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Abstract

This research investigates the benefits of forecasting
in water resources systems. Questions relating economic
losses caused by water supply shortages to forecast period
and accuracy are addressed. Some simple available
forecasting techniques are assessed for their accuracy and
applicability. These issues are addressed through the use
of a simulation model of the Cedar and South Fork Tolt
rivers. This system is represented as a single-purpose
reservoir supplying municipal and industrial water to the
Seattle metropolitan area. The following conclusions were
made: 1) Econonmic losses caused by water deficits always
increase with an increase in forecast uncertainty; 2) The
optimal length of forecasting period is five months; 3) Up
to 88% of the economic losses incurred by operating the
reservoir without forecasting are due to the lack of
forecasts; 4) The mean of the historic data is not
recommended to predict future flows because Markov methods
are always superior; and 5) Lag-one autoregressive Markov

schemes exhibit about a 9% improvement over no forecasting.
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Chapter 1

INTRODUCTION

Forecasting plays an important role in our lives.
Every individual makes innumerable predictions daily.
These predictions, or forecasts, range widely in their
importance, their accuracy, and the community they affect.
In a five minute meeting between two business people,
hundreds of predictions are made by each person as to the
other person's reaction to a thought. Physicians, having
experience with a drug, predict a patient's reaction to
that drug. Financial brokers depend on forecasts to make
decisions about buying and selling stocks and commodities.
Oother types of forecasts may affect more people and have
graver consequences. Long-term earthquake forecasts may
affect the migration into and out of a geographic area,
while a short-term forecast may save thousands of lives.
Highly uncertain weather forecasts affect thousands of

people daily.

Increasing populations, higher water supply demands,
and competing water uses have necessitated the
incorporation of optimization techniques into water
resources problems. The complexities of a multipurpose,

multi-reservoir system have generally required release



decisions to be determined by optimization or simulation
models. The analysis of a complex water resources system
involves models with thousands of decision variables and
constraints. Once the objectives and constraints have been
determined, most problems lend themselves to solution
techniques developed in the fields of operations research

and management sciences [Yeh, 1985].

The introduction of optimiéation methods into water
resources problems has encouraged the investment of much
research and effort into the subject of 'value of
information'. The collection of data implies a future use
of that data and therefore an inherent worth. Typically,
the first data to be collected contain the most information
and thus have the greatest value. As more data are
collected, the information content, and hence the worth per
additional unit of information decreaseg. On the other
hand, the marginal cost of obtaining those data usually
remains constant. Because of the decreasing marginal worth
of the data, it should be possible to define a level of
information at which the marginal worth and cost for data
are equal. 1In principle, defining that optimal level of
information is thus conceptually simple. In practice,
however, assigning an economic worth for data has proven

to be a very difficult task. Therefore, much effort has



been devoted to.the determination of surrogates of worth.
This research employs the economic framework to evaluate

the benefits of forecasting.

In order to devise an operating policy, optimization
and simulation models require some form of forecast.
Forecasts are made with the hope that they will enable a
decision maker to take advantage of certain future events
and, at the same time, reduce losses resulting from others.
A forecaster employs a forecasting technique with the
available data base to make a "best guess" at future
events. The benefits of a forecast are measured by the
degree to which losses resulting from the lack of such a
forecast can be reduced. Economic losses resulting from
water supply shortages are incurred when restrictions on
water uses are initiated. Because forecasts are made to
increase the net benefits of an activity, forecasts can be
said to have a worth. This can be related to an increase
in informational content of the historic record.

Obviously, in some cases when forecasts are not accurate,
or when a sufficiently long historic record does not exist,
forecasts may lead the decision maker into making an
inferior decision. Such a forecast can be thought of as

supplying misinformation to the decision maker.



Water supply forecasts are essential to the operator
of a water resources system. In order to satisfy competing
water uses such as municipal and industrial water demand,
irrigation, flood control, fish flow requirements, and
recreation, an operator must make decisions concerning the
apportionment of water releases among purposes, reservoirs,
and time periods. Therefore, high quality forecasts become

a necessity to the operator.

Numerous forecasting techniques with differing
complexities and realisms are available to the operator.
The operator is then faced with several questions. To what
extent do the available data describe the system at hand?
Which forecasting technique is best suited for that system?
Would forecasts be of any value in the system operation?
How accurate are these forecasting schemes? What length of
forecasting period should be adopted? To what extent does
this affect the operation and the resulting economic

losses?

The purpose of this report is to study the
relationship between economic losses caused by water supply
shortages, forecast uncertainty, and length of operation
period. Additionally, some simple forecasting techniques

are employed to test their applicability and accuracy.



The above topics are addressed through the use of a
computer model describing the water resources system
supplying the Seattle metropolitan area. The model
simulates the operation of a single reservoir with a single
inflow and a single purpose, namely municipal and
industrial (M&I) water supply for the City of Seattle.
Forty-seven years of inflow data are used for the
estimation of population statistics and for the reservoir

operation.

The contents of this report are organized as follows:
Chapter 2 is a review of worth of data literature and
streamflow generating techniques. Chapter 3 contains a
brief description of the Cedar and South Fork Tolt Rivers
drainage basins. It also includes esimates of the water
demand for the Seattle metropolitan area and the demand
load factors used in this study. Chapter 4 describes the
operating policy, the methodology and logic of thé model,
and the experimental design. Chapter 5 summarizes the
findings of this report and indicates potential areas of

further inquiry.



Chapter 2

LITERATURE REVIEW

With the development of optimization theory and
methods, and their application to water resources problems,
the subject of the value of information has become more and
more important. How much data are really needed to make a
decision? 1Is the available information enough, or should a
decision be postponed until more data have been collected?
In this case, what are the economic costs for waiting?
Because of the relatively short historic records at most
sites of interest, worth of data studies have generally
employed synthetic streamflow generating techniques to
provide a longer time series of flow data for use in
simulation of reservoir operation. This chapter is devoted
to the review of worth of data studies and the generating

techniques that they use.

2.1 WORTH OF DATA LITERATURE :

As more information is available, the planner, or
operator, is more likely to make a better decision. Hence,
information can be said to have value. The worth of a
specific set of data is dependent on the use or uses
intended for those data. For a certain application, the

worth of data may be defined in terms of the losses that



would have been incurred if such data were lacking.
Practically, such an economic evaluation of the worth of
data has proven to be very difficult. Therefore, much
attention has been devoted to the determination of
surrogates to worth, usually some measure of accuracy and

sample variability [Dawdy, 1979].

Studies of the worth of data have generally assumed
three basic approaches. The first estimates the "true
value" of a parameter from long streamflow records or
stochastic streamflow traces. Worth of data is then
measured in terms of the deviations in the value of those
parameters from their "true value" when they are estimated
using smaller sample sizes. The second approach attempts
to evaluate the worth of data in an economic framework.
The third uses Bayesian statistical techniques to update a
subjective prior distribution of the parameter to be

estimated.

2.1.1 Sample Variability as a Surrogate to Worth :

Dawdy [1979] traced the history of the search for
surrogates of worth. The literature review classified
network design studies according to four approaches : 1)
the Information-Variance Approach, 2) the Transfer

Function-Variance Approach, 3) the Economic Framework, and



4) Decision Theory and Bayesian Analysis. Papers had shown
that the full Bayesian analysis could be circumvented by
the use of simulation to overcome some of the
computationally more difficult portions of the analysis.

It was concluded that simplicity was required if there is
to be any impact on decision makers, and that techniques
that reduce the dimensions of the problem without reducing

the physical realism of the solution must be developed.

Moss and Karlinger [1974] used the first approach in
conjunction with the Bayesian theorem in the design of
stream gaging networks. The study investigates the
statistical characteristics of the accuracy of regression
analyses as used in surface water regionalization by
simulating logarithmic regressions of the streamflow
parameters. According to the authors, generalized
relationships for the economic evaluation of the benefits
and costs of information had not yet been developed. Thus,
a measure of regional information was estimated from the
standard error of estimate of the regression analysis.
This measure is expressed in terms of equivalent years of
at-site record. Prior to this study, only a single
observation of apparent equivalent years was available to
define the level of regional information concerning a

streamflow parameter. To improve upon this, the



statistical nature of equivalent years of record must be
considered. Hence, it is suggested that the network design
criterion be expressed as a statement of probability,
specifying the probability of attaining a desired level of

information.

Tschannerl [1971] set forth two methods for computing
the expected opportunity loss (EOL) for a single purpose
reservoir. The first method is based on sampling from a
synthetic flow sequence generated on the basis of estimates
of the true values of the streamflow statistics. The other
method designs a decision rule within the framework of
subjective probabilities (or Bayesian statistics). EOL is
defined as the loss resulting from overdesigning or
underdesigning due to imperfect information. The study
demonstrates the computation of EOL as a function of sample
size. This represents a measure of the worth of data, and
can be used by the planner to establish a cutoff point for
data collection. It was concluded that the subjective
approach allowed adjustments in desigﬁ to account for
uncertainty by incorporating the EOL into the design

decision.
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2.1.2 Economic Framework :

The major disadvantage of the first approach is the
inadequacy of most hydrologic data; that is, streamflow
records are often short or do not exist at points of
interest. Jettmar and Young [1975] attempted to determine
the consequences of using Markovian (simple) and
self-similar (complex) synthetic data generators in the
economic design of a multi-purpose reservoir. The lag-one
Markovian model used the first-order serial correlation
coefficient of the historical series as the explanatory
parameter. The self-similar process used the Hurst
coefficient as the driving parameter. Statistical analyses
showed that, for the Markovian model, the short range fit
was perfect, the intermediate poor, and the high lag range
good. On the other hand, for the self-similar process, the
short range fit was poor, the intermediate good, and the
high lag range poor. Hence, the statistical analysis of
the historical data was judged to be inconclusive with
respect to discrimination between a Markovian or a
self-similar generating process. To distinguish between
the two models, a much greater time horizon was needed
(T>10,000 [Chi et al. 1973; Mandelbrot, 1971; Wallis and
Matalas, 1971]). Therefore, the economic framework
approach was used. The economic factors considered were

(1) reservoir size, construction, and cost; (2) water
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supply, target output, and penalty function; (3) storage
and its relationship to recreation; and (4) avoidance of
flooding and flood losses. It was concluded that the
approach of viewing economic results to judge the
significance of hydrologic assumptions was sound and
capable of answering very basic issues. Given limited
resources, a Markovian model can be used for both sizing
and operating a multi-purpose reservoir. Furthermore, no
discrimination between a simple Markovian model and a

complex self-similar model could be found.

The second approach taken by worth of data studies
evaluates the value of information in an economic setting.
This approach uses a long streamflow record or stochastic
streamflow traces to develop the "optimal" plan, and
evaluates the economic impacts on this plan if shorter
records, taken arbitrarily from the loqg record, are used
in reservoir design. This approach permits the researcher
to assign a value for information increments. Dawdy et al.
[1970] assess the effect of sampling error on the value of
data used for reservoir design. In the study, streamflow
for Arroyo Seco near Soledad, California, are used. The
value of data is assessed by measuring the net benefits
foregone as a result of the lack of data. Optimum

reservoir design is based on a 500-year stochastic sequence
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of flows generated from statistics of the historical flow.
Records of various lengths are arbitrarily choseh from the
500-year base record and used to determine the apparently
optimal design. A capacity/cost function is assumed and
benefits are computed for flood control and water supply.
The expected value of net benefits increase as more data
are collected. Also, the results demonstrated a decrease
in the added value per additional year as more years of

data were collected.

Moss [1970] uses the data from Dawdy et al. [1970]
with existing discharge and stage measurements to
illustrate and test the applicability of a scheme for
determining the optimum operating procedure at the gaging
station on Arroyo Seco near Soledad, California. The
optimum length of record was satisfactorily defined. For a
situation where no prior streamflow data exist and the
reservoir is to be built as soon as enough data are
collected, it was found that the optimal length of record
is nine years. On the other hand, the optimum frequency of
discharge measurement was found to be indeterminate.
Sensitivity analysis showed that the optimum length of
record was more sensitive to the variability of the
streamflow and the planned level of development at the site

than to discount rate or cost of obtaining streamflow data.
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It should be noted that extension techniques were not used

to add to the value of the collected data.

Klemes [1977] also uses the economic approach to
examine the value of information in optimization of storage
reservoir operation. The range of aspects examined in
relation to the value of information in reservoir operation
includes the implications of using expected values as an
optimality criterion, the relevance of the knowledge of
population parameters, the value of real-time forecasting,
the relation between the economic and hydrologic
uncertainties, and the influence of reservoir size. The
hypothetical problem is the annually updated operation of a
multi-purpose single storage reservoir fed with a random
input having a log normal probability density. An
objective function of the form of a quadratic loss function
is assumed. The policy is derived by minimizing the
expected present value of loss using the standard backward
explicit stochastic dynamic programming algorithm in
conjunction with an assumed distribution fitted to a
‘historic' input series. Numerical experiments demonstrate
a negligible sensitivity of the results to the assumed form
of input distribution, a near optimality of the policy -
'draft equals input mean' - for any reservoir size and any

size of input sample, and a similarity between the effects
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of hydrologic and economic uncertainties. Finally, it was
found that the degree of optimality of a given policy did
not depend on the degree to which the underlying input
model and its parameters agreed with the input population,
but rather on the similarity of the features of the
historic sample underlying a given policy and the future

10-year sample on which the policy performance was tested.

Yeh et al. [1982] assess the improved benefits that
might be gained from the use of long-range streamflow
forecasts in the operation of a multi-purpose reservoir.
The Oroville-Thermalito reservoir system of the California
State Water Project was selected for the study. The study
relates incremental operational benefits to streamflow
prediction period and accuracy. Applicable benefits are
considered one at a time, independant of any others. No
optimal combination of benefits was attempted since such
optimality was highly subjective. 1In this study, the major
potential benefits are increased hydropower generation,
water conservation, and decreased seepage damage to crops
during their critical growing periods. It is concluded
that estimation of the future inflows as the historical

averages provides significant benefits.
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2.1.3 Bayesian Analysis :

The third common approach to the evaluation of the
expected worth of additional data is through the use of
Bayesian decision theory. In this approach, a subjective
prior probability distribution of the quantity to be
estimated is postulated. As more data are collected, the
prior distribution is updated using conditional
probabilities [Benjamin and Cornell, 1970] and becomes what
is commonly referred to as the posterior density. For each
additional sample, the resulting posterior distribution is
used to compute the expected worth of the additional data.
This approach is used by Lenton et al. [1974] to improve
at-site estimates of the annual lag-one autocorrelation of
streamflow series where the prior distribution was derived

from regional information.

Krzysztofowicz [1983] notes that uncertainty is often
ignored in the process of decision making and that
conventional decision procedures utilize forecasts as if
they were error free. He addresses the question of the
value of an uncertain forecast when the decision procedure
ignores the uncertainty, and investigates several
fundamental aspects of this question by means of a simple
decision model. In contrast with other studies which

assumed optimal decision making, the economic value of a
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forecast is treated as being dependent on both the accuracy
of the forecast and the degree of optimality of the
decision. An analytic solution to a quadratic decision
problem is extended in order to evaluate nonoptimal
decision procedures. Two Bayesian information processors,
one for categorical forecasts and the other for
probabilistic forecasts, are formulated and applied to
records of daily temperature forecasts. The probabilistic
forecasts are of the type in which the forecaster
quantifies his degree of uncertainty in terms of a
fixed-probability central credible interval. It is
demonstrated that probabilistic forecasts are likely to be
more valuable than categorical forecasts, and that the
relative gains from probabilistic forecasts are likely to

be greater if suboptimal procedures are employed.

Krzysztofowicz and Watada [1986a] formulate a
stochastic model to describe the uncertainties in the
categorical forecasts of runoff volumes during the snowmelt
season issued by the National Weather Service and the Soil
Conservation Service. The model is a discrete-time,
finite, continuous-space, nonstationary Markov process.

The categorical forecasts consist of the "most probable"
runoff X expected to occur if precipitation subsequent to

the date of forecast is median; the "reasonable minimum"
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runoff x , expected to occur if precipitation subsequent to
the date of forecast is equal to the 0.1th fractile; and
the "reasonable maximum" runoff Yn, expected to occur if
precipitation subsequent to the date of forecast is equal
to the 0.9th fractile. A categorical forecast is defined
as a point predictor X whose value depends upon the
specific hydrometeorologic conditions in a given year. The
above described forecast was termed as categorical because
it specified a point predictor énd a "naive" central
credible interval tn = ?n - X, (i.e., tn was based only on
a prior climatological distribution of precipitation and
therefore did not reflect the uncertainty of the specific
hydrometeorologic conditions in a given year). A
probabilistic forecast is defined as one having both the
point predictor X and the credible interval tn depend upon
the specific hydrometeorologic conditions in a given year.
Thus, probabilistic forecasts were preferred to categorical
ones in that the format of the forecast (that users have
grown accustomed to) would not change, the credible
interval would have attached to it an explicit probability
(that can be set to any desired level), and that the
information contained would completely specify the

posterior density which would provide information for

optimal decision making.
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Krzysztofowicz [1986c] considers the decision maker's
dilemma of when to make a commitment concerning water
supply when such a commitment has to be made within a
period prior to the forthcoming season. The more the
commitment is delayed the more accurate is the forecast (on
the average). Unfortunately, as the commitment is delayed,
the potential benefits decrease. An optimal decision model
for a class of commitment problems is presented. The model
can serve purposes of real-time decision making, economic
evaluation of forecasts, and analyses of improvements of
the forecast system. The planning problem is formulated as
a finite horizon, nonstationary Markovian stopping process
with Bayesian updating of the distribution of the uncertain
runoff, maximization of the expected utility of outcomes as
the planning criterion, and dynamic programming as the
solution algorithm. Results of numerical experiments show
that even highly uncertain forecasts may be valuable
provided they are employed in optimal decision models.
Also, it is shown that substantial economic gains could be
accrued from improvements in seasonal snowmelt runoff

volume forecasts, particularly the early ones.

2.2 REVIEW OF FORECASTING TECHNIQUES :

The best way to answer questions about future flow

patterns for a stream would be through the use of a



19

complete theoretical model to determine the future course
of the basin. Unfortunately, such models are simply not
available. In the absence of such a complete model,
hydrologists have attempted to devise models that provide
possible flow traces of the stream under study. Such
models are the core of synthetic or operational hydrology
[Jackson, 1975]. Synthetic hydrology is a tool that may be
used in evaluating the consequences in water supply
management decisions [Hirsch, 1979]. According to Clarke
[1977], synthetic hydrology may be defined as the
application of Monte Carlo methods to estimation problems
in hydrology. By using Monte Carlo techniques to generate
long or multiple streamflow records and then analyzing the
outputs of a water resource system with these records as
inputs, one can test the system's response to periods that
are longer and contain greater extremes than the historical
record [Askew et al., 1971]. One appl?cation of synthetic
hydrology is to the problem of forecasting. The following
is a brief overview of some of the major families of models

used in synthetic hydrology.

Thomas and Fiering devised a method for generating
long traces of synthetic flows that are indistinguishable,
within sampling variation, from the historical flow

sequence. The Thomas-Fiering or lag-one Markov generation
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scheme can provide traces drawn from a population with a
specified mean, variance, and first-order serial
correlation coefficient [Jackson, 1975]. Such a synthetic
streamflow generation scheme consists of two components : a
deterministic part, di' and a random part, ¢ i [Fiering &
Jackson, 1971]. Because of the serial dependence of flows,
it is necessary to include a non-zero deterministic
component to reflect persistence in the generation process.
The random component is assumed to be independently
distributed with mean zero and constant variance. It is
also assumed that the degree of persistence between
successive flows does not depend on the level of those
flows (obviously, this assumption is not completely
realistic). Thus, the deterministic component will have

the linear autoregressive form :

i = B 19¢-1 ¥ By * --- * BpQp g

where di is a linear combination of m previous flows.

The simplest model of this form is the Markovian, or
lag-one, flow model which assumes that the entire influence
of the past on the current flow is reflected in the
previous flow value. The generating equation

2,1/2
= * - . %* * -

q; = wtp*(gy_y —u) *+ ty*or(l- o)

where the ti are independent normal sampling deviates with
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mean 0 and standard deviation 1, gives normally distributed
synthetic flows that preserve the meanu , standard
deviation o , and first order correlation coefficient, p ,
of the historical flow. This Markovian flow scheme assumes
that a given flow depends on the preceding flow and a
random component and on these factors alone.

Since the Markov models do not explain the Hurst
phenomenon, Fiering continued on to consider the
possibility that flow values depended not only on the
immediately preceding flows but also on a longer portion of
history of the flow sequence [Jackson, 1975]. Multilag
generation schemes are used when the dependency on exactly
one previous flow is not justifiable. Such schemes attempt
to model the storage of water in underground aquifers from

season to season, and the contribution of a fraction of it
each season to form part of the total runoff. According to
Fiering and Jackson [1971], this is "a model with a long
memory." The deterministic part of multilag models would

be of the form :

d; = By + Bygy_, + ... + By o
with m > 1. The solution to the problem of how many
previous flows to include in the model is not trivial.
Fiering and Jackson [1971] consider traditional statistical
tests but reject them because of the non-circularity of

historic flows. They adopt an operational procedure that
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includes lags as long as it is practical and profitable to
do so. The procedure calls for measuring the goodness of
fit (Rz) of a linear model for each level of serial
dependence. A practical stopping rule is to stop including

lags when the R2 values reach a plateau.

Hirsch [1979] attempts to evaluate the performance of
six different, single-site, monthly generators. He bases
his method of evaluation on the.synthetic streamflow
generator's (SSG) ability to estimate the reliability of a
water supply system. Other methods have been demonstrated
by Askew et al. [1971] and Jettmar and Young [1975]. The
six SSG's are applied to the case of the Potomac River at
Point Rocks, Maryland, where an 8l-year historic record was
available. The models use three ways to describe the
marginal probability distribution of the flows, and two
ways to describe the mechanism of serial dependence (hence
the six SSG's). The ability of one tYpe of generator to
produce water supply system reliabilities that are better
supported by the relevant historical data than those
produced by other SSG's is considered to be a demonstration
of superiority of the former generator. Results show that
preservation of statistical moments such as the mean,
standard deviation, and the lag correlation coefficients,

may be a misleading criterion for judging the ability of an
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SSG to provide plausible estimates of water supply system
performance. It is demonstrated that it is operationally
superior to base the specification of marginal
distributions of monthly streamflows on transformed values
of historical streamflow data rather than on the data
itself. Finally, a new type of autoregressive-moving
average model is shown to be operationally superior to an

autoregressive model.

Several families of models have been proposed to model
long-term persistence, which is not properly accounted for
by the Markov models [Burges and Lettenmaier, 1977]. The
most extensively documented is the Fractional Gaussian
Noise model of Mandelbrot and Wallis [1969]. In a series
of papers, Mandelbrot and van Ness [1968] and Mandelbrot
and Wallis [1968, 1969a,b,c,d,e] describe a family of
models, the Fractional Gaussian Noise models, that do not
belong to the Brownian domain of attraction [Jackson,
1975]. These models involve a complex correlation
structure in which the current value of the process depends
on the entire history of the process. Mandelbrot [1971]
suggested a combination of fractional noise and Markov
models, in fact, an approximation of fractional noise as a
sum of Markov processes. The resulting process is referred

to as a fast fractional noise process.
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Another family of hydrologic models, the broken line
model, has been suggested by Rodriguez-Iturbe et al.
[1972], Mejia et al. [1972], and Garcia et al. [1972].
These authors suggest that a number of different simple
broken line processes be added together to form a more
complicated general broken line process. These models can
be made to preserve a prescribed value of the second
derivative of the correlation function at the origin.
According to Jackson [1975], it is not clear what the
second derivative at the origin means for a discrete

parameter process.

2.3 Summary and Conclusions :

The purpose of this study is to investigate the
relationship between economic costs and forecast
uncertainty. It employs some of the simple available
forecasting schemes to answer certain fundamental
questions. How good are our forecasts? By how much can
they be improved? What effect does the length of the

forecasting period have on the quality of our forecasts?

In order to answer these questions, two sets of
numerical experiments, having differing approaches and
objectives, are conducted. The first produces a

theoretical relationship between economic costs as a
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function of forecast period and accuracy. This is done by
using, for our forecasts, the actual historical flow,
perturbed by a noise term, and associating it with the
resulting economic costs. The second set of experiments
employs differing available generating techniques to make a
best guess at future flows. It should be noted that the
purpose of the generating techniques used in this study was
not to augment existing flow records. Instead, they are

used to test their potential use as forecasting schenes.



Chapter 3

WATERSHED DESCRIPTION

3.1 EXISTING WATER SUPPLY

The Seattle Water Department (SWD) supplies water to
the metropolitan Seattle area from its existing Cedar and
Tolt River sources. Both watersheds are located on the
western slopes of the Cascade Mountains (Figure 1). The
Cedar/Tolt Water Supply System represents a complex,
multi-purpose reservoir system. In addition to providing
municipal and industrial water supply to the Seattle
metropolitan area, the Cedar reservoir assists in
maintaining the salmon population by controlling floods in
the winter and maintaining summer and fall flows greater
than those that would naturally occur, provides high
quality water to Lake Washington, and is a site for

hydropower generation.

The Cedar/Tolt system includes reservoirs on the Cedar
and South Fork Tolt Rivers, and diversion sites on the
Cedar at Landsburg and on the South Fork of the Tolt River
downstream of the dam. According to Erickson et al.
[1982], active storage in the two reservoirs is sufficient
for approximately two months of municipal and industrial

(M&I) demand during the summer months at the current demand
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level if all demands are satisfied. Using a reliability
standard of 98 percent, SWD's current system yield is
estimated at 169 mgd. This is obtained by adding the
yields of the Cedar and Tolt river sources, where the yield
for each source is calculated independently of the other.
This yield, however, is affected by competing water uses
and several water quality issues in the system's two

watersheds.

Monthly varying flood storage requirements alter the
available active storage capacity during the year. Table 1
summarizes the monthly variation of active capacities.

This information includes SWD's latest update of June 1987.

3.1.1 Cedar System

The Cedar River Watershed is located in Southeast King
County about 25 miles from downtown Seattle (Figure 2).
The crest of the Cascade Mountains marks the eastern border
of the watershed. The western edge is at the Landsburg
water supply intake, approximately 24 miles downstream of
the beginning of the Cedar River. The Cedar source

supplies over 70 percent of the current SWD demand.

The Cedar River Watershed administrative boundary

encompasses 90,495 acres, of which the City of Seattle owns
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80.6 percent. Since the beginning of the century, the City
has obtained total fee ownership of all lands within the

administrative boundary of the Cedar Watershed.

The Cedar reservoir system is composed of two dams
(Figure 3). Upstream is a low dam constructed of timber,
known as the crib dam, that controls the elevation of
Chester Morse Lake. The total storage capacity of Chester
Morse Lake is 55,000 acre-feet (ac-ft), of which only about
19,000 ac-ft are useable because of the large volume of
dead storage. Approximately 1.4 miles downstream is a
higher masonry dam creating what is called the Masonry
Pool. The total capacity of the reservoir system is
154,000 ac-ft. Severe seepage losses from the masonry
pool, however, occur when the water depth exceeds 30 feet,
limiting the total storage capacity to 74,000 ac-ft
[Erickson et al., 1982]. Water lost to seepage from the
reservoir flows into the Cedar River Morrain Aquifer.
Losses from the Masonry Pool are estimated at 2300 to
23,000 ac~-ft/month depending on the hydrostatic pressure in
the reservoir as well as on the water storage in the

aquifer.
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3.1.2 Tolt System

Approximately 20 miles north of the Cedar River
Watershed in northeastern King County are the two
watersheds of the Tolt River Basin (Figure 4). Presently,
only the South Fork Tolt Watershed is used for municipal
water supply. The average current supply from the South
Fork Tolt is 52 mgd. This is based on a limiting reservoir
drawdown to 1730 feet to aid in minimizing turbidity

problens.

In contrast to its actions on the Cedar system, the
City of Seattle does not have a program for obtaining total
fee ownership of either the North or South Fork Tolt
Watersheds. The South Fork Tolt Watershed has a drainage
area of about 13,390 acres of which the City owns about
28.6 percent. The City also owns 12.6 percent of the

25,500 acre North Fork Tolt Watershed.

The Tolt system drains into the 58,000 ac-ft earth
fill South Fork Tolt Reservoir at an elevation of 1765
feet. The water is diverted into the Tolt Regulating Basin
(elevation 760 feet) and then into the supply system via
the Tolt River Pipeline No.1l, which has a transmission
capacity of about 110 mgd (SWD, COMPLAN 1985). Average

annual supply from the South Fork Tolt is currently
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developed at 52 mgd. SWD has a water rights permit on the

South Fork Tolt River for a total of 150 mgd.

TABLE 2

Summary of Existing Water Supply

Cedar South Fork Tolt

Watershed

Area (acres) 90,495 13,390

Seattle Ownership (%) 80.6 28.6
Water Supply

Year of First Delivery 1901 1964

Firm Supply (mgd) 117 52
Reservoir Inflow (cfs)

Mean Annual Flow 6,001 2,202

Maximum Annual Flow 10,544 3,497

Minimum Annual Flow 3,417 1,385

3.2 WATER DEMAND

The water demand incorporated in reservoir operation
experiments for this study is based on forecasts made by
SWD and presented in the 1985 Seattle Comprehensive
Regional Water Plan (SWD, COMPLAN 1985). SWD developed a
recommended long-term demand forecast as a tool for
preparing a sound management plan for meeting the future
needs. The recommended demand curve (Figure 5) is a
product of a forecast model and a series of underlying
assumptions related to planning area, base Yyear, time
frame, population projections, estimated future rates, and

estimated price elasticities. When all the variables were
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included, SWD developed estimates for high, medium, and low
demand scenarios through 2035 (Figure 5). The recommended
demand curve depicts the most probable scenario during the
planning period. It also assumes that the effects of the

Long-Term Conservation Plan will be felt by 1995.

The choice of base demand to be used in the numerical
experiments depended on several factors. The recommended
demand forecasts set forth by the SWD represent M&I water
demand of the Seattle metropolitan area. In view of the
system's multi-purpose function, using the recommended
curve to represent the total demand would yield
unrealistically high system reliabilities. In order to
account for the other purposes of the system and, at the
same time, to keep the model as simple as possible, it was
judged justifiable to increase the level of the recommended
base demand. Therefore, a value of 235 MGD (22,000
ac-ft/month) for the base demand, corresponding to the high
demand scenario for the year 2005, is used in the operation
of the reservoir system. This choice was seen to increase

the credibility of the study without adding any complexity.

Actual monthly demand levels used in the reservoir
operation algorithm are obtained by multiplying the base

demand by the corresponding demand load factors (Table 3).
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Conclusion:

This chapter described the general layout of the
reservoir system. The research employs a computer
simulation model that reduces the system to a
single-purpose reservoir. The following chapter is devoted

to the description of the model and experiments.

TABLE 3
Monthly M&I Demand Factors

Demand Demand
Month Factor MGD ac-ft/month
APR 0.85 200 18,700
MAY 1.00 235 22,000
JUN 1.20 282 26,400
JUL 1.45 341 31,900
AUG 1.40 329 30,800
SEP 1.00 235 22,000
OCT 0.85 200 18,700
NOV 0.85 200 18,700
DEC 0.85 200 18,700
JAN 0.85 200 18,700
FEB 0.85 200 18,700

MAR 0.85 200 18,700



Chapter 4

MODEL DESCRIPTION AND EXPERIMENTAL DESIGN

This chapter describes the computer simulation model
employed and the experiments conducted in this study. The
following questions are addressed: 1) How are economic
costs from water supply shortages related to forecast
accuracy? 2) Does increasing the length of the operation
period reduce losses, and can this be related to an
increase in forecast accuracy? 3) What are the potential
benefits from increasing forecast accuracy? 4) How good
are the available forecasting schemes, and to what extent

can they be improved?

The simulation model is a simple conceptualization of
the multi-purpose, multi-site Cedar/Tolt reservoir systenm,
in which the system is reduced to a single-purpose
reservoir. Such an idealization is judged appropriate for
the purposes of the study. The operating peolicy is first
described, followed by the methodology and the logic of the

model, and finally by a description of the experiments.

4.1 THE OPERATING POLICY

Proper management of a water-resources system should

mobilize the latent usefulness of natural water resources
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while allaying their potential destructiveness. According
to Bower et al. [1962],

" _, ., . an operating procedure is a set of rules

for storing and releasing water from surface and

ground-water reservoirs in a given water-resources
system."

In multi-purpose, multi-site systems, these rules are
the result of three major types of decisions concerning the
release and storage of water : apportionment among
reservoirs, among purposes, and among time periods.
Although the system simulated in this study consists of two
reservoirs, the author's time limits necessitate the
simplicity of the model; hence, the system is modeled as a
single reservoir with a single combined inflow. For the

objectives of this study, water supply is assumed to be the

sole purpose of this simplified water resources system.

Since the problem is that of a siqgle-site,
single-purpose reservoir, the only decision concerning the
storage and release of water is that of apportionment over
time. Ideally, it would be most desirable to release the
exact demand at all times, and store whatever is in excess
of the demand for later use during periods of low flow. 1In
order to prevent deficits, however, it is required to have
perfect forsight of all possible droughts at the design

stage of the water resources system. Obviously, this is
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not possible. Reservoirs are designed with the knowledge
and acceptance of a certain degree of risk of failure.
Accepting the system's inability to prevent water
shortages, it is most desirable to minimize economic losses
due to such deficits. Foreknowledge of reservoir inflows
over the operating period allows such an apportionment of
releases that minimizes losses due to water supply

shortages.

It is sometimes economical to accept a small current
deficit so as to decrease the probability of a more severe
water shortage later in the drawdown-refill cycle. The
resulting hedging procedure is introduced early in the
cycle, with small shortages accepted early and excessively

large ones thereby avoided.

Economically, this can be justified only if the
proposed uses of water have convex (noﬁ-linear) loss
functions; that is, if severe droughts are penalized
proportionately more than mild deficits. The Seattle Water
Department has developed a series of curves to represent
the economic costs caused by a deficit (Figure 6). The
loss function used in this study has a parabolic shape and

is given by :
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LOSS ($) = 10,000 * (SHORTAGE/DEMAND*lOO)2

It is not the purpose of this study to debate the
appropriate loss function for the City of Seattle. The
loss function used justifies the use of hedging by
complying with the non-linearity requirement. Furthermore,
in order to increase the credibility of the estimated
economic losses, the coefficients are chosen so that the
resulting loss function approximates that recommended by

SWD for the year 2000 for shortages between 10% and 20%.

Due to the non-linearity of the loss-function, hedging
suggests accepting small present economic losses in order
to decrease future losses resulting from severe droughts.
Hedging results in reducing shortage intensities; the

cumulative deficit, however, remains unchanged.

Because hedging only decreases the intensities of the
shortages and does not actually reduce the cumulative
deficits, and because of the non-linearity of the loss
function, it is most desirable to use an operating policy
that results in equalizing the anticipated individual
deficits for each month over the operating period. The
procedure used in this study for obtaining the optimum

operating policy is an iterative one. Based on streamflow



44

forecasts and water supply requirements, the optimum
operating policy apportions water releases in such a way to
minimize economic losses resulting from water shortages.
This iterative approach could have been avoided through the
use of linear programming employing a simple operating rule
such as the linear decision rule. In this study, however,
the use of linear programming is made unattractive by the
large number of constraints that need to be solved as

compared to efficient and simple simulation.

4.2 METHODOLOGY :

The model simulates the operation of a single
reservoir with a single inflow, a single outflow, and a
single purpose, namely, water supply for the Seattle
metropolitan area. Reservoir storage is assumed to be
limited by the sum of the active storage capacities of the
Cedar and the Tolt reservoirs. As has been discussed
earlier, these are not constant over thHe year. Table 1
summarizes the monthly varying active storage capacities of
the reservoirs. Estimates of monthly inflow data for the
period October 1929 to September 1977 for the rivers were
provided by the Seattle Water Department. In this study,
it was more appropriate to define a water year as starting
in April. Therefore, data for 47 years, from April 1930 to

March 1977, are used in the experiments. Outflow, or
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release, from the reservoir is controlled by the level of
the demand and the sum of the present storage and
forecasted inflow. Demand is calculated by multiplying the
constant base demand of 235 MGD (22,000 ac-ft/month) by its

appropriate demand load factor (Table 3).

The simulation model employs two independent
variables, forecast period length and forecast accuracy, to
investigate their impact on economic losses resulting from
water supply shortages. The model first reads 47 years of
monthly inflow data. For a specific level of forecast
uncertainty and a specific length of forecast period,
monthly flows are predicted. The shortfalls of a normal
operation of the reservoir are then evaluated. The term
'normal operation' refers to reservoir operation employing
the policy 'release equals demand'. If such a policy
results in no water shortages, then it is used in the
actual operation of the reservoir. Otherwise, if it does
result in deficits, another policy that minimizes economic
losses resulting from such deficits is devised. The
forecasted flow for the first month is then updated by the
actual flow and the reservoir is operated for one month
according to the adopted policy. This procedure is
repeated over the entire record, each time advancing the

period of operation by one month. Losses over the entire
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record are summed. The resulting loss represents the
economic costs that are expected if the reservoir is
operated over the 47 year historical record using that

forecasting scheme and that length of operating pericd.

The procedure described above (Figure 7) is the core
of all the simulations conducted in this research.
Variations in forecast period, accuracy, and scheme are
employed to investigate the basic questions addressed at

the beginning of this chapter.

4.3 EXPERIMENTAL DESIGN

This study addresses these questions through two basic
approaches. The first establishes a relationship of
economic costs as a function of forecast period and
accuracy. The second applies variations of the lag-one
autoregressive Markov forecasting technique in which the
system is operated using variable forecasting periods to
relate economic losses of water shortages to the forecast
period length associated with that predicting scheme.
Results from both approaches are compared to assess the
accuracy of the Markov scheme as a forecasting technique
and the extent to which it can be practically improved.
Section 4.3.1 describes the experimental design used in the

first approach to develop a relationship between economic
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losses as a function of forecast period and accuracy.
Section 4.3.2 describes the second approach in which some
simple available forecasting schemes are employed to assess

their accuracy and applicability.

4.3.1 Parametrically Varied Forecast Period and Accuracy:

The first three questions are answered by relating
incremental operational losses to parametrically varied
streamflow prediction period and accuracy. This approach
does not employ any streamflow generating schemes. Results
are used to develop a relationship representing economic
costs as a function of both the level of forecast
uncertainty and the length of the forecasting period.
Forecast uncertainty is represented as a noise term added
to the forecast. A noise term of zero implies a perfect
forecast while a large magnitude for that term implies a

very poor forecast.

The loss analyses are based on monthly streamflows
over 47 years (1929-1976). Losses are related to
streamflow forecast period and accuracy. Forecast periods
range from one month to one year and streamflows are
predicted as actual historical flows perturbed by forecast
error. Forecast error is generated by a normally

distributed random number (€ ) with zero mean and unit
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variance multiplied by a coefficient ( o) and by the actual
historic flow. The coefficient, g , is parametrically
varied between zero and 0.9 to reflect forecast
uncertainty. Hence, for a given month, j, the forecast,
Fj’ is represented by

Fj = AFj +ej* Of*AFj
where AFj is the actual historic flow during month j and &5
a random number, normally distributed with zero mean and
unit variance.

Og is a coefficient parametrically varied

to reflect forecast uncertainty.

The level of forecast uncertainty is reflected by the
degree to which the noise term affects the forecast. Of is
parametrically increased from 0 to 0.9. A value of zero
for Of implies a perfect forecast. In this case, flow
forecasts as well as the predicted losses from these
forecasts are identical to reality. qu each value of g ¢,
the reservoir is operated over the entire 47 year record
100 times. Analysis indicates this to be a sufficient
number of simulations to limit sampling error. The losses
obtained from these 100 simulations are averaged and their
mean represents the expected losses associated with that

level of uncertainty. ¢ is generated for each month and

J
is reset to its original value for each new value of g..
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The experiment described above assumes a constant
length of forecasting period. Therefore, the results
define the relationship between forecast uncertainty level
and the expected economic losses, associated with that
length of forecasting period. The procedure is repeated
using differing forecasting period lengths ranging from one
month to one year. The results describe the relationship
of economic costs of water supply shortages as a function

of forecast period and accuracy.

4.3.2 Markovian Forecasting Schemes :
The fourth question is addressed through the

application of the Markov lag-one autoregressive scheme for
streamflow forecasting. To predict future inflows, the
noise term is dropped from the generating equation. The
forecasting equation thus consists of a deterministic part
only. It is assumed that the entire iqfluence of the past
on the current flow is reflected in the previous flow
value. Therefore, flows are predicted as the sum of the
historic mean of that month and a fraction of the past
month flow's deviation from its historical mean. The

forecasting scheme is thus given by :

F, =y

i it py*(oy/ o5 1)*AF; ) = uj4)
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where U is the historical mean, o the standard deviation, F
the predicted flow, AF the actual historic flow, and p the

correlation coefficient.

Four variations on the scheme are made by assuming
different characteristics of the inflow distribution. The
first assumes no correlation between months. In this case,
the historic mean of monthly flows is used to predict
future inflows. The second assumes a normal distribution
of inflows, while the third and fourth assume log-normal

inflow distributions.

4.3.2.1 Historical Mean as Forecast

This experiment does not use any forecasting equation.
Next month's forecast is the historic flow mean for that
month. Of course, this method does not make use of much of

the information provided by the historical record.

4.3.2.2 Normal Inflow Distribution

In order to make use of the historical flow record, a
normal inflow distribution is assumed. The above stated
equation is employed on the untransformed historical data.
Negative generated flows are used to generate the next
month's flow, and then equated to zero for use in the

reservoir operation algorithm.
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4.3.2.3 Log-Normal Inflow Distribution

This experiment assumes a normal distribution function
for the natural logarithm transforms of the historical
data. Streamflow, assumed to be a random variate X with
mean yu, and standard deviation G 4+ Was transformed to a
normally distributed random variate Y with mean by and
standard deviation g y by ¥=1nX. The mean, standard
deviation, and correlation coefficient are calculated for
the natural logarithm transforms of the monthly flow data,
and used in the generating equation. According to Hirsch
[1979], such a generating scheme does not assure that the
synthetic flows will resemble the historical flows in the
long run with respect to the historical means, standard
deviations, and correlation coefficients. What it does
assure is that the logarithms of the generated flows will
resemble the logarithms of the historical flows in the long

run with respect to the first three moments.

4.3.2.4 Log-Normal Inflow Distribution

The assumption of a log-normal inflow distribution is
also made in this experiment. However, to preserve the
mean and standard deviation of the forecast flows in real
space, the log normal transformation method described by
Burges and Hoshi [1978] is used to determine the parameters

to be used in the forecasting equation. The appropriate
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equations forlly and g, are :

Yy
oy = [In(( 0,/ p,) 2+1)1Y/2
2
uy = 1In( UX) = 0.5%y y

The correlation coefficient, j, v’ is calculated in the
usual manner using the natural logarithm transforms of the

historic flows.

Summary:

This chapter described the model used to simulate the
Cedar/Tolt water supply system. Some basic questions about
the impact of forecast period and accuracy on economic
losses resulting from water shortages were addressed. Two
approaches were used to address these questions. The first
produced a theoretical relationship between economic costs
as a function of forecast period and accuracy. The second
approach considered some practical aspects of forecasting
schemes. The following chapter presenps the results of the
experiments described in this chapter. A detailed analysis

is made and some conclusions drawn.



Chapter 5

RESULTS AND CONCLUSIONS

The preceding chapter described the simulation model
used and the experiments conducted in this study. A set of
questions were posed, and were addressed through two
experimental approaches. This chapter presents the output
from these experiments, compares the results from the
different approaches, and attempts to interpret them in a

manner useful to the operator.

5.1 IMPACT OF FORECASTS ON RESERVIOR OPERATION:

The theoretical approach addresses the first three
questions : 1) How are economic costs resulting from water
supply shortages related to the accuracy of the forecast?
2) Does increasing the length of the forecasting period
reduce economic losses, and can this be related to an
increase in forecast accuracy? 3) Wh;t are the potential

benefits from increasing forecast accuracy?

5.1.1 Relationship between Losses and Forecast Accuracy :

These questions are addressed by simulating reservoir
operation using forecasts whose length and uncertainty are
parametrically varied, and noting the impacts of such

variations on reservoir operation. In this approach,
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forecasts are calculated as the sum of two terms. The
first term is the actual historic flow that occured during
that month. The second term is a noise term normally
distributed with a zero mean and unit variance, and
multiplied by a coefficient that is parametrically varied
between zero and nine tenths the value of the actual
historic flow. A value of zero for the coefficient implies
that the noise term does not contribute to the forecast.
This represents a perfect forecast. It is expected that
operating the reservoir with a forecast uncertainty level
of zero produces the least water shortages and minimum
economic losses. This is verified by the results of the
experiments (Table 4 and Figure 8). As the contribution of
the noise term is parametrically increased to its maximum
value of 0.9 of the actual historic flow, it is observed
that there is a consistent increase in water supply
shortages, resulting in greater economic losses. Table 4
indicates that economic costs corresponding to the maximum
uncertainty level may be up to $ 408 million (or 2000%)
higher than those corresponding to perfect forecasts (for a

twelve month forecasting period).

Therefore, the quality of the forecast has a major
impact on economic losses from water supply shortages. For

any length of forecasting period, there is a clear and
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consistent increase in economic costs with an increase in
forecast uncertainty. Figure 8 also shows that, generally,
for a high quality forecast a unit change in quality
produces a smaller change in losses than it would for a low
quality forecast. This is expected because the value of
information is highest when there is little or no

information, and decreases as more information is gathered.

5.1.2 Impact of Forecast Period ILength on losses :

The second question addressed is that of the impact of
forecast period length on economic costs. When is it
beneficial to use a longer forecasting period? To what
extent does a longer forecasting period reduce economic
losses? Can reduced losses from increased forecast period

lengths be related to increased accuracies?

These issues are addressed through the same approach
described above. The procedure is repeated for variable
lengths of forecasting periods. It is expected that a
longer forecast period should provide the operator with
more information and result in improved reservoir
operation. Although this is observed for high quality
forecasts (Table 4), the relationship does not hold for
poor forecasts. As the quality of the forecast decreases

(worse than 0.5), there is no direct relationship between
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economic costs and length of forecasting period. Results
show that long-term forecasts using a poor forecasting
scheme give results that are, on the average, inferior to
those given by short-term forecasts using the same scheme.
This is best portrayed for forecasts with uncertainty
levels of 0.9 (Table 4). For such forecasting schemes, a
two month forecasting period produces $ 321 million in
economic losses which is about 25% lower than the § 427
million incurred if the reservoir is operated using a

twelve month forecasting period.

Table 4 shows that a two month forecasting period
produces results that are always superior to those produced
by a one month forecast. This holds for any forecast
uncertainty level. This reflects the fact that a one month
forecast provides very little information, and a two month
forecast always provides more informat;on, even if the
forecast quality is poor. This implies that a forecasting
period of one month should never be employed. A superior
operation is always achieved by using forecast period

lengths longer than one month.

Table 4 also shows that as the accuracy of the
forecast increases, it becomes more advantageous to use

forecasting periods longer than two months. However, for
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any accuracy level, there is an optimal forecast period
length. For a perfect forecast, the optimal length of
forecast period is five months. Using longer periods
produces little variation in losses. For forecast
accuracies ranging between 0.2 and 0.4, using a forecasting
period of five to eleven months produces optimal reservoir
operation. However, there is a clear deterioration in the
operation if a twelve month forecasting period is used.
Finally, for poorer forecasting schemes, the optimal length
ranges between two and five months. 1In contrast with
higher quality forecasts where there is a range of optimal
lengths of forecasting periods, in poor forecasts the use
of forecast periods longer than the optimal produces

inferior results .

Therefore, longer forecast periods generally provide
more information than short forecasts do. However,
depending on the quality of the forecast, there is an
optimal length of forecast period, beyond which a longer
period will provide more bad information than useful

information, and thus produces inferior results.

5.1.3 Potential Benefits of Forecasting :

The potential advantages of forecasting are assessed

through an analysis of benefits. In order to make such an
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assessment, economic losses incurred by operating the
reservoir with a certain forecasting scheme must be
compared to those incurred if no forecasting is used.
Therefore, the reservoir system is operated over the entire
historical record without forecasting, employing the policy
'release equals demand'. This operating policy resulted in
an estimated economic losses of $ 155,488,700. The
benefits associated with a forecasting scheme are then
measured by the degree to which economic losses could be
reduced if that technique is used. The percent improvement
of a technique is calculated by normalizing the resulting
benefits from that technique with respect to the economic
losses resulting from operating the system without

forecasting. 'Benefits' and 'Improvement' are defined by:

BENEFITS (I)

155,488,700 - LOSS(I)

Il

% IMPROVEMENT (I) BENEFITS(I)/155,488,700 * 100

where I refers to an experiment.

According to these definitions, if the use of a
forecasting technique results in no economic losses, this
technique is said to improve the operation of the system by
100% over operation with no forecasting. As expected, this
never occurs in the study. Even if it were possible to

operate the reservoir with perfect foresight, the best that
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can be achieved is an 88% improvement over operation with
no forecasting. This demonstrates the limitations of the
reservoir in handling drought conditions. Therefore, no
matter how good the available forecasting techniques are,
shortages cannot be prevented due to the inherent
limitations in the reservoir design. Inspite of this fact,
it has been clearly shown that through the use of
appropriate forecasting techniques, economic losses may be
reduced by up to 88% over those.resulting from operating

the system without forecasting.

On the other hand, a forecasting technique resulting
in a negative improvement implies a négative value for the
information obtained by that forecast, or misinformation.
Table 5 presents the percent improvement associated with a
forecast uncertainty level and a forecast period length.

It shows that any forecast having a leyel of accuracy
corresponding to 0.6, or worse, should never be employed
because, on the average, information gained through its use
will lead to inferior decisions. Similarily, forecast
schemes having an uncertainty level of 0.4 should not be
employed with a one month forecasting period, and those
with a 0.5 level of uncertainty should not be employed with

one or two month forecasting periods.
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Table 5 also confirms the fact that a two month
forecast is always better than a one month forecast. For
schemes with forecast uncertainties ranging from zero to
0.3, a two month forecast produces results that are up to
40% better than those of a one month forecast. This clear
improvement in reservoir operation is continued to be
observed up to a forecast period of five months. Figure 9
demonstrates that forecast periods longer than five months
show little or no improvement. On the other hand, the
optimal forecast period to be used with schemes having
accuracy levels of 0.4 and 0.5 is five months, and a longer

period produces inferior results.

The benefits analysis has shown that by the use of
proper forecasting techniques, reservoir operation may be
improved by up to 88%. It has also shown that forecast
schemes with 0.6 levels of uncertainty (or worse) should
never be used because the operator is ﬁore likely to
operate the system with less shortages even without the use
of any forecasting scheme. Furthermore, for forecasting
schemes with an uncertainty level of 0.5 or better, the

optimal length of forecasting period is five months.
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5.2 RESULTS FROM EMPILOYING SIMPLE FORECAST SCHEMES :

In section 5.1, the accuracy and the length of period
of a forecast were parametrically varied to observe their
impact on economic losses resulting from water supply
shortages. In contrast, this section evaluates some simple
available forecasting techniques. The economic losses
resulting from the use of such techniques are compared to
the results from section 5.1 to assess the technique's
accuracy. Forecast period length is parametrically varied
between one month and one year to observe its impact on

reservoir operation.

The simplest prediction method, and the least
accurate, is using the historicél mean of the monthly
inflow data to predict future inflows (Table 6é-method 1).
This method only makes use of the information provided by
the mean. The standard deviation as well as the
correlation coefficient are completely ‘ignored. In order
to make better use of the information furnished by the
historic data, a normal distribution of reservoir inflows
is assumed. A simple lag-one autoregressive Markov scheme
makes use of the first three moments of the untransformed
inflow distribution to generate the forecasts (Table
6-method 2). In an attempt to improve the quality of the

forecasts, a log-normal inflow distribution is assumed
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(Table 6-method 3). The data are transformed to their
natural logarithms, the first three moments calculated, and
the same Markov scheme applied to the transformed data and
their moments. However, this scheme preserves the three
statistics of the data in log space only. Finally, in
order to preserve the three moments in real space, the log
normal transformation method described by Burges and Hoshi

[1978] is employed (Table 6-method 4).

The previous paragraph described the four simple
forecasting schemes employed in this study. Table 6 and
Figure 10 summarize the results of the experiments and the

economical losses expected from using these schemes.

Figure 10 indicates that if a forecasting period of
one month is to be used (very unlikely), the best available
forecasting scheme is using the mean of the historic flow
data as the forecasts. However, this gcheme is superior
only if a one month forecast period is used. The use of
Markovian forecasting techniques with the assumption of a
normal inflow distribution function shows a clear
improvement over using the mean of the historic data to
predict future inflows. The assumption of a log normal
inflow distribution, without the use of the log normal

transformation method described by Burges and Hoshi [1978],
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produces results that are inferior to those realized by the
assumption of a normal distribution of reservoir inflows.
Finally, the use of the log normal transformation method to
preserve the first three moments of the historic data in

real space shows the best results.

The equations in section 5.1.3 are used to make an
analysis of benefits accrued from using the above described
forecasting schemes. Table 7 and Figure 10 summarize the
results of the benefits analysis and demonstrates that the
mean of the historic data should never be used as a
forecasting method. The use of this scheme with
forecasting periods of one or two months actually produces
results that are inferior to those if no forecasting is
used. Even with longer forecasting periods, its use
improves reservoir operation only marginally (2.4%
improvement over no forecasting). Larger benefits are
realized by the use of any variation on the Markov
forecasting schemes. Although a log normal inflow
distribution function employing the log normal
transformation method described by Burges and Hoshi [1978]
shows greatest improvements, a clear conclusion about which
method is the best cannot be made. All Markov methods seem

to improve reservoir operation by 9%, plus or minus 1%.
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TABLE 6
Economic Losses vs. Forecast Period

for Various Schemes

Forecast
Period
Length Forecasting Method
(months) Method 1 Method 2 Method 3 Method 4*
1 1.676E+08 1.841E+08 2.050E+08 2.049E+08
2 1.567E+08 1.471E+08 1.566E+08 1.544E+08
3 1.517E+08 1.402E+08 1.471E+08 1.438E+08
4 1.517E+4+08 1.413E+08 1.493E+08 1.461E+08
5 1.517E+08 1.413E+08 1.429E+08 1.403E+08
6 1.517E+08 1.413E+08 1.429E+08 1.403E+08
7 1.517E+08 1.413E+08 1.429E+08 1.403E+08
8 1.517E+08 1.413E+08 1.429E+08 1.403E+08
9 1.517E+08 1.413E+08 1.429E+08 1.403E+08
10 1.517E+08 1.413E+08 1.429E+08 1.403E+08
11 1.517E+08 1.413E+08 1.429E+08 1.403E+08
12 1.517E+08 1.413E+08 1.429E+08 1.403E+08
TABLE 7
Percent Improvement vs. Forecast Period
for Various Schemes
Forecast
Period
Length Forecasting Method
(months) Method 1 Method 2 Method 3 Mehtod 4*
1 -7.84 -18.46 -31.86 -31.79
2 -0.78 5.34 -0.72 0.70
3 2.43 9.79 5.37 7.52
4 2.43 9.09 3.94 5.98
5 2.43 9.09 8.05 9.77
6 2.43 9.09 8.05 9.77
7 2.43 9.09 8.05 9.77
8 2.43 9.09 8.05 9.77
9 2.43 9.09 8.05 9.77
10 2.43 9.09 8.05 9.77
11 2.43 9.09 8.05 9.77
12 2.43 9.09 8.05 9.77

Key to Forecast Methods
Forecast Method 1 : Mean of Historic Data

Forecast Method 2 : Markov - Normal Inflow Distribution
Forecast Method 3 : Markov - Log Normal Inflow Distribution
Forecast Method 4*: Markov - Log Normal Inflow Distribution
(* = Log Normal Transformation Method suggested
by Burges and Hoshi [1978] is used)
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5.3 Performance of the Markov Models :

Figure 11 compares the improvement achieved by the two
simple forecasting schemes to that achieved by a prediction
technique having an uncertainty level of 0.5. For short
forecast periods (one to two months), both forecasting
techniques exhibit uncertainties better than 0.5. However,
no advantage is gained by using such short-term forecasts
(negative improvement). For longer forecast periods (three
months or more), the forecasting techniques have an
uncertainty level worse than 0.5. This demonstrates that
the accuracy of a prediction method varies with the length

of forecasting period.

5.4 Operating Period vs. Forecasting Period :

Throughout this report, the terms 'operating period'
and 'forecasting period' are used interchangeably.
Operating period refers to the period over which a policy
that apportions water releases is devised. Forecast period
refers to one over which reservoir inflows are predicted.
In order to devise an operating policy, some form of
forecast is required for each month of the operating
period. Therefore, the lengths of the two periods should

be equal; hence the interchangeable use of the terms.
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In some cases, it may be beneficial to use a forecast
period that is shorter than the operating period. For
example, assume that a five month operating period is to be
employed. On the other hand, the length of forecast period
is chosen such that the operator feels confident of his
predictions; assume a two month forecast period.

Therefore, the operator relies on the available storage and
predicted flows for the two months to devise an
apportionment policy over the five month operating period.
This assumes that there will be no inflow to the reservoir

during the final three months of the operating period.

In order to assess the benefits of such a mode of
operation, various combinations of operating/forecast
periods are used. Forecasts are made using the lag-one
auto-regressive Markov scheme with the assumption of a log
normal inflow distribution function (Table 6-method 4).
Operating periods of three months and five months are
employed with shorter or same length forecast periods. The
results of these simulations are presented in Table 8. For
a three month operating period, it is best to predict
inflows for every month in the period. On the average, for
a five month operating period, it is best to predict
inflows for the first four months, and assume that the

inflow for the fifth month is zero.
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TABLE 8

Impact of Unequal Forecast and
Operating Periods on Economic

Losses

Operating Forecast Economic
Period Period Losses

(months) (months)
3 0 ‘ 54 .2E+08
3 1 5.5E+08
3 2 1.5E+08
-3 3 1.4E+08
5 0 198.4E+08
5 1 15.9E+08
5 2 . 5.5E+08
5 3 1.7E+08
5 4 1.4E+08

5 5 1.4E+08
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These results show that the use of a forecast period
that is much shorter than the operating period generally
results in inferior results. This is due to the fact that
zero inflows are predicted for some of the months, thus
causing the initiation of water use restrictions when they
are actually not needed. Such inferior results may be
expected because the reservoir is operated over the entire
historic record, the inflow mean of which is much higher
than drought-time inflows. Therefore, such a policy where
the forecast period is shorter than the operating period

may be recommended only if a drought is anticipated.

5.5 Conclusjons :

This chapter has presented and analyzed the results of
the experiments conducted in this study. The following is
a summary of the conclusions drawn from this analysis. It
should be emphasized that what follows‘applies only to the
simplified system under consideration. The results of this

report should not be directly applied in other situations.

o A relationship between the economic losses that can
be expected from water supply shortages as a function of
forecast accuracy was established. It waé concluded that
the quality of the forecast has a major impact on the

operation of the system, and, hence, on economic costs from
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water deficits. The expected economic losses of water
supply shortages resulting from the operation of the
reservoir system with a certain forecast accuracy level
increased with an increase in forecast uncertainty. This
relationship exhibited a decreasing slope for high quality
forecasts, implying that a unit change in forecast quality
has a bigger impact on economic losses for poor forecasts
than for good ones. This confirms the fact that the value
of information is highest when little or no information is

available, and decreases as more information is gathered.

o A relationship of economic costs from deficits as a
function of the forecast period was developed. Although it
would be expected that longer forecast periods produce
results that are always at least as good as shorter
periods, this expectation is not always true. This
relationship does hold for high quality forecasts. For
perfect forecasts, there is a clear imﬁrovement in the
reservoir operation with increasing forecast period lengths
up to a length of five months, beyond which the use of
longer forecast periods does not alter reservoir operation
significantly. As the quality of the forecast decreases
(0.2-0.4), the same plateau is observed. However, for such
forecasts, the use of forecast periods longer than ten

months produces inferior results. With a further decrease
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in forecast accuracy (worse than 0.4), the optimal length
of forecast period ranges between two and five months. The
use of longer forecast periods produces results that are
clearly inferior to those realized by the use of the

optimal length.

o An assessment of the potential benefits from
forecasting is made. Benefits of a forecasting technique
are defined by the degree to which economic losses can be
reduced by the use of such a technique. It was shown that
economic losses resulting from water supply shortages may
be reduced by up to 88% just by the use of proper
forecasting techniques. It was also shown that forecasting
methods with 0.6 levels of uncertainty (or worse) are not
recommended because the operator is more likely to operate
the system with less shortages even without the use of
forecasts. This benefits analysis also demonstrated that

the optimal length of forecasting period is five months.

o The application of some simple forecasting schemes
resulted in two basic conclusions : 1) The mean of the
historic data should never be used to predict future
inflows in reservoir operation; and 2) The use of the
lag-one autoregressive Markov model has clear benefits;

improvements of about 9% over no forecasting were realized.
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In an attempt to improve the operation of the reservoir,
differing assumptions about the inflow distribution

function were made. The use of such assumptions showed
that reservoir operation is not sensitive to the form of

the input distribution function.

o Finally, the benefits of operating the reservoir
employing a forecast period that is shorter than the
operating period were assessed. It was shown that such
operation is not recommended except if droughts are
anticipated. If this is the case, some benefits might be

realized through such a mode of operation.

Recommendations for Further Study :

The benefits analysis showed that, theoretically, the
use of a proper inflow forecasting scheme may reduce
economic losses of water supply shortages by up to 88%.
Unfortunatley, none of the forecasting techniques employed
in this research approached this value. The highest degree
of improvement realized is through the use of the lag-one
autoregressive Markov scheme with the assumption of
log-normal inflow distribution function and employing the
log normal transformation method described by Burges and
Hoshi [1978] to preserve the first three moments of the

data in real space. This method resulted in a 9.8%
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improvement over no forecasting.

Although the above described method resulted in a
substantial improvement over no forecasting, the potential
benefits of forecasting are far from being achieved. This
research assessed the quality of only some very simple
techniques. More complex forecasting techniques having
higher degrees of realism are available. It is important
that such techniques be tested for their accuracy and the

extent to which they can reduce losses.

It is the author's belief that as long as forecasts
are made based on mathematical models not describing the
actual physical system, even complex schemes will not
result in significant improvements in reservoir operation
and reduction of losses. Therefore, more effort should be
devoted to the development of higher quality forecasting

techniques.

Much effort has gone into the 'equivalent years of
data' issue. A related, but different, concept is that of
relating forecast accuracy and length of historic record.
This may prove to be a valuable tool in the design of
network systems and in determining the cut-off point of

data collection.
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Finally, this research simplifies the actual water
resources system supplying the Seattle metropolitan area by
the use of a model that simulates the operation of a
single-purpose reservoir. In order to increase the
applicability of the results, a model that better simulates
the actual system should be developed and incorporated into
the framework of the experimental design. Furthermore, a

one week time-step should be used instead of one month.
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APPENDIX A

STATISTICS OF THE INFLOW DATA

This appendix presents the statistics of the monthly
flow data used in the Markov forecasting schemes. The U.S.
Corps of Engineers supplied the inflow records for the
Cedar and the South Fork Tolt rivers. These flows were not
measured directly, but were computed using gaged
streamflows in surrounding basins. Computed data were
available for the years 1929-1975. The Seattle Water
Department extended this record up to 1977. For this study
it was more appropriate to define a wéter year as starting
in April. Therefore, data for the years April 1930 to
March 1977 are used. Tables A-9, A-10, and A-1l1l represent
the statistics of the combined flow data for the two
rivers. The skew coefficient is not used in any of the
experiments, but is presented here for the purposes of

completeness.

Table A-9 presents estimates of the statistics of the
data in normal space for use in the Markov forecasting

model.
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TABLE A-9

Historical Flow Statistics - Real Space

Standard Correlation Skew
Month Mean Deviation Coefficient Coefficient
APR 51,362 13,461 0.38132 -0.15
MAY 63,188 19,248 0.24198 0.12
JUN 50,127 25,143 0.59938 0.69
JUL 20,710 13,828 0.87411 1.02
AUG 7,973 4,761 0.71300 1.16
SEP 12,528 10,901 0.31200 2.74
OCT 29,279 16,919 0.41228 0.58
NOV 52,403 27,477 0.53985 0.79
DEC 64,320 32,387 0.33690 1.62
JAN 55,924 29,044 0.26662 0.67
FEB 45,473 23,222 0.20552 0.95
MAR 41,384 19,251 0.25933 2.00

Table A-10 estimates the statistics of the natural
logarithm transforms of the inlow data. Streamflow,

assumed to be a random variate X with mean ‘Jx and variance

Ekz, is transformed to a normally distributed random

variate Y with meanliy and varianceo'y2 by Y = 1nX.

TABLE A-10

Historical Flow Statistics - Log Spaée

Standard Correlation Skew
Month Mean Deviation Coefficient Coefficient
APR 10.808 0.296 0.41188 -1.01
MAY 11.004 0.328 0.26870 -0.51
JUN 10.687 0.556 0.70665 -0.63
JUL 9.723 0.673 0.85491 0.03
AUG 8.819 0.586 0.73923 -0.02
SEP 9.181 0.697 0.44633 0.30
OoCT 10.082 0.704 0.48615 -0.78
NOV 10.695 0.677 0.70160 -1.46
DEC 10.959 0.483 0.42160 -0.12
JAN 10.787 0.569 0.10449 -0.40
FEB 10.600 0.512 0.22190 -0.08

MAR 10.549 0.393 0.23188 0.59
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The use of the Markov model with the above estimates
of the statistics preserves the first three moments of the
data in log space only. In order to preserve the
statistics of the historic data in real space, the log
normal tranformation method described by Burges and Hoshi
[1978] is used. The mean and standard deviation used in

the forecasting scheme are given by :

oy = (In(( o/ u 2 + 117772

2
= 1n - 0.5 *
uy Hyr OY

Table A-11 presents the estimates of these statistics.
The correlation coefficient is calculated in the normal

manner.

TABLE A-11

Historical Flow Statistics - Log Space

Standard Correlation
Month Mean* Deviation* Coefficient
APR 10.813 0.258 0.41188
MAY 11.010 0.298 0.26870
JUN 10.710 0.474 ‘ 0.70665
JUL 9.754 0.607 0.85491
AUG 8.831 0.552 0.73923
SEP 9.154 0.751 0.44633
oCT 10.141 0.537 0.48615
NOV 10.745 0.493 0.70160
DEC 10.959 0.475 0.42160
JAN 10.812 0.489 0.10449
FEB 10.609 0.481 0.22190
MAR 10.533 0.443 0.23188

* Using the log normal transformation method
suggested by Burges and Hoshi [1978] to preserve the
statistics of the data in real space.
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The statistics presented in Tables A-12 and A-13 are
not employed in reservoir operation experiments. They are
presented here in order to give the reader an idea about
reservoir inflows for the two rivers. All figures are in

cubic feet per second (cfs).

TABLE A-12

Historical Flow Statistics - Cedar

Standard Skew Correlation
Month Mean Deviation Coefficient Coefficient
APR 644 167 -0.30 0.25130
MAY 802 258 0.15 0.22700
JUN 644 334 0.69 0.57592
JUL 241 179 1.16 0.87336
AUG 83 53 1.04 0.74240
SEP 125 122 3.01 0.32538
OCT 323 204 0.70 0.49036
NOV 623 363 0.96 0.52268
DEC 781 438 1.92 0.30894
JAN 668 343 0.54 0.24542
FEB 567 296 0.92 0.23131
MAR 502 237 2.08 0.26521
TABLE A-13

Historical Flow Statistics - S.F. Iolt

Standard Skew Correlation

Month Mean Deviation Coefficient Coefficient
APR 208 76 0.53 0.56103
MAY 243 78 -0.52 0.21359
JUN 185 93 0.46 0.66154
JUL 101 65 0.89 0.66581
AUG 49 34 1.30 0.56432
SEP 81 63 1.99 0.26858
ocCT 161 86 0.16 0.24747
NOV 242 106 -0.02 0.57287
DEC 282 112 0.25 0.48983
JAN 251 146 1.03 0.36150
FEB 181 96 0.94 0.16340

MAR 180 90 1.42 0.31170



