region for i defining range of x
P = the number of objectives.

The equivalent linear program may be expressed as:

p

MIN Zz = ¥ (dp; + dnj)
i=1

ST

Fij(x) - dp; + dny = T;

dpj, dnj 2 0

where

dp; = positive deviation from the goal, ith objective

negative deviation from the goal, ith objective.

dni

Referring to the example problem, the goal programming
formulation for the simultaneous solution of the two
objectives may be obtained

MIN dp;; + dnj; + dpjz + dnjy + dpsy + dnj

ST

Q2 - dpyy + dny; = Ty3

Q3 = dpyz + dnmyp = Ty

C1¥X1 + Coxp — dpp + dnp = To

(plus remaining original constraints)
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The important feature to note is that the original objectives
are now formulated as constraints, with the objectives being

flexible (or uncertain). It is in much the same manner that

Bellman and Zadeh state that fuzzy goals may be mapped to the
Same space as constraints in a decision problem. To complete
the illustration, the fuzzy pProgramming formulation of

Zimmerman (1975) may be considered.

Suppose a given target (T;) of an objective is desired to

allow some latitude, expressed as Ti* = T; where Ti* is the

fuzzy target and = is interpreted as "approximately equal
to". 1In a non-fuzzy formulation the lack of latitude may be
expressed as

(1 if 7% = T,

Ari* = Ty) =
lo if 75% & 7,

where X(Ti* = Tij) is interpreted as a measure of the degree to

which the statement is satisfied.

In a fuzzy model A(T;* = Ti) is allowed to assume a continuous
range of values returning unity if l(Ti* = T;) and returning
less than unity if A(Ti* # Ty). Assuming a linear

relationship between the target and deviations from the

target, A(T;* = Ti) might be defined as:
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1 if Tyx = Ty
l [T3* = T;l
A(Ti* = T3) = {1 - if T;-d € Ty* € Ty +d
. | ;) |
Lo if Tj+d < T3* < T;-d

(where d represents some maximally permissible deviation).
Refering back to the example problem, a goal of obtaining

maximum water quality at site two may be written as:

aziwixy — (T1; + q2)
X(Qz ) = 1 -

dii

For example, if the target quality level at site 2 (Tgyp) is 6

mg/l for dissolved oxygen and the maximum allowable deviation

from the target is 3 mg/l, then for a quality level of 4,
A(Qy) = 0.33. For a quality level of 2, A(Qy) = 0, and for

T*qp = 6, A(Q) = 1.

Since the maximal value of A(T*; = T;) is obtained when the
target is met, then maximizing A across all goals becomes the

objective function of the fuzzy linear program and A(T*; = T;)

enters the constraint set.

The fuzzy linear programming model for the multiobjective

problem may be written as:

p
MAX X A
i=1
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ST

A (Gy)
(plus other constraints)

where}ﬁ(Gi) is the fuzzy equivalent of the multiple goals
(objectives) of the problem. Here, as in the goal
programming formulation, the fuzziness in the goal set
permits the transformation of the goals into equivalent

constraints.

Referring back to the fuzzy characterization of the goals and
constraints, the fuzzy decision set will be valued on the
degree to which an alternative simultaneously satisfies all
the goals and constraints. A support of unity would indicate
that an alternative fully satisfies all goals and
constraints, and a Support of zero indicates that at least
one goal or constraint was not satisfied. Given that the
decision problems of concern here include conflicting
objectives, the Support for any decision is likely to be

somewhat less than unity.

The selection of the optimal decision D* is derived from the
conclusion that the ideal solution would be that which fully
satisfies the goals and constraints (i.e. Hp* (x) = 1).

Therefore, from the set of decisions, the optimal decision is

that which is closest to having a support of unity:

Hp* (x) = MAX( pp(x)).
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Thus the optimal decision may be obtained as

Hp* (x) = MAX [MIN( Mg(x), MHc(x))].

A significant assumption of this approach is that while the
goals and constraints of the problem may be fuzzy, the
problem (or the system being modeled) is not. That is, it is
assumed that the optimal solution is deduced from the given
set of goals and constraints. This precludes the possibility
that some important constraint may not be considered in the
model. Methods based on this fundamental approach defined by
Bellman and Zadeh have been proposed by many authors (Yager,

1978, 1981; Znotinas and Hipel, 1979%a, b).

Jager's Method.
Yager (1981) describes the decision problem as a mapping from
the set of alternatives X into the set of objectives or
criteria A:

D(x) = f [A1(x), A(x),... Ap(x)] x € X
where Aj(x) indicates some degree of satisfaction of

criterion Aj; by alternative x. The solution proposed by

Bellman and Zadeh and adopted by Yager results in a pareto
optimum solution for the finite set of alternatives

considered.

Yager extends the maximin criterion for decision making to

encompass decision problems with unequal objectives. This
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method is based on a linear ordering of preference. Yager's

approach is to define Y = {Aj, Aj,... Ap} as the set of
criteria to be satisfied, and {X} as the set of alternatives.
Aj (x) is defined as above. G is defined as a fuzzy subset of
Y in which G(Aj) = bj indicates the ordinally valued
importance of the criterion A;. In this setting

D(x) = M(A;(x), bj) and M(A;(x), by) and ...M(A,(x), bp)
where M(A(x), b) indicates the satisfaction of criterion A

modified by importance b.

Bellman and Zadeh (1970) and Yager (1978) define the
modification of A by b as AP. The use of AP simply provides a
nbn—linear transformation since the importance b will be
valued on the interval [0, 1]. Thus, if a criterion is
unimportant, b = 0 and ab = 1 ensuring that the criterion
will not constrain the decision. As a criterion becomes more
important, the value of AP decreases, increasing the
possibility that the criterion A will constrain the solution.
If the criteria are equally important, b = 1 and Ab = a
reflecting the unweighted criterion. The effect of this
scaling for selected values of A and b is given in Figure 6.

The decision model for Yager's approach may now be defined as

D = (blc (W Al) M (bzc (W A2) N ...N (bnc \ An)

n
D =N (b U A
i=1

[

The optimal decision D(x*) = MAX D(x) x € X.
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Figure 6. Criterion Weighting Operation
for Yager's Method

Yager (1978) suggests that the criterion weights be obtained
through the use of Saaty's method. He does not indicate how
the remaining weights (i.e. the supports for the alternatives
with respect to the criteria) are obtained. 1In this study,
two approaches are used. The first entails pairwise
comparisons between alternatives and using the eigenvectors
from each level of the hierarchy using Saaty's scaling
method. The second approach uses direct assignment of
weights for each alternative with respect to each criterion.

These approaches are discussed in Chapter Four.

To illustrate the use of these weights in Yager's method,

consider the example used in the section describing Saaty's



77

method. From an evaluation of a problem with four criteria
and four alternatives, the following sets of supports were

obtained.

With respect to criterion 1, the supports for the certainty
with which each alternative satisfies the criterion are:
Ci: [ .251A7q1, .191A,, .06|A3, .50124 ].
The remaining supports are:
Co: [ .201A,, .101A,, .33|Ag, .36|§4 ]
Cz: [ .26]A;, .05|Ap, .56[A3, .12|A,4 ]
Cq: [ .231RA3, .101Ap, .301A3, .37]R4 ].

And the weights for the criteria are:

bij: [ .18]Cy, .18Cp, .33|C3, .30IC4 J.

The modified supports for the alternatives given the weights

for the criteria are:

Cx; = abj,

C*; = [.25-18, 1918, _0g-18,  s50-18)
= [.78, .74, .60, .88]

C*x, = [.75, .66, .82, .83]

C*3 = [.64, .37, .83, .50]

C*, = [.64, .50, .70, .74].

The effect of the weighting for the first criterion is to
increase the weights for the set of alternatives because with
a support of 0.18 the criterion is deemed not very important.

Thus any of the weights for alternatives for this criterion
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are less likely to constrain the solution. If this criterion
had been weighted highly (e.g. .9) then the alternatives
would have more closely retained their original weights and

alternatives with low supports (e.g. A3) might have

constrained the solution.

The solution is:

Min(Ay) = [.64, .37, .60, .50]

Max(Min(Aj)) = .64.
The first alternative would be the alternative of choice,
although all alternatives are closely weighted. For an
alternative to be strongly supported it must be weighted
highly for all important criteria. To be rejected, it must
be weighted low for at least one important criterion. A
computer program for calculating the solution with Yager's
method, assuming the existence of supports, is given in

Appendix 2.

Another characteristic of the maximin criterion for fuzzy
decision making requires consideration. The performance of
an alternative with respect to a goal, and the goal itself,
may be defined as fuzzy sets representing uncertainty in
evaluation. It would be expected that this uhcertainty would
directly affect the choice of alternatives. It is shown
here, however, that the maximin criterion does not use fully

the uncertainty described in the model.
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Assume there exists a fuzzy set defining some measure of, for
example, performance (Figure 7a). Assume also an alternative
with performance level x. It is seen that the support for
the alternative being in the fuzzy set "performance" is
unity. Now assume that the set "performance” is redefined to
reflect greater uncertainty in possible values (Figure 7b).
In this example the support for the alternative

(MAX (MIN(C,A))) remains the same. The support does not
reflect the greater uncertainty induced in the solution from
a change in the structure of the model. 1In fact, it is
possible for the solution to the problem to be invariant even

though the model itself varies widely.

1.
. 8
. 6
L
. 4
.2
S I I S R B R N D D R B |
*
X
Figure 7a. Support for an Alternative

in the Fuzzy Set "Performance"
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Figure 7b. Support for an Alternative

in a Modified Fuzzy Set "Performance"

This suggests several possible sources of difficulty in using
the fuzzy formulation of the maximin criterion for decision
making. The operations for considering unequal criteria do
not appear to be strongly supported in theory and the method

results in a certain solution regardless of the uncertainty

inherent in the model.

Fuzzy Logic Based Method.

As an alternative to the Bellman-Zadeh model for decision
making, a method based on fuzzy logic operatiéns is now
described. To support the description, it is necessary to

provide further discussion on logic operations.
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Within classical single valued logic the propositions of
modus ponens and modus tollens are of interest. In the
context of decision making modus ponens describes the
deduction of a conclusion (the selection of an alternative)
from the premises defining the preference for a criterion and
a relation between an alternative and a particular criterion.
Modus tollens is important in the context of the resolution
of inconsistent solutions. This is discussed in more detail

in a later section.

As described in Chapter One, implication operations are based
on the concept of set inclusion, that is, a set may be a
subset of another. If A is a subset of B, then A implies B
(A — B). That is, if A implies B and A exists then it must
be concluded that B also exists. Attaching the assumed truth
values to these statements the following is obtained

If p(A > B),= l, and p(A) = 1, then p(B) = 1.
The correllary A implies B and B exists, therefore A exists,
is not permitted in classical logic. Modus tollens, however
permits a conclusion to be drawn about not A given not B and A
implies B, that is, if A implies B but B does not exist, then

A does not exist either or, using truth values, if p(A—B) = 1

and p(B¢) = 1, then p(Ac) = 1.
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The truth values of these propositions are restricted to
binary (0,1) values. In multivalued or fuzzy logic,
continuous truth values on the interval [0, 1] are permitted.
To ensure that the fuzzy implication operator supports modus

ponens and modus tollens, its properties are examined.

In classical single valued logic, the truth value of the
propositions must either be true or false. If the truth
values are uncertain, that is, if A may or may not imply B,
or A may or may not be known to exist, then the application
of fuzzy logic is warranted. Thus there may exist a mapping
of truth values for the propositions in the interval between

0 and 1.

The operator for implication used is that by Lukasiewicz (see
Chapter One):
a =& b = min(1, l-a+b), or, using fuzzy set notation,
HB(a = b) = min(1l, 1 - p(a) + p(b)).
The characteristics of this operator are such that if p(a) <
L (b) then the support for p(a — b) is unity. Also, H(a — b)
will equal zero only when H(a) equals unity and p(b) equals
zero, that is, when the support for the proposition A and the
disbelief of proposition B are certain. This case implies
that A cannot be a subset of B and, as shown before, echos

the results of classical logic and implication.
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It is of interest to examine the properties of the fuzzy
implication operator with respect to its support of modus
ponens and modus tollens. Table 7 displays values of the

proposition b that may be inferred from the propositions

a = b and a. Recall that in classical implication, if

a = b is true (H(a = b) = 1) and the proposition a is also
true then b is also true (u(b) =1). If a — b or a are not
true then b is not true. Under fuzzy sets either the
proposition a — b or the proposition a may be only partially
true. Table 7 (Bandler and Kohout, 1985) illustrates

possible values for the proposition b under these conditions.

Table 7. Modus Ponens Values of B For A and A 93 B € [0,1]
a 0. .1 .2 .3 .4 . D .6 .7 .8 .9 1.
a—b

b
0 0
1 0 1
2 0 1 2
3 0 .1 2 3
4 0 1 .2 3 4
5 0 1 .2 3 4 5
6 0 1 2 .3 4 S 6
7 0 1 2 .3 4 5 6 7
.8 0 .1 .2 .3 .4 .5 '.6 .7 .8
.9 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

1. (0,130.1,131.2,110.3,1)(.4,11[.5,11(.6,1] (.7.1] [.8,1) [(.9,1) 1
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In the extreme cases (indicated in bold type) it is seen that
the fuzzy implication operator supports modus ponens in the
same manner as classical implication. The table for modus
tollens is the same except that table values are for the
negation of a (l-a), and the column values are for values of
the negation of b (l1-b). Note however, that truth values of
1 for a—b and b®, fuzzy implication allows the possibility
that ac'can be inferred; something not possible in classical
implication. This result is used to improve inconsistent
solutions arising from Tsukamoto and Terano's (1975) method

described in a later section.

The selection of an alternative may be perceived as one of
testing a series of rules. For example, a rule may state:

If alternative A is preferred with respect to criterion 1

and alternative A is preferred with respect to criterion 2

then select alternative A as the alternative of choice.
The rule may be interpreted as an implication proposition
[C1(A) and Cy(A) — c*(A)]. 1If the rule is true and the
premises are true then it may be deduced that the conclusion
is also true. In the context of fuzzy decision making,
however, there may exist uncertainty in the truth values of
both the premises and the rules. Thus the decision problem
is one of determining the greatest certainty that may be

deduced about a conclusion (alternative i is the alternative



85

of choice) and examining the conclusion with the highest

degrees of certainty.

In general, a rule of the type above may be expressed as (IF
A THEN C), that is, if an alternative is preferred, then some
criterion must have been satisfied. This rule may be
expressed as a relation on the sets of alternatives and
criteria. Mamdami et al., (1975) propose an expression of
the form:

If A then C = A*C = R
where A*C is the fuzzy cartesian product

A*C = min(a, c) Vae A, ce C.
For example, let

A=1[.1, .3, .7, 1]

¢c=160, .5 .1, .8].

Then
A*C = min(a,c) = R =[0o.1.1 .1]
lo 3.1 .3]
lo.s.1.7]
Lo 5.1 .81

Before proceeding, further interpretation of the relation R
is warranted. In the context of decision making, R may be
interpreted as an aggregate measure of a decision maker's
certainty with which an alternative has satisfied a

particular criterion. That 1is, Rj 5 is a measure of the

degree to which alternative i satisfies criterion j. In most
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problem settings, the relation R would be estimated directly
through elicitation of values from the decision maker.

In the context of the decision experiments described in
Chapters 4 and 5 the relation R is defined from either direct
assessment of each alternative with respect to each criterion
or through pairwise comparisons using elements of Saaty’'s
scaling method. Using the example described in the previous
sections on Saaty's and Yager's methods the relation R is

defined as:

R= [.25 .20 26 23]
| .19 .10 .05 .10 |
| .06 .33 .56 .30 |
L.50 36 .12 371

Since the values for A are sought then in addition to the
relation R, the set C is also required. The set C may be
interpreted as a measure of model completeness, that is, C
represents the certainty or importance of the criteria

relative to the objective of selecting the best alternative.

Given R and C the problem is to find the possible values of A
such that:

C=R°A
where C is the set of supports for the certainty of the
criteria, A is the set of supports for the certainty of

satisfaction of all the criteria by the alternatives, and
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R o A is the max-min relational composition between R and A:

m
Cj=U,(rijﬂaj) =1, 2,..., n.
i=1

The basis of the problem is the solution of the inverse of

the above equation, that is, to solve for the aj. Solutions

are discussed by many authors (Sanchez (1976); Pappis and
Sugueno (1985); Tsukamoto and Terano (1975)). There are few
differences between the methods. Tsukamoto and Terano begin
to address situations in which existence conditions are not
met. For this reason the method proposed by Tsukamoto and

Terano (1975) is used here.

Tsuka:.oto and Terano's Method.
In solving for this inverse problem, Tsukamoto and Terano
define two propositions reéarding the relationship between A
and C. The first:

P,: Cy implies ( 3i (Riy and A;)), 1 < j < n,
may be interpreted as stating that if the support for a

criterion Cj exists, then from the relation R and the set of

alternatives A, support for at least one alternative related

to cy exists. This proposition in effect states that there

may be no irrelevant alternatives. The second proposition:

Pij: Ai implies C], 1 <ic< m, 1 < ] < n,

simply formalizes the rule "IF A THEN C" discussed in the

beginning of this section. This proposition does possess a
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characteristic of further interest. The proposition in
effect states that if an alternative is selected, then it is
implied that. some criteria have been considered. This
proposition, (along with the first proposition) does not
preclude the possibility that an important criterion has not
been considered in the analysis. The identification of such

an occurence is discussed in a later section.

The first proposition is readily translated into a fuzzy set
operation. First, the proposition is assumed true which then
requires
cy £ ( 3i (rj4 and a;j))
m

(W (rij M ai)
i=1

IA

€3

cy € max; (min (r;y, aj)) 1 £ 3 = n.
Since there is no restriction on the second proposition, aj
is constrained by the degree to which cy may be inferred from
Rij' that is:

aj £ (tij3 = cy)

a; < minj (1, 1 - tij + cj)

where the tj4 are the fuzzy valuations of the rule (A implies

C).

Given Cq/ Rijr and Tijr the aj; that satisfy both equations

are sought. The equation associated with proposition Pj5
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provides an upper bound measure on the certainty with which
an alternative satisfies the criteria. The equation
associated with the proposition P; yields the lower bounds on
the alternatives, or a measure of the degree to which an
alternative remains unconfirmed by the information. This

equation, as stated before, requires an inverse solution.

The current equation is of the form C = R o A, but it is

desired to solve the equation A = Rl o C. Tsukamoto and

Terano offer a simplification of the solution algorithm
proposed by Sanchez. To solve the equation

Cy S maxj (min(rjjy, aj))
for a,

aj 2 maxy (min(rjy, c4)),

two compositions on the sets R and C are first defined:

( C5 if Ty > C5
Tjj Wcy = { [Cj, 1] if riy = Cj
%] if rij < Cj

r [O, CJ] if rij > Cj

A
QO

rij (0] Cj =<
Lz if rij

The first composition defines the matrix uj4 = rijy © cy, and

represents the possible outcomes from the imﬁlied partial

equation (min(rij, Cj)). Since R defines links between

criteria and alternatives, its elements are valued either

zero or unity. Thus if rij4 < ¢4, rijy must equal zero and
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min(rj4y , c4) = 0. If rj§ > cy then ri4 must equal unity and
min(rij, Cj) = cJ. If rjiy = c§ = 0, uj§ remains undefined
and is valued [0,1]. Finally, if rjy = cy = 1 then both

elements are known with certainty and ujy = 1.

The source of the second composition defining the matrix Vij
is less clear. If rj4 > C then Vig = [O,Cj] which appears
to be a measure of possible disconfirmation. The same
interpretation seems to hold if rjj < cj. It is shown here
however that this composition is actually not used in the
algorithm and need not be considered further. Tsukamoto and
Terano define a third matrix

( uiy for 3i e { i | ujy # 0}

Wijk = {

L viy for other i's
There are normally many possible matrices wi4 obtained from
this definition and k represents an index of these possible
solutions. In defining the Wiy, only if uj4y = 0 does wjy =
vij. But from the definitions of the matrices U and V, uj4 =
0 only when rj4 < c¢j, and under the same conditions, Vij

would also equal zero. The interval [0, Cj] is never used in

the algorithm.

The solutions for aik are given by Tsukamoto and Terano as
max4 (inf(wi4(k'))) < a;k < miny (sup (min(l, c4y+l-tji4))),

but given the results above, may be rewritten as
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maxy (inf (uj5(k'))) S aj* € minj(sup(min(l, cy+l-t;3))),

where inf is defined as the greateSt lower bound and sup is

defined as the least upper bound.

Since it is possible to obtain a lower bound solution greater
than the upper bound for a given kth solution, the solution
is conditioned by

k'e{ k| maxy(inf(ujy(k'))) < miny (sup (min (1, cy+tl-tiy))) .
The final solution is a;k* = max{ a;X }, k € K. For the
decision experiment Tsukamoto and Terano's method is used as

follows.

In addition to the relation R defined earlier, a vector of
weights denoting the importance of each evaluation criterion
is obtained from the decision maker. For the example the
vector is:

Ccy = [.18, .18, .33, .30]
indicating that the third criterion is most important. From
the relation R (denoted as T in Tsukamoto and Terano's method

to represent fuzzy supports) the upper bound of the solution

aj < minj(sup(min(l, cy+l-ti3)))

is found:
[94 68 .85 1 ] (.68 1
aj Sminj |.99 98 97 .74 | = |74 |
1 1 1 1 | [1 |

L68 85 1 1 ] L.68 1.
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The lower bound of the solution is found from the matrix:

[.18 .18 33 .30 ]
wis = |.18.18 33 30 |
| .18 .18 33 .30 |
.18 .18 .33 .30 J.

Four feasible solutions exist, and the lower bound on all

alternatives is 0.33. The final solution is therefore:

[33<a; < .68]
| 33 < a, < .74 |
| 33 <a;c1 |
L33 < a, < .68l

Identification of Deficient Models.

It is possible that no kth solution is feasible, that is, all
possible lower bounds are greater than an upper bound of the
solution. Such a situation may occur from inconsistency in
the supports provided by the decision maker. Referring to
the table of values (Table 7) for fuzzy implication under

v modus ponens, it is seen that there exists a region in which
conclusions may not be drawn from a given range of supports
for a premise (criterion) and a rule. Another source of an
inconsistent solution may arise from an incorrect or
incomplete relation R arising, for example, from a missing
criterion. The identification of model sources (criteria)
sensitive to this result is desired. Failing to identify

such criteria leads to the conclusion that the model itself
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is deficient, that some important criterion may be missing

from the analysis.

To resolve inconsistent solutions, the concept of modus
tollens is used. 1In this setting, being unable to deduce the
supports for the satisfaction of the criteria by the
alternatives, it is desired to deduce the supports for the
degree to which the alternatives do not support the criteria.
If an alternative does not support a criterion, then
conclusions involving that criterion are unlikely to be a
source of the inconsistent solution. As yet, there is no
mechanism for identifying which specific criteria may be
eliminated from further consideration and which may be
contributing to the inconsistent solution. A proposed
mechanism is developed here. To identify these criteria, an

inverse form of modus tollens is used.

In the original portion of the algorithm, an inverse form of
modus ponens is used to derive the possible supports for the
alternatives A. In the negation algorithm described by
Tsukamoto and Terano, modus tollens (A implies C and C is
false therefore A is false) is invoked to identify the
alternatives that could not be deduced if the negation of the
supports for the criteria were used. Now it is desired to
invert modus tollens (A implies C and A is false therefore C

is false) to identify specific criteria that may not be
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eliminated as a source of inconsistency. The negation

algorithm is extended to include this operation.

To begin, the propositions Py and Pjy are rewritten to

reflect the negation operations of modus tollens and the
"inverse" of modus tollens:

Pj': Cj implies ( 3i (Rij and Aj)), 1< 3j<n

This proposition is interpreted as stating that if a
criterion c5 is not eliminated as unimportant then there must
exist at least one alternative that may not be eliminated
from consideration as the desired alternative.

Operationally, this proposition again assumes the form
Cj S maxj (min (rij, as))

which comes directly from the fuzzy operation C = R ¢ A,

The second proposition is rewritten as

Pij': A; implies Cj 1<i<€<m 1< 3j<n.
This proposition simply states that if an alternative does
not satisfy all criteria then at least one criterion is not
satisfied. If it cannot be deduced that an alternative does
not satisfy all criteria then some criteria may be satisfied.
The operational form of this proposition is

aj £ ming(1, 1 - ti45 + ¢y).
The first proposition defines the upper bound on the
solution, representing the degree of disconfirmation of the

criterion that may be induced from the disconfirmation of the
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alternative. The second equation, solved for Cyr provides

the lower bound.

It remains possible for the negation algorithm to result in
an infeasible solution, that is, the lower bounds of cy are
greater than the upper bounds. This condition may be
interpreted as indicating that no improvement in the
certainty of the alternatives is possible given the existing
criteria. It would then be implied that additional criteria

might be required to modify the decision problem.

When reviewing the characteristics of the more traditional
fuzzy decision model, it was shown that the maximin model may
not represent well changes in the uncertainty of the model.

A desirable characteristic of an alternative decision model
is an explicit representation of uncertainty in the solution
set. There may, in fact, be two types of representation.

One type arises from uncertainty in elements of a model. 1If
an alternative satisfies a criterion, but it is uncertain
that the criterion fully describes the problem, then the
support for the alternative satisfying the problem should be
less than that arising from the case in which the criterion
is known to describe the problem. On the other hapd, as
uncertainty in the structure of the model itself (in the rule
"A implies C") increases, then uncertainty in the solution

should be reflected in a broader range of possible solutions.
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That is, if the model approaches certainty, then the lower
and upper bounds of the derived supports for the alternatives
should converge. The following examples will demonstrate

that the fuzzy logic method possesses these characteristics.

The first characteristic is examined as follows. Consider a
model with two alternatives and two criteria. If the rules
are believed to be true (tiy = 1), then the certainty of the
alternatives are directly related to the certainty of the
criteria. Thus if ¢j = cp = 1, then a; = ap = 1. If cj = ¢y
= .5, then a; = ap = .5. As uncertainty in the model
increases, supports for the alternatives are altered. If the
supports for the rules are decreased to .5 and the supports
for the criteria range from unity to zero then the supports
for the alternatives range from [1] to [0, .5)]. If the
supports for the rules are reduced to zero (maximum
uncertainty in the perceived relation) then the values for
the alternatives may range on the full interval [0,1]
indicating complete uncertainty in the possibility that an

alternative satisfies the criteria.

To illustrate the second characteristic, assume a single
alternative, and that the supports for the rules are all
equal to unity. As the supports for the criteria range from

zero to unity, the support for the alternative ranges from
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zero to unity, but is never valued on an interval because the

model itself is assumed known.

Conclusions.

This chapter presented the methodological framework for
several decision making methods based on fuzzy sets or
related concepts. It was shown that fuzzy set techniques
based on the model of Bellman and Zadeh (1970) possessed
several undesirable characteristics. A method based on fuzzy
logic was presented and proposed as a possible alternative to
other fuzzy set based methods. The discussion in Chapter One
also resulted in the conclusion that for some types of
problems, fuzzy logic based methods may also be more

appropriate than probability based methods.

These discussions, however, were unable to prove
axiomatically that fuzzy logic based methods are superior to
other methods. Fuzzy logic methods may be argued to present
yet another artificial means to represent human decisions.
To demonstrate whether fuzzy logic methods possess
characteristics that better represent human decision
behavior, that is, whether it provides a better descriptive
model prior to becoming a prescriptive model, requires the
weight of empirical evidence. Toward this end, the next

chapter discusses an experimental methodology.



CHAPTER THREE

DECISION EXPERIMENT

Fuzzy sets were first proposed as a means of providing a more
adequate representation of human decision processes than that
provided by other methods (Zimmerman et al., 1984). More
specifically, Bellman and Zadeh (1970) have argued that most
decision making occurs under conditions in which goals,
constraints, and outcomes may not be known precisely. The
quantitative tools traditionally used imply that imprecision
is an outcome of randomness. It has been suggested
(Zimmerman, et al, 1984) that decision analysis techniques
employing methods anzlyzing random effects, specifically the
calculus of probability and the principle of maximization of
utility, require assumptions about the behavior of human

decision makers that are violated in most settings.

The examination of the theoretical characteristics of the
decision methods in Chapter One, focusing primarily on
probability and fuzzy sets, have shown that neither method
may be excluded from application on the grounds of
theoretical shortcomings. Probabilisti; decision analysis,
when there‘exists no prior information on the probability of
an outcome becomes a maximin analysis rather than the

averaging analysis of expectation. Fuzzy set analyses are
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based from the outset on the maximin criterion. A question
that remains, however, is if the maximin prescription is more
representative of actual decision behaviors, that is, do
fuzzy set based methods such as those described in Chapter
Two, adequately predict this behavior? This question forms

the impetus for this chapter.

There is an abundant supply of papers making the suggestion
that fuzzy set based methods are not only viable but more
desirable in representing decision problems in which
uncertainty and subjective judgment play significant roles.
The majority of examples used in these papers are
artificially constructed and simple. There is a paucity of
examples that do not assume the presence of fuzzy sets or
preferences, or use human subjects to obtain these
preferences. The work reported in this chapter represents an
effort to evaluate the claimed merits of fuzzy set techniques
under less artificial conditions. The objective of this
chapter is to design an experiment to begin to test the
hypothesis that fuzzy set based methods provide an effective
mechanism for representing uncertainty and subjective

judgment in some types of human decision processes.

An operational definition of effectiveness is required. 1In
experiments evaluating the performance of models and solution

methods, various assumptions must be made. Many comparative
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experiments assume the model completely represents the
problem to be solved. In such cases evaluation of different
methods may proceed through variation in solution quality or
through variation in the operative qualities of the methods,
for example, differences in solution time or data
requirements. In problems of the nature con§idered here,
relationships between the attributes of the decision
alternatives and problem solution with respect to a set of
criteria may not be analytically defined and, in fact, are
dependent upon the particular decision maker considering the
problem. In this case traditional experimental designs
measuring the efficacy of a method's solution with respect to
an a priori definition of a problem solution are not

possible.

When the problem setting is incompletely defined, other
approaches to evaluation have been used. One approach (e.g.
Wallenius, 1975) is to ask subjects using the method to make
judgments regarding their confidence in the efficacy of
solutions generated by various methods. Another approach is
to use a panel of judges to evaluate the efficacy of
solutions generated by different solution methods (e.g.
Volkema, 1983). A possible problem with the first approach
is that learning effects may affect solution discrimination
and in the second, that disagreement among the judges may

occur.



101

The approach to evaluation used here is a blend of these
experimental. approaches. Because of the nature of the
decision problems of interest here, a priori problem
solutions are not possible. However, as the stated objective
of fuzzy set based methods is to represent decision behavior,
the a priori (or baseline) solution is taken here to be a
ranking of alternatives obtained directly from the test
subjects. The efficacy of solutions generated by the various
methods are measured by the degree to which they produce

similar rankings of alternatives.

The experiment used here has two major components, the
experimental decision setting and the experimental design.
The design of an appropriate problem setting is given here
with a descriptiog of the experimental design in the

following section.

Problem Setting.

The problem settings used in the experiment must possess
attributes which encourage the application of subjective
judgment and yet whose solution must be feasible in the sense
that the given alternatives represent relevant solutions to
the problem in general and to the evaluation criteria in
particular. With this in mind, the decision problems should

possess the following characteristics.
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1. The problem setting should be familiar to the test
subjects so that reasonable consideration may be given
to the defined tasks. However, the problem should not
be so simple as to preclude the application of
subjective judgment.
2. The problem setting should be designed so as to
require the application of individual values but must be
constrained sufficiently to limit the range of possible
solutions.
3. The available alternatives should themselves be
unambiguous in nature and reasonably familiar to the
student test subjects so as to preclude uncertainty
arising from decision options.
4. The problem setting should contain multiple criteria
which are non-commensurate in nature so as to require
test subjects to consider trade-offs between criteria.
5. The alternatives should be selected so that it may
be clearly seen that no single altérnative may satisfy
each and every criterion to a degree greater than other
alternatives (i.e. the alternatives should constitute a
non-dominated set).

Several problem settings have been developed to meet these

desired characteristics.

The first setting is designed to introduce the nature of

problems that are of interest in this study and provide an
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example with which there is likely to be widespread
familiarity. 1In this context, the problem is one of ranking
several brands of ice cream on the basis of flavor, texture,
and cost. This problem represents the essence of complex
problems in that there exist several criteria, uncertainty
(in brand name recognition, for example), and the presence of
a non-dominated solution, at least on the basis of objective
information. The problem also clearly requires the subjects
to use their subjective judgment regarding the evaluation of

the criteria.

The second problem setting is the design of a simplified
water quality monitoring network. 1In this setting the
criteria are concerned with minimizing cost, protection of
fish species, legal considerations, and maintenance of
recreational uses. Alternatives emphasize long-term trend
monitoring, sampling uniformly in time, sampling uniformly in
space, and intensive "crisis" sampling. The alternatives
represent a range of accepted practice, but are unable to

satisfy all criteria simultaneously.

The third setting is a problem of urban flood management as
modified from Novoa and Halff (1977). The proposed criteria
include flood protection, neighborhood improvement, project
and maintenance costs, and relocation/legal considerations.

Alternatives that will be considered include no action, the
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construction of a park in the floodplain, the construction of
a concrete flood channel and the purchase of the floodplain
followed by redevelopment. These alternatives were selected
on the basis of their ability to best satisfy individual
criteria, provide a range of feasible solutions, and in the
case of two of the alternatives, were considered very closely
ranked in the original analysis by Novoa and Halff. A more
detailed description of each problem setting is provided in

the survey form (Appendix 1).

The essence of the experimental problem explored here is to
analyze the ability of fuzzy set based methods to predict, or
at least replicate, the decision behavior of an individual
Therefore, a major supposition of the study is thét it is not
yet possible to consider the generalization of a generic
decision problem to a generic decision maker. This
microanalytic approach implies that it is not necessary or
even desirable to control for variations in judgment or
opinion between decision makers. It is desirable to begin to
determine if, for an individual decision maker, a particular
method performs consistently. It is for this reason that
more than one decision problem setting was considered. 1In
general, topics covered by the problem settings are within
the scope of topics considered by the engineering student
subjects by addressing issues of environmental monitoring and

engineering design. The problem descriptions are simple
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enough that lack of particular expertise should not hinder
their analyses of the problems. By identifying discrete
solution alternatives and evaluation criteria, the model of
the decision problem is defined sufficiently. Finally, the
alternatives defined in the problem setting are reasonably
non-dominated, thus providing adequate complexity to the
decision problem to prevent trivial decision problems and
requiring the application of judgment regarding the relative

merits of the alternatives.

The general decision problem is defined as a rank ordering of
a set of alternatives by evaluating the characteristics of
the alternatives with respect to a set of evaluation
criteria. The use of ranks in this study is required due to
the ordinal nature of the input data (obtained from ordinal
scales) and statistical properties of the sample requiring
non-parametric analysis. This constraint prevents full
consideration of available information; a topic covered in
Chapter Four. The problem settings were carefully defined to
avoid introducing any implied a priori ranking of the
alternatives, or of the relative importance of the evaluation
criteria. This is the information that is desired from the
test subjects. A secondary class of information to be
obtained from the subjects is a measure of the confidence

with which the alternatives were rank ordered. How this
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information was obtained and used is given in the next

section.

The objectives of the experiment are to:

1. Formalize the comparison of various treatments of

subjective decision information through the examination

of decision making by human subjects.

2. Te;t the ability of several treatments of fuzzy

information to emulate human decision behavior in

decision problems solved through subjective judgment.
The general hypothesis is that rank orderings of alternatives
obtained through the application of the fuzzy logic method
will be positively correlated with a baseline ranking of the
alternatives obtained directly from each individual test
subject. Correlations obtained from the fuzzy logic method
are expected to be higher than those obtained from Yager's

method.

Development of a Baseline Measure.

The basis for the a priori decision set used as a baseline
for comparison with the fuzzy information treatments is the
direct assignment of ranks to alternatives given in the
problem setting (e.g. Part I, Question 1 of the
Questionnaire). To avoid biasing these baseline measures,
only the minimal possible instruction is given. To

supplement the rank orderings with information regarding the
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confidence in the ranking on the part of the test subject,
the second question requests an estimate, on a scale of zero
to one, the confidence with which each alternative might be
assigned any of the possible ranks. The identification of
confidence provides a means of comparing the strength of the
treatment derived rankings with the confidence of the
decision maker. These two questions constitute the
determination of baseline information and are repeated for

each of the three problem settings.

Determination of Treatment Measures.

All three methods for ranking alternatives require that the
problem under consideration be decomposed into evaluatior of
each alternative with respect to each evaluation criterion
(Figure 8). The three methods represent these evaluations by
way of the assignment of weights indicating, in general, the
degree of preference for an alternative, given a particular
criterion. The methodology, therefore, provides a means of
recomposing these partial evaluations into a composite
evaluation of the problem. The issue, beyond the composition
of these evaluations, is the means by which they are obtained
from the decision maker. Saaty (1977) is rather explicit in
defining the basis for evaluation as a pairwise comparison
between elements in one level of a hierarchy with respect to
an element in the next highest level of the hierarchy. Saaty

also goes so far as to suggest a scale by which the pairwise
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"Good Design™

Evaluation
Criterion

Alternative

Figure 8. Structure for Evaluation of Alternatives

comparisons might be measured. An intermediate step in the
solution of Saaty's method is the determination of a vector
of weights relating each alternative (in the context of this

study) with each criterion. Yager, in the development of a
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fuzzy set based method, explicitly uses the vector of weights
obtained from pairwise comparisons using the scale suggested

by Saaty.

For the first sample group, it was assumed that this approach
to obtaining vectors of weights was sufficient. As the fuzzy
logic method does not explicitly develop the weights used by
the method, the pairwise approach was used for all three
methods in this part of the study. There is an implicit
assumption that the weights obtained by this approach are
valid representations of the subject's judgments. A single
weight determination procedure was used for all three methods
considered because the first two methods explicitly suggest
it be used and because it was desired to control for
variation in method results as a function of variability in

the input values.

Because the first administration of the guestionnaire did not
examine the validity of using normalized eigenvectors as the
weight vectors for the fuzzy logic approach, a second means
of obtaining these weights was developed and incorporated
into the analysis. For this approach, no pairwise
comparisons are made; the vector of weights for the
alternatives with respect to each criterion is obtained
directly, that is, for each alternative with respect to each

criterion, a fuzzy support for the degree of certainty with
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which an alternative satisfies each criterion is obtained.
This form of weight assessment was introduced to test whether
the weights derived from normalized eigenvectors of pairwise
comparisons might in general be affecting the results

obtained from the fuzzy logic method.

For the baseline ranking the subjects are presented with the
problem statement and the descriptions of the evaluation
criteria and alternatives. No specific guidance is given as
to how this information is to be used in ranking the
alternatives. 1In addition to the ranking of the
alternatives, subjects are asked to indicate on a scale of
zero to one the certainty of the rank assigned to each

alternative.

The remaining two treatments are administered to the subjects
in a similar manner. In these cases, the subjects are asked
either to provide pairwise judgments (first set of subjects)
of the relative certainty that the alternatives satisfy each
evaluation criterion, and on the relative satisfaction of the
criteria with respect to the solution of the decision
problem, or to provide direct judgments (second set of
subjects) of the certainty that the alternatives satisfy each
evaluation criterion, and that the criteria satisfy the
solution of the decision problem. Both the pairwise and the

direct comparison treatments are used in each of the three
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methods under evaluation (Saaty, Yager, and fuzzy logic) to
control for variation on input data within each test group

(Figure 9).

Each subject's set of pairwise comparisons are used to obtain
vectors of weights relating the importance of the
alternatives to the each criterion and the importance of the
criteria themselves. The computer program CHOICE (Mar et
al., 1983) is used to calculate these vectors. For Saaty's
method, the vectors were combined using CHOICE to arrive at a
composite ranking of the alternatives. For an example, refer

to Chapter Two.

For Yager's method, the vectors were used as the base
comparison between the alternatives and the criteria and the
vector of criteria importance as the set of modifiers B
(Chapter Three). Yager (1978) uses non-normalized eigen-
vectors but normalized eigenvectors do not change the order
of the resulting ranks. Normalized eigenvectors are used to
maintain consistency between methods. The final rankings

were calculated using a computer program (Appendix 2).

Tsukamoto and Terano's method uses data in much the same
manner as Yager's method. The relation R, however, is
defined by Tsukamoto and Terano (1975) as a matrix

identifying the presence or absence of relatioﬁships between,
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in this study, alternatives and criteria. Each alternative
is in this case related to each criterion and the matrix is
filled with ones. The eigenvectors obtained from the
questionnaire data comprise the matrix T which is the fuzzy
support for the satisfaction of the criteria by the
alternatives. Finally, the vector of criteria importance is
used to form the vector C. From T, R, and C, the possible
valuations of the vector A, the support for each alternative,
is calculated (Chapter Two). The computer program used to
calculate this vector for decision problems with four

alternatives and four criteria is given in Appendix 2.

The procedure for calculating the rankings of the
alternatives using direct comparisons is similar. In this
case, the vectors of weights relating the alternatives to the
criteria and the importance of the criteria are obtained
directly and used in Yager's method and Tsukamoto and
Terano's method in a manner equivalent to the use of the
eigenvectors. Because Saaty's method explicitly requires
eigenvectors, Saaty's method was not used with direct

assessments.

The products of the three methods are vectors of weights
indicating the support for each alternative with respect to
the goal of finding the best overall alternative. For

evaluation with the baseline ranking of alternatives obtained
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from the test subjects, the vectors of weights are converted
to ranks. For example, the vector:

[ -6|Al, -2|A2, -5|A3, -4|A4 ]

is assigned the rank order:
1121, 41A,, 2|A3, 3|A4.
In the case of ties, the tied alternatives share the tied

rank and the subsequent rank is skipped.

Tsukamoto and Terano's method normally results in a range of
possible valuations for the support of each alternative. To
obtain rankings, the upper bound of the solution is first
considered. If an unambiguous ordering is obtainable only
the upper bound, as the highest possible support, is used.
If the ranking was ambiguous then the lower bound is also
considered. This is best illustrated through an example.
Suppose alternative one is valued on the interval [.4, .8]
and alternative two is valued on the interval [.6, .8]. The
upper bounds are equal but because it is possible for
alternative one to assume a value below alternative two, the
second alternative is ranked higher. Ties are treated the

same as in Yager's and Saaty's methods.

For each test subject and for each decision sétting there is
now a baseline ranking and a ranking obtained from each
method. Correlations between the baseline ranking and each

method's ranking can be obtained.



115

The general hypothesis is that the use of the fuzzy logic
based method to rank a given set of alternatives with respect
to a given set of criteria will achieve a significantly high
correlation with the baseline ranking of alternatives, as
obtained from a test subject. Further, it is hypothesized
that the fuzzy logic based method will yield a mean
correlation higher than that obtained from the use of Yager's

fuzzy set based method.

The experimental design consists of two sets of subjects and
three treatments as diagrammed in Figure 10. Although
correlations for each subject will be considered
individually, it is assumed that the subjects are
sufficiently homogeneous in problem solving ability and other
Characteristics to permit aggregate measure of each method's
results as well. Because two sets of treatments will be
administered to the same subjects (the baseline and one of
the pairwise and direct comparisons), the two sets of
subjects’ are further divided into two additional groups with
the treatments administered in reverse order (orders A and B)

to control for the effects of problem familiarity.
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Rankings
Baseline Pairwise Direct

1 1 (n=13) 27 (n=10)
Order A ) ) )

13 13 36

24 14 (n=13) 37 (n=8)
Order B . . .

44 26 44

Figure 10. Experimental Design: Combined Subject Groups

The subjects of the first administration of the questionnaire
were senior and first year graduate students in Civil
Engineering. For the second administration, the subject
group consists of junior and senior Civil Engineering
students. The students are being trained in decision
analysis techniques in particular and for a profession
oriented to the types of problems reflected in the experiment
in general, and thus are assumed adequate surrogates for

professional analysts.

For the different problem settings described above there are

several specific questions that will be addressed and tested:
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1) Is there a relationship between ranks obtained from
baseline assessments and ranks obtained from fuzzy logic
methods?

2) Is there a relationship between ranks obtained from
baseline assessments and fuzzy set (Yager) methods?

3) Is there a relationship between ranks obtained from
baseline assessments and Saaty's method?

4) Is the correlation of the fuzzy logic method
significantly greater than the fuzzy set (Yager) or

Saaty methods?

With respect to the evaluation of test results, the following
operational measures were selected. First, to measure the
similarity of an individual's decision using a treatment of a
method to the individual's decision baseline, the rank
correlation coefficient Kendall's tau is selected (e.qg.
Gibbons, 1971). This choice of measure is due to the nature
of initial individual (rather than aggregate) evaluations in
that it is not possible to determine (and is not reasonable
to assume) the distributional nature of variances for each
individual. This leads to the experimental hypothesis that a
treatment yields the same rank ordering of decision
alternatives as the baseline:

Hp: rank correlation between the baseline and treatment

decision set for an individual < 0.

Hp: rank correlation > 0.



118

Examining the total sample group, an aggregate measure of
performance may be obtained leading to the experimental
hypothesis that the correlations of the sample are
significantly greater than zero. In addition, the effects of
the order of questionnaire administration and the form of
data aquisition (pairwise vs. direct) may also be examined.
This may be accomplished through ANOVA tests as diagrammed in
Figure 10. The ANQOVA test is valid in this particular case
because the factors analyzed may be assumed to be independent
({they are not matched pairs) and the test is reasonably
insensitive to required assumptions of normality even with

the sample sizes used here.

Finally, it is desired to compare the relative performance of
a method to other methods. 1In particular, it is hypothesized
that the fuzzy logic method will yield higher mean correl-
ations than Yager's fuzzy set based method. Specifically,
the hypothesis may be stated as:

Ho: rank correlations for the fuzzy logic method are
less than or equal to the rank correlations for
Yager's method.

Hp: rank correlations for the fuzzy logic method are
greater than the rank correlations for Yager's
method.

This hypothesis may be tested using the Wilcoxon signed ranks

test. This test was chosen because of the matched pairs of
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data and lack of distributional information. The results of

the experiments are given in the next chapter.

As described at the beginning of this chapter the
questionnaire was developed to provide a surrogate for actual
decision problems by experts in each particular decision
setting. The use of actual problems and decision makers was
beyond the scope of this study. The validity of the
questionnaire based decision setting is thus a major

assumption.

Several actions were taken to ensure its validity. First,
several different problem settings were developed. The first
problem setting was designed particularly to present a
problem that the majority of subjects would have had personal
experience. In addition, knowledge of the problem context is
not unique to engineering and does not require any such
skills to provide a solution. The simplicity of this setting
provides a benchmark for which high correlations would be
expected from all methods. The remaining two problem
settings are oriented more specifically to engineering
contexts. Because it was assumed that few, if any, of the
subjects had direct personal experience with settings of
these types, an introductory narrative was provided to supply

sufficient background to the settings. The narratives are
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composed of three parts. The first part describes the
general setting of the problem and identifies the nature of
the difficulty in'providing quantitative solutions (e.qg.
poorly quantified parameters). The second prart identifies
the evaluation criteria that are to be used in assessing the
alternatives. For each criterion a brief description and
rationale is given. The third part of the narrative
identifies the set of alternatives to be considered. Factual
information about the characteristics of each alternative is

given.

To complete the questionnaire, subjects rank the alternatives
previously described. To provide an indication of the
certainty assigned to each rank a scale is given to be used
to indicate levels of certainty. For pairwise comparisons a
scale is given corresponding to Saaty's scale and questions

directing the pairwise comparisons follow.

Related to the possible difficulties with questionnaire
problem settings is the consideration of the questionnaire
respondents. The engineering students responding to the
questionnaire have been exposed to formal decision analysis
techniques but for the most part have not had lengthly
experience with actual engineering decision making. To begin
to address this potential problem, the first problem setting

in the questionnaire was designed to reflect the nature of
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subjective decision judgments commonly arising, and with
which the respondents would have greater experience. Another
problem arises from the use of students in that the outcomes
of the decisions are not real, that is, there is no incentive
for careful consideration of the decision problem. Finally
the length of the questionnaire may have caused attrition in
responses. These factors could contribute to inconsistent

responses by individuals.

A third consideration in the evaluation of the decision
methods is that of the definition of membership functions for
use in both Yager's and the fuzzy logic method. The explicit
assumption used at the outset of this study was that fuzzy
membership functions for preferences of alternatives were
adequately obtained through the pairwise comparison method of
Saaty. This assumption was supported in the literature. To
begin to address this situation, an alternative technique,
that of direct comparisons of an alternative to an evaluation
criterion was used. There exist, however, very few
investigations into the merits of these or other assessment
techniques. The problem of membership function assessment
warrants separate investigation and is beyond the scope of
this preliminary investigation. Nonetheless[ the quality of
the results obtained from the various methods examined here

are dependent on the quality of these membership functions.
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A final consideration concerns the size of the samples

available for each factor. Because of the several control

factors and the relatively small pool of subjects available,

the power of the results obtained are quite low.



CHAPTER FOUR

DECISION EXPERIMENT RESULTS

This chapter describes the administration of the
questionnaire and the results of the analysis of responses.
In addition, the results are analyzed and supplemental
studies described. 1In general, all methods in all problem

settings performed poorly.

The Kendall's tau scores for each individual for each of the
three methods under consideration are given in Tables 8
through 10. The scores represent the correlation between the
ranks of preference for the alternatives obtained directly
from the respondents and the ranks of the alternatives
obtained from the three methods. The respondents from the
first sample group are numbered 1 to 26, respondents from the
second sample group are numbered 27 to 44. There are no
scores for Saaty's method in the second sample group as

pairwise comparisons are required.

With four alternatives to be ranked in each problem setting,
there are 4! or 24 possible sets of orderings that may be
obtained (not counting ties between alternatives). To reject

the null hypothesis of no correlation between sets of ranks,
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Table 8. Kendall's Tau Scores For Individual Respondents:
Problem A - Selection of Ice Cream Brands

ID Saatvy Yager Fuzzvy Logic
1 0.333 0.667 0.000
2 -0.667 0.333 0.548
3 0.000 0.333 0.333
4 -0.333 -0.667 -0.548
5 0.000 0.333 0.866
6 0.000 0.000 -0.548
7 0.333 0.667 -0.183
8 1.000 1.000 -0.866
9 0.667 0.667 0.000
10 0.333 0.548 0.548
11 0.667 0.667 1.000
12 -0.667 -0.667 0.000
13 0.667 0.667 -1.000
14 1.000 0.667 -0.183
15 0.667 0.667 0.333
16 -0.333 0.333 0.667
17 0.333 0.333 0.183
18 0.667 0.667 -0.333
19 1.000 0.333 0.289
20 0.667 1.000 0.667
21 0.333 -0.333 0.866
22 0.000 -0.333 0.913
23 -0.333 0.333 0.183
24 0.667 0.866 0.548
25 -0.333 -0.333 0.333
26 0.000 1.000 -0.333
27 n.a. 0.333 0.000
28 n.a. 0.000 0.866
29 n.a. -0.333 -0.183
30 n.a. 0.000 0.000
31 n.a. 0.913 0.000
32 n.a. 0.000 -0.866
33 n.a. -1.000 0.000
34 n.a. 0.333 -0.408
35 n.a. -0.289 0.913
36 n.a. 0.289 0.913
37 n.a. -0.548 0.000
38 n.a. -0.548 -0.183
39 n.a. 0.183 0.289
40 n.a. 0.000 0.183.
41 n.a. 0.667 "0.000
42 n.a. 0.289 0.183
43 n.a. 0.183 -1.000
44 n.a. 0.548 -0.183



125

Table 9. Kendall's Tau Scores For Individual Respondents:
Problem B - Water Quality Monitoring

ID Saaty Yager Fuzzv Logic
1 0.667 1.000 0.000
2 -0.667 0.667 0.548
3 0.667 0.333 0.333
4 0.667 0.333 -0.548
5 0.333 0.333 0.866
6 0.667 0.000 -0.548
7 -0.667 -1.000 0.333
8 -0.333 0.000 0.913
9 0.667 -0.333 0.000
10 0.000 1.000 0.183
11 0.000 1.000 0.183
12 0.000 -0.667 0.333
13 1.000 0.667 -0.333
14 0.000 0.000 ~0.183
15 0.000 0.333 0.333
16 0.000 1.000 0.183
17 0.333 0.333 0.183
18 0.000 1.000 -0.333
19 0.333 0.333 0.289
20 0.333 0.333 0.667
21 0.333 0.333 0.866
22 -0.667 0.000 0.183
23 1.000 1.000 0.183
24 0.333 -0.333 0.548
25 -0.333 0.333 1.000
26 -0.333 1.000 -0.333
27 n.a. 0.333 -0.183
28 n.a. -0.333 0.913
29 n.a. 0.548 0.000
30 n.a. -0.667 0.000
31 n.a. -0.667 0.000
32 n.a. 0.000 0.000
33 n.a. 0.289 0.000
34 n.a. 0.667 0.913
35 n.a. 0.548 0.333
36 n.a. -0.866 0.000
37 n.a. 0.548 0.000
38 n.a. -0.548 0.000
39 n.a. -0.667 -0.548
40 n.a. 0.000 -0.667
41 n.a. -0.183 -0.913
42 n.a. 0.913 0.000
43 n.a. -0.333 0.548
44 n.a. -0.333 -0.333
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Table 10. Kendall's Tau Scores For Individual Respondents:
Problem Three - Urban Flood Plain Management

ID Saaty Yager Fuzzy Logic
1 - 0.000 0.000 0.667
2 0.667 0.667 0.000
3 -0.333 -0.667 -0.183
4 -0.667 -1.000 0.333
5 0.333 0.333 0.289
6 0.667 1.000 -0.667
7 0.667 0.000 0.333
8 0.000 -0.333 0.000
9 1.000 1.000 -0.183
10 0.333 -0.548 0.000
11 0.000 0.333 0.667
12 0.866 0.667 0.183
13 -0.548 0.548 0.000
14 0.333 0.000 -0.333
15 0.000 0.000 -0.183
16 0.183 -0.333 0.549
17 1.000 -1.000 0.000
18 0.000 0.000 0.333
19 0.333 0.333 1.000
20 0.333 0.000 -0.183
21 0.667 0.667 2.000
22 -0.333 -0.333 ..667
23 0.667 0.333 -0.333
24 -0.667 -0.333 0.333
25 0.548 0.548 -0.333
26 0.183 0.183 0.000
27 n.a. 0.667 -0.289
28 n.a. 0.667 -0.548
29 n.a. 0.183 0.000
30 n.a. 0.667 -0.913
31 n.a. 0.913 0.000
32 n.a. 0.000 0.000
33 n.a. 0.000 0.000
34 n.a. 0.667 0.289
35 n.a. -0.913 -0.289
36 n.a. 0.333 0.000
37 n.a. -0.548 -0.866
38 n.a. -0.183 0.000
39 n.a. 0.000 -0.866
40 n.a. 0.000 -0.548.
41 n.a. -0.913 0.183
42 n.a. -0.816 -0.183
43 n.a. 0.333 0.183
44 n.a. 1.000 -0.548
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there must be perfect correlation (tau equal to one). Figure
11 displays the distribution of tau scores for each method.It
is readily seen that very few statistically significant

correlations are obtained.

nalysi mpl
Each sample group was divided into subgroups to test the
effects of questionnaire ordering, pairwise comparisons, and
direct comparisons on correlations. A diagram of the
combined administration is given in Figure 10. Four
subgroups are indicated. These are:
1) Baseline Ranking followed by Pairwise Comparison
(Order 1)
2) Baseline Ranking followed by Direct Comparison
(Order 2)
3) Pairwise Comparison followed by Baseline Ranking
(Order B)
4) Direct Comparison followed by Baseline Ranking
(Order B).
Scores obtained from these subgroups were analyzed through
ANOVA techniques as described in the previous chapter.
Results of these analyses are given in Table 11. These

analyses only apply to the results obtained from Yager's and
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the fuzzy logic method as Saaty's method is based upon
pairwise compaiisons. Only in one of six cases (fuzzy logic
method, problem C) is there any significant difference
between sub-groups (Table 1llb). Comparisons of means of the
subgroups in this case (Table 1llc¢) indicate significant
differences between two subgroups - Order A: Pairwise with
Order A: Direct, and Order B: Pairwise with Order B: Direct.
In all cases, there is no effect on the scores by the
ordering of the questionnaire. The significant difference
between the two subgroups might be attibuted to the use of
pairwise or direct ranking techniques or to the two sample
groups. The first sample group used pairwise rankings while
the second group used direct rankings. It was not possible
to test this further. The low power available for this group

indicates this result might be an aberration.

Comparison of Methods.

The next group of hypotheses to be tested are concerned with
the relative performance of each method. The results of the
comparison of the methods, that is, that the fuzzy logic
method is hypothesized to yield higher correlations than
other methods, is given in Table 12. 1In Table 12a, only in
one subgroup of one problem setting can it be said that there
is a significant difference between scores obtained from

Yager's method and from the fuzzy logic method.
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Table 1la. ANOVA Results For Yager's Method

Yager's Method: Problem A
F3,40 = 1.537 SS Between Groups: 1.1168

Within Groups: 9.6856

Problem A (Ice Cream) N Mean Std. Dev,
Order A - Pairwise 13 .3498 .5128
Order A - Direct 10 .0246 .5085
Order B - Pairwise 13 .4000 .4814
Order B - Direct 8 .0968 .4506

Yager's Method: Problem B

F3,40 = 1.977 SS Between Groups: 1.8251
Within Groups: 12.3085

Problem B (Water Oualitv) N Mean Std. Dev,
Order A - Pairwise 13 .2564 . 6406
Order A - Direct 10 -.0148 .5762
Order B - Pairwise 13 .4358 .4385
Order B - Direct 8 -.0754 .5463

Yager's Method: Problem C

F3,640 = 0.627 SS Between Groups: 0.6012
Within Groups: 12.7826

L
Problem C (Stormwater) N Mean Std. Dev,
Order A - Pairwise 13 .1538 .6429
Order A - Direct 10 .3814. . .5351
Order B - Pairwise 13 .0050 .44009
Order B - Direct 8 .0631 .6450
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Table 11lb. ANOVA Results For Fuzzy Logic Method

Fuzzy Logic Method: Problem A

F3,40 = 1.187 SS Between Groups: 1.0063
Within Groups: 11.2997

Problem A (Ice Cream) N Mean Std. Dev,
Order A - Pairwise 13 .0115 .6353
Order A - Direct 10 .1235 .5976
Order B - Pairwise 13 .3179 .4171
Order B - Direct 8 -.0889 .4061

Fuzzy Logic Method: Problem B

F3,40 = 0.681 SS Between Groups: 0.4137
Within Groups: 8.1007

Problem B (Water Oualitv) N Mean Std. Dev,
Order A - Pairwise 13 .1741 .4656
Order A - Direct 10 .1976 .3974
Order B - Pairwise 13 .2758 .4173
Order B - Direct 8 -.0109 .5331

Fuzzy Logic Method: Problem C

F3,40 = 3.173 SS Between Groups: 1.4700
Within Groups: 6.1765

Problem C (Stormwater) N Mean Std. Dev,
Order A - Pairwise 13 .1107 .3630
Order A - Direct 10 -.1750 .3461
Order B - Pairwise 13 .1167 .4273
Order B - Direct 8 -.3306 .4353

F3,40 crit (o0 = .1) = 2.23
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Table 1llc. T-Test Results for Cells of ANOVA for
Fuzzy Logic Method, Problem C

Problem C (Water Oualitv) N Mean Std. Dev,
Order A - Pairwise 13 .1107 .3630
Order A - Direct 10 -.1750 .3461
Order B - Pairwise 13 .1167 .4273
Order B - Direct 8 -.3306 .4353

Order A - Pairwise with Order A - Direct

t (pooled variance estimate) = 1.728* df = 40

t (separate variance estimate) = 1.921* df = 21

t (pooled variance estimate) = -.039 df = 40

t (separate variance estimate) = -0.39 df = 24
Order B - Paijrwise with Order B - Direct

t (pooled variance estimate) = 2.533*% df = 40

t (separate variance estimate) = 2.303* df = 19
Order A - Direct with Order B - Direct

t (pooled variance estimate) = 0.835 df = 40

t (separate variance estimate) = 0.824 df = 16

* Significant at o = .1
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Further, the direction of difference is in favor of Yager's
method, that is, the scores obtained from Yager's method are
significantly higher than the fuzzy logic method. 1In
examining the difference between Saaty's method and the other
two methods (Table 12b), there are significant differences
with Yager's method in two problem settings. The direction
of the difference is in favor of Yager's method in the first
case (.333 versus .440), and in favor of Saaty's method in
the second case (.333 versus .000). This of course prevents
any statement about consistent performance (at least on the

part of Yager's method).

First, the results of the questionnaire responses indicate
that there is no effect of the order in which the parts of
the questionnaire are administered. This suggests that the
timing of the different sessions was sufficient to prevent
problem familiarity from biasing the correlations between

baseline rankings and the rankings obtained from the various

methods.

Second, there is very little evidence to suggest that either
differences in the two sample groups or diffefences between
the pairwise comparisons used by the first group and the
direct comparisons used by the second group had any effect on

the correlations. The experiment, as it was administered,
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Table 12b. Results of Wilcoxon Test for Matched Pairs:
Comparison of Methods

Yager's Fuzzy Set Method - Fuzzv Logic Method Comparison

Median Score

Problem A (Ice Cream) N Yager Fuzzv Z sScore
Order A - Pairwise 13 .333 .000 1.293
Order A - Direct 10 .000 .000 .510
Order B - Pairwise 13 .333 .289 .559
Order B - Direct 8 .183 .000 .630

Problem B (Water OQualitv Sampling)

Order A - Pairwise 13 .333 .183 .384
Order A - Direct 10 .144 .000 1.070
Order B - Pairwise 13 .333 .183 .629
Order B - Direct 8 -.258 .000 .350

Problem C (Storm Water Management)

Order A - Pairwise 13 .000 .000 .140
Order A - Direct 10 .500 .000 2.191*
Order B - Pairwise 13 .000 .000 .734
Order B - Direct 8 -.091 -.365 .560

Method C . cor Fi Cample G

Median Score

Problem A (Ice Cream) N Saaty Yager/Fuzzv Z score
Saaty - Yager 26 .333 .440 2.032*
Saaty - Fuzzy 26 .333 .236 .368

Problem B (Water Qualitv Samplina)

Saaty - Yager 26 .166 .333 1.346
Saaty - Fuzzy 26 .166 .183 .559

Problem C (Storm Water Management)

Saaty - Yager 26 .333 .000 2.502*
Saaty - Fuzzy 26 .333 .000 .864

* Significant at a = .1
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prevents differentiation between the effects of the two
groups and the comparison techniques in the one case where

there was a significant difference.

Third, there is no evidence to suggest that the fuzzy logic
method performs better than the other methods with respect to
its ability to generate higher correlations with baseline
rankings. There is very little evidence to suggest that
Yager's method or Saaty's method perform consistently better

as well.

On the basis of the individual correlations given in Tables 8
through 10, there is little evidence to support the
hypothesis that any of the fuzzy set methods predict well
decisions of individual decision makers for the problems used
in the questionnaire and for the decision makers used in the

sample groups.

There is no difference between the performance of methods
across the three problem settings. All three problem
settings were relatively simple with a very small number of
discrete alternatives and criteria to be considered. There
is no indication that differences in the problem settings
were reflected in the poor results. It is reasonable then,

to evaluate the results from the point of view of the
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capabilities of the methods themselves and of the quality of

responses obtained from the test subjects.



CHAPTER FIVE

EVALUATION

The inability of the results from the experiments described
in the previous chapter to support the study hypotheses may
arise from several factors. While it is desirable to simply
conclude that the decision methods examined in this study
cannot be said to reflect human decision making behavior,
there is a reasonable risk of falsely accepting the null
hypotheses given the very preliminary nature of this research
and the low power available from the experiment. Instead, it
becomes necessary to investigate the possible sources of
problems that might have contributed to the poor performance
reported here and to identify either further tests to
contribute to the preliminary conclusions or to identify
remedial actions to the experimental design to remove

complicating factors.

This chapter examines in detail the behavior of the decision
methods under more controlled conditions than those offered
by the questionnaire responses. It will introduce the
application of the methods in the context of group decision
making as application provides further illumination of the

operational characteristics of each method. It will also
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examine elements of the design of the experiment and of the

assumptions used in the application of the questionnaire.

Although there were very few cases in which the ranks
generated by the three decision methods are significantly
greater than zero, it is of interest to examine the scores
for any trends that indicate if any particular method
generates correlations significantly greater than the others.
This is important for several reasons. First, the source of
low correlations may not be due to the methods themselves and
better performance from one method would suggest that some
evidence exists that a method would yield more significant
results under different experimental conditions. Consistent
performance also facilitates the examination of the
characteristics of the methods to indicate why one method

might perform better.

The use of Kendall's tau (or other rank correlation tests)
constitutes a very restrictive test of a decision method's
capability. While the exact matching of a rank ordering by a
method is a desirable characteristic, it may be argued that
in practical cases it is more important that the first or
second choice alternatives match, rather than perhaps the
third or fourth. The ranks obtained from the decision

methods were therefore examined in this context. Given the
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alternative ranked first in the individual baseline rankings,
the frequency with which the alternative ranked first by each
decision method was the same was first calculated. Relaxing
the restriction further, the frequency with which the
individual's first choice alternative was the same as the
first or second ranked alternative generated by the decision
method was computed. Finally, the frequency with which the
first or second or third ranked alternative obtained from the
decision methods was the same as the baseline first choice
was evaluated. The results of these evaluations are
summarized in Figure 12 and Table 13. In all three problem
settings, the fuzzy logic method matched first ranked
alternatives more frequently. The significance of these
differences was not tested. One possible source of the
apparent performance was that the weights generated by the
fuzzy logic method were sometimes equal, in effect causing

ties in the ranking.

Concern was noted in Chapter Three regarding the translation
of weights into ranks for the purpose of constructing an
appropriate test. Closely weighted alternatives cannot be
fully considered when they are ranked. To determine if the
range of weights were related to resulting rank correlations,
scores resulting in strongly positive, strongly negative, and

no correlations were identified. There is some indication
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Table 13. Frequency of Matched Ranks Between Alternative
Ranked First in Baseline and Rank by Method

Problem Rank by Saaty' Yager Fuzzy Logic
Decision Method (n=26) (n=44) (n=44)
1st 9 (.35) 13 (.30) 20 (.46)
A 1st or 2nd 18 (.69) 27 (.61) 31 (.70)
1st or 2nd or 3rd 25 (.96) 34 (.77) 36 (.82)
i1st 12 (.46) 18 (.41) 24 (.55)
B 1st or 2nd 16 (.62) 25 (.57) 31 (.71)
1st or 2nd or 3rd 22 (.85) 37 (.84) 36 (.82)
1st 11 (.42) 13 (.30) 20 (.46)
C 1st or 2nd 17 (.65) 21 (.48) . 35 (.80)

1st or 2nd or 3rd 23 (.88) 38 (.86) 37 (.84)
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that the range of weights for scores of no correlation were
smaller than the others. However, for large ranges
ofweights, the scores were as likely to be highly negatively

correlated as positively.

Test of Uncertaintv Propagation.

In working with problems in which the inputs to the solution
method are well defined and certain, it is expected that the
results from the solution method will also be well defined
and certain. For example, using the operation of
multiplication, 6 * 8 = 48. The inputs to the model, 6 and
8, are unambiguous. Similarly, the conclusion of 48 is
equally unambiguous. Now suppose that the inputs are made
more ambiguous, say the intervals [5,7)], and [7,9] are used
rather than 6 and 8. Using the operation of multiplication
it might reasonably be expected that the solution will range
on the interval [35, 63]. The magnitude of the interval of
the input elements are two units each, while the magnitude of
the interval of the solution is 28 units. To what may the
apparent increase in uncertainty be attributed? Surely not
the operation of multiplication - if it were, then the
product of unambiguous inputs might be expected to be an
ambiguous element. The uncertainty in the solution must
therefore be attributed to the the uncertainty in the input
elements. The same conclusion may easily be reached for two

of the decision methods examined in this study.
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Given the trivial example of two alternatives (A, B) and one
criterion, assume that alternative A fully satisfies the
criterion with complete certainty and alternative B does not
satisfy the criterion. Using Yager's method, it is easy to
see that the support for alternative a being the alternative
that most satisfies the criterion is unambiguous, being equal
to unity. Similarly, the Support for alternative B being the
alternative of choice is equal to zero. Using the same

example for the fuzzy logic method yields the same result.

This exercise is made more difficult in Saaty's method.
Using the suggested scale for pairwise comparisons yields the

pPairwise matrix

A B
A 1 9
B 1/9 1

which results in the (normalized) weights of .9 for
alternative A and .1 for alternative B. Thus the ordering is
preserved but the use of the scale introduces some ambiguity

into the solution. In fact, only the pairwise comparison

matrix
— A B
A 1 oo
B l/e 1

eliminates the ambiguity resulting from the use of a scale.

Therefore, it is concluded that the Scale used in Saaty's
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method introduces some ambiguity into the solution. This
result has some implications for evaluating the methodology

used in this study and will be examined in a later section.

The above example illustrates the behavior of the techniques
when the support for one alterative over another is certain.
To demonstrate the effects of increasing uncertainty between
preferences for alternatives, ten cases are examined. 1In
each case the decision problem is composed of four
alternatives (Al, A2, A3, A4) and four criteria (C1, c2, c3,
C4) . Pairwise comparison matrices for the 10 cases are given
in Table 14. The matrices are constructed to range from
highest certainty in preference to highest uncertainty (all
alternatives are equally preferred). Further, the matrices
are constructed to maintain consistency in the ordering of
alternatives across cases. Preferences generated by the
three decision methods are given in Table 15. The results
are reassuring in that decreasing certainty in the input
preferences results in decreasing certainty in the aggregate
preferences. The ordering of the alternatives (with the
exception of the fuzzy logic method) remains consistent. In
the extreme, if the ordering of alternatives with respect to
each criterion were completely ambiguous (i.e. each
alternative is equally preferred) then each decision method

would return equally ambiguous results.



Table 14.
ALTERNATIVES
Iest Number One

1 2 3 4
1 1 9 S 9
2 1/9 1 9 9
3 1/9 1/9 1 9
4 i/9 1/9 1/9 1
IQSL‘ I\_lumhg: IWQ

1l 2 3 4
1 1 4 9 9
2 1/4 1 8 9
3 1/9 1/8 1 9
4 1/9 1/9 1/9 1
Iest Number Three

1 2 3 4
1 1 3.5 7 9
2 1/3.51 7 9
3 1/7 1/7 1 7
4 1/9 1/9 1/7 1
Iest Number Four

1 2 3 4
1 1 3 3 9
2 1/3 1 3 9
3 1/3 1/3 1 3
4 1/9 1/9 1/3 1
JIest Number Five

1 2 3 4
1 1 1.33 2 4
2 3/4 1 2 4
3 1/72 1/2 1 2
4 1/4 1/4 1/2 1
CRITERIA

Tests One Throuagh Five

W N R
PR
(SN oV
o R e W

(SRR
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Pairwise Comparisons For Ten Test Cases

ALTERNATIVES
Iest Number Six

1 2 3 4
1 1 9 9 9
2 1/9 1 9 9
3 1/9 1/9 1 9
4 1/9 1/9 1/9 1
Iest Number Seven

1 2 3 4
1 1 4 9 9
2 1/4 1 8 9
3 1/9 1/8 1 9
4 1/9 1/9 1/9 1
Iest Number Eight

1 2 3 4
1 1 3.5 7 9
2 1/3.51 7 9
3 1/7 1/7 1 7
4 1/9 1/9 1/7 1
Test Number Nine

1 2 3 4
1 1 3 3 9
2 1/3 1 3 9
3 1/3 1/3 1 3
4 1/9 1/9 1/3 1
Iest Number Ten

1 2 3 4
1 1 1.33 2 4
2 3/4 1 2 4
3 1/2 1/2 1 2
4 1/4 1/4 1/2 1
CRITERIA ,
Iests Six Through Ten

1 2 3 4
1 1 1.33 2 4
2 3/4 1 2 4
3 1/2 1/2 1 2
4 1/4 1/4 1/2 1
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Table 15. Ranking of Alternatives for 10 Test Cases

METHOD
TEST ALTERNATIVE SAATY YAGER FUZZY LOGIC
NUMBER Score rank score rank score rank
1 1 .675 1 .906 1 [.25,.575] 1
1 2 .225 2 .689 2 [.25,.575] 1
1 3 .075 3 .523 3 [.25,.575] 1
1 4 .025 4 .398 4 [.25,.575] 1
2 1 .586 1 .875 1 [.25,.664] 1
2 2 .294 2 .737 2 [.25,.664] 1
2 3 .092 3 .551 3 [.25,.664] 1
2 4 .028 4 .409 4 [.25,.664]) 1
3 1 .565 1 .867 1 (.25, .685] 1
3 2 .309 2 .745 2 [.25,.685] 1
3 3 .095 3 .555 3 [.25,.685] 1
3 4 .031 4 .419 4 [.25,.685] 1
4 1 .529 i .852 1 [.25,.721] 1
4 2 .230 2 .740 2 {.25,.721]1 1
4 3 .128 3 .598 3 [.25,.721] 1
4 4 .043 4 .454 4 [.25,.721] 1
5 1 .390 1 .790 1 [.25,.860] 1
5 2 .338 2 .762 2 [.25,.860] 1
5 3 .181 3 .652 3 [.25,.860] 1
5 4 .091 4 .549 4 [.25,.860] 1
6 1 .675 1 .858 1 {.39,.715] 1
6 2 .225 2 .559 2 [.39,.663] 2
6 3 .075 3 .364 3 [.39,.506] 3
6 4 .025 4 .237 4 [.39,.416] 4
7 1 .586 1 .812 1 [.39,.805] 1
7 2 .294 2 .620 2 [.39,.752]) 2
7 3 .092 3 .394 3 [.39,.595] 3
7 4 .028 4 .248 4 [.39,.505] 4
8 1 .565 1 .800 1 [.39,.825] 1
8 2 .309 2 .632 2 [.39,.773]) 2
8 3 .095 3 .399 3 [.39,.616] 3
8 4 .031 4 .257 4 [.39,.525] 4
9 1 .529 1 .780 1 [.39,.861] 1
9 2 .230 2 .625 2 [.39,.809] 2
9 3 .128 3 .449 3 [.39,.652] 3
9 4 .043 4 .292 4 [.39,.561] 4
10 1 .390 1 .693 1 [.39,.843] 2
10 2 .338 2 .655 2 [.39,.909] 1
10 3 .181 3 .513 3 {.39,.791] 3
10 4 .091 4 .392 4 (.39,.700] 4
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The results from the fuzzy logic method require further
examination. In the first five cases, the supports for the
alternatives are equal. This is because the supports for the
criteria are equal. It appears then, that the criteria
dominate the solution results. The variation in preferences
for the alternatives with respect to each criterion is
evidenced only in the changing upper bound. This shows that
if uncertainty in the inputs increased then the fuzzy logic
method returns a solution encompassing a greater range on the
unit interval. This property was discussed in Chapter Two.
The results from the cases presented here would imply that in
the last five cases, the ordering induced by the upper bound
values are again a function of the supports for the

importance of the criteria.

That the ordering of alternatives by the fuzzy logic method
is dependent upon only the ordering of criteria calls the
applicability of this technique to the types of problems
considered in this study into question. The solution
mechanism of this method should be examined in further detail
to determine if its application to decision analysis problems

is warranted.

The results of the last five cases for Saaty's method
illustrate another cause for concern. Note that the weights

for the last five cases are identical to the respective
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weights for the first five cases. The weights for the
criteria are different between the two sets of cases however.
The reason that the weights are equivalent arises from two
factors. First, the pairwise comparison matrices with
respect to each criterion were intentionally made the same to
ensure that the ordering of the alternatives in the method
input would be maintained. This equivalency, in combination
with the use by Saaty's method of normalized eigenvectors for
the criteria weights ensures that the final weighted vector
of the the alternatives remains invariant even as the
relative importance of each criterion varies. Perhaps in
some settings this property is desirable, but if the vectors
of weights reflect uncertainty in préference, then this
property would in fact be undesirable. It seems reasonable
to require that if the uncertainty in preference between
criteria in a problem varies, then that change in certainty
should be reflected in the final supports for the preference
of the alternatives. It can be seen in Table 15 that this is

the behavior exhibited by Yager's method.

In addition to the examination of the ability of the three
decision methods to replicate human decision behavior of
individuals with respect to the ranking of a set of
alternatives, it was also desired to examine the ability of

the methods to aggregate individual rank orderings to form a
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group decision. The procedure followed for group decisions
was similar to that used for individual decisions. After
responding to questions pertaining to the individual
assessment of alternatives, the respondents were randomly
divided into groups of two or three persons. Each group
generated a ranking of the alternatives reflecting the
consensus of the individuals. 1In addition to ranking the
alternatives, each individual was requested to evaluate the
criteria with respect to their completeness in modeling the
decision problem. There were no constraints and/or
guidelines as to how groups were to achieve the consensus
ranking. The sequence of group decision making in the

administration of the questionnaire is shown in Figure 13.

To generate ranks using the decision methods, the pairwise
comparisons obtained from each individual were used as input
for aggregation as described in Chapter Two. 1In all methods,
the weights assigned to the importance of the individual
rankings were equal. The results of the comparison between
ranks obtained by each group of respondents and ranks
obtained from each of the decision methods are given in Table
16. Again, the performance of the methods is poor with
respect to their ability to match the baseline ranks obtained

directly from the groups.
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Table 16. Kendall's Tau Scores for Group Decisions

Group Problem Saaty Yager Fuzzy Logic
1 1 0.000 1.000 0.667
2 1 -0.333 -0.667 -0.289
3 1 0.000 1.000 0.866
4 1 -0.333 0.000 -0.333
5 1 0.000 0.333 0.333
6 1 0.333 0.333 -0.408
7 1 -0.333 0.000 0.667
1 2 0.333 -0.233 -.913
2 2 -0.667 0..:3 0.000
3 2 0.000 0..:3 0.183
4 2 0.183 0.333 -0.548
5 2 -0.548 0.333 -0.913
6 2 0.000 0.913 0.548
7 2 -0.913 0.667 -0.183
1 3 0.333 1.000 -0.913
2 3 0.000 0.000 0.183
3 3 -0.333 0.333 0.289
4 3 0.667 0.667 -0.548
5 3 0.333 0.333 -0.913
6 3 0.000 0.000 0.000
7 3 0.333 -0.667 -0.183

Methods for aggregating the preferences of individual
decision makers into a single, group decision are frequently
evaluated on their possession of a set of characteristics or
principles for rational decision making. While Arrow (1951)
shows that no decision method may possess all of these
principles, it will be seen that the three decision methods

examined in this study do not support one principle that may
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have been used by the questionnaire respondents. The
principles may be given as

1) Neu;rality,

2) Independence of Irrelevant Alternatives,

3) Transitive Rationality,

4) Unrestricted Domain,

5) Anonymity.
The reader is referred to other references for discussions of
these principles (e.g. Goicochea et al., 1982; Hillier and
Lieberman, 1980). Of interest here is the principle of
anonymity. This principle in effect states that each of the
decision makers has an equal influence on the outcome of the

group decision - the "no dominant figure" principle.

At least two of the decision methods considered here do not
ascribe to this principle. In the application of Saaty's
method, consider the following hypothetical example. Assume
there exists four decision makers (D1, D2, D3, D4). Their
preferences for a set of four alternatives are given in Table
17. If the decision makers are weighted equally in the
aggregation process, then the resulting combined vector of
weights for the preference of the alternatives is the average
of the preference weights of the individuals.’ Thus, in this
example, one decision maker may influence the outcome of the

group's decision by unambiguously supporting one possible
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Table 17a. Rankings of Alternatives for
Four Hypothetical Decision Makers

DECISION MAKER

. D1 D2 D3 D4
Alterpative weight rank weight rank weight rank weight rank
a1l .35 (1) .35 (1) .35 (1) .02 (4)
A2 .30 (2) .30 (2) .30 (2) .03 (3)
A3 .25 (3) .25 (3) .25 (3) .05 (2)
a4 .10 (4) .10 (4) .10 (4) .90 (1)

Table 17b. Aggregate Rankings for
Four Hypothetical Decision Makers

METHOD
SAATY YAGER
Alternative weight rank weight rank
Al .268 (2) .02 (4)
a2 .233 (3) .03 (3)
A3 .200 (4) .05 (2)

A4 .300 (1) .10 (1)
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ordering of alternatives. Even though three of the four
decision makers are unanimous in their ordering of the
alternatives, the extremely strong "opinion" of a single

decision maker may change the ordering of the alternatives.

This effect for Yager's method is even more demonstrable.
Given that the decision makers weights are themselves
weighted equally dictates that the solution to the
aggregation problems is the maximin criterion. Thus in the
example, the dissenting decision maker determines the order
of three of the alternatives, and in effect determines the

order of all four.

Strictly speaking perhaps, these characteristics may not
violate the principle of anonymity as any of the decision
makers in the group are free to express such strong beliefs
as the one in the example. Neither is it apparent that such
behavior does not, in some settings, actually occur. What is
problematic is that there is evidence from the questionnaire
results that an aggregation method of majority vote was used
quite frequently. This seems to contradict some of the
claims of the fuzzy decision analysis literature. This is
not an attempt to imply that anonymity 1is necéssary or that
the aggregation methods of Saaty or Yager are not valid in
the context of the decision problems used in this study. It

is possible that the problem settings in the questionnaire,
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and the use of a guestionnaire itself, may not sufficiently
represent actual decision making environments. This issue is
one of four discussed in the context of future research tasks

presented in the final chapter.



CHAPTER 6

SUMMARY AND CONCLUSIONS

Summary.

Fuzzy set analysis has been offered as an alternative
approach to decision making for ill-defined problems. More
specifically, it has been claimed in the literature that
fuzzy set theory may be suitable for problems in which the
application of probability techniques are not appropriate due
to violations of probabilistic theory. Further, it has been
claimed that fuzzy set models more closely reflect actual
decision behavior. These general claims form the basis for

the study reported here.

In Chapter One, the axiomatic characteristics of both fuzzy
set theory (fuzzy logic in particular) and probability theory
were investigated. Two objectives were fulfilled. The first
objective was to demonstrate that classical set theory and
probability theory are subsets of fuzzy set theory. This is
accomplished by showing that a valid restriction on fuzzy
sets results in the support of the algebraic properties of
classical sets and the axioms of probability.. It was also
shown that probability does not support‘all the axioms of
fuzzy logic, demonstrating that the two theories are not

equivalent. The implication that may be drawn is that from a
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theoretical standpoint, in decision problems where aspects of
the problem violate probability axioms, fuzzy set theory,
through a relaxation of probabilistic constraints, is an

appropriate (although not necessarily unique) alternative.

The second objective was to identify some characteristic
decision behaviors that violate probabilistic axioms but do
not violate fuzzy set axioms. This represents a preliminary
effort to identify more specific decision making environments
in which the application of fuzzy sets theory is appropriate.
Two environments were identified. 1In the first, it was shown
that fuzzy set theory supports cases in which the preference
of one element over another is not unambiguous. It was alsc
shown that this condition violates axioms of probability
theory. A related environment is that of transitivity. Here
it was shown that fuzzy sets permitted some intransitivity in
the ordering of elements. Again, this was shown to violate

aspects of probability.

Chapter Two introduces several decision making methods based,
to varying degrees, on fuzzy set techniques. These methods

were the hierarchical pairwise comparison technique of Saaty
(1977), the fuzzy decision making method of Yager (1978), and
a fuzzy logic method based on the technique of Tsukamoto and

Terano (1975). The derivation of these methods are given and
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some modifications and extensions to the fuzzy logic method

are given.

Because the theoretical investigations of Chapter One and the
methodological comparisons of Chapter Two do not in
themselves demonstrate the applicability of fuzzy set based
methods, Chapter Three describes the development and
execution of a decision making experiment. The experiment
was designed to test the hypothesis that there is a
significant correlation between rankings of alternatives
generated by the fuzzy set based techniques described in
Chapter Two and direct rankings of alternatives made by test
subjects. Correlation was used as a measure of the ability
of the methods to replicate the decision behavior of the test

subjects.

The questionnaire was administered to undergraduate and
graduate students. The analysis of the questionnaire
responses indicate that for the sample, the methods generated
very few correlations that were significantly greater than
zero. Further, no method consistently returned higher scores
than another method. These results appear to contradict the
claims for the methods made in the literature. There exist,
however, several possible sources of poor performance. These

include shortcomings in the methods themselves, and the
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effects of the assumptions made in the design of the

experiment.

In the final Chapters, the assumptions used in the experiment
were evaluated. It was determined that it . ould be valuable
to expand the types of problem settings and the number and
characteristics of the test subjects. Expansion of the scope
of the study to include greater realism in the decision
making environment is also desirable. This expansion,
however, ihtroduces a paradox into the evaluation procedure

which is described below.

Future Research Needs.

The assumptions maintained in this study are not unique to
the analysis of fuzzy set based decision methods. It is
nonetheless desirable to test the validity of the assumptions
or to be able to remove them. Future research efforts in
this area, in the expansion of the nature of problem
settings, and in the consideration of other techniques for
fuzzy set based decision making would be valuable. Briefly,
it would be fruitful to consider the following topics in

future efforts.

First, the assessment of membership functions is a
fundamental element of fuzzy set analysis and needs to be

given further consideration. A primary characteristic of
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fuzzy set analysis is the incorporation of linguistic
variables into the assessment procedure. Many of the fuzzy
set methods for decision making either assume the presence of
numeric representations (fuzzy sets) of the linguistic
variables or use numerical representations directly.

Research in this area should address the questions of whether
a fuzzy set represents well the value of a linguistic
variable; are any methods for developing fuzzy sets (e.g.
direct assessment, pairwise comparisons, graphic
representation) more suited than others; and are the fuzzy
sets created by a sample general to the population. The
investigation of these questions would be most useful in

assessing the practical application of fuzzy set techniques.

The second topic for further investigation concerns tests of
the appropriateness of the model of the decision problem.
Although this study was concerned with investigating the
appropriateness of models of the decision maker, as described
in the introduction and elsewhere, it is clear that models of
the decision problem are an important consideration. This is
especially so as the experimental problem settings move
toward "real-world" concerns. By appropriate is meant
whether or not the model of the decision problem, that is,
the alternatives and criteria under consideration,
sufficiently (not necessarily completely) represent the

actual decision problem. This study used an open question in



164

the questionnaire to obtain an indication of apprépriateness,
as described in an earlier chapter. The format could be
improved upon by direct interviewing with perhaps, repetitive
problem solving, or perhaps by placing the subjects into a
cooperative or adversarial gaming situation where it would be
necessary for the subjects to make explicit all criteria and

alternatives being considered.

A third topic for consideration is related to the previous
topic. In the course of this study it was assumed that the
student subjects were a sufficient model of actual decision
makers. It would be more desirable to expand the study and
include active representatives of the engineering decision
making community. In a similar vein, it would be desirable
to use less artificial problem settings, that is, problem
settings that have real (or the illusion of real)
consequences. This begins to raise something of a paradox,
however. A motivating factor for the form of this study was
difficulties arising from the use of real decision makers in
real problem settings to obtain models of subjective
judgment. Beyond problems arising from practicality,
difficulties stem from problems of verifying or validating
solutions. The more controlled environment of the artificial
problem was therefore sought. This leads to the fourth and

final topic.
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In addition to testing the appropriateness of the decision
models used in analysis, the results of this study have so
far revealed that additional consideration be given to
testing the appropriateness of the methods themselves.
Several areas of concern regarding the solutions tendered by
the methods examined in this study have been identified. 1If
these areas are truly problematic then modifications to the
methods should be made if the modifications are in keeping
with the structure or theory of the method. If not, then

other methods should perhaps be brought into consideration.

This study represents a preliminary investigation toward the
empirical evaluation of several fuzzy set based techniques
for multiobjective decision making under conditions of
imprecision and uncertainty. To date, researchers have
produced very little evidence to either support or refute
claims made of the capabilities of fuzzy set techniques.
This study is intended to contribute to this effort. Future
research may serve to illuminate some of the concerns and

issues raised here.
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APPENDIX ONE

QUESTIONNAIRE!

Multicriteria decision making is concerned with the ranking
of a set of alternatives for a set of criteria or objectives.
The ability to determine a ranking is hindered by many
problems. First, there is frequently no single alternative
that may satisfy all criteria better than other alternatives.
Second, the satisfaction of a criterion may not be
quantifiable, requiring the application of judgment.

Thirdly, many decision makers may be involved in the decision
process, each possessing views as to the relative importance
of criteria and the desirability of the alternatives. 1In
this questionnaire you will be asked to consider several
examples of multicriteria problems and provide the requested
information. It is important that you read the examples
carefully before answering the questions.

Instructions for Use. This questionnaire will be

administered in three parts. In this first part, you will
receive a set of three problem descriptions, and a set of
questions. For the second part of the questionnaire, you wil
receive a different set of questions regarding the three
problem descriptions. For these first two parts you are to
answer the questions independently from others who are
answering the questionnaire. 1In the third part of the
questionnaire, you will be assigned to teams of either two or
four persons. Several questions must then be answered by the
group.

When the questionnaire has been completed, please return all
three parts. The problems are designed to test several
decision making methods. They are not designed to test your
knowledge of the subject matter. It is expected that you
will apply your own judgment, along with the information
provided, to answer the questions that follow. There are no
right or wrong answers. The first problem will illustrate
the role of subjective judgment in decision making. Please
answer all questions, giving reasonable time to consider the
questions fully.

T Administered to first sample group.



173
Problem 1: SELECTION OF A FAVORED BRAND OF ICE CREAM

In everyday settings multiobjective problems are encountered
and even a simple example requires the consideration of
conflicting goals and personal judgment.

In this problem you are asked to evaluate and rank several
brands of vanilla ice cream. In determining a ranking,
several criteria may be considered:

1. COST: The price of ice cream varies greatly from product
to product and may reflect the quality of the ingredients.

2. FLAVOR: Since the alternatives are limited to vanilla,
flavor refers to the balance between the vanilla flavoring
and the cream components (sometimes referred to as "dairy
flavor").

3. TEXTURE and BODY: The amount of air contained in ice
creams varies greatly. Too little air makes an ice cream
heavy, too much air makes an ice cream foamy. Difficulties
in manufacture and storage and the absence of additives may
affect the texture, making some ice creams icy rather than
smooth and creamy.

The "ideal"™ ice cream would be one that is of low cost, with
a distinct vanilla flavor unaffected by "off-flavors." The
texture should be smooth and creamy. The ice cream should
not be syrupy or bland.

Using the above criteria, the following alternatives are to
be evaluated and ranked:

Alternative Cost per Serving Calories % Butterfat
1. Baskin Robbins 24¢ 149 11.8
2. Sealtest 15¢ 120 9.9
3. Howard Johnsons 27¢ 196 16.0
4. Haagen-Daz 44¢ 267 15.4
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Problem 2: WATER QUALITY MONITORING

Water quality monitoring is important for long-term trend
assessment, parameter estimation, and enforcement of water
quality standards. 1In monitoring for trend detection, it is
usually recommended that sampling occur at fixed station
sites, with sampling distributed uniformly over the
monitoring period. With an emphasis on enforcement, it might
be desirable to establish a complex network to maximize the
chance of recording a violation of water quality standards,
should one occur.

There are many factors that hinder the design of an effective
monitoring program. First, the very reason for sampling is
to estimate the behavior of a very complex stream system.
Many of the biological and physical parameters influencing
the monitoring process are poorly quantified. Further, it is
generally expensive and time consuming to establish and
maintain a monitoring network. The problem is to select a
monitoring strategy that is best in terms of detecting
impacts to the stream environment while minimizing the cost
of doing so.

Problem Setting. 2 small, industrial treatment facility is
located on a tritk. .ary of a river that supports a large
commercial and sport fish industry. The industrial plant
produces BOD as its major effluent but is also known to
produce relatively small amounts of several toxic substances.
The plant has over the last few years expanded its production
and it is suspected that the design capacity of the facility
is periodically exceeded. In addition to the commercial
fisheries, there is a large recreational use of the stream.
This use is primarily sport fishing, but also includes some
boating, hiking, and camping activities.

In planning a monitoring network, four general criteria are
used to assist in the selection of monitoring alternatives.

1. MINIMIZE COST: Regulatory agencies operate under a fixed
budget and must allocate this budget among competing
programs. It is therefore desirable to minimize the cost of
each monitoring activity while maintaining the effective ness
of the monitoring program.

2. PROTECT FISH SPECIES: The purpose of monitoring is to
protect the health of the stream system, including the
commercially valuable fish species. Therefore, any
monitoring strategy must give careful consideration to the
ability to capture violations that would have a deleterious
effect on fish survival, reproduction, and commercial value.
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3. PROTECT FROM LIABILITY: While it is important to be able
to observe violations of water quality standards, it is also
important to be correct when citing dischargers for
violations. Possible errors arising from monitoring
strategies must be considered. These include sampling error
(which suggests the use of replicate observations) and
incorrect background level pollution measurements (which may
suggest long-term trend monitoring). Incorrect assessment of
violations may lead to long-lasting legal action, and damaged
credibility.

4. PROTECT RECREATION: For recreational fishing, long-term
effects on the consumability of fish may be something of a
problem, but maintenance of sport species in the stream is of
primary concern. For the other recreational uses, long-term
degredation may affect the quality of the stream (hence
usage), while toxic doses of pollution may lead to fish kills
which would also damage recreational enjoyment.

Four alternatives have been proposed for consideration:

1. TIME SPECIFIC: This alternative recognizes that fish
species are particularly vulnerable to pollution effects
during specific periods in the species life cycle. There is
also a recognition that violations have a higher probability
of occurance during low flow seasons due to reduced dilution.
However, there is little evidence to suggest that low flow
periods and sensitive periods occur simultaneously. Because
sampling will occur frequently during the specified period
(see table below), there is insufficient funding to provide
for many sampling locations.

2. SPACE SPECIFIC: This alternative is composed of sampling
stations widely distributed throughout the stream. At least
one station will be located above the treatment facility
while others will be concentrated in known fish habitat areas
and also where it has been estimated that violations are most
likely to occur. Because many stations must be located,
there is insufficient funding to sample frequently.

3. INTENSIVE: This alternative is designed to maximize the
chance of observing a violation of water quality standards by
locating several stations within a relatively small area, and
sampling as frequently as possible during a specified period.
The locations are established from the average downstream
mile of minimum dissolved oxygen levels (computed from prior
sampling data). The timing is based on the regional low flow
period.

4. BASELINE: This alternative is designed to maximize the
probability of detecting longer-term changes in water
quality. As such, it is composed of a few, widely
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distributed stations, with regular sampling throughout the
year. Because there are relatively few stations, this
alternative is the least costly. It is less likely, however,
that violations of stream standards will be recorded.
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Alternative Cost Station Location Sampling Freguency
Time Specific $45,000 1 @ 10 mi. once a week from
1 @ 40 mi. July 1 to December 1
1 @ 70 mi.
Location ' $42,000 1 mi. upstream once per month
Specific 10 mi., 20 mi.,

30 mi., 40 mi.,
60 mi., 80 mi.,

100 mi.
Intensive $56,000 same as once a week from
Alternative 2 July 1 to November 1
Baseline $37,200 1 mi. upstream once per month
20 mi., 40 mi., with replicate
60 mi., 80 mi., sampling

100 mi.,
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Problem 3: URBAN FLOOD PLAIN MANAGEMENT

Peaks Branch is a stream in the upper Trinity River Basin.
The lower portion of Peaks Branch traverses a low-cost
housing neighborhood near the downtown of a major city. The
present channel is designed to carry a five-year frequency
flood. Floods of a greater magnitude would cover a broad,
fully developed flood plain.

The stream experiences three types of flooding: backwater
flooding from the Trinity River; backwater flooding from
White Rock Creek (of which Peaks Branch is a tributary); and
headwater flooding caused by runoff on the watershed. A 1908
flood on the Trinity River caused a backwater flood elevation
of 409.2 feet above msl in Peaks Branch, but construction of
reservoirs on the river have reduced the probability of a
similar occurence. Backwater from White Rock Creek has
reached elevations of 404.3 feet above msl and the greatest
headwater flood on the stream reached an elevation of 411.0
feet above msl. The five year design discharge is 5000 cfs,
the 100 year discharge is 11,000 cfs.

Evaluation Criteria:

1. FLOOD PROTECTION. Flood protection is an obvious goal of
the project. Open channel floodways provide a greater leeway
of safety than do closed conduits. Paved channels are more
reliable than grass-covered channels. Concrete channels
require little or no periodic maintenance, whereas grass-
lined channels must be maintained to support their design
conveyance. However, grass-lined floodways can add
attractive and useful open space to urban areas.

2. NEIGHBORHOOD ENHANCEMENT. The city is striving to
maintain residential neighborhoods near the central business
district. The prevention of flooding enhances property
values in flood prone areas. Multiple use of flood plains
enhances neighborhoods through the provision of open space
and recreational areas. Open space may also make an area
more desirable, thus increasing property values.

3. PROJECT AND MAINTENANCE COSTS. Funds for this project
will come from the sale of bonds and if possible, State and
Federal programs. The least expensive design may be
attractive if the current financial outlook is uncertain.

4. NEIGHBORHOOD ACCEPTANCE. Local opposition can severely
delay or prevent the implementation of any project. Any plan
that requires the displacement of residents can expect
opposition from at least those who will be displaced. On the
other hand, redevelopment provides the opportunity to remove
substandard housing. Many families do not believe the threat
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of flooding exists, and others would like to see the removal
of as many apartments as possible.
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Flood Plain Management Alternatives:

1. NO ACTION. Potential losses, computed as a function of
depth of flooding and housing value, were estimated from the
Residence Flood Damage tables of the United States Department
of Agriculture. The five year flood would cause no
appreciable damage. The 25 year flood would cause damages of
about $19,000. A 50 year flood would result in damages of
approximately $150,000, and the 100 year flood would inflict
property damage of $1,300,000.

The no action alternative would not aid in the improvement of
housing quality in the area but the purchase of flood
insurance subsidized by the Federal Flood Insurance Program
would permit some losses to be recouped and homeowners would
be eligible for lower interest home improvement loans. The
project cost of this alternative is zero, and annual
maintenance costs are estimated at $12,000.

2. A CONCRETE DRAINAGE CHANNEL. This alternative would widen
the Peaks Branch channel. Additional right-of-way would
require the purchase of 74 structures, displacing 69
families. The affected area would be used for interior
drainage facilities and a sump for the storage of flood
water. A levee would separate the sump, with a surface area
of 6.4 acres, from the channel. A gravity sluice and a pum-
station with a capacity of 10,000 gpm would drain the sump
when the stream level was low and high, respectively.

The proposed concrete-lined channel has 2:1 side slopes with
10 foot wide berms parallel to, and 8 feet above, the flow
line. The channel bottom is 60 feet wide. The project cost
of this alternative, including right-of-way and relocations,
is $5,600,000. Annual maintenance costs are estimated at
$16,000. The concrete channel is believed to be very
reliable with respect to it ability to convey design floods
over the project life. The benefits associated with this
alternative accrue primarily through the elimination of
damages by floods up to the 100 year flood.

3. A PARK GREENWAY. This alternative would widen the Peaks
Branch channel. Four lakes, hiking and bicycle trails, and
parkways would be constructed. Additional right-of-way
requirements would entail the purchase of 164 structures
(mostly apartments), displacing 419 families. Most of these
structures are in a low area that can only be protected from
the 100 year flood by levees, gravity sluices, and storm-
water pumps. The project cost of $10,900,000 includes the
purchase of property, demolition, and relocation expenses.
Annual maintenance costs are $41,000.



181

The detention basins and grass floodways may be less reliable
than more structural remedies if maintenance is neglected.
Assuming maintenance is adequate, benefits accruing to this
alternative include the offset damages from flooding, the
provision of open space and recreation opportunities, and a
possible resulting increase in the value of adjacent
properties.

4. PURCHASE AND REDEVELOPMENT OF THE FLOOD PLAIN. In this
plan 524 structures would be purchased and cleared from the
floodplain, requiring the displacement of 940 families. A
greenbelt, similar to that described in alternative three
would be constructed on part of the aquired land. A new
development, including a 10 acre shopping center, 336
residential lots and 40 additional acres of parks would be
constructed on the remaining land. The land for the shopping
center would be sold with the requirement for the provision
of neighborhood facilities. Reconstruction would consist of
single or duplex residential units with preference given to
displaced landowners.

The condemnation of land for resale is prohibited by state
statute, except under an urban renewal statute that requires
voter approval. The estimated cost of this alternative is
$16,300,000, including the cost of aquiring right-of-way,
demolition, and relocation. Maintenance costs are estimated
at $41,000/year.

The benefits from this alternative are more difficult to
assess in that the alternative results in a complete
transformation of the neighborhood. 1In addition to
cffsetting flood damages, benefits may accrue from the
development of park and recreational facilities, profits from
the sale of land for housing and the shopping center, and
improved housing stock and neighborhood housing values.
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Part 1.

Name

Problem 1: SELECTION OF A FAVORED BRAND OF ICE CREAM

1. Please rank the four ice creams ordinally from 1 to 4
with 1 = most preferred, with respect to their satisfaction
of the stated criteria.

Alternative Rank

1. Baskin Robbins ....c.ioviiinennnnn.

2. Sealtest ..ttt it e et e

2. Because there may be some uncertainty about an
alternative, an estimate of your certainty regarding your
ranking of the alternatives is requested. Since any one
alternative may be assigned any of four ranks, utilize the
scale given below to indicate the certainty with which an
alternative is assigned the given rank.

1.9~ 8- .7 - .6 -—-.5-— .4 ~~ 3 - 2 —— .1 -0
complete high moderate low no

EXAMPLE: Alternative 1 may be ranked first with high
certainty, second with moderate certainty, third with low
certainty and fourth with no certainty. This could be
indicated as

1-Baskin Robbins .7 1, .5 2, .2 3, 0 4

Indicate the certainty associated with each possible rank
assignment:

iv i i with nk
1-Baskin Robbins o, 2, ;___ 3, 4
2-Sealtest 1, 2, _ 3y ____ 4
3-Howard Johnsons 1, 2, 3, 4

4-Haagen Daz 1, 2, 3, 4
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Problem 2: WATER QUALITY MONITORING

1. Please rank the four water quality monitoring

alternatives ordinally from 1 to 4 with 1 = most preferred,
with respect to their satisfaction of the stated criteria.

Alternative Rank

1. Time Specific (.. vi it i eennnnn
2. Space Specific ....i.iiiiiiii i,
3. Intensive ...ttt e
4. Baseline ...ttt e
2. Because there may be some uncertainty about the

performance of an alternative an estimate of your certainty
regarding your ranking of the alternatives is requested.

1~~~ .9 -— .8-.7-— .6~ .5 -— .4 - 3 = .2 --.1--0
complete high moderate low no
iv i i with rank

1-Time Specific ., 2y, ____ 3, ___ 4

2-Space Specific _ 1, __ 2, 3, 4
3-Intensive 1, 2, 3, 4

4-Baseline 1, 2, 3, 4
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Problem 3: URBAN FLOOD PLAIN MANAGEMENT

1. Please rank the four flood plain management alternatives
ordinally from 1 to 4 with 1 = most preferred, with respect
to their satisfaction of the stated criteria.

Alternative Rank

1. No Action .................
2. Concrete Channel ..........
3. Parkway .....eeunnnnnnnn...

4. Redevelop Floodplain ......

2. Because there may be some uncertainty about the
performance of an alternative, an estimate of your certainty
regarding your ranking of the alternatives is requested.
Since any one alternative may be assigned any of four ranks,
utilize the scale given below to indicate the¢ Tertainty with
which an alternative is assigned the given re :.

1 -— .9 - .8-- .7 - 6 — .5 - 4 == .3 == 2 --— 1 —=
complete high moderate low no
Alternative Certainty associated with rank
1-No Action 1, 2, 3, 4
2-Concrete 1, 2, 3, 4
Channel
3-Parkway 1, ’ 2, 3, 4
4-Redevelop 1, 2, 3, 4

Floodplain
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Part II.

Name

Problem 1: SELECTION OF A FAVORED BRAND OF ICE CREAM

You are requested to provide in greater detail your
preferences for the listed alternatives. Because the
evaluation criteria play a significant role in the final
selection of an alternative and because there may be some
uncertainty in the performance of an alternative with respect
to a criterion, it is requested that you evaluate pairs of
alternatives with respect to each criterion. To assist you
in this evaluation a comparison scale is provided:

1 - it is uncertain that alternative A is preferred to
alternative B

3 - alternative A may be preferred to alternative B

5 - alternative A is probably preferred to alternative B

7 - alternative A is almost definately preferred to
alternative B

9 - alternative A is absolutely preferred to alternative B

Even numbers denote intermediate ranges of certainty.
Reciprocals indicate that the order of certainty of
preference is reversed.

EXAMPLE: if Alternative 1 may be preferred to Alternative 2,
a 3 is indicated. 1If Alternative 2 may be preferred to
Alternative 1, a 1/3 is indicated.

1. With respect to an ice cream's cost, how certain is
alternative A preferred to alternative B?

A B Comparison
1 2
1 3
1 4
2 3
2 4



2. With respect to an ice cream's flavor,
the preference of alternative A to alternati
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A B Comparison
1 2
1 3
1 4
2 3
2 4
3 4

3. With respect to the
certain is the preferenc

A B Comparison
1 2
1 3
1 4
2 3
2 4
3 4

4. Finally,
belief in the

Ccriteria.
ice cream,

it is important
relative signi

With respect to the

how certain is th

over criterion B?

how certain is
ve B?

texture and body of an ice-cream,
e of alternative A to alternative

how
B?

to obtain an indication of your

ficance

A B Comparison
1 2
1 3
2 3

of the evaluation
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Problem 2: WATER QUALITY MONITORING

Part II. You are requested to provide in greater detail your
preferences for the listed alternatives. Because the
evaluation criteria play a significant role in the final
selection of-an alternative and because there may be some
uncertainty in the performance of an alternative with respect
to a criterion, it is requested that you evaluate pairs of
alternatives with respect to each criterion. To assist you
in this evaluation a comparison scale is provided:

1 - it is uncertain that alternative A is preferred to
alternative B

3 - alternative A may be preferred to alternative B

5 - alternative A is probably preferred to alternative B

7 - alternative A is almost definately preferred to
alternative B

9 - alternative A is absolutely preferred to alternative B

Even numbers denote intermediate ranges of certainty.
Reciprocals indicate that the order of certainty of
preference is reversed.

1. With respect to an alternative's ability minimize the
cost of monitoring, how certain is alternative A preferred to
alternative B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
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2. With respect to an alternative's ability to protect
commercial fish species, how certain is the preference of
alternative A to alternative B?

A_ B Comparison
1 © 2 |

1 3

1 4

2 3

2 4

3 4

3. With respect to the ability to protect the regulating
agency against false accusation, how certain is the
preference of alternative A to alternative B?

A B Comparison
1 2
1 ‘3
1 4
2 3
2 4
3 4
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4. With respect to the ability of an alternative to protect
recreational uses of the stream, how certain is the
preference of alternative A to alternative B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
3 4

5. Finally, it is important to obtain an indication of your
belief in the relative importance of the evaluation criteria.
With respect to the selection of a best overall monitoring
policy how certain is the importance of criterion A over
criterion B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
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Problem 3: URBAN FLOOD PLAIN MANAGEMENT

You are requested to provide in greater detail your
preferences for the listed alternatives. Because the
evaluation criteria play a significant role in the final
selection of an alternative and because there may be some
uncertainty in the performance of an alternative with respect
to a criterion, it is requested that you compare pairs of
alternatives with respect to each criterion. To assist you
in this evaluation a comparison scale is provided:

1 - it is uncertain that alternative A is preferred to
alternative B
3 - alternative A may be preferred to alternative B

5 - alternative A is probably preferred to alternative B

7 - alternative A is almost definately preferred to
alternative B

9 - alternative A is absolutely preferred to alternative B

Even numbers denote intermediate ranges of certainty.
Reciprocals indicate that the order of certainty of
preference is reversed.

1. With respect to an alternative's ability to reliably
prevent flood damages for a 100 year frequency flood, how
certain is alternative A preferred to alternative B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
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2. With respect to an alternative's ability to enhance the
desirability and value of the flood plain, how certain is the
preference of alternative A to alternative B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
3 4

3. With respect to ability to finance the construction and
operation of an alternative, how certain is the preference of
alternative A to alternative B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
3 4
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4. With respect to the ability of an alternative to maximize
neighborhood acceptance of a project, how certain is the
preference of alternative A to alternative B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
3 4

5. Finally, it is important to obtain an indication of your
belief in the relative significance of the evaluation
criteria. With respect to the selection of a best overall
alternative, how certain is the significance of criterion A
over criterion B?

A B Comparison
1 2
1 3
1 4
2 3
2 4
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Part III. GROUP ASSESSMENTS

Name

Problem 1: SELECTION OF A FAVORED BRAND OF ICE CREAM

Considering your individual rankings for the four ice cream
alternatives, you are now asked to reach consensus on the
preferred ranking within the group to which you have been
assigned.

(To be answered by each group.) 1. Please rank the four ice
cream brands ordinally from 1 to 4, with 1 = most preferred,
with respect to the evaluation criteria and the consensus of
the group.

Alternative Rank

1. Baskin Robbins .............

2. Sealtest ...ttt

2. For each alternative indicate the group's confidence in
the rank that has been assigned.

. rnativ in i with rank
1-Baskin Robbins oy, 2, 3, 4
2—Se;ltest . 2, 3, ____ 4
3-Howard Johnsons _ 1, __ 2, 3, __ 4
4-Haagen Daz 1, 2, 3, 4

(To be answered by each individual.) 3a. Assume that you are
able to reconsider this ranking problem and have the
opportunity to consider additional criteria that might affect
the choice of alternatives. What additional criteria would
you consider important in evaluating these alternatives?
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3b. If these additional criteria were considered, what would
be the certainty associated with each alternative's rank?

nativ in i with rank
1-Baskin Robbins 1, 2, 3, ____ 4
2-Sealtest 1, 2, 3, ___ 4
3-Howard Johnsons 1, 2, 3, _____ 4
4-Haagen Daz 1, 2, 3, _____ 4

4. Please indicate ranks for the alternatives obtained by
yourself and by your group:

Yourself Your Group
Al natiwv R v Rank
1 R 1 o
2 - 2 -
3 - 3 -
4 4 _

No Consensus Achieved
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Problem 2: WATER QUALITY MONITORING

Part III. GROUP ASSESSMENTS: Considering your individual
rankings for the four stream quality monitoring alternatives,
you are now asked to reach consensus on the preferred ranking
within the group to which you have been assigned.

(To be answered by each group.) 1. Please rank the four
stream quality monitoring alternatives ordinally from 1 to 4,
with 1 = most preferred, with respect to the evaluation
criteria and the consensus of the group.

Alternative Rank

1. Time Specific .........cvenn
2. Space Specific .............
3. Intensive .......ciiiiienenn
4. Baseline .........c.ciiiiiiann

2. For each alternative indicate the group's confidence in
the rank that has been assigned.

iv i ' with rank
1-Time Specific -y 2, ___ 3y ____ 4
2-Space Specific __ 1, __ 2, 3, ____ 4
3-Intensive oy, 2y 3y 4
4-Baseline 1, 2, 3, 4

(To be answered by each individual.) 3a. Assume that you are
able to reconsider this ranking problem and have the
opportunity to consider additional factors that might affect
the choice of alternatives. What additional criteria would
you consider important in considering these alternatives?
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3b. 1If these additional criteria were considered, what
would be the certainty associated with each alternative's

rank?
Alternative Certainty associated with rank
1-Time Specific 1, 2, 3, 4
2-Space Specific 1, 2, 3, 4
3-Intensive 1, 2, 3, 4
4-Baseline 1, 2, 3, 4
4. Please indicate ranks for the alternatives obtained by

yourself and by your group:

Yourself

Alternative

Rank

1

2

Your Group

nativ Rank

No Consensus Achieved
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Problem 3: URBAN FLOOD PLAIN MANAGEMENT

Part III. GROUP ASSESSMENTS. Considering your individual
rankings for the four flood plain management alternatives,
you are now asked to reach consensus on the preferred ranking
within the group to which you have been assigned.

(To be answered by each group.) 1. Please rank the four
flood plain management alternatives ordinally from 1 to 4,
with 1 = most preferred, with respect to the evaluation
criteria and the consensus of the group.

Alternative Rank

1. No Action .......iiiiiennnenn
2. Concrete Channel ...........
3. Parkway ....ciiiiiiiinenann.
4. Redevelop Floodplain .......

2. For each alternative indicate the group's confidence in
the rank that has been assigned.

Alternative Certainty associated with rank

1-No Action 1, 2, 3, 4

2-Concrete 1, 2, 3, 4
Channel

3-Parkway 1, 2, 3, 4

4-Redevelop 1, 2, 3, 4
Floodplain

(To be answered by each individual.) 3a. Assume that you
are able to reconsider this ranking problem and have the
opportunity to consider additional factors that might affect
the choice of alternatives. What additional criteria would
you consider important in considering these alternatives?
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3b. If these additional criteria were considered, what
would be the certainty associated with each alternatives
rank?

Altg;na;ivg Certainty associated with rank

1-No Action 1, 2, 3, 4

2-Concrete 1, 2, 3, 4
Channel

B—Parkway 1, 2, 3, 4
Floodplain

4. Please indicate ranks for the alternatives obtained by
yourself and by your group:

Yourself Your Group
rnati Ran Alternative Rank
1 1
2 2
3 _____ 3 _
4 4

No Consensus Achieved

5. Names of other members in your group.
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QUESTIONNAIREZ

Multicriteria decision making is concerned with the ranking
of a set of alternatives for a set of criteria or objectives.
The ability to determine a ranking is hindered by many
problems. First, there is frequently no single alternative
that may satisfy all criteria better than other alternatives.
Second, the satisfaction of a criterion may not be
quantifiable, requiring the application of judgment. Third,
many decision makers may be involved in the decision process,
each possessing views as to the relative importance of
criteria and the desirability of the alternatives. 1In this
questionnaire you will be asked to consider several examples
of multicriteria problems and provide the requested
information. It is important that you read the examples
carefully before answering the questions.

Instructions for Use. This questionnaire will be
administered in two parts. In this first part, you will
receive a set of three problem descriptions, and a set of
questions. For the second part of the questionnaire, you
will receive a different set of questions regarding the three
problem descriptions. For these first two parts you are to
answer the questions independently from others who are
answering the questionnaire.

When the questionnaire has been completed, please return both
parts. The problems are designed to test several decision
making methods. They are not designed to test your knowledge
of the subject matter. It is expected that you will apply
your own judgment, along with the information provided, to
answer the questions that follow. There are no right or
wrong answers. The first problem will illustrate the role of
subjective judgment in decision making. Please answer all
questions, giving reasonable time to consider the questions
fully.

2 Administered to second sample group. Only sections different
from the first sample group are included.
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Part 1.

Name

Problem 1: SELECTION OF A FAVORED BRAND OF ICE CREAM

1. Please rank the four ice creams ordinally from 1 to 4
with 1 = most preferred, with respect to their satisfaction
of the stated criteria.

Alternative Rank

1. Baskin Robbins .......ovtireennennn.

A 1YW & o Y- o

2. Because there may be some uncertainty about an
alternative, an estimate of your certainty regarding your
ranking of the alternatives is requested. Utilize the scale
given below to indicate the certainty with which an
alternative is assigned the given rank.

1--.9--.8-—- .7 - .6=-—.5=-——.4-— .3 -— .2 == .1--20

complete high moderate low no

EXAMPLE: Alternative 1 may be ranked with moderate
certainty. This could be indicated as

1-Baskin Robbins .5

Indicate the certainty associated with each rank assignment:

Alternatijve Certainty associated with rank

1-Baskin Robbins
2-Sealtest
3-Howard Johnsons

4-Haagen Daz
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Problem 2: WATER QUALITY MONITORING

1. Please rank the four water quality monitoring

alternatives ordinally from 1 to 4 with 1 = most preferred,
with respect to their satisfaction of the stated criteria.

Alternative Rank

1. Time Specific .....iiiiiiiiinnnnnn.
2. Space SpecifiC ...iiuiiiiiniirninnen..
3. Intensive ...t e e
4. Baseline .......tiiiiiiiiiii e,
2. Because there may be some uncertainty about the

performance of an alternative an estimate of your certainty
regarding your ranking of the alternatives is requested.

1 - .9 - .8-- .7 - .6 -— .5 —= .4 - .3 == .2 = .1 ——0
complete high moderate low no
Alternative Certaintyv associated with rank

1-Time Specific
2-Space Specific
3-Intensive

4~-Baseline
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Problem 3: URBAN FLOOD PLAIN MANAGEMENT

1. Please rank the four flood plain management alternatives
ordinally from 1 to 4 with 1 = most preferred, with respect
to their satisfaction of the stated criteria.

Alternative Rank

1. No Action .....cviinnvnnnn.

2. Concrete Channel ..........

3. Parkway ..i.iieneneinainnan..

4. Redevelop Floodplain ......
2. Because there may be some uncertainty about the
performance of an alternative, an estimate of your certainty
regarding your ranking of the alternatives is requested.

Alternative Certainty associated with rank

1-No Action

2-Concrete

Channel

3-Parkway

4-Redevelop
Floodplain
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Part II.

Name

Problem 1: SELECTION OF A FAVORED BRAND OF ICE CREAM

You are requested to provide in greater detail your
preferences for the listed alternatives. Because the
evaluation criteria play a significant role in the final
selection of an alternative and because there may be some
uncertainty in the performance of an alternative with respect
to a criterion, it is requested that you evaluate each
alternative with respect to each criterion. Utilize the
scale given below to indicate the certainty with which an
alternative satifies the requirements of each criterion.

1 - .9 - .8-—-.7-—- .6~~~ .5=-= .4 - .3 == 2 == .1 == 0
complete high moderate low no

EXAMPLE: if it is highly certain that Alternative 1 satisfies
the criterion of low cost, assign
Alternative 1 .8

1. With how much certainty does each alternative satisfy the
criterion of low cost?
Alternative Certainty

1-Baskin Robbins
2—-Sealtest
3-Howard Johnsons

4-Haagen Daz
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2. With how much certainty does each alternative satisfy
the criterion of flavor ?

Alternative Certaintv

l—Baskin Robbins.
2-Sealtest
3-Howard Johnsons

4-Haagen Daz

3. With how much certainty does each alternative satisfy the
Criterion of texture and body of an ice-cream?

Alternative Certaintv

1-Baskin Robbins
2-Sealtest
3-Howard Johnsons

4-Haagen Daz

4. Finally, it is important to obtain an indication of your
belief in the relative significance of the evaluation
criteria. With respect to the selection of a best overall
ice cream, how certain is the significance of each criterion?

Criterion Certaintv

1. Cost

2. Flavor

3. Texture and Body
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Problem 2: WATER QUALITY MONITORING

Part II. You are requested to provide in greater detail your
preferences for the listed alternatives. Because the
evaluation criteria play a significant role in the final
selection of an alternative and because there may be some
uncertainty in the performance of an alternative with respect
to a criterion, it is requested that you evaluate each
alternative with respect to each criterion. Utilize the
scale given below to indicate the certainty with which an
alternative satifies the requirements of each criterion.

1 --.9--.8=--.7-=.6=-—.5-—— .4 —— .3 == .2 == .1 —= 0

complete high moderate low no

EXAMPLE: if it is highly certain that Alternative 1 satisfies
the criterion of low cost, assign
Alternative 1 .8

1. With how much certainty does each alternative minimize
the cost of monitoring?

Alternatijve Certainty

1-Time Specific
2-Space Specific
3-Intensive

4-Baseline
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2. With how much certainty does each alternative protect
commercial fish species?

Alternative Certainty

1-Time Specific
2-Space Specific
3-Intensive

4-Baseline

3. With how much certainty does each alternative protect
the regulating agency against false accusation?

Alternative Certainty

1-Time Specific

2-Space Specific

3-Intensive

4-Baseline
4. With how much certainty does each alternative protect
recreational uses of the stream?

Alternative Certainty

1-Time Specific
2-Space Specific
3-Intensive

4-Baseline
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5. Finally, it is important to obtain an indication of your
belief in the relative importance of the evaluation criteria.
With respect to the selection of a best overall monitoring
policy how certain is the importance of each criterion?

Criterion ‘ Certaintyv

1. Minimize Cost
2. Protect Fish
3. Protect Agency

4. Protect Recreation
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Problem 3: URBAN FLOOD PLAIN MANAGEMENT

You are requested to provide in greater detail your
preferences for the listed alternatives. Because the
evaluation criteria play a significant role in the final
selection of- an alternative and because there may be some
uncertainty in the performance of an alternative with respect
to a criterion, it is requested that you evaluate each
alternative with respect to each criterion. Utilize the
scale given below to indicate the certainty with which an
alternative satifies the requirements of each criterion.

1 -- .9 -- .8-=.7=--.6==.5=-—— .4 -—— .3 =—— .2 — .1 —— 0

complete high moderate low no

EXAMPLE: if it is highly certain that Alternative 1 satisfies
the criterion of low cost, assign
Alternative 1 . 8

1. With how much certainty does each alternative reliably
prevent flood damages for a 100 year frequency flood?

Alternative Certainty

1-No Action

2-Concrete
Channel
3-Parkway

4-Redevelop
Floodplain
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2. With how much certainty does each alternative enhance the
desirability and value of the flood plain?

Alternative Certainty

l—Né Action

2-Concrete
Channel

3-Parkway

4-Redevelop
Floodplain

3. With respect to ability to finance the construction and
operation of an alternative, with how much certainty is the
Criterion satisfied?

Alternative Certaintv

1-No Action

2-Concrete
Channel

3-Parkway

4-Redevelop
Floodplain

4. With how much certainty does each alternative maximize
neighborhood acceptance of a project?

Alternative Certainty

1-No Action

2-Concrete
Channel
3-Parkway

4-Redevelop
Floodplain
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5. Finally, it is important to obtain an indication of your
belief in the relative significance of the evaluation
criteria. With respect to the selection of a best overall
alternative, how certain is the significance of each
criterion?

Criterion Comparison

1. Flood Prevention

2. Value Enhancement

3. Cost
4. Neighborhood

Acceptibility



APPENDIX TWO

COMPUTER PROGRAMS

Ch h khkhhkkkhkhkhkkkkkAkAkkkkkkkkkkokkkkk kkhkkkokkkkokhkkkkkkkdkkkkkkxkx

C MAIN PROGRAM FOR FUZZY LOGIC METHOD

ChAahkkkhkkk Kk khkkk kkokk kK Kok k kK Kk % % K % %k % % & % & s o o ok & % 5 d & % & % % &k & % % ok % % %
REAL S(4), X(4), R(4,4), T(4,4), SOL(4,2), E(4,4)
REAL UBS(4), U(4,4), V(4,4), W(4,4,2)
CHARACTER*12 NAME

C M
C N

NUMBER OF ALTERNATIVES
NUMBER OF CRITERIA

pATAR /1., 1., 1., 2., 1., 1., 1., 1., 1., 1.,
1 1., 1., 1., 1., 1., 1./

OPEN (2,FILE="'FUZ.0OUT', STATUS='NEW")

99 WRITE (*, *) 'ENTER FILENAME'
READ (*,101) NAME *
IF (NAME .EQ. 'STOP') STOP
OPEN (1,FILE=NAME, STATUS='QOLD"')
WRITE(2,*) ' !
WRITE(2,101) NAME

M 4
N 4
pci1I1=1,M
po1J=1N
READ (1, *) T(I,J)
1 CONTINUE

po 2 Jg=1,N
READ (1, *) X(J)
2 CONTINUE

CALL SOLVE (M, N, R, T, X, SOL)
GOTO 99

101 FORMAT (Al2)

STOP
END
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C
Kok Kok dk ko ok k ke k ok ok k ko k kR k kg ok ok ok ok k ok Kk kK %k ok ok ok k k Kk kK ok sk ok % ok ok ok ek k K kK Kk
C SUBROUTINE FOR SOLUTION OF UPPER AND LOWER BOQUNDS

Chhkhkkkkhhkhhkhkhkhkhkhhkhkkhk ARk kkhkhkkhkhkhkkkkhhkhkkhkkhkkkkhkkhkkkkkkkkkxk

SUBROUTINE SOLVE (M, N, R, T, X, SOL)

C
C ASSUME PRESENCE OF RELATION MATRICES
C R(m,n), T(m,n)
C where
C m = # OF ALTERNATIVES
C n = # OF CRITERIA
C
C
REAL R(3,4), T(3,4), X(4), E(3,4), UBS(4), U(3,4,2)
REAL V(4,4,2), W{(4,4,2), SOL(4,2), RMAX(4), LBS(4)
INTEGER JMAX(4), K(4)
C ***xx*x FIND UPPER BOUND SOLUTION **x*x
1 DO 10 I =1, M
DO 10 J =1, N
E(I,J) = AMIN1(1., (X(J) + 1. - T(I,J)))
10 CONTINUE
DO 20I =1, M
XMIN = 99.
DO 25 J =1, N
IF (E(I,J) .LT. XMIN) XMIN = E(I,J)
25 CONTINUE
UBS(I) = XMIN
WRITE (*,*) 'UPPER BOUND SOLUTION =', UBS(I)
20 CONTINUE
C ***xx*x FIND LOWER BOUND SOLUTIONS ***xx
C
C ****x*x DEFINE U(I,J) AND V(I,J) ***x*xx
C | [X(J)] IF R(I,J) > X(J)
c U(1,J) =1 [X(J), 1] IF R(I,J) = X(J)
C } [0] IF R(I,J) < X(J)
C
cC V(I,Jd) = | [0, X(J)] IF R(I,J) > X(J)
C | [0] IF R(I,J) <= X(J)
C

DO 30 I =1, M
DO 30 J =1, N
IF (R(I,J) .GT. X(J)) THEN

U(IrJrl) = X(J)
U(1,J,2) = X(J)
v(1,J,1) = 0.0
V(I,Jd,2) = X(J)
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END IF
IF (R(I,J) .EQ. X{(J)) THEN
U(I,J,1) = X(J)
u(1,J,2) = 1.0
v(I,J,1) = 0.0
v(I,J,2) = 0.0
END IF
IF (R(I,J) .LT. X(J)) THEN
U(I,J,l) = 0.0
Uu(1,J,2) = 0.0
v(I,J,1) = 0.0
vV(I,J,2) = 0.0
END IF
CONTINUE

% % %k k % DEFINE W(I’J) * % Xk Kk k

**x*x*x K = Kth COMBINATION SATISFYING:
x*%x*x W(I,J,K) U(I,J) IF U(1,J,1) .ne. O
V(I,J) ELSE

DO 40 J = 1,N
DO 40 I = 1,M
IF (U(I,J,1) .NE. 0) THEN
w(I1,J,1) = u(1,d,1)
W(I,J3,2) = U(I1,J,2)
ELSE
w(I,J,1) = v(1,dJ,1)
W(1,3,2) = V(I1,J,2)
END IF
CONTINUE

**xx FIND 'K' SOLUTIONS
X*** K = (# NON-ZERO REPLICATES IN COL. 1)*

folalalel (# NON-ZERO REPLICATES IN COL. 2)*
K2 =0
Kl= 1
DO 42 J = 1,N
K(J) =1

DO 43 I = 1,M
IF (W(I,J,1) .EQ. 0) GOTO 43
DO 44 IA = I+1,M
IF (W(I,J,1) .EQ. W(IA,J,1)) K(J)
CONTINUE
GOTO 45
CONTINUE
Kl = K1 * K(J)

K(J)+1
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42 CONTINUE

DO 50 I = 1,M
51 RMAX (I) = O.
DO 60 J = 1,N
IF (W(I,J,1) .GT. RMAX(I)) THEN

RMAX(I) = W(I,J,1)
JMAX(I) = J
END IF
60 CONTINUE
C
IF (RMAX(I) .EQ. 0.) GOTO 50
IF (RMAX(I) .GT. UBS(I)) THEN
K2 = K2 + 1
W(I,JMAX(I),1) = 0.
GOTO 51
END IF
C

LBS(I) = RMAX(I)
50 CONTINUE

C **** SOLUTION FOUND
DO 68 I =1, M
SOL(I,1) = LBS(I)
SOL(I,2) = UBS(I)
68 CONT INUE
c **%*x TEST FOR INCONSISTENT SOLUTION

IF (K2 .GE. K1) THEN

WRITE (*,*) 'INCONSISTANT SOLUTION'

RETURN
ELSE

DO 69 I = 1,M

WRITE (2, 690) SOL(I,1),SOL(I,2)
69 WRITE(*,*) SOL(I,1), SOL(I,2)

ENDIF

64 CONTINUE
690 FORMAT(2(1X,F5.3))

RETURN
END
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ThkhkA kA kA A XA AR AkARA AR Ak Ak hkhkkkhkkhkAhkhkhkkhkkkkkkkkkkhkkkkhkkxxk

MAIN PROGRAM FOR YAGER'S METHOD

AhkAAk kA Ak AKRAAA AR KAk kkhkhkkkkhkkhkkhhkhhkkhkkhkhkkkkkkkkhkkkkikkxx
C = ARRAY OF WEIGHTS (FROM SAATY PROGRAM) FOR EACH
ALTERNATIVE RELATIVE TO EACH CRITERION

P = VECTOR OF WEIGHTS FOR EACH CRITERION (FROM SAATY)

REAL C(4,4), P(4), D(4,4), DMIN(4)
CHARACTER*12 NAME
OPEN (2, FILE='YAGER.OUT',STATUS='NEW')

WRITE(*,*) 'ENTER FILE NAME'

READ (*,1) NAME

IF (NAME .EQ. 'STOP') STOP

FORMAT (Al12)

OPEN (1, FILE=NAME,STATUS='QLD')

WRITE (2,%*) ' !

WRITE (2,1) NAME

WRITE (*,*) 'ENTER NUMBER OF CRITERIA '
READ (*, *) NCRIT

NALT = 4

DO 10 I = 1, NALT
DMIN(I) = 10.

DO 10 J = 1, NCRIT

_ N = N+1

READ (1, *) C(I,J)

DO 20 J = 1, NCRIT
READ (1, *) P (J)

DO 30 I = 1, NALT

DO 30 J = 1, NCRIT
D(I,J) = C(I,J)**P(J)

CONTINUE

DO 40 I = 1, NALT
DO 40 J = 1, NCRIT

IF (D(I,J) .LT. DMIN(I)) DMIN(I) = D(I,J)
CONTINUE

DO 50 I = 1, NALT
WRITE (2,200) DMIN(I)

CONTINUE

WRITE(2,*) ' °

WRITE (2,1) NAME

CLOSE (1)

GOTO 99

FORMAT (1X,F8.5)

FORMAT (2 (1X,F5.3))

END



216

C PROGRAM TO CALCULATE KENDALL'S TAU FOR RANKED (X,Y)
C PAIRS INCLUDES SPECIAL FORMULA FOR ADJUSTING FOR TIES
C (IN Y ELEMENTS ONLY)

PROGRAM TAUTEST
REAL S(4,4), T(40)
CHARACTER*12 NAME

OPEN (2, FILE='TAU.OUT',STATUS='NEW')

WRITE (*, *) 'ENTER FILE NAME'
READ (*,10) NAME
OPEN(1, FILE=NAME,STATUS='CLD')

READ (1, *) NG, NA
NGA = INT (NG*NA)
CALL CALC(S, T, NG, NA, NGA)

10 FORMAT (A12)
STOP
END

SUBROUTINE CALC (SCORE, TAU, NGROUP, NALT, NGA)
REAL SCORE(4,4), TAU(NGROUP)
INTEGER TIE, TY

C **** NGROUP = NUMBER OF STUDENTS, GROUPS
o **** NALT = SAMPLE SIZE, (NUMBER OF ALTERNATIVES)
o LOOP THROUGH EACH GROUP
DO 10 I = 1, NGROUP
N=0
DO 11 J = 1, NALT
N = N+1
READ (1, *) SCORE (N, 1) , SCORE (N, 2) , SCORE (N, 3) , SCORE (N, 4)
11 WRITE (*, *) SCORE (N, 1) , SCORE (N, 2) , SCORE (N, 3) , SCORE (N, 4)
o SORT BY SCORE (N, 3)

DO 30 J = 1, NALT-1
K = NALT - J
PO 40 L =1, K
IF (SCORE(L,3) .LE. SCORE(L+1,3)) GOTO 40

Tl = SCORE(L,1)
T2 = SCORE (L, 2)
T3 = SCORE (L, 3)
T4 = SCORE(L, 4)
SCORE (L,1) = SCORE((L+1),1)
SCORE (L,2) = SCORE((L+1),2)

SCORE (L, 3) SCORE ( (L+1), 3)
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SCORE (L, 4) = SCORE({(L+1),4)
SCORE((L+1),1) = T1
SCORE ((L+1),2) = T2
SCORE((L+1),3) = T3
SCORE ((L+1),4) = T4
40 CONTINUE
30 CONTINUE
**x*x*x WRITE OUT SORTED ARRAY

DO 41 M = 1, NALT
41 WRITE(*, *) SCORE (M, 1) , SCORE (M, 2) , SCORE (M, 3) , SCORE (M, 4)

*x** CALCULATE P AND Q

**** AND SEARCH FOR TIES IN Y COLUMN
TIE = 0
TY = 0
DO 50 K = 1, NALT-1
Nl = N1 + 1
KY = 1
DO 60 K1 = K+1, NALT
IF (SCORE((K),4) .LT. SCORE((Kl),4)) P =P + 1
IF (SCORE((K),4) .GT. SCORE((K1),4)) Q = Q + 1
IF (SCORE((K),4) .EQ. SCORE((Kl),4)) THEN
KY = KY+1
TIE = 1
END IF
60 CONTINUE
TY = TY + KY* (KY-1)
50 CONTINUE
TY = TY/2
**** CALCULATE TAU FOR EACH GROUP

**x*x CHECK FOR TIES IN THE DATA

IF (TIE .NE. 0) THEN

DENOM1 = SQRT(.5*NALT* (NALT-1))
DENOM2 = SQRT(.5*NALT* (NALT-1) - TY)
TAU(I) = (P-Q)/ (DENOM1*DENOM2)
ELSE
TAU(I) = (P-Q)/(NALT* (NALT-1)/2.)
ENDIF

WRITE (*,100) SCORE(1,1), TAU(I)
WRITE(2,100) SCORE(1l,1), TAU(I)
P=20

Q=20

10 CONTINUE

100 FORMAT (1X,£8.0,5X,F6.3)

RETURN
END






