University of Washington
Department of Civil and Environmental Engineering

INLET: AN INTERACTIVE NATURAL
LANGUAGE ENVIRONMENT FOR A WATER
RESOURCES DATABASE

Lynn R. Spence
Richard N. Palmer

Seattle, Washington
98195




Department of Civil Engineering
University of Washington
Seattle, Washington 98195

INLET: AN INTERACTIVE NATURAL LANGUAGE ENVIRONMENT
FOR A WATER RESOURCES DATABASE

Lynn R. Spence
Richard N. Palmer

Water Resources Series
Technical Report No. 112

August 1989



INLET:
AN INTERACTIVE NATURAL LANGUAGE ENVIRONMENT
FOR A WATER RESOURCES DATABASE

by
Lynn R. Spence and Richard N. Palmer
Department of Civil Engineering

University of Washington, FX-10
Seattle, Washington 98195

Project Completion Report Submitted to:

The State of Washington Water Research Center and
The U.S. Department of the Interior

Water Research Center Project No. A-159-WASH

U.S. Department of the Interior Grant No. G-1597

For the Period
May 1, 1989 through March 31, 1989

August, 1989



TABLE OF CONTENTS

List of Figures = ..eceieneeee. trrsesaeaersenessstsstsasasanesssasrasasnaes
List Of TADIES = coeccercrrrescsscsnnnsnsinsissssssessesisssessssesnessssensansanas

Chapter 1: Introduction and Research Objectives ...............

Introduction . reesseessessessessasstessesaterasasereasneresensennantersiseses
Research ObJectiVe .....ccinvsecnnninecsnecnssensnincsennsnessesnaneas

Chapter 2: Literature Review .iccnnniennnienennennssenceeenee

Water Resource Planning Models ........coecevsnrcccncvencnnne.
Natural Language Interfaces = .evnecenicnncnncnnnncnene
SUMMATY ccccecrnsecisscnsnnsnssssessssssisssssssssssssssssssasssansansssassssans

Chapter 3: Seattle Water Supply SyStem ......ccvvreevreninesieeseresannee

Seattle Water Department SyStem .......cececeverennrncrnsernenesenens
System Yield and Demand ........cocevniinvererernensiesnsnseensennnns
Water Shortage Response Plan  .......cvvviccceincnnnnnnee.
Previous Modeling Efforts ........cccevvcivinieniinininesernscsnnsnneennes
Development of the INLET Database .....coeverneueneeeee.
SUMMATY  ccrcnnintinennsniiniisiesssssssssesssssssnssersssssesanses

Chapter 4: INLET, A Natural Language Environment  ..............

Introduction to Prolog et
Programming in Prolog  ...nnnncincnenenncenssnennnan
Implementation of Prolog ......ervcereneneniceeneee.
INLET's Natural Language Processor  .......ccceecenerneneee
SUMMATY ecvcccneseseisssssesssnsasssscaesnsssssssssssssssssssasssssssrssasss

Chapter 5: Features and Application of INLET ................

INLET FOrmat = .ciiincenineninnsnncsnsssssssssssssasnsnssnassssssaes
Menu System tesnsesesssssssessanssesistnesnesinesanaens
Natural Language SyStem .......cccoveerenisnnsensencscsnsnannsnsnsnnne
Typical INLET Session reesressansentsssisessasnneanes
SUMMATY ccvcinecssccsinsniiesnssssisasssnsssssessssesssssssosssssssassess

Chapter 6: Summary, Conclusions and Recommendations

Summary ereseesessesessenssnetsaeatasertesrt st ssers Rt saRte R e SRR R s e s R e R s R e
CONCIUSIONS  ceveeeeeeecsssnresssensecsssssasessssesnssssesssssssesssnssssssssssssssasses
RecOMMENAALIONS  covveerercceneccrcenereresernsssressssssassssnnesssssonnsasas

BibliOZraphY .ccceeciviriisnsnnccsnsiisisnsennisnnnsaennsnsssssesmsasssassesessssssssnsnsansans

Appendix: The INLET Code = .evenncernsnsessecsissiscnennes

O N

19

21
21
24
26
30
31
34

35
35
38
42
43
50

51
51
52
335
56
59

67
67
68
69
71

75



LIST OF FIGURES

Figure 2-1. Tree Diagram Showing Sentence Structure ........cee.....
Figure 3-1. SWD Service Area With Major Reservoirs ..................
Figure 3-2. Temporal Variation in Seasonal and Yearly

Demand . senes
Figure 3-3. Summary of the Decision Process Used for

Drought Planning ......iniescnnnnsecnsesissensaeanansnsenns
Figure 4-1. Sample Prolog Program ceessessentsntsasesssaesssensnsessnssensans
Figure 5-1. The Main Menu ...vceiinenrnnccnncscnnsnecsssssssnsnens
Figure 5-2. Site Selection .....viinsiicnisssencnsnnsssiesssssssesssesssssnes
Figure 5-3. Determining Statistics Using the Menu System ...
Figure 5-4. Menus Specifying Plotting Options ........cccvueveveneene
Figure 5-5. Time Series Plot of All the June Streamflows

0N ReCOTd rrrirtcctntriccnscsesneressecesnnsenasanens
Figure 5-6. CDF of the June Flows for All Months on Record ...
Figure 5-7. Plot of All Streamflows in 1970 ...vrvviccncnnenenees
Figure 5-8. The Natural Language Interface = ..cveecncncecnennne.
Figure 5-9. Plot of All Streamflows at Site 16 Between

1950 and 1960 ..cvveiccnnnnnnns
Figure 5-10. Optimal Reservoir Staging Levels ......cvuveeveennnneee.

iii

29

61
61
62
62

63
63
64
64

65



LIST OF TABLES

Table 3-1. Summary of Shortage Plan
Table 4-1. Words Recognized by INLET

iv



ACKNOWLEDGEMENTS

The work upon which this publication is based was supported in part by the
Department of the Interior, U.S. Geological Survey, through the State of
Washington Water Research Center.

The study was supervised by Richard N. Palmer, Associate Professor of Civil
Engineering and performed by Lynn R. Spence, Graduate Research Assistant in the
Department of Civil Engineering. The study served as the basis for Ms. Spence’s
MSE thesis.

The authors acknowledge the continued support of the Seattle Water
Department and in particular the suggestions of Julie Cohan. The principal
investigator would also like to thank Dr. Ramon Lopez de Mantaras and the Centro
de Estudios Avanzados in Blanes, Spain, for providing him an office and the
opportunity to initiate work on this paper while on sabbatical leave from the
University of Washington.

The contents of this publication do not necessarily reflect the views and
policies of the Department of the Interior, nor does mention of trade names or
commercial products constitute their endorsement by the United States
Government.



CHAPTER 1
INTRODUCTION AND RESEARCH OBJECTIVES

INTRODUCTION

This report describes the development of a water resource planning effort
that evolved rapidly over time. The topic is the development of water resource
management models for use in drought planning for the Seattle, Washington, water
supply. The effort began as a traditional study to determine the yield of the
reservoirs that serve as a primary source of water for Seattle and the proper
operating policies for these reservoirs during period of drought. However, it was
soon discovered that this approach did not capture either the confidence nor
imagination of the water supply managers. Because of this, new and emerging
computer technology was applied to make the results of the analytical models more
meaningful to those responsible for the results of the decisions being made. To do
this, the new models had to make information directly available to the managers,
present it in a way that they could understand, and allow them to see the effects of
their decisions. What is described in the report is the process in which the tools used
to solve a problem were adjusted to more closely meet the needs of the users, rather
than the reverse. In doing so the tools became a vital part of the framework used to
make decisions.

The water resource planning profession, like its counterparts in other fields
of planning, is undergoing a major revolution in the way in which decisions are
made. This revolution represents the second wave of a fundamental change that
occurred with the development of the digital computer, a device that drastically

altered the way in which information used for decision-making can be collected,



analyzed, manipulated, and reported. With the initial availability of the computer,
water resource planners were able to develop quantitative plans, simulate projected
futures, and formulate models that explored "optimal” solutions to complex
problems. These computational tasks were virtually impossible on the same scale a
mere decade before.

A price was paid, however, for these new capabilities. The models used for
decision-making soon became the central figure in the planning process. An elite
group of engineers and technicians, whose job it was to develop, maintain, and
nurture these models soon evolved, and although expert at their job, this group often
did not have special training in water resources management or decision-making.
The models that these individuals developed often appeared to be rather inflexible
in character, limited in scope, and in constant need of their developer. Because of
these limitations, the models were often ignored.

The second wave of computer applications, the topic of this paper,
concerns the development of models whose purpose it is to eliminate these basic
difficulties and to return the decision-maker to the center of the planning process.
More fundamentally, these models attempt to blend the insights and skills of the
decision-maker and the computational dexterity and logic of the computer into an
interactive blend in which the proper questions can be posed by the decision-maker
and answered quickly and accurately by the computer. Because the interaction
between the decision-maker and the computer is rapid and flexible, the decision-
maker is encouraged to explore new possibilities that result from the previous
answers supplied by the computer.

It should be noted that this second wave of computer usage has been created

by not only a perception that previous models have failed in situations in which they



could have been vastly more useful, but by yet another advance in computer
technology. During the past decade, there as been a truly unprecedented change in
both the computer hardware and software available for water resource planning.
Today, desk-top engineering workstations are available for less that $20,000 that are
more powerful than mainframe computer of only a decade ago. As these
workstations become even more powerful and their costs continue to decrease, the
proliferation of these engineering workstations will increase the number of
computer-literate decision-makers and change the way in which these decision-
makers use computers. No longer willing to accept the idea that computer programs
are black boxes beyond their understanding, decision-makers will demand tools that
reflect more closely their perceptions of the problem and address it in a way that
they believe to be realistic and meaningful.

The types of models described in this report have also evolved during the last
decade. Originally such models were denoted as interactive models to distinguish
them from more traditional batch models in which the user does not interact with the
model in any way while it was being executed. These models also have come to
include expert system models, which are fundamentally different than procedural,
interactive models. Further, many elements of artificial intelligence have begun to
be applied to the field of water resources management.

This report describes the development of INLET, an Interactive Natural
Language Environment applied to a water resources database that has been created
for the Seattle water supply. INLET is a database interface that accepts commands
and questions posed in ordinary (conversational) English, and a menu-driven query
system. By using ordinary English commands, water resource managers and staff

who are not familiar with either using a formal database query system or computer



programming can easily access hydrologic and management data and use the
analytical, statistical, and graphical capabilities provided by INLET. This interface
assumes the user is familiar with the problem domain but it does not assume the user
has computer expertise in any particular area.

RESEARCH OBJECTIVE

The primary objective of this research is to explore the use of natural
language interfaces for water resources planning and management computer models
and data analysis tools. Obtaining this objective will improve the planning process
by more effectively incorporating both quantitative and qualitative information into
all phases of water resource management. The result of this research is the
development of highly user-friendly software that increases the access, availability, -
and use of water resource planning data to managers.

This objective has been achieved through the development of INLET, an
Interactive Natural Language EnvironmenT, that allows convenient, rapid, and
extensive access to water resource management data. This system is designed to
require a minimum of training to use, thus making it immediately available for water
managers who do not have the time or interest to be trained to access traditional
databases. It must be recognized that water resource planning and management
requires analysis of large amounts of both quantitative and subjective information.
A significant amount of this data is quantitative, such as streamflow records and
system characteristics. An important portion of information, however, is subjective;
that is, it can not be adequately described in quantitative terms. Such information
includes the quality of streamflow forecasts, the uncertainty associated with the
public's response to a call for water-use restrictions, or the degree to which a current

drought is similar to events in the past.



Access to all relevant information, both quantitative and qualitative, is
required for informed decision-making. Analysis of this data is also required. Some
commonly performed analyses include the calculation of streamflow statistics, the
plotting of streamflows, and comparisons of alternative operating policies. When
performed by traditional techniques, such analysis requires extensive training and
experience and the understanding of a formal query procedure of the database.
Infrequent use of the database by managers may discourage them from investing the
time and effort to learn it, thus prohibiting their direct access to the information and
decreasing the probability that the information will actually be used in making a
final decision. It is the objective of this research, in the development of INLET, to
increase access to such databases and improve the decision-making process.

The remainder of this report is organized as follows: Chapter 2 provides a
literature review of relevant topics that includes interactive computing in water
resource planning and a brief history of natural languages and their use in database
access. Chapter 3 provides an overview of the Seattle water supply including
system configuration, operational considerations, and existing management
procedures. The chapter also includes a summary of previous studies to date.
Chapter Four introduces the computer code, INLET, and describes its development.
Chapter Five illustrates the use of this software and provides evidence of its value in
the planning process. Chapter Six presents the conclusions of this research and the

suggested areas of new research.



CHAPTER 2

LITERATURE REVIEW

Water resource planners and decision-makers must be directly involved in
the development of any computer model designed for their use. Their involvement
increases the probability that the computer model addresses questions of
importance, is developed so that it can be successfully used, and includes all
relevant data. In order to include water resource planners in model development
and encourage the model's eventual use, highly user-friendly computer software is
required. This chapter briefly reviews traditional approaches in water resources
modeling and how those approaches have limited the success of many models as
applied planning and operational tools. Natural language interfaces, a recent
technology from the field of artificial intelligence, is introduced as a means of better
addressing this problem. Specific types of natural language interfaces are
described, together with their strengths and weaknesses. In addition, the application
of natural language interfaces to databases is discussed.

WATER RESOURCE PLANNING MODELS

Traditional water resources modeling has focused on the analysis of
alternatives. Less attention has been placed on the generation and exploration of
alternatives (Loucks et al., 1985). Typically these models are designed to provide
quantitative results and are based on the assumption of rational economic behavior.
In actuality, rational behavior differs among individuals and is, at best, often
unquantifiable.

Water resources modeling also assumed the existence of one or more fixed

objectives. In multi-objective modeling, a set of optimal or non-inferior solutions is



generated, usually after much time and expense (Loucks et al., 1985). However,
these models do not consider that individuals may want to consider an inferior
solution (with respect to the original fixed objectives) as well as the non-inferior
ones. These situations arise when decision-makers want to consider additional
objectives that are perhaps not quantifiable by the model. This suggests the need to
examine more than just a set of optimal or non-inferior solutions for planning
models.

One of the largest obstacles in using models as decision-making tools is the
lack of confidence and understanding managers have in computer models. Often,
analysts and planners do not communicate effectively with one another, prohibiting
planners from being actively involved in the model development process. Without -
this involvement, new questions that arise after initial exploration and development
of the model are never addressed, resulting in the final planning tool being
unacceptable.

Water resources problems and their impacts are complex and affect a wide
variety of individuals and groups of people. In addressing these problems, many
complex and comprehensive models have developed. This trend towards ever-more
complex models parallels the increase in the memory and the computational
capacity of computers and is also affected by the decrease in the cost of powerful
computers. These more complex water resource models are more difficult to
develop and maintain, require more input data and produce volumes of output that
requires extensive analysis to comprehend. A challenge for the future is to
understand complex systems so that the models, or more likely a system of more
comprehensible sub-models, and the model user interface, becomes more

intelligible, manageable, useful and reliable (Quade and Miser, 1983).



The involvement of non-modelers in defining model specifications, model
development, model verification and model use will occur only if the interface
between the computer, the models and the model users is easy to use and the
computer results are easy to obtain and understand. In addition, the interface must
make data input and editing easy to perform and make data output easy to manage
and comprehend (Loucks et al., 1985; Hendler and Lewis, 1986).

The increasing availability of mini and micro-computers and interactive
software has made this goal of user involvement more feasible in recent years (Fedra
and Loucks, 1985). One current trend in management and policy making is the
increased interactive use of a number of relatively smaller interrelated models
designed to be adaptive and responsive to a wide variety of questions that the policy-
maker may want to ask. Even if each of the smaller models can only address a few
questions, together they can be used to study the more complex structured aspects of
a resource management problem (Loucks et al., 1985; Kunreuther and Miller, 1985).
A key feature of these decision-aiding systems is the direct involvement of policy
analysts in an interactive policy-making process. An important step towards direct
involvement of policy makers is the use of highly user-friendly interfaces to models
and data.

User-friendliness is defined in a variety of ways. Usually it is defined as
characteristics of a computer or of software that allow them to be used without the
knowledge of any classical programming languages. Menu-driven programs are an
example of one type of user-friendliness. Loucks and Fedra (1985) suggest that
user-friendliness also applies to more general aspects of models such as semantic
and syntactic consistency (which ensures that the model captures both the intended

meaning and syntax), graceful (and instructive) recovery from failures, and a wide



assortment of input-output devices. A user-friendly interface requires the
underlying software to be easily understood, well-structured, and compatible with
the mental processes of the users (Loucks et al., 1985; Hendler and Lewis, 1988).

This report will describe the development and use of a natural language
interface to increase the user-friendliness of a data analysis tool. Because of this
interface, the tool is now available directly to water resource managers and
decision-makers.

Artificial intelligence tools are becoming increasingly popular for
developing user-friendly interfaces compatible with the user's cognitive process.
Two of the most common Al tools meeting this need are expert systems and natural
language interfaces. Natural language interfaces will be discussed in the following -

section.

NATURAL LANGUAGE INTERFACES

Natural language interfaces (NLIs) are useful in providing user-friendly
access to databases. They do not require extensive training and, therefore, make the
data directly available to users with no database or even computer experience.
Because they are accessible in ordinary English, they can be used rapidly and
accurately in stressful situations or in situations where data may need to be accessed
in unanticipated ways (Hendrix and Walter, 1987). The use of natural language
processors (NLPs) as interfaces to databases and knowledge bases have been
researched since the early 1970's and are still popular topics of study today.

Natural language processing can be defined as the ability of a computer to
process the same language that humans use in ordinary discourse. Natural language
processing has been studied in six major research areas: (1) natural language

interfaces to databases, (2) machine translation (translating from one natural



10

language to another), (3) text scanning and intelligent indexing programs for
summarizing large amounts of text, (4) text generation for automated production of
standardized documents, (5) speech systems to allow voice interaction with
computers, and (6) tools for developing NLP systems for specific applications. Of
these six research areas, developing natural language interfaces to databases is the
most active area of research, accounting for over 40 percent of the total activity
(Obermeier, 1987).

The main goal in natural language processing is to translate a potentially
ambiguous input phrase into a precise form that can be directly interpreted by a
computer system. This translation process, called parsing, is performed in many
ways. Obermeier (1987) has classified the types of parsers that have evolved into
five groups: grammar-based, semantic, pattern-matching, knowledge-based, and
neural-network parsers. The first three represent the most active area of interest.
These are discussed in this chapter and examples from the literature are given for
each. Before they are discussed, however, several terms must be defined.

Language expressions have both syntax and semantics. Syntax refers to the
rules governing the order of the symbols. For example, in English an adverb, if
used, generally follows the verb to which it applies. For example in "The dog ran
swiftly", 'ran’ is the verb and 'swiftly' is the adverb. Semantics, on the other hand
refers to the intended meaning of the expression. "Mary had a little lamb", could
either mean that Mary once owned a small sheep or it could be a description of
Mary's evening meal. Computers can easily interpret syntax, but are poor at
resolving semantics. Standard language has a prescribed, although sometimes
variable, syntax defined by rules. As discussed previously, an expert system is a

formal reasoning system using rules, therefore, a natural language processor can be



11

considered a type of expert system that contains rules for a specific language
(Townsend, 1987).
Grammar-based Parsers

Grammar-based parsers are concerned primarily with the syntax of the
sentence, that is, the order in which the words appear and their grammatical
definition. Grammar-based parsers use a set of rules that describe the types of
sentences acceptable for that particular language. For example, two simple rules

are:
S —-->NP VP
S--—-->VP

where 'S' is the symbol for sentence, 'NP' is the symbol for noun phrase, "VP' is the
symbol for verb phrase, and '---->'is the symbol for 'is defined as’. These rules,
called rewrite rules or production rules, define a sentence to have a noun phrase and
a verb phrase, or just a verb phrase by itself. These noun and verb phrases are
themselves composed of smaller phrases. These phrases can, in turn, be
decomposed until only the essential building blocks of grammar remain: individual
words. A tree structure can be used to indicate how words in a sentence are related.
Figure 2-1 is an example of §uch a tree; the words at the end of the tree limbs are
called terminals and the other symbols in the tree are called non-terminals. Non-
terminals can be thought of as symbols which are used to specify grammar.
Grammars used to parse a natural language, such as English, have been
categorized into four types (Grishman, 1986). These are, in order of increasing
complexity: finite-state, context-free, context-sensitive and Type 0 grammars.
Finite-state grammars can only describe simple sentences, such as those given by

the sample rewrite rules from the previous paragraph. In practice, English sentences



12

S
NP VP
determiner NP NP
a7ective noun verb preposition nou\n
The lowest flow occured in 1970.

Figure 2-1. Tree Diagram Showing Sentence Structure.



13

often contain more than one verb phrase or noun phrase, therefore finite-state
grammars are not suitable for parsing all of the common sentences found in English.

Context-free grammars require the left side of each rewrite rule to consist of
only a non-terminal symbol. For example, the rewrite rule A ----> x means that the
non-terminal symbol , 'A’, can be replaced by the word, 'x', anywhere it appears in
the sentence, regardless of context. In general, context-free grammars are easier to
deal with than the more powerful grammars. In some situations, however,
constraints will be needed on the context in which a rewrite rule can be applied. For
these situations, context-sensitive grammars would be applied.

The context-sensitive grammar allows more than one non-terminal symbol to
appear on the left side of the rewrite rule, for example: AB ----> CDE (where A, B,
C, D, and E are all non-terminal symbols). This grouping of more than one symbol
on the left side means that the context in which 'A' and 'B' are found is important.
The most complicated grammar, Type 0, has rules that do not follow any set pattern
or requirements, making it very difficult to parse. As a result, Type 0 grammars are
not very commonly used in a natural language parser.

Grammar-based parsers use all the words found in a sentence and the
phrasing in which the words appeared. They are good for generating natural
language text, and determining sentence structure according to the grammar used.
Two of the most popular parsers for context-free and finite-state grammars are the
augmented transition network, developed by Woods (1970), and the Earley
algorithm (Earley, 1970). These two papers describe the theoretical development of
these parsers, although they are not applied to a specific system. For natural

language systems used as interfaces to databases or expert systems, the semantics



14

(or meaning) of the sentence, also must be considered in order to correctly perform
the request.
Semantic Parsers

Semantic parsers attempt to find the meaning of the sentence, rather than just
concentrate on syntax like the grammar-based approach. In semantic parsers, the
rewrite rules are stated in terms of "semantic classes" describing the meaning of the
word, rather than word classes (ie. verb, noun) like the grammar-based parsers. For
example a sentence could be represented by the following:

<SENTENCE> ::= <PERSONS> is eating <FOOD>.
In this example, <PERSON> and <FOOD> are semantic classes for which words like
"Carla" and "pasta" can be substituted to create a valid sentence. An advantage to -
semantic parsers is that the size of these semantic classes is generally much smaller
than the size of an equivalent word class, resulting in a much more efficient parsing
strategy. A disadvantage of using semantic grammar is that it is not easily
transferrable from one domain to another.

Two natural language interfaces developed in the 1970's were milestones in
making semantic parsers popular. LUNAR (Woods, 1978) was developed for
geologists to retrieve and analyze geologic data obtained from the Apollo moon
missions. The goal of the LUNAR system was to develop a natural language
understanding facility sufficiently natural and complete that the task of selecting the
wording for a request would require negligible effort for a geologist to use. The
system consisted of three principal components: a general purpose grammar-based
parser for a large subset of natural English, a rule-driven semantic interpretation
component for transforming a syntactic representation of an input sentence into a

representation of what it means, and a database retrieval and inference component.



15

LUNAR is noted for introducing the augmented transition network (ATN) parser. An
ATN parser uses a graph to represent the possible states or semantic categories of a
sentence with arcs showing the relationships between these categories. This
specific type of natural language parser has become one of the most popular. The
LUNAR system had a dictionary of approximately 3500 words and had two
databases: a table of chemical analyses with 13,000 entries, and a topic index to
documents with approximately 10,000 listings. LUNAR was developed as a
prototype system, and although it performed very well in demonstrations, it was
never fully implemented and put into operational use. LUNAR did, however, mark a
significant step in the direction of fluent natural language understanding.

The other seminal natural language query system, using a semantic parser, is -
INLAND (Informal Natural Language Access to Navy Data) developed by Hendrix
et al. (1978). INLAND is a natural-language interface to a database containing ship
data. It was designed to make large, distributed databases directly available to U.S.
Navy decision-makers, while freeing technicians from increasingly tedious details.
Some sample questions that INLAND can answer are:

What is the name and location of the carrier nearest to New York?
How long is the Kennedy?

To what class does the Soviet ship Minsk belong?

Which U.S. Navy convoy escorts have inoperative sonar systems?

Within INLAND, syntax and semantics were combined in a single semantic
grammar. INLAND was part of a larger natural language interface, called LADDER
(for Language Access to Distributed Data with Error Recovery) which provided
access to many other databases. LADDER was developed to be transportable from
one database to another regardless of the underlying database structure. Many

important human engineering features contributed to the success of the LADDER



16

system. Some of these features were the ability of the system to deal with
incomplete input, allowing the user to extend the linguistic coverage at run time and
highly user-friendly functions for modifying and debugging application languages.
Pattern-Matching Parsers

The pattern-matching parsers include some of the earliest parsers developed.
They look for a linguistic pattern in a sentence without using explicit grammatical
rules. When processing a sentence, this type of parser attempts to match the input
with a fixed number of patterns. If a match is found, the system performs a specified
action. Pattern-matching parsers are popular as interfaces to databases because
database commands can usually be decomposed into patterns and keywords.

Two of the best known pattern-matching programs, ELIZA (Weizenbaum,
1966) and DOCTOR (described by Winston, 1981), were not database interfaces but
rather were designed to simulate interaction with a psychologist. Both consist of a
set of patterns with each pattern having a number of replies associated with it.
When a particular pattern is matched, the program selects one of the given set of
replies and makes any necessary substitutions in that reply. A portion of a sample

dialogue from DOCTOR might be:

DOCTOR: Speak up!
User: I am worried about the weather.

DOCTOR: How long have you worried about the weather?
User: Since my mother passed away.

DOCTOR: Tell me more about your family.
User: They are all into computers these days.

DOCTOR: Do machines frighten you?
etc.



17

In these programs, the appearance of understanding is derived from a clever use of
keywords rather than from genuine analysis and appreciation of what is said
(Winston, 1981).

One of the first natural language interfaces to a database was BASEBALL
(Green et al., 1961) which answered questions about the games played during one
season of the American League. This system read a sentence and then formed a
specification list. This list corresponded to a list of keywords which were looked up
in the system's dictionary and then translated into a database query. BASEBALL's
existence proved that natural language systems were possible and it started one of
the major lines of research, pattern-matching, in NLP today.

A natural language interface to DOS, using a noise-disposal parser similar to -
BASEBALL, is described by Lane (1987). A noise-disposal parser scans the user's
request and finds keywords upon which the action is based while non-essential
words (noise) are ignored. Lane's NLI, implemented in Turbo Prolog, collects the
tokens (or words), finds the keywords and then performs the command. This system
even provides facilities to correct misspelled input in some situations.

INLET, the topic of this report, uses an approach similar to Green (1961) and
Lane (1987) and is applied to a water resources database. The database contains
streamflow data along with optimal reservoir operating policies generated from a
drought management expert system (Palmer and Holmes, 1988; Palmer and Tull,
1987). INLET uses a noise-disposal parser to find keywords, match them with a
command pattern and then perform the command. Often, a noise-disposal parser
requires a strict sentence format (an ordering of the keywords), but it will accept a
wide variety of sentences as long as the necessary keywords are present (Schildt,

1987). In INLET's case, however, the keywords may come in any order.



18

Considerations and Criticisms of Natural Language Interfaces

Hendrix, the author of INLAND, and Walter describe general technical
considerations involved in designing a natural language interface (Hendrix and
Walter, 1987). Some of the important considerations applicable to INLET are
habitability, verifiability, resilience and performance. Habitability is the
characteristic of a system which allows the user to express himself through English
requests that come readily and comfortably to mind. Verifiability means that the
user can verify that the NLI's interpretation of the request agrees with what the user
meant. The NLI also needs to be resilient, or recover gracefully from anomalies in
the user's request. Finally performance considerations are important to assure the
system responds quickly and efficiently to the user.

Templeton and Burger (1986) describe the pitfalls and necessary
requirements for developing a successful NLI to a database. Their research is based
on their experience in developing EUFID, the End-User Friendly Interface to Data
management (Templeton and Burger, 1986). EUFID was designed to be both
application and database management system (DBMS) independent. This was an
overly optimistic goal and the system enjoyed only limited success. The necessary
requirements outlined by the authors which are relevant to this research are in the
area of "language problems", or problems understanding the natural language
question as opposed to technical database issues or coding issues. They found that a
NLI needs to respond promptly to requests, either with an answer or with a helpful
message describing why the request could not be interpreted. Another problem was
encountered in defining the scope of reference in the request. An example from
INLET might be:

"What was the mean flow at Site 1 for June?",
"What was the mean for June between 1960 and 1970?",



19

"What was the skew?"

In this example, the second question refers back to the first question in which Site 1
was specified; the third question could refer to all of June or just the years 1960 to
1970. This problem is difficult for most NLIs to decipher. The authors of EUFID
suggest confining the scope to a subset of the database and then only addressing
questions to the subset. There are many other issues discussed and suggestions
made in this paper, most concern making the interface transportable and database
structure independent.

Some criticisms of natural language interfaces have been cited by Simmons
(1986). He discussed a then-recent test comparing the success of using a NLI with
the success of using a Standard Query Language (SQL). Users were required under
various experimental conditions to formulate a series of questions in either SQL or
English. The SQL queries resulted in 46 percent correct answers; the NLI queries
only 22 percent. Simmons explained the reason for this difference as being due to
the feedback (or guidance) available for SQL and the lack of feedback provided by
the NLI. With no feedback from the NLI, users were left to their own devices,
usually random paraphrasing of the question. The NLI used in the test, however,
was not fully debugged; general studies show NL questioning to be about 70 percent
satisfactory (Simmons, 1986). This test clearly showed the importance of a good
feedback or help system in order for a NLI to be successful. |
SUMMARY

This chapter has defined the need for more user-friendly models to
encourage direct involvement of decision-makers. Natural language processing was
described and some example systems were discussed. Natural language interfaces
are very useful as database interfaces when the users are knowledgeable about a

task in a domain whose scope is limited and when intermittent use inhibits command



20

language training (Sneiderman, 1986). This is certainly the situation in which
INLET is designed to be used. Most of the considerations outlined here have been
addressed by the INLET system and will be discussed in Chapter 4. A summary of
the Seattle Water Supply System will be presented in Chapter 3 along with a

description of the drought management expert system.



CHAPTER 3
SEATTLE WATER SUPPLY SYSTEM

The Seattle Water Department (SWD) provides direct service to 541,000
Seattle residents and is a wholesaler to 549,000 residents of King County (SWD,
1986). Water is taken from two major sources, the Tolt and Cedar Rivers, both of
which originate in the western Cascade Mountains. Inrecent years there has been a
growing concern that the demand for water in this region has approached the safe
yield of the supply system. This concern has, in turn, lead to increased interest in
the proper management of these resources and the development of operating
strategies for the system during droughts.

This chapter describes the water supply system of Seattle and the uses to
which the water in this system is placed. Estimates of the safe yield of the system
are provided with a discussion of the water shortage response plan that has been
established. Previous models used for planning are briefly described, together with
an expert system that has been developed for managing the water supply during
periods of low flows. The chapter concludes with a description of the information
generated from previous studies that is used in the INLET system.

SEATTLE WATER DEPARTMENT SYSTEM

Figure 3-1 illustrates the Seattle Water Department's service area and its
major reservoirs. The Cedar River drains approximately 190 square miles and
receives about 35 inches of precipitation per year. The Cedar River has served as a
source of water for Seattle since 1901 when a diversion dam was constructed at

Landsburg, Washington. In 1905, a wooden crib dam was constructed immediately



22

: TOLT RESERVOIR
Jv(»mlﬁm‘
'J 3
RIVER

Figure 3-1. SWD’s Service Area and Major Reservoirs.



23

downstream of Chester Morse Lake. In 1914, a masonry dam was built
approximately one mile further downstream. Because the masonry dam is sited

on top of a glacial moraine, there is a major problem with seepage. Storage can not
be maintained at the full capacity of the masonry dam because of fears of a moraine
failure that would result in dangerous flows downstream. This has, in fact, occurred
in the past resulting in the loss of several lives. Currently, the crib dam (which is
upstream from the masonry dam) is used to retain water in a region not subject to
seepage. A small amount of hydropower is also generated on the Cedar River.
Currently, water from the Cedar contributes about two-thirds of the total water
supply. In addition, the Cedar River supports the largest sockeye salmon run in the
continental United States. The run was established in 1937 and made possible after -
the Corps of Engineers constructed shipping locks in 1916. These locks provided a
direct connection between Lake Washington and the Puget Sound.

The second major source of water is the South Fork of the Tolt River. An
earthen dam was constructed on this river in 1963. This reservoir captures water
from approximately nineteen square miles. The Tolt serves the remaining one-third
of the SWD water supply. Consideration has been given to expanding the Tolt
system by developing a diversion dam on the North Fork of the Tolt. The river
supports a wide variety of fish, with the predominant species being steelhead trout.
Instream flow requirements have been established for the North and South Forks of
the Tolt as well as its main stem.

The established minimum instream flows requirements limit diversions from
each river. These instream flow requirements exist to maintain water for fisheries,
hydropower generators, and recreation usages. The storage capacity of the Tolt

system is 57,000 acre-feet. The average annual inflow into the system is 126,000



24

acre-feet. The Cedar contains approximately 39,200 acre-feet of active storage and
39,200 acre-feet of dead storage behind the crib dam.
SYSTEM YIELD AND DEMAND

Although averaging over thirty inches of rainfall annually, the Seattle area is
susceptible to droughts. SWD estimates their average annual demand in 1985 at 178
million gallons per day (mgd). Of that total, approximately 79% goes to direct or
indirect services, 11% goes to non-revenue sources (such as system maintenance,
water for parks and the flushing of Green Lake), and the remaining 10% is attributed
to system losses. There is a large temporal variation in demand, both seasonally and
yearly (Figure 3-2). The rate of increase of demand is estimated at 2 mgd per year.

SWD estimates that their "safe yield" is 169 mgd. (In this report, safe yield is-
defined as the maximum volume of water that reliably can be taken from the water
supply system while meeting all of the physical, hydrological, and operational
constraints of the system.) This yield results from the combined releases of the Tolt
and Cedar Rivers. The figure of 169 mgd is based upon a perceived 98% reliability
of meeting all demands over a fifty year hydrologic record. Until new sources are
developed, little excess capacity exists to meet unusually high demands or low
supply situations. The question of reliability is an important and sensitive issue.

For successful operation during the summer, reservoir storage levels must be
near capacity after the spring snowmelt. Average rainfall during July and August is
1.8 inches. Thus, the system also depends on autumn precipitation to refill its
reservoirs. Unusual climatic events, such as the drought that occurred in 1987,
cause system storage to decline to levels that require water use restrictions.
Although not commonly used, these restrictions are the only management option

available for coping with short-term water shortages.



Annual Average  Peck Month

TEN YEAR MEAN MONTHLY DIVERSION
(1974-1983)
250
206 209
2001 185 .
5 :
5 1507134 133 134
v ary .
P .
o
€ 1004
o
50
Jon Feb Mar Apr Moy Jun Jul Aug Sep Oct Nov Dec
Month
ANNUAL AVERAGE AND PEAKING FIGURES
400
350 344
300 {
g 2504
=
2 2004
o
&
[a] ‘50‘
1001
50

Peak Week + Peak Day

Figure 3-2. Average Seasonal and Peak Demand for SWD.

25



26

WATER SHORTAGE RESPONSE PLAN

In order to guarantee an orderly response to any water shortage, the SWD
developed the Water Shortage Response Plan (WSRP) which addresses problems
related to the 1-in-50 year drought event (SWD, 1986). The objective of this plan is
to maintain essential services while minimizing the net economic loss during a
drought event. The WSRP envisions two types of shortages: a summer shortage and
a fall shortage. Each type of shortage plan consists of a multi-stage conservation
plan with progressively higher stages initiated as serious conditions develop.
Summer shortages result from climatic and hydrologic conditions that cause system
reservoir levels not to be refilled by late spring. The fall shortage scenario results
from low fall precipitation that is insufficient to replenish the system storage after
summer peak use. Table 3-1 provides a summary of the shortage plan.

Conflicts in operational objectives between the City of Seattle, the Army
Corps of Engineers, the Washington State Department of Fisheries, and the
Washington State Department of Ecology are common during periods of low flow.
These conflicts result from the different objectives the agencies have for water
usage in the Tolt and Cedar watersheds. Figure 3-3 illustrates the summary and
conceptualization of the decision process used for drought planning. Decisions are
made in a formal, if ad-hoc nianner, attempting to weigh conflicting objectives of
the agencies. At times, only a limited amount of quantitative data are available to all

agencies and the precise impacts of their decisions often are not known.



Table 3-1. Summary of Summer Shortage Response Plan

Stage 1 - Minor Shortage Potential

Cause for implementation:
1) Total system storage not filled by June 1.
2) Reservoir storage will not be replenished before the peak demand season.
Water system actions:
1) Eliminate non-essential water uses.
2) Reduce Green Lake inflows from 4 MGD to 2 MGD.
Customer actions:
None
Estimated total savings:
3.0MGD

Stage 2 - Moderate Shortage Potential

Cause for implementation:
1) Total system storage is predicted to fall below level required to meet demand during
a 1-in-50 year drought.
2) System inflows continue to be low.
3) Predicted drier than normal weather.

Water systen actions:
1) Adjust Cedar and Tolt releases to increase stored water.
Customer actions:
1) Voluntary reduction in outdoor water use.
Estimated total savings:
7.7MGD
Stage 3 - Serious Shortage
Cause for implementation:
1) Total system storage is predicted to fall below level required to meet demand during
a 1-in-50 year drought

2) System inflows continue to be low.

3) Predicted drier than normal weather.
Water systen actions:

1) Reduce Cedar and Tolt River flows to critical streamflow levels.
Customer actions:

1) Mandatory reduction in outdoor water use.
Estimated total savings:

20 MGD

27



Table 3-1. Summary of Summer Shortage Response Plan (continued)

Stage 4 - Severe Shortage

Cause for implementation:
1) Total system storage is predicted to fall below level required to meet demand during
a 1-in-50 year drought.
2) System inflows continue to be low.
3) Predicted drier than normal weather,
4) Entering end of peak use season.
Water systen actions: _
1) Adjust Cedar and Tolt stream flows to critical levels.
2) Request Army Corp of Engineers to reduce flows for Chittenden Locks.
Customer actions:
1) Mandatory reduction in outdoor water use.
2) Voluntary reduction in indoor water use.
3) Voluntary reduction in commercial uses.
Estimated total savings:
21.1 MGD

Stage 5 - Critical Emergency

Cause for implementation:

1) Customer demands and system pressure requirements cannot be met.
Water systen actions:

1) Reduce Cedar and Tolt River flows to critical streamflow levels.

2) Request Army Corp of Engineers to reduce flows for Chittenden Locks.
Customer actions:

1) Water rationing to gain a 40% reduction in overall water use.
Estimated total savings:

574 MGD

Source: Seattle Water Department

28



29

*Aojopoyie |y Suiuueld JuenInd jo wreiderq Mol ‘¢-¢ a3

TVID1440
origand
LNIATTIT
AJILON

S3A

‘T

ON

AONIIJAIXT 1SVd ©
SISATYNV TTdIX ©

NOILVIRYO4NI

hACECHL
SYIEAENR
AONIDY

aNvRrIa ©

MOTd WVEULS ©
adviaoLs

JI0AYIASHY ©

NOILVATVA™
LHDNOUA

e

NO11vyddo
TYHRION




30

PREVIOUS MODELING EFFORTS

The SWD has maintained a continuing effort to improve its understanding of
the hydrology and operation of its system. A result of this effort has been the
development and refinement of system management computer models. Three
models are in current use, the Water Resources Management Model (WRMM), the
Seattle Water Supply Expansion Management System (SEMS) and the Seattle Water
Department Integrated Drought Management Expert System (SID).

WRMM is a batch simulation model developed in early 1980's that runs on a
mainframe computer (URS Corporation, 1981). It is currently used by SWD to
project annual water yields and analyze the probability of a water shortage in any
given year. The model operates on a monthly time-step. As a simulation model, it
does not provide operating policies, it only reports what would occur if drafts from
the reservoir systems were taken at a specific rate. Although the model is somewhat
difficult to use and requires a high level of training to operate and interpret the
results, it is the model that has been used for the longest period of time by the SWD.

SEMS is an interactive linear programming model that was developed to
operate on a personal computer (Palmer and Johnston, 1984). This model develops
optimal operating policies for a given system configuration of the water supply.
SEMS operates on a weekly time-step, providing optimal operating policies for a
sixteen to twenty week period into the future. The user can select between five
potential operating objectives including the maximization of yield and the
minimization of economic losses to the system. The user operates the model by
indicating the starting time period (week of the year), the anticipated demands, the
system storage levels, and the hydrologic sequence desired. The user can choose

between any historical record or streamflow forecast.



31

SID is a recently developed expert system for drought management (Palmer
and Tull, 1987; Palmer and Holmes, 1988). The system is composed of an expert
system, a database management system, and computer graphics. These three
components have been integrated into a complete drought management system. The
expert system incorporates op.erator experience and intuition using a rule base
developed through interviews with management personnel from SWD. SEMS was
used to create a large database of operational experiences and examples. Over three
thousand executions of the SEMS model are contained in the database. The results
can be obtained through the database management system and displayed using the
graphics software.

DEVELOPMENT OF THE INLET DATABASE

INLET represents a natural progression in the computer models that have
been developed to aid in obtaining, analyzing, and understanding information and
data required for developing municipal operating strategies. Its purpose is to
provide the user with easy and direct access to all relevant hydrologic and
operational data with a minimum of training. Whereas WRMM requires extensive
training and experience, INLET provides the novice user with immediate data
retrieval abilities. SID requires the user to proceed through a formal and complete
drought management evaluation, INLET, however, allows the user to access
whatever information is desired, in whatever order is most appropriate. INLET also
provides extensive statistical and graphical presentation of streamflow data that was
not available in previous system modeling efforts.

The development of INLET and its functions and capabilities are described in
detail in the following chapter. The remainder of this chapter is devoted to a

description of the database to which INLET provides access. The data used in



32

INLET is of two basic types: hydrologic data and system management data. The
hydrologic data consists of monthly streamflow records for seven sites in the water
supply catchment area. Three of these sites are on the Cedar River, one is the net
inflow to Lake Washington (inflow minus evaporation), and the remaining three are
flows on the Tolt River: the South Fork, the North Fork, and the main stem.

The management data was derived by interactive executions of the SEMS
program. A position analysis (Hirsch, 1977) was developed using SEMS. In this
procedure, past streamflow data serve as surrogates for potential future inflows.
State variables (time of year, storage levels in the reservoirs, system capacities, and
demand) are defined and the system is simulated over a prescribed period.
Variables of interest are recorded and the procedure is repeated for the next period. -

Although Hirsch performed his analysis with a simulation model, SEMS is an
optimization model, as indicated previously. SEMS operates on a weekly time
period, incorporates physical and operational constraints and optimizes the system's
operation. Two objectives are used for the information contained in the database:
maximize system yield and minimize the economic loss associate with deficits from
a specified (and time dependent) target. For this system, the planning period is four
months with each year being an independent event. Streamflow data exists for
nearly fifty years for the primary sites of interest in the system, making this an
especially attractive approach.

For the first objective, estimating the system yield, the constraints include
continuity at both reservoirs, instream flow requirements and continuity for the
moraine aquifer in the Cedar system. The Cedar system is more complex because of
this aquifer. The aquifer is recharged by seepage from Masonry Pool and returns

water to the Cedar River further downstream. Both events occur at unknown rates



33

which the model approximates (Palmer and Johnston, 1984). Bounds exist for
storage levels on all reservoirs, pipeline capacities, instream flow requirements for
the Tolt and Cedar Rivers, and the Lake Washington elevation.

The second objective requires several additional constraints to meet water
use implementation requirements. Upper bounds on each stage of WSRP restrictions
represent the maximum reduction in water use that is possible for each stage. A
piece-wise linear objective function approximates the economic losses associated
with the implementation of water use restrictions (SWD, 1986). Additional
constraints limit stage increases to one per week, thus preventing staging from
skipping two or more levels in one week. _

SEMS was executed using the historical record (1929-1975) for a variety of -
reservoir storage levels, starting dates, and system demands. System yield was
calculated for each streamflow record for an initial storage of between 10 and 100%
of capacity (by units of 10%) and for June through October. This required 2,350
runs of the model. The results of the yield analysis identified configurations that
result in economic losses for specific demands. The minimum economic loss, and its
associated operating policy, was calculated for the appropriate configurations for
base level demands of 170, 180, and 190 MGD. This resulted in approximately 600
additional runs of the model.

The execution of SEMS requires approximately three minutes of central
processing unit (CPU) time on an IBM/AT using XA, a linear programming software
package (Sunset Software, 1987). Execution time for calculating economic loss are
less predictable, requiring between three and six minutes. Approximately 200 CPU
hours were required for all linear programming runs. This task was simplified by

writing software to automate this process.



34

A separate database system, created to store this information, was written
using codes from the Turbo Pascal Database Toolbox (Borland International, 1985).

The database stores the following information:

Record code information

Starting week

Base level demand

Initial storage

Yield array

Economic loss array

Total number of drought years

Drought years

Water Shortage Response Plan staging data for drought years

The database stores the record code, week, and base level demand as a series
of characters, the yield and loss arrays as 46 element arrays of real numbers, the
drought years as an array of integers, and the Water Shortage Response Plan

(WSRP) staging data as a two-dimensional array of real numbers.
SUMMARY

The data described above provides the database from which INLET obtains
information about the hydrology and operational policies of the SWD system. Using
this database INLET also performs statistical analysis, ranking, plotting, and other
evaluations which are not available in the expert system or any other analysis tool
currently available to the SWD. This direct access to and statistical analysis of -
streamflow data upon which other models are based is a valuable function
performed by INLET.

INLET is unique among the models and analysis tools that have been
developed for the system because of the ease of access and range of analysis made
available. The background and program development of the INLET system are the

subject of Chapter 4.



CHAPTER 4

INLET, A NATURAL LANGUAGE ENVIRONMENT

An Interactive Natural Language Environment, INLET, was developed to
provide user-friendly access to streamflow and optimal reservoir operation policy
data. This system has two components: a natural language interface and a menu-
driven interface. Both components provide direct access to the data and provide
statistical and plotting capabilities. Both of these components are easily accessible
from the other. INLET was written in Turbo Prolog (Borland International, 1988).
Streamflow data and operating policies relevant to the Seattle Water Department
were incorporated into INLET to provide a case study. This chapter describes
INLET and provides an introduction to the Prolog programming language. This is
followed by a description of the natural language interface and a description of the
menu system.

INTRODUCTION TO PROLOG

During the past decade, two languages have gained prominence for the
development of artificial intelligence (AI) applications. These languages are LISP
(for LISt Processing), and Prolog (for PROgramming in LOGic). LISP is one of the
oldest computer languages, having been developed in the 1950's at approximately
the same time as Fortran. Prolog is a much newer language, developed by Alain
Comerauer at the University of Marseille-Aix, France, in 1972. Prolog is similar to
LISP in that it is a symbolic language and it was developed specifically to solve Al-
related problems. Prolog differs from LISP because it has a built-in database and
has a simpler syntax.

In the early 1980's, Prolog had established itself as the Al language of choice

in Europe while LISP emerged as the preferred language in the United States. In



36

1981, researchers participating in the Japanese "Fifth-generation" computer effort
announced the use of Prolog as their fundamental programming language.

Since 1981, there have been fundamental changes in the Prolog language.
Many implementations of the language are commercially available with supporting
software. Interest at universities in the U.S. has increased and the number of
textbooks, reports, and journals devoted to Prolog are also increasing. The structure
of the language has also formalized to a defacto standard of "Edinburgh Prolog."
Although variations of this standard exist, most software meets the basic standards
of Edinburgh Prolog and supply the user additional features.

Prolog differs greatly from standard engineering computer languages such as
Fortran or Pascal. Programming languages can be described as either procedural or -
descriptive. In procedural languages, program execution is sequential; it follows the
order of the commands found in the source code. Fortran is an excellent example of
a procedural language. Prolog is a descriptive or "data-driven” language. A Prolog
program is essentially a database and a series of rules for analyzing the data. The
control of execution is determined by the specific data in the database, not by a
fixed algorithm. This allows the execution procedure to be dynamic, varying with
the problem definition.

Prolog supports recursive functions. Recursion is the process of a function
calling itself or executing itself. This feature will be described later in this section
with an example. This is a capability that is not supported by procedural languages.
Prolog also supports symbolic processing. Symbolic processing allows a problem to
be solved by strategies and heuristics for manipulating symbols rather than using
defined algorithms. For example, the fact that Bill likes Mary can be expressed as a

valid fact in a Prolog program by:



37

likes(bill, mary).
This type of relationship is more difficult to express as a fact in non-symbolic
languages, such as Fortran, Pascal or C.
Prolog can make deductions. Given the facts:

"Bill likes Mary."
"Mary likes Sam."

and the rule:

"Bill likes a person if Mary likes a person.,"
Prolog can deduce that Bill likes Sam. These facts and rules can be expressed in
Prolog by the following statements:

likes(bill, mary).
likes(mary, sam).
likes(bill, Person):- likes(mary, Person).

The left-hand side of the rule is called the head, the characters ":-" implies the word
"if." All symbols to the right of the character ":-" are called the body. The head is a
fact that is true if the conditions contained in the body are true. The if symbol
separates the head of the rule from the body; it can be the characters ":-" or the word
"if." Words in lower case are specific constants. The words that are capitalized (i.e.
Person) can be thought of as variables. The rule,
likes(bill, Person):- likes(mary, Person)

can be interpreted as bill likes any Person if Mary likes that Person.
PROGRAMMING IN PROLOG

A Prolog program consists of three components: (1) data or facts, (2) rules,
which specify relationships between the data, and (3) a goal or a group of goals. A

predicate is a function with a value of true or false that expresses a property or

relationship. In INLET, the streamflow data is contained in the predicate



38

"flow(year,month,streamflow).” Data and rules contain predicates. A clause, in
Prolog, is a fact or a rule that ends in a period. Some particular clauses of the flow
predicate are:

flow(1929,0ctober,444).
flow(1930,0ctober,56).
flow(1931,0ctober,225).

These clauses define the streamflows for October in the years 1929 through 1931.

Rules in Prolog are true if all of the premises are true. If any premise fails,
the rule fails at that premise. A rule which determines "low flows" might be "A flow
for Year and Month is low if the flow is less than 60 cfs.” This rule can be written in
Prolog as

lowflow(Year, Month, Flow) :-
flow(Year, Month, Flow),
Flow <= 60.

This rule states, "To prove that a flow is low, first prove that the flow for a particular
year and month is less than 60 cfs.” Using the above streamflow data, the clause
"lowflow" would find that a low flow occurred in October of 1930.

After establishing data and rules, the next step in developing a Prolog
program is to form a goal or query for the program . A sample question for the
streamflow data is "What is the streamflow for October in 1930?" This question
would translate to the Prolog goal of

flow(1930,october, Value).
This query looks very similar to a fact clause except the variable, or object , "Value"
is capitalized while the other objects are not. This is because "1930" and "october”
are constants, or known values, but "Value" is a variable.

To find a solution to this query, Prolog begins with its first fact and looks for

a match. The first fact, flow(1929,0ctober,444), is evaluated but rejected because



39

the first argument, 1929, does not match 1930. Next, the fact,
flow(1930,0ctober,56), is evaluated and the variable "Value" is bound to "56" since
all the other objects (the year and month) are equal. Prolog then continues to seek
other solutions for this clause. However, no other solutions will be found since only
one streamflow for October, 1930, is contained in the facts.

This example illustrates an important characteristic of Prolog that differs
from other programming languages. Prolog has no assignment statement; objects or
variables obtain values when bound to constants in facts or rules. Until a variable is
assigned a value it is said to be "free"; when it is assigned a value it is said to be
"bound.” The value remains bound while a goal is pursued. When a new goal is
requested, the program begins the process of binding variables once again. In
Prolog, variables can not be used to store information.

When Prolog searches for a solution to a goal it may pursue a series of rules
that fail to instantiate the goal. When this occurs, Prolog automatically retreats to
the most recent goal that has an untried alternative, and using that alternative,
searches its data again. This process, in which the program retraces a sequence of
inferences, trying to find another path to a solution, is called backtracking. In the
streamflow example, the first clause that was evaluated was the clause for the year
1929, which failed. In this case, Prolog found a clause that matched the goal, then
bound "Value" to "444" and checked the year and month. When they did not match,
Prolog backtracked by freeing Value from "444" and proceeded to the next clause.

Prolog has another distinctive feature: recursion. A recursive procedure is a
procedure that calls itself. For example, finding the factorial of a number, N, can be
written recursively. The procedure for determining the factorial of a number can be

written as:



40

If N is 1, the factorial is 1.
Otherwise, find the factorial of N-1, then multiply it by N.

This procedure can be used as follows: To find the factorial of 3, you must find the
factorial of 2; to find the factorial of 2, you must find the factorial of 1. From the
first clause in the procedure, the factorial of 1 equals 1, so now you multiply it by 2
to get the factorial of 2, then multiply that by 3 to get the factorial of 3. In Prolog
this procedure would be

factorial(l, 1).

factorial(X, FactX) :-
Y=X-1,
factorial(Y, FactY),
FactX = X * FactY.

When Prolog executes factorial(3, Answer) it will try the first clause,
"factorial(1,1)," and fail. It then moves on to the next clause and binds X to 3 and
searches for a solution for Answer. Next it sets Y to 2 and then calls factorial again
with the first object bound to 2 and the second object still unbound. This procedure
repeats until factorial is called with X bound to 1. At this point factorial succeeds
with FactY being bound to 1. Now the factorial which was called with X bound to 2
can calculate FactX and succeed. When it succeeds the original factorial can
calculate FactY and that value is bound to Answer.

Recursion has three main advantages over conventional iterative loop
structures, such as the "do loop" found in Fortran. It can express algorithms that can
not conveniently be expressed any other way. It is logically simpler than iteration.
Recursion is the natural way to describe any problem that contains within itself
another problem of the same kind.

An example of recursion is the process of checking whether a symbol is a

member of a list. One may approach this problem by first checking to see if the



41

symbol is at the head of the list. If it is not, check if it is a member of the remaining
list. This process requires breaking this list into two sets: the first item and all the
remaining items. Since the tail (which is everything but the first item) is a list,
checking if the symbol is in the tail is the same problem as the original, only with a
shorter list. In Prolog, a list is represented by a sequence of objects separated by
commas and is contained within square brackets. An example of a list is [Ron,
George, Oliver]. Lists can also be represented as just two components in brackets
separated by a vertical line:
[HeadITail}

The first element of the list is Head and the remainder of the list is contained in Tail.
In our list example, "Ron" corresponds to the Head and "[George, Oliver]"
corresponds to Tail.

In Prolog, the procedure to check if an element is a member of a list could be
coded as

member(Element,[Elementl_]).
member(Element,[_[Tail}):-
member(Element, Tail).

The first clause succeeds if Element is the first item in the list. If not, Prolog
continues on to the second clause and calls member again with Element and the tail
of the list.
IMPLEMENTATION OF PROLOG

A large number of implementations of Prolog are available for personal
computers. The implementation chosen for this research is Borland's Turbo Prolog
(Borland International, 1988). This version of Prolog is the most widely sold
implementation for personal computers. The developers of this software have

concentrated less on making this version totally compatible with the "Edinburgh



42

Prolog"” standard and more on providing supplemental programs and supporting
software to improve the ease with which sophisticated programs can be written.

All Turbo Prolog programs have three components: (1) names and structures
of objects involved in the problem, (2) names of relations known to exist between
the objects, (3) facts and rules describing these relations. These three components
correspond to the three basic parts of a Turbo Prolog program: the domains section,
the predicates section and the clauses. This three-part structure is unique to Turbo
Prolog. Edinburgh Prolog does not use the same program partitioning. An example
program will be used to show what these three parts of a program do and how facts
and rules are incorporated.

The domains section contains the declaration of the types of arguments
allowed for the predicates. Standard Prolog does not require a domains section.
Under the predicates section, predicates are declared by stating their name and the
domains of their arguments. Clauses are facts or rules corresponding to one of the
declared predicates.

Figure 4-1 shows simple Turbo Prolog program. The domain indicates the
variable types that are used in the predicates. These domains state that flows are
real numbers, a year is an integer, and a month is a symbol (or word). The predicate
section lists all the non-internal predicates to be used in this program, "sumflow"
and "flow." Prolog has many internal predicates, such as "write(symbol)" which
displays symbol on the screen. These internal predicates are similar to intrinsic
functions in Fortran and do not need to be defined by the program.

The next section denoted as the goal section is optional. If the goal section is

not present, Turbo Prolog responds with a prompt and waits for a goal to be entered



43

domains
flows =real
flowlist = flows*
year = integer
month = symbol
statistic = symbol
command = symbol

predicates
summer(year,flows)
flow(year,month,flows)

goal
summer(1950,Sum),
write("The sum of the 1950 summer flows is ",Sum).

clauses

summer(Year,Value):-
flow(Year,june,A),
flow(Year,july,B),
flow(Year,august,C),
Value=A +B +C.

flow(1950,january,278).
flow(1950,febuaury,321).
flow(1950,march,350).
flow(1950,april,217).
flow(1950,may,197).
flow(1950,june,56).
flow(1950,july,61).
flow(1950,august,35).
flow(1950,september,94).
flow(1950,0ctober,189).
flow(1950,november,312).
flow(1950,december,253).

Figure 4-1. Sample Prolog Program.



44

interactively. The goal of this program is to calculate the sum of the summer flows
for 1950 and then display the result.

The clause section contains the definition for "sumflow" and the "flow"
clauses containing the streamflow data. "Sumflow" finds the sum of the summer
flows by searching through the flow clauses, matching Year and Month. When each
the three flow clauses have been found, A,B, and C are bound to the three flows
corresponding to the June, July and August flows, respectively. Sum is then bound
to their sum and returned. The first goal has now been satisfied. Next Prolog
displays "The sum of the 1950 summer flows are" and then the answer, Sum.
INLET'S NATURAL LANGUAGE PROCESSOR

INLET's natural language processor reads an input sentence and translates it
into a command the computer can execute. It is also responsible for answering the
query in a full sentence, providing it is not a plot. INLET uses a noise-disposal
parser to scan the input sentence, evaluate keywords and dispose the non-essential
words (noise). The keywords are then matched to a pattern and the command is
performed. This type of parser is popular as an interface to a database, because
database commands can usually be decomposed into patterns composed of
keywords.

INLET recognizes words from the following keyword groups:

<command> <statistic> <site> <month> <year 1> <year 2>.
The words in the brackets are the names of the word classes. The brackets indicate
that the keyword inside is optional. The words recognized in each category are

listed in Table 4-1 along with their default values. The keywords can appear in the



what
plot
list
help
policy

("what")
("none™)

Table 4-1. Words Recognized by INLET

Statisti

all

mean
standard
skew
lowest
highest
minimum
maximum
storage
average

(nalln)

Sitcname Month Yearl
Site 1 January 1929 -
Site 5 February 1976
Site 7 March

Site 8 April

Site 11 May

Site 15 June

Site 16 July

inflow 1 August

inflow 2 September

inflow October

Cedar 1 November

Cedar 2 December

Cedar 3

Lake Washington

North (Fork Tolt)

South (Fork Tolt)

Main Stem (Tolt)

demand

he ("none™) ("none")

words in () indicate defauit values

* default is determined from previous command

45

1929 -
1976

("none")



46

sentence in any order. Some example sentences that can be answered are:

What is the mean flow at Cedar 1 for June from 1960 to 1968?
What is the standard deviation?

List all the flows at the main stem of the Tolt for 1972.

Plot the site 15 flows for May all years.

At site 7, what is the lowest flow for all the years on record?
Sum the flows from June to September for 19697

The processor is not case sensitive (upper-case is not needed) and punctuation at the
end of the sentence is not required. Not all the keywords need be present in order
for the sentence to be processed. When some keywords are missing, the processor
either uses the default values, or assumes that the question was asked in the same
context as the previous question. In this later case, keywords from the previous
sentence are used for the missing ones.

The Prolog code for the natural language processor consists of three main
components: (1) clauses for parsing the sentence, (2) clauses defining the lexicon
(dictionary) which contains the words recognized by INLET and their associated
synonyms, and (3) clauses used to determine the command for that particular
grouping of keywords and the context of the sentence.

The first group contains all the clauses associated with reading the sentence
and selecting the words recognized by the system. This is accomplished by reading
each word, one by one, and evaluating the clauses contained in the lexicon. If the
word is not one contained in INLET's dictionary, it is ignored and the parser moves
to the next word. If it is recognized, the parser uses the lexicon to determine the
word class to which it belongs. It then evaluates the keyword by examining the
synonym clauses in the lexicon. For example, the word "mean" is a synonym for
"average." Both of these words are recognized by INLET and belong to thg word

class "statistic,” but "average" is the actual keyword used by the system. If the



47

parser encounters "mean," it finds that it is a statistic and the associated keyword is
"average.” "Average" is then passed to the clause that actually executes the
command.

Some words, as indicated in Table 4-1, are not single words (i.e. "Site 1").
In this case the actual word recognized by INLET is "site." When the system
encounters "site," however, it expects to find a number after "site." INLET then
reads the next word to see if it is a number. If so, this number is used to determine
the keyword for that particular site.

The third group of clauses translate the list of keywords into the command.
One of the rules used is:

If the command is plot,

and the statistic is all,

and the site is known,

and the monthl is known,

and month2 is none,

and yearl and year2 are both none,
then plot all the flows for monthlat site.

In this example the variables are italicized and the values of the known keywords
are in bold. There are many clauses in this group for processing all the types of
commands that INLET performs.
Context Dependency

There are also clauses that determine what to do when not all of the keywords
are present. For example, INLET does not require the user to specify the site name
each time. Once a site has been selected it remains active until another site is
mentioned. If a site is not mentioned in the input sentence, INLET assumes that the
previous site is the current one. INLET also determines the meaning of the sentence
in context with the previous sentence.

To illustrate this process, suppose the following two commands were given:



48

"Plot the May flows at the North Fork of the Tolt."
"Plot them at the South Fork."

In the second sentence, the user most likely intended for the May flows at the South
Fork of the Tolt to be plotted. The second sentence is within the context of the
previous sentence. The only words recognized by INLET in the second sentence,
however, are "plot" and "South.” This is an ambiguous command for INLET because
no time period or month is specified. In this case, INLET refers back to the
keywords used in the previous sentence to find the right keywords to use, i.e. "may."

Context determination is made possible by storing the keywords from the
previous sentence in Turbo Prolog's internal database. An internal database is a
collection of clauses that can be added to, or retracted while a program is running.
INLET creates an internal database containing a "context" clause. If insufficient
keywords are present for INLET to determine the meaning of the sentence, the
context clauses are evaluated to determine the values of the missing keyword(s).
After all required keywords are assigned values, the previous context values are
retracted and the new context is asserted into the database. For example, if a
keyword for site name is not found in the current sentence, the program searches the
context clause to find the keyword from the previous sentence and then asserts the
site name to be equal to the previous one.

Context dependency is an essential feature of INLET that is often not
available in simple natural language processors. This feature is extremely valuable
for increasing the user friendliness of the program and decreasing the number of
words required to express a command.

Help Features
Help generally will not be needed. There are some situations, however, in

which the user may need assistance. The user can type "help" at any time to see a



49

list of the keyword groups and the words recognized by INLET in these groups.
This command also lists the site names.

The first question in an INLET session must specify a site name in order for
INLET to execute the command. If none is present, a menu listing the sites appears
and the user may choose the appropriate site. The menu can also be called by
entering "site" or "sites," without any site number following. The menu can serve as
a reminder of the sites available and their site number and common names. Again,
once a site is chosen it will be used until a new one is specified in the command or
chosen from this menu.

Sometimes insufficient keywords are found because of misspellings or
because the input sentence used words not recognized by the lexicon. In this case,
INLET informs the user that the sentence cannot be processed. If the year is out of
range, or a site name is used that does not correspond to one of the available sites,
INLET will also indicate that and prompt the user to input a new year or site name.

INLET also has a menu-driven system which provides a review of the options
available for queries. This menu system is accessed from the natural language
processor by entering <ESC>. The menu system offers the same statistical and
plotting capabilities as the natural language processor. The optimal reservoir
operation data, however, are not available through the menu system. These
operational questions are more complicated and would require a large number of
menus. They are easily accessible from the natural language processor, however.
SUMMARY

INLET is an interactive environment designed to provide easy access to
streamflow and operation policy data. Access to this data can be gained either

through a menu system or through a natural language interface. These interfaces



50

have been constructed in the Prolog language and have been made executable on
personal computers compatible with the IBM AT. INLET provides the user with a
wide range of statistical options and plotting capabilities.

The following chapter illustrates the use and application of INLET to a

specific problem.



CHAPTER 5
FEATURES AND APPLICATION OF INLET

This chapter discusses how INLET is used to provide convenient access to
information necessary for proper water resource planning and management. The
menu system and natural language system are described and the capabilities of the
system are outlined. Typical interactions with INLET are presented as well as
figures of graphical output. It is unnecessary for a user to refer to any manual or
this chapter to use INLET. When INLET is activated, the user initially is provided a
menu listing three options. Those options allow access to the natural language .
system, the menu system, or to DOS.

INLET FORMAT

Although the features available with either the menu system or the natural
language system are similar, their use is very different. Menu-driven systems are
familiar to any user of advanced computer software. Menu-driven systems allow a
user to choose one or more items from a list of items. The selection of the items
typically is accomplished either with a mouse or by moving a cursor. When
commands are hierarchical, (that is, several steps are required), numerous menus
must be evaluated to complete a command.

For instance, suppose one wishes to plot all of the data at a particular
streamflow gauging site. The user must indicate this desire to the computer through
a series of menus. The user first indicates the site location, next the fact a plot is
desired, next, the time period for which the data should be included, and finally, the
data type (all data, or just data for one month, etc.). In this process the user is

required to select from four menus.



52

A natural language interface provides the user with a completely different
approach to this process. The user types the command such as, "Plot the June flows
at Site 1 from 1950 to 1960." All of the information needed is contained in the
single command. Unlike the menu approach, the user gives the command to the
computer just as he might naturally state the command.

As indicated by the literature reviewed in Chapter 2, natural language
interfaces have gained significant popularity for accessing databases. The primary
advantages of a NLI over a menu system are (Hayes, 1986):

(1) Natural language interfaces are typically more versatile; they can
answer a wider range of questions.

(2) Natural language questions are more direct. To access the same
data with the menu system would require selecting many menus.

(3) In many complex situations, natural language systems take less time
for the user.

(4) Natural language systems allow users to formulate questions in a
manner that is consistent with the way they think about the problem.

In the following sections, INLET's use of both a menu system and a natural
language interface is described. An example session using INLET to analyze the
potential operating strategies for a water supply system is presented.

MENU SYSTEM

The menu system provides access to data retrieval, statistics and plotting
functions. The menu system is accessed by choosing the second item on the main
menu. (To return to a previous menu at any time, the user can press the <ESC> key.)
A status line, located at the bottom of the screen, informs the user how to advance or
return in the menu system. Selection of an item from a menu can be performed in

two fashions. To indicate the choice of an item from the menu, the user either moves



53

the highlighted bar to his choice and presses the <ENTER> key, or types the first
letter of the line of their choice.

After choosing the menu system selection, the second menu appears
containing four choices: Choose Site, Statistics, Plotting and Data retrieval. These
choices are described under the next four headings.

Choose Site

Before plotting, statistical analysis, or data retrieval can be performed, a site
must be selected. For this application, the seven primary sites used by the Seattle
Water Department for water management planning are incorporated into the system.
It should be noted that any number of sites could be placed in INLET. There is .
nothing unique about the sites chosen for this case study. The site selection option
has a menu listing the seven sites available and their associated common names
(those used by the Seattle Water Department planning staff). To select a site, as with
any other menu selection, the user positions the cursor on his selection and presses
<ENTER>. When a site is selected, all other statistical and plotting commands are
assumed to reference that site. In other words, a site remains 'active' until the user
selects another site.

Statistics

Statistical analysis is important for evaluating streamflow data. It is
important to place a statistical context on data so that reliable comparisons can be
made. The statistics available in INLET are mean, standard deviation and skew.
These statistics can be performed for one month, all years; for one year, all months;
or for one month between two specified years. When the statistics option is
selected, another menu appears with a list of the statistics. After choosing a statistic,

another menu appears containing the choices: month, year and specify time period.



54

If "month" is chosen, another window will request the user to enter the month
desired. The statistic will then be calculated for that month for all the years on
record. If "year" had been chosen, a window would allow the user to input the
desired year and the statistic would be calculated using all monthly data for that
year. Specifying the time period creates a series of windows requiring the user to
enter the beginning and end years, and whether all monthly data is desired or just
one month. The calculated statistics are displayed in a window in the upper half of
the screen.
Plotting

Plotting streamflow data is a very effective procedure for evaluating current
conditions relative to previous events. For example, a plot of the historic flows
ranked from lowest to highest (the cumulative distribution function) readily
indicates how many years on record a particular month had streamflows above (or
below) a specific value. A plot of all the flows on record for é particular month
between two specified years (a time series plot) indicates the natural variability of
flows over time.

When the plotting option is chosen, another menu lists the plotting options:
Time Series or Cumulative Distribution Function. Choosing either one of these
options creates a window with the options: "Single Month" or "All Months." If the
"Single Month" option is selected, another menu appears requesting the user to enter
the month and to indicate whether the plot is to be made of all streamflows on record
or between two specified years. The "All Months" option generates a plot of all the
streamflows on record or all the flows between two specified years. Choosing this
option creates a series of menus similar to the "Single Month" option in which the

time period is specified. When all the options are selected, the screen is cleared and



55

a plot is generated covering the screen. The user can press any key to return to the
menu system.
Data Retrieval

The fourth option from the second menu, "Data Retrieval,” is used to retrieve
monthly streamflow values from any of the sites. The ways in which the data can be
retrieved are a list of streamflows for one month, a list of all the flows for one year,
or all the flows between a specified yearly interval. These options are titled:
"Single Month,"” "One Year," and "All Months." Selecting the "Single Month" and
"All Months" generates a series of menus identical to those for specifying the month
and time period for the plotting options. When "One Year" is selected, the user is .
prompted to enter the year number. The streamflows are displayed in a window
covering the upper half of the screen.
NATURAL LANGUAGE SYSTEM

After choosing the natural language interface (NLI) from the main menu, the
computer screen is cleared and two windows appear, covering the upper and lower
half of the screen. The lower window, which has a prompt and a cursor serves as the
query window. When the user types a question, it is displayed in this lower window.
INLET's response to the question appears in the upper window. If the command is to
plot data, the screen is cleared and a plot is displayed covering the entire screen. A
status line at the bottom indicates how to return to the query window (hit any key to
continue). To return to the main window from the query window the user presses the
<ESC> key.

A status line at the bottom of the screen reminds the user how to return to the
menu system and how to recall the previous command for editing (<F8>). Pressing

the <F8> key displays the previously entered command with the cursor at the



56

beginning of the line. The editing keys can then be used to change the input. At any
time the user can enter "Help" to receive instructions and guidance with the natural
language system.
Features Unique to the NLI

Although a majority of the features of INLET are available from both the
menu system and the natural language interface, one important feature is only
available in the natural language interface. As indicated previously, INLET is
developed to aid water managers in evaluating the conditions of a water supply
system and developing operational strategies. The large operational database of the
SWD has been incorporated into INLET through the natural language interface. '

This database indicaterge optimal operating policy for any year on record,
given an initial storage level, demand level and beginning month. The information
indicates situations in which water-use restrictions may be necessary to minimize
the impacts of low-flow conditions. The use of this feature of INLET is explained in
detail in the following section.
TYPICAL INLET SESSION

Consider a situation in which a water manager finds himself in a particular
month, with low streamflows, and the reservoir system at thirty percent of its
capacity. The manager is interested in a variety of information including:

1) How unusual are the current streamflows?

2) How likely are the low flows to continue?

3) What is the probability of flows being as low as the ones
currently experienced?

4) Should water use restrictions be initiated?

5) When should they be initiated and how stringent should the
restrictions be?

It is possible that a wide range of other questions may occur to the manager.

It is also likely that the order in which the manager wishes questions to be answered



57

will vary from one session to another. The setting that is suggested here is a
common one. A somewhat unusual event (low streamflows) has occurred and the
manager wishes to place this situation into a context that will help him develop a
reasonable response plan.

The purpose of INLET is to allow the manager to pose these questions in any
order and to analyze the situation to the extent necessary. INLET accomplishes this
by providing the wide range of statistical analysis tools previously described, access
to the operational database, and total flexibility in the extent and order in which the
analysis is made.

The following example is offered to illustrate how one might evaluate a
particular low-flow situation. It is imwportant to realize that the questions could be
posed in any order or that entirely different questions could be raised. INLET
allows the user to analyze a situation in any manner he wishes.

After reviewing recent streamflows and the current storage levels of his
system, the water manager's first step is to find the mean and standard deviation of
the June flows. He decides to use the menu system first. The first menu to appear is
the main menu shown in Figure 5-1. From thi¥menu, the user chooses the menu-
driven system. Next, a menu appears containing the statistics, plotting and site
selection choices. From this menu, he chooses site selection and the site menu
appears. These two menus are shown in Figure 5-2. After choosing a site, the site
menu automatically disappears and the user is returned to the second menu from
which he selects "Statistics.” The statistics menu appears providing statistical
options: mean, standard deviation and skew. After choosing mean, a menu appears
with the time period options: month, year, or specify time period. He chooses each

option in turn to find the mean of all the June streamflows on record, the mean of



58

1972, and the June mean from 1950 to 1960. The answers to these selections are
displayed in a window covering the top half of the screen. Figure 5-3 shows the
menus associated with these selections and the results. To find the standard
deviation, the user would enter <ESC> until he is back at the statistics window.
From there he would choose "Standard Deviation" and repeat a similar process to
that of specifying the time periods when he determined the various means.

Having evaluated the basic statistics, the user now wants to view two plots, a
time series plot of the June flows and the cumulative distribution function of those
flows. He returns to the second menu (;he menu on the left in Figure 5-2). From that
menu, he chooses "Plotting.” A system of menus appears from which he selects the -
time period to plot (Figure 5-4). He specifies that he wants a time series plot of
monthly streamflow data for all years on record for the month of June. The resultant
plot is shown in Figure 5-5. From this figure the manager recognizes immediately
the high variability of the June streamflows.

Next, the manager wants to view a cumulative distribution function (CDF) of
the June streamflows. He presses the escape key until the menu with "Cumulative
Distribution Function" appears. After ch‘ng this option, a similar set of menus
appears to that of the time series plot, and l;e specifies the month and desired time
period. From the CDF (Figure 5-6), the user can compare the current streamflow to a
ranking of all the streamflows on record.

By pressing any key, the user returns to the second menu. He decides to plot
all the streamflows for the year 1970. He chooses the "Plotting" option from the
second menu and year from the next menu that appears. He then specifies "1970"

and hits return. Figure 5-7 shows the plot that is created.



59

The user now decides that he wants to use the natural language system and
ask some similar questions for comparison with the menu-driven system. He enters

the escape key until he is at the main menu (Figure 5-1) where he chooses the first

2.

option, "Natural Language Interface." )

In the query window the user enters his questions abou?the mean and
standard deviation for the June flows. Figure 5-8 illustrates a series of questions
posed using the natural language interface and INLET's responses. It should be
noted that all of the questions are posed in simple English statements. The
responses by INLET provide a complete reply and answer to the questions. The last
request is "Please plot all the streamflows at Site 16 between 1950 and 1960," ¥ich.'
creates the plot shown in Figure 5-9. -

After carefully reviewing all of the flow data, the user decides he now wants
to analyze some reservoir operation policies. From his previous analysis of
streamflow data, he determines that the current flow conditions are similar to those
experienced in four different historic sequences, 1930, 1938, 19%4, and 1959. To
investigate the optimal operaig pattern associated with those time periods, the user
wishes to review the appropriate data. To do so, the user enters "Please show the
operating policies for June, 1930, with initial storage of 30%." The results of this
command are given in Figure 5-10. After reviewing the restriction policies for 1930,
the user can review those of 1939, 1954, and 1959.

SUMMARY

This chapter presented an introduction to the use of INLET and describes its

application. Such a program allows someone unfamiliar with computers but

knowledgeable about a problem area to thoroughly analyze a difficult problem



without extensive computer training. The value of such tools, and the manner in

which the program can be improved, is the‘“?gbjcct of the final chapter.

i

60



Menu-driven inquiry
Betura to BOS

Use first letter of option or select with down-arrow fallowed by (B>

Figure 5-1. The Main Menu.

hoose Site
Site 1: Cedar 1

Cummulative Distribation Function . Cedar 3
Cedar 4
North Fork of Tolt
Sosth Fork of Tolt
Main stem of Tolt

Cr: Select ESC: return to previous menu

Figure 5-2. Site Selection.



Plotting Standard Deviation
Cameulative Distridbution Function Skew
Update Site

——-—MEAN -
month st«rting year:

urar

m

G Seliat ESC: return to previont mcnu

Figure 5-3. Determining Statistics Using the Menu System.

Cr: Select ESC: return to previous menu

Figure 5-4. Menus Specifying Plotting Options.



CO0O =" PaS e~

1929 194 1999 194 199 194 1999 194 1969 1974
Yoar

0 an petoea Foopeag

Figure 5-5. Time Series Plot of all the June Streamflows on Record.

COrvMEDMN -

Figure 5-6. CDF of the June Flows for all Months on Record.



t
r
]
a
]
f
|
.
]

Figure 5-7. Plot of all Streamflows in 1970.

low Data
The average of the june flows at South Fork of Tolt was: 368.29
The standard deviation of the june flows at South Fork of Tolt was: 137.65
at South Fork of Tolt is 8.53
The lowest for 1950 at South Tork of Tolt was: 114.08
The highest for 1956 at South Fork of Tolt was: 969 .60

7. What is the mcan at Site 15 for June?
. What is the standard deviation for June?
. What is the skew for June from 1958 to 13657
: Please tell me the lowest flow for June on record.

7: Do you know the highest flow for July?
. Please plot all the streasf lous at Site 16 between 1350 and 1966

Type in command. <ESC>:wain menu <F8)’edit previous command

Figure 5-8. The Natural Language Interface.



A1l Monthe

S
t
r
e
a
n
f
1
o
v

1958 1951 1952 1953 1954 1955 1956 1957 1958 1959 1968 1961
Year

Figure 5-9. Plot of all the Streamflows at Site 16 Between 1950 and 1960.

Figure 5-10. Optimal Reservoir Staging Levels.



CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

This paper discusses the need for user-friendly and flexible computer model
interfaces in water resources planning and management to facilitate the use of
complex computer models by water managers. Natural language processing has
been presented as means to meet this need. This approach allows managers to make
effective use of computer models with a minimum of computer expertise or training.
This is accomplished by developing interfaces to the models that are natural, easy to -
use, and controlled by simple statements in standard English (i.e.: "Please plot the
streamflows for the Cedar River from 1929 - 1976"). The development of such
interfaces allow the managers to concentrate on evaluating and interpreting the
output of a model rather than on learning a new set of computer commands. The
interfaces allow the manager an increased level of communication with the models
and therefore he can direct the model development process more effectively.

This paper discusses an approach taken in developing such an interface, an
computer program called INLET (for Interactive Natural Language Environmenp).
This program provides a wide range of graphical and statistical functions for
evaluating streamflows and drought management data. Data for the Seattle Water
Department has been incorporated into the model to display its features.

Chapter 1 provides an overview of the report. In this chapter the changing
role of water resource managers and water resource analysts is described. These
changes have resulted from the introduction of microcomputers into the analysis
process. The types of models and analysis tools now available to aid water resource

decision makers has altered dramatically the way in which computers can be



67

incorporated into the decision making process and their potential value in
improving the quality of decisions made.

Chapter 2 provides a literature review of water resources planning models
and a discussion of natural language interfaces. This chapter suggests that as
models and analysis techniques become more user-friendly, decision makers will be
able to use complex models without the aid of other analysts. This will allow the
decision makers to make more use of such models and increase the effectiveness of
the decision making process. Natural language processing is shown to be valuable
as a user-friendly interface to a database. This is very important in water resources
planning and management, as it makes data directly available to decision makers
who may not have time to learn a formal database query language or wait for results
from others.

In Chapter 3, the recent investigations of the Seattle Water Department
(SWD) are described together with a drought management expert system. A detailed
discussion of the components of the SWD system is given with a brief history of the
evolution of models that are used in planning and operation. A large operational
database that was developed using an optimization model is also described. This
database is used in later stages of this research.

The development of INLET is described in Chapter 4. INLET is an
interactive natural language environment providing access to water resources data.
INLET was written in the Prolog programming language which is a symbolic
computer language well suited for developing user-friendly environments,
particularly natural language interfaces. Turbo Prolog has many extra features such

as graphical and menu functions used by INLET.



68

INLET has two different methods for accessing the data, plotting and
statistical functions. These two components are a menu-driven system and a natural
language interface. The natural language interface uses a noise-disposal parser to
find the keywords in the natural language command. This approach is well suited
for a database interface because the domain is limited and database queries can
easily be decomposed into a series of keywords. Noise-disposal parsers allow the
user to form questions in any manner as long as the keywords are present. INLET
also accepts questions which are context-dependent, for example, questions which
refer to previous questions. This feature decreases the number of words that need to
be typed and accepts more naturally formed questions. .

Chapter 5 describes the data retrieval abilities and statistical and plotting
functions of INLET. These functions are available from both the natural language
interface and the menu-driven system. Optimal reservoir operation strategies are
available through the natural language interface. This operation data was generated
by an optimization model and forms the database used in the drought management
expert system. One of INLET's strengths is that it can be used in conjunction with
the drought management expert system to analyze reservoir operation policies.
These features are described and a sample session demonstrating their use is
presented.

Conclusions

1) The evolution toward more user-friendly software will allow managers to
participate more effectively in model development and use. This will
increase communication between model developers and managers. With
increased communication, models can be developed that will more directly

serve their users.



69

2) Prolog has demonstrated itself to be an ideal language to develop user-friendly
software. Using Prolog makes natural language processing possible in an
efficient and fast manner. This suggests that more engineers should become
familiar with non-procedural programming languages.

3) INLET allows novice computer users access to complex data and provides very
useful statistical and plotting capabilities. Although INLET is as yet untested
on water resource managers at the Seattle Water Department, it has been
demonstrated at several conferences and the feedback from its users is very
positive. This ability to provide direct data access to novice computer users
has significant implications on the use of such models by water resource
managers. These managers will now be able to explore a large number of
operational policies and their impacts on system reliability with ease.

4) Interaction with SWD personnel suggest that such software can be incorporated
into their planning process. The data, previously difficult to access in a
timely manner, are now directly available to all SWD staff and can be

used to improve their decision making.

Recommendations
1) Interact with the SWD to incorporate INLET into their planning process

The initial reaction of staff at SWD is positive. The next step is to test INLET
and then tailor it more closely to their planning process. Specific needs can
be identified and then addressed by INLET.

2) Develop additional statistical and plotting functions
Based on the results of testing INLET with SWD staff, desired additional
statistical functions would be identified. For example, determining the

correlation between two sites, might be identified as being valuablé in a



70

decision analysis process. Plotting functions could also be expanded to
allow data from two sites to be plotted simultaneously. More general
questions such as, "What years on record are similar to the current situation?"
may be useful to compare optimal reservoir operation policies from years
similar to the current year.

3) Analyze yser preferences
Define the conditions under which a user prefers the use of menu systems or
natural language interfaces. These conditions could be best defined after
extensive testing. User testing, for example, may show that the best approach
is a more-closely integrated approach in which a menu-system is used for :
many simple requests and a natural language window, appearing on the same
screen, could be used as needed.

4) Investigate the use of INLET with other large databases
The technology allowing the transfer of this interface to other water
resources databases should be developed. Ideally, facilities should exist to

incorporate streamflow data for any stream in the state of Washington.



BIBLIOGRAPHY

Bellman, R.E., An In ion t ificial Intelligence: Computers Think?,
Boyd and Fraser Publishing Company, San Francisco,1978.

Bellman, R.E., and Dreyfus S.E., Applied Dvnamic Programming, Princeton
University Press, 1962.

Boose, J.H., Expertise Transfer for Expert Systems Design, Elsevier Science
Publishers B.V., Amsterdam, The Netherlands, 1986.

Borland International, Turbo Graphix Toolbox, Scotts Valley, CA, 1985.

Borland International, Turbo Prolog: Reference Guide, Version 2.0, Scotts
Valley, CA. 1988.

Brachman, R.J. et al., "What are Expert Systems?," In Building Expert Systems,

ed. Hayes-Roth F., Waterman, W.A,, and Lenat D.B., Addison-Wesley
Publishing Co. Inc., Reading, MA, 1983.

Buchanan, B.G., and Shortliffe, E.H., ed. Rule Based Expert Systems, Addison-
Wesley Publishing Co. Inc., Reading, MA, 1984.

Duda, R., Gaschnig, J., and Hart, P., "Model Design in the PROSPECTOR

Consultant System for Mineral Exploration," In Expert Systems in the
Microelectronic Age, ed. Michie, D., Edinburgh University Press, 1979.

Earley, J., "An Efficient Context-Free Parsing Algorithm," Communications of
the ACM, 13, February, 1970.

Fedra, K., and Loucks, D.P., Interactive Computer Technology for Planning and
Policy Modeling," Water Resources Research, Vol.21, No.2, February, 1985,
pp 114-122.

Green, B., Wolf, A., Chomsky, C., and Laughery K., "BASEBALL: An Automatic
Question Answerer," Proceedings of the Western Joint Computer
Conference 19, 1961, pp 219-224.

Grishman, R., Computational Linguistics, Press Syndicate of the University of
Cambridge, New York, NY, 1986.



Harmon, P., and King, D., Expert Systems in Business, John Wiley & Sons Inc.,
New York, NY, 1985.

Hayes-Roth, F., Waterman, W.A,, and Lenat, D.B., "An Overview of Expert

Systems," In Building Expert Systems, ed. Hayes-Roth, F., Waterman,
W.A., and Lenat, D.B., Addison-Wesley Publishing Co. Inc., Reading,
MA, 1983.

Hendler, J. and Lewis, C., "Introduction: Designing Interfaces for Expert Systems,"

in Expert Systems: Designing the User Interface, ed. Hendler, J., Ablex
Publishing, Norwood, NJ, 1988, pp 1-13.

Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., and Slocum J., "Developing
a Natural Language Interface to Complex Data," ACM Transactions on
Database Systems, Vol.3, No.2, June 1978, pp 105-147.

Hendrix, G.G.and Walter B.A., "The Intelligent Assistant,” BYTE, December
1987, pp 251-258.

Hirsch, R.M., "Synthetic Hydrology and Water Supply Reliability," Water Resources
Research, 15(6), 1979, pp1603-1615.

Kunreuther, H., and Miller, L., "Interactive Computer Modeling for Policy Analysis:
the Flood Hazard Problem," Water Resources Research, Vol.21, No.2,
February, 1985, pp 105-113.

Lane, A., "DOS in English," BYTE, December, 1987, pp 261-263.

Loucks, D.P., Kindler, J.and Fedra, K., "Interactive Water Resources Modeling
and Model Use: An Overview," Water Resources Research, Vol.21, No.2,
February, 1985, pp 95-102.

McDermott, J., "R1: The formative Years," Al, 2(2), 1981.

Martin, M., ed., Expert Systems 85: Proceedings of the Fifth Technical Conference
of the British Computer Society," Cambridge University Press, Cambridge,
U.K,, 198S.

Obermeier, K.K., "Natural-Language Processing," BYTE, December 1987,
pp 225-233.



73

Palmer, R.N., and Holmes, K.J., "Operational Guidance During Droughts:
Expert System Approach,"” Journal of Water Resources Planning and
Management, Vol.114, No.6, November, 1988.

Palmer, R.N., and Johnston, D.M., "Completion Report for Optimization of
Yield Analysis on Seattle Water Supply System,” Report, Seattle Water
Department, Seattle, WA, 1984.

Palmer, R.N.and Tull, R.M, "Expert System for Drought Management
Planning," Journal of Computing in Civil Engineering, Vol.1, No.4,
October 1987.

Politakis, P.G., Empirical Analysis for Expert Systems, Pitman Publishing Inc.,
Marshfield, MA, 1985.

Quade, E.S.,and Miser, H.J., Handbook of Systems Analyses, International Institute
for Applied Systems Analysis, Laxenburg, Austria, 1983.

Reboh, R., Reiter, J., and Gaschnig, J., f a Knowl -Bas

Interface to a Hydrological Simulation Program, SRI International, Menlo
Park, CA, 1982.

Schildt, H., Advanced Turbo Prolog, McGraw-Hill, Inc., Berkeley, CA, 1987.

Seattle Water Department, Seattle Comprehensive Regional Water Plan, 1985
COMPLAN, vol. 6, Seattle Water Department, Seattle, WA, 1986.

Shortliffe, E.H., Axline, S.G., Buchanan, B.G., Merigan, T.C., and Cohen, S.N.,
"An Artificial Intelligence Program to Advise Physicians Regarding
Antimicrobial Therapy," Computers and Biomedical Research, Vol. 6,
1973, pp 544-560.

Simmons, R.F., "Man-Machine Interfaces: Can They Guess What You Want?,"
IEEE Expert, Spring, 1986, pp 86-94.

Sneiderman, B., Designing the User Interface: Strategies For Effective Human-
Computer Interaction, Addison-Wesley, Reading, MA, 1986.

Sunset Software Technology, 1987, XA Profession Linear Programming System,
San Marino, CA.



74

Templeton, M., and Burger J.,"Considerations for the Development of Natural-
Language Interfaces to Database Management Systems," in Cooperative

Interfaces to Information Systems, ed. Bolc, L., and Jarke, M., Springer-
Verlag, Berlin, Germany, 1986, pp 67-99.

Townsend, C., Advanced Techniques in Turbo Prolog, Sybex Inc., San Francisco,
CA, 1987.

URS Corporation, Water Resources Management Simulation Model
Programmers Manual. URS Corporation, Seattle, WA, 1981.

Weizenbaum, J., "ELIZA -- A Computer Program for the Study of Natural
Language Communication Between Man and Machine," Communications
of the ACM, 9, January, 1966.

Winston, P.H., and Horn, K.P, LISP, Addison-Wesley, Reading, MA, 1981.

Woods, W.A., "Transition Network Grammars for Natural Language Analysis,"
Communications of the ACM 13, 10 (October), 1970, pp 591-606.

Woods, W.A., "Progress in Natural Language Understanding: An Application
to Lunar Geology," AFIPS Conference Proceedings 42, 1973, pp 441-450.

Woods, W.A., "Semantics and Quantification in Natural Language Question
Answering," Advances in Computers, Vol 17, Yovits, M., Ed., New York:
Academic Press, 1978, pp 2-64.



APPENDIX: THE INLET CODE

[*eeee NLP_POL.PRO --*/
%**** The driver module and language clauses

code=3800
%project "NLP"

include "nlp_inc.pro”

database - current_context %--- stores current context of request
context(symbol,symbol)
old_context(symbol,symbol)
current_color(integer)

include "nlp_db.pro”

include "nlp_stat.pro”

include "nlp_flow.pro™

include "nlp_plot.pro"

predicates

[¥ememmeeee Parsing and Language ---------=-=--- */
start_language
description(string,string)

next_word(sentence sentence,symbol)
find_delim(sentence,integer,integer)
strip_space(sentence,sentence)

process(sentence)

escape(sentence)

next_valid_word(sentence,sentence,symbol)
word_or_number(symbol)
get_command(sentence,sentence,symbol)
get_demand(sentence,sentence,symbol)
get_demand_number(sentence.sentence,symbol)

get_site(sentence sentence,symbol)
get_sitenumber(sentence,sentence,symbol)
get_stat(sentence,sentence,symbol)
get_percent(sentence,sentence,symbol)
get_month(sentence,sentence,symbol)
get_yearl(sentence,sentence,symbol)
get_year2(sentence,sentence,symbol)
get_noise(sentence,sentence,symbol)

terminator(sentence)
perform(symbol,symbol,symbol,symbol,symbol,symbol)
pushwords(sentence,symbol,symbol,symbol,symbol,symbol ,symbol)
assert_context(symbol,symbol,symbol,symbol,symbol,symbol)
determine_context(symbol,symbol,symbol,symbol,symbol,symbol)
establish_new_context(symbol,symbol,symbol,symbol,symbol,symbol)
read_context(symbol,symbol,symbol,symbol,symbol,symbol)
establish_old_context

all_or_none(symbol)

show_memory

purge



symbel_string(symbol,string)
units(symbol,symbol)
list_commands(string)
write_list(list)

write_list(flowlist)
getpolicy(string,string,string,string)
run_policy(string,string,string)
read_policy(flowlist,flowlist,ilists)
read_years(ilists,ilists,file)
scan_lines(integer, flowlist)
scan_lines_aux(integer,flowlist,integer flowlist)
scanner(string,flowlist)
scanner(string,integerlist)
scanner_int(string,integerlist)
policy_command(string)

include "nlp_menu.pro”

goal
flow_data_win_1,
cursor(10,25),write("Reading in the database”),
cursor(15,3),
consultWords,
consultFiles,
welcome.

clauses

start_language:- %--- called from nlp_menu
write("?: "), % starts the parser
readIn(S),!,
upper_lower(S,Slower),
process(Slower),start_language.

start_language:- removewindow,removewindow,
choose.

escape(S):- S<>"/".

show_memory:- %--- determines current sizes
storage(StackSize, HeapSize, TrailSize), % of the stack, heap and trail
write("Stack: ",StackSize),nl,
write("Heap: ",HeapSize),nl,
write("Trail: ",TrailSize),nl.

write_list({1):-!.
write_list([HeadITail]):-
write(Head," "),write_list(Tail).

[Hemmmemeeeneenaanen Language Clauses */
sentence_str(X,Y):- X=Y. %--- converts from sentence
symbol_string(X,Y):- X=Y. % to string, etc.

76



77
description(Site,Desc):-sitename(Site,Name), %--- makes the site description
sitenumber(Number,Site), % phrases for answering
str_int(Nstr,Number),
concat("Site " ,Nstr,Conc1),
concat(Concl,”: ",Conc2),
concat(Conc2,Name,Desc).

process(S):-
pushwords(S,Command,Stat,Sitename, %--- parses the sentence, determines
Mon,Yearl,Year2), % context, and performs command
shiftwindow(Old),
shiftwindow(5),

determine_context(Command,Stat,Sitename,Mon,Yearl,Year2),
read_context(Com,St,Site M,Y1,Y2),
perform(Com,St,Site, M,Y1,Y2),!,
shiftwindow(Old).
process(_):- shiftwindow(3),nl,
write("Unable to process this request.”),nl.

assert_context{(Command,Stat,Sitename,Mon,Yearl,Year2):- %--- asserts current
asserta(context(command,Command)), % context into DB
asserta(context(stat,Stat)),
asserta(context(site,Sitename)),
asserta(context(month,Mon)),
asserta(context(yearl,Yearl)),
asserta(context(year2,Year2)).

read_context(Command,Stat,Sitename Mon,Year1,Year2):- %--- reads context from
context(command,Command), % DB
context(stat,Stat),
context(site,Sitename),
context(month,Mon),
context(yearl,Yearl),
context(year2,Year2).

determine_context(Command,Stat,Sitename,Mon,Yearl,Year2):-
establish_old_context,
retractali(context(_,_)),
establish_new_context(Command,Stat,Sitename, Mon,Yearl,Year2).

establish_new_context(Command,none,Sitename,none,none,none):-

Command <> "plot”,!, %--- figures out context
old_context(stat,Stat), % if some keywords
old_context(month,Mon), % are missing

old_context(yearl,Yearl),
old_context(year2,Year2),
assert_context{Command,Stat,Sitename, Mon,Year1,Year2).



establish_new_context(Command,none,Sitename,none,none,none):-

Command <> "plot",!,

old_context(stat,Stat),

old_context(month,Mon),

old_context(yearl,Yearl),

old_context(year2,Year2),

assert_context(Command,Stat,Sitename,Mon,Year1,Year2).
establish_new_context(Command ,none,Sitename,none,Yearl,Year2):-

Command <> "plot”,!,

old_context(stat,Stat),

old_context(month,Mon),

assert_context(Command,Stat,Sitename, Mon,Year1,Year2).
establish_new_context(Command,Stat,Sitename,none,none,none):-

old_context(month , Mon),

old_context(yearl,Yearl),

old_context(year2,Year2),

assert_context(Command,Stat,Sitename,Mon,Yearl,Year2).
establish_new_context(Command,none,Sitename,Mon,none,none):-

Command <> "list",!,

old_context(stat,Stat),

old_context(yearl,Yearl),

old_context(year2,Year2),

assert_context(Command,Stat,Sitename,Mon, Yearl,Year2).
establish_new_context(Command,Stat,Sitename, Mon, Yearl,Year2):-

all_or_none(Stat),

Command = "list",!,

assert_context(what,all,Sitename,Mon,Year1,Year2).
establish_new_context(Command,Stat,Sitename,Mon,Year1,Year2):-

Command = "list",!,

assert_context(what,Stat,Sitename,Mon,Yearl,Year2).
establish_new_context(Command,Stat,Sitename,Mon, Yearl,Year2):-

assert_context(Command,Stat,Sitename,Mon,Yearl,Year2).

establish_old_context:-
retractall(old_context(_,_)),
context(site,OldSitename),
context(stat,OldStat),
context(month,OldMon),
context(yearl,OldYearl),
context(year2,0ldYear2),
asserta(old_context(site,OldSitename)),
asserta(old_context(stat,OldStat)),
asserta(old_context(month,OldMon)),
asserta(old_context(yearl,0OldYearl)),
asserta(old_context(year2,01dY ear2)).

establish_old_context:- !.

all_or_none(all). %--- all_or_none defines two
all_or_none(none). % possible values, all or none.
policy_command(yield). %--- these are the keywords for
policy_command(loss). % policy commands

policy_command(policy).



/* Parsing the command -------------- */

pushwords(S,Command Percent,Demand,Mon,Yearl,Year2):-
get_command(S,_,Command),
policy_command(Command),!,
get_percent(S,_,Percent),
get_demand(S,_,Demand),
Yearl = "none",
Year2 = "none",
get_month(S,_,Mon).
pushwords(S,Command,Stat,Sitename,Mon,Yearl,Year2):-
get_command(S,_,Command),
get_stat(S,_,Stat),
get_site(S,_,Sitename),
get_month(S,_,Mon),
get_yearl(S,51,Yearl),
get_year2(S1,_,Year2).

79

%--- First, if a policy word
% is found then parsing is
% alittle different

%--- The normal parse. Find
% all keywords in a
% sentence.

get_command(S,S2,C):- %--- All these 'get_' clauses
next_word(S,52,Com), % find the keywords in the
word(command,Com,C). % sentence by category.

get_command(S,52,0):-
next_word(S,S1,.).!,
get_command(S1,52,C).

get_command(S,S,C):- C=what.

get_stat(S,52,Skey):-
next_word(S,S2,M),
word(stat,M,Skey).

get_stat(S,S2,M):-
next_word(S,51,)),!,
get_stat(S1,S2,M).

get_stat(S,S2,M):- S2=S, M=none.

get_percent(S,S2,M):-
next_word(S,S1,M),
str_int(M,P),P>29,P<101,
next_word(S1,52,Word),
word(percentword,Word,_).
get_percent(S,52,Num):-
next_word(S,S2,Per),
str_len(Per,Length),
L2 =Length- 1,
frontstr(L2,Per,Num,Sign),
str_int(Num,P),P>29,P<101,
Sign="%".
get_percent(S,S2,M):-
next_word(S,S1,)),!,
get_percent(S1,S2,M).
get_percent(S,52,M):- §2=S, M=none.



get_demand(S,S3,M):-
next_word(S,52,Word),
word(demandword,Word,_),
get_demand_number(S2,S3,M).
get_demand(S,S2,M):-
next_word(S,S1,.),!,
get_demand(S1,S2,M).
get_demand(S,S2,N):- §2=§ context(site,N),
str_int(N,D),D>80,D<200.
get_demand(S,S2,M):- $2=§, M=none.
get_demand_number(S,S2,Number):-
next_word(S,S2,Number),
str_int(Number,N),
N<200,N>80.
get_demand_number(S,S2,M):-
next_word(S,S1,)).!,
get_demand_number(S1,52,M).

get_site(S,52,Sitekey):-
next_word(S,S2,N),
word(site,N,Sitekey).
get_site(S,53,Sitekey):-
next_word(S,52,Nsite),
word(sites,Nsite,_),
get_sitenumber(S2,S3,N),
symbol_string(Nsite,Place),
symbol_string(N,Number),
concat(Place,Number,Sitename),
word(site,Sitename,Sitekey).
get_site(S,S2,N):-
next_word(S,S1,.),!,
get_site(S1,S2,N).
get_site(S,S2,N):- $2=8 context(site,N).
get_site(S,52,N):- $2=§,N=none.

get_sitenumber(S,S52,Number):-
next_word(S,S52,Number),
int(Number).
get_sitenumber(S,S2,N):-
next_word(S,S2,Number),
int(Number),
N=none.

get_month(S,S2,Monthkey):-
next_word(S,52,Q),
word(month,Q,Monthkey).

get_month(S,$2,Q):-
next_word(S,51,)),!,
get_month(81,52,Q).

get_month(S,52,Q):- S2=S,Q=none.



get_year1(S8,S2,R):-
next_word(S,S2,R),
str_int(R,I),
I> 1900,
1< 1990.
get_yearl1(§,S2,R):-
next_word(S,S1,)),!,
get_year1(S1,S2,R).
get_yearl(S,S,R):- R=none.

get_year2(S,S2,R):-
next_word(S,S2,R),
str_int(R,]),
1> 1900,
I < 1990.
get_year2(S,S2,R):-
next_word(S,S1,_).!,
get_year2(S1,S2,R).
get_year2(S,S,R):- R=none.

/* THE PERFORMS

*/

%**** These clauses take all the keywords and then perform the command ****

/*---perform(C,M,N,Q.R,T) :-
nl,write("the variables are: "),nl,
Write(c," "'M’N I',N‘" "’Q'” "’R’ll "’T)’
nl,readchar( ),fail.

perform(what,Stat,Site, Month,none,none):-
not(all_or_none(Stat)),
frontstr(3,Month,C3, ),
month_integer(C3,Mint),
findall(F,siteflow(Site,Mint,_,F),L),
find_stat(Stat,L,Value),
syn(Stat,Statname),
syn(C3,Msyn),
sitename(Site,Sitename),
units(Stat, Units),

%--- Use to check if the correct
% words are being found.

write("The ",Statname," of the ",Msyn," flows at ", Sitename," was: "),

writef("%-6.2f ",Value),write(Units),nl.
perform(what,Stat,Site,none,Yearl,Year2):-

not(all_or_none(Stat)),

str_int(Yearl,Y1),

str_int(Year2,Y2),

findall(F,yearf(Site, ,Y1,Y2,F),L),

find_stat(Stat,L,Value),

syn(Stat,Statname),

units(flow,Units),

write("The ",Statname," of the flows from ",Yearl," to ",Year2," is : "),

writef("%-6.2f ", Value),write(Units),nl.

81



perform(what,Stat,Site, R ,none):-

not(all_or_none(Stat)),

str_int(R,I),

findall(F siteflow(Site,_,I,F),L),

find_stat(Stat,L,Value),

syn{Stat,Statname),

sitename(Site,Sitename),

units(Stat,Units),

write("The ",Statname,” for ",1," at ",Sitename,"” was: "),

writef("%-6.2f ",Value),write(Units),nl.
perform(what,Stat,Site,Month,none,none):-

all_or_none(Stat),

frontstr(3,Month,C3,_),

month_integer(C3,Mint),

findall(F,siteflow(Site,Mint,_,F),L),

sitename(Site,Sitename),

units(flow,Units),

syn(C3,Msyn),

write("The " ,Msyn," flows for ",Sitename," are ",Units),nl,

writeflist(L),nl.
perform(what,Stat,Site,Month,Year1,Year2):-

all_or_none(Stat),

str_int(Yearl,Y1), '

str_int(Year2,Y2),

frontstr(3,Month,C3,_),

month_integer(C3,Mint),

syn(C3,Msyn),

findall(F,yearf(Site,Mint,Y1,Y2,F),L),

sitename(Site,Sitename),

units(flow,Units),

write("The " ,Msyn," flows for ",Sitename,” are ",Units),nl,

nl,writeflist(L).
perform(what,Stat,Site,Month,Year1,Year2):-

str_int(Yearl,Y1),

str_int(Year2,Y2),

frontstr(3,Month,C3,),

month_integer(C3,Mint),

syn(C3,Msyn),

findall(F,yearf(Site,Mint,Y1,Y2 F) L),

find_stat(Stat,L,Value),

sitename(Site,Sitename),

units(Stat,Units),

write("The ",Stat,” for ",Msyn,"” from ",Y1," to ",Y2," at ",Sitename," is "),

writef("%-6.2f ", Value),write(Units),nl.
perform(what,Stat,Site,none,Yearl,Year2):-

all_or_none(Stat),

str_int(Yearl, Y1),

str_int(Year2,Y2),

findall(F,yearf(Site,_,Y1,Y2,F),L),

sitename(Site,Sitename),units(flow,Units),

write("The flows at ",Sitename," from ",Yearl," to ",Year2," are ",Units),nl,

nl,writeflist(L).



perform(what,Stat,Site,none,Year,none):-
all_or_none(Stat),
str_int(Year,Y),
findall(F,siteflow(Site,_,Y,F),L),
sitename(Site,Sitename),
units(flow,Units),

write("The flows at ",Sitename," for ",Year," are ",Units),nl,

writeflist(L),nl.
perform(what,_,Site,Month,Year,none):-
str_int(Year,Y),
frontstr(3,Month,C3,_),
month_integer(C3,Mint),
syn(C3,Msyn),
findall(F,siteflow(Site, Mint,Y ,F),L),
head(F1L,L),
sitename(Site,Sitename),
units(flow,Units),

write("The flow at ",Sitename," for ",Msyn," of ",Year," was ",F1,Units),nl.

perform(plot.cdf,Site, Xmonth1,none,none):-
Fore = 63,
Back =1,
frontstr(3,Xmonth1,M1,_),
syn(M1,Msyn),
sitename(Site,Sitename),
concat("CDF for ",Msyn,T1),
concat(T1,” at ",T2),
concat(T2,Sitename,Title),
month_integer(M1,Mint),
findall(F,siteflow(Site,Mint,_,F),L),

%--- the plotting performs

Xaxis=" Year",Yaxis = "STREAMFLOW cfs",

quicksort(L,SortedL),

plot_list1(SortedL,Title,Xaxis,Yaxis,monthly,1,Fore,Back).

perform(plot,cdf,Site,none,Yearl,none):-

Fore = 63,
Back =1,
str_int(Yearl,Y1),
sitename(Site,Sitename),

concat(" CDF for ",Yearl,T1),
concat(T1,” at ",T2),

concat(T2,Sitename,Title),
findall(F siteflow(Site,_,Y1,F),L),

Xaxis =" Months",Yaxis = "STREAMFLOW cfs",

quicksort(L,SortedL),

plot_list1(SortedL,Title, Xaxis, Yaxis,monthly,1,Fore,Back).

83



84

perform(plot,cdf,Site,Xmonthl,Yearl,Year2):-

Fore = 63,

Back =1,

str_int(Yearl, Y1),

str_int(Year2,Y2),

frontstr(3,Xmonth1 M1, ),

syn(M1,Msyn),

concat("CDF for ",Msyn,Title),

month_integer(M1,Mint),

Xaxis=" Year",Yaxis = "STREAMFLOW cfs",
findall(F,yearf(Site,Mint,Y1,Y2 F),L),
quicksort(L,SortedL),

plot_list1(SortedL,Title,Xaxis, Yaxis,monthly,1,Fore,Back).
perform(plot,Stat,Site,Xmonth1,none,none):-

Fore = 63,

Back =1,

all_or_none(Stat),

frontstr(3,Xmonth1 ,M1,_),

syn(M1,Msyn),

sitename(Site,Sitename),

concat(Msyn,” flows for all years on record at ",T1),

concat(T1,Sitename,Title),

month_integer(M1,Mint),

findall(F,siteflow(Site,Mint,_,F),L),

Xaxis =" Year",Yaxis = "Streamflow cfs",

plot_list1(L,Title, Xaxis, Y axis,monthly,1929 Fore,Back).
perform(plot,Stat,Site,none,Year1,none):-

Fore = 63,

Back =1,

all_or_none(Stat),

str_int(Yearl,Y1),

findall(F siteflow(Site,_,Y1,F),L),

Smititle = " Monthly flows for the year ",

concat(Smtitle,Yearl,Title),

Xaxis = Yearl,Yaxis = "Streamflow cfs",

plot_list1(L,Title,Xaxis, Yaxis,oneyear,1,Fore,Back).
perform(plot,Stat,Site,Xmonth1,Yearl,Year2):-

Fore = 63,

Back =1,

all_or_none(Stat),

str_int(Yearl,Y1),

str_int(Year2,Y2),

frontstr(3,Xmonth1,M1, ),

month_integer(M1,Mint),

findall(F,yearf(Site,Mint,Y1,Y2 F) L),

syn(M1,Title),

Xaxis =" Year",Yaxis = "Streamflow cfs",

plot_list1(L,Title, Xaxis,Yaxis,monthly,Y1,Fore,Back).



85

perform(plot,Stat,Site,none,Yearl,Year2):-

Fore = 63,

Back=1,

all_or_none(Stat),

str_int(Yearl, Y1),

str_int(Year2,Y2),

seq_yearf(Site,Y1,Y2,L),

sitename(Site,Sitename),

T1 =" All Monthly Streamflows at ",

concat(T1,Sitename,Title),

Xaxis =" Year",Yaxis = "Streamflow cfs",

plot_list1(L,Title,Xaxis,Yaxis,allmonths,Y 1, Fore,Back).

perform(Policy,_,none,_,_, ):- %--- the policy performs
policy_command(Policy).!,
nl,write("Either the demand is out of range or demand was not specified.").
perform(Policy,none,_,_,_,_):-
policy_command(Policy).!,
nl,write("Please specify an initial storage level between 30 to 100%").

perform(yield ,Percent,Demand,Mon,_,_):-
Fore = 63,
Back =1,
readdevice(Current_device),
run_policy(Percent,Demand,Mon),
read_policy(Ylist,_,_),
readdevice(Current_device),
Tile =" Yields for a 16 week period”,
Xaxis =" Year Number”,Yaxis = "Yield cfs”,
plot_list1(Ylist,Title Xaxis, Yaxis,monthly,1,Fore,Back).
perform(loss,Percent,Demand,Mon,_,_):-
Fore = 63,
Back =1,
readdevice(Current_device),
run_policy(Percent,Demand,Mon),
read_policy(_,Llist,_ ),
readdevice(Current_device),
Title = " Economic losses for a 16 week period”,
Xaxis = " Year Number",Yaxis = "Loss",
plot_list1(Llist, Title, Xaxis,Yaxis,monthly,1 Fore,Back).
perform(policy,Percent, Demand,Mon,_,_):-
readdevice(Current_device),
run_policy(Percent,Demand,Mon),
read_policy(_,_,Oplist),
readdevice(Current_device),
write("The years that had economic losses associated with these conditions are:"),
nl,writcheads(Oplist),nl,
write("Enter year number to see optimal operation policies."),nl,
shiftwindow(3),readIn(S),
str_int(S,Sint),
nl,members(Sint,Oplist,Polist),shiftwindow(5),
barchart(Polist,S,Mon).



86
perform(Policy,_,_,_,_,_):-
policy_command(Policy),!,
nl,write("No record exists in the database for these conditions.").

%--- miscellaneous performs

perform(help,_, _,_,_,_):-
write(" All sentences must be followed with either a period or a '?"."),nl,
write(" A sample sentence may be composed of the following types of keywords:"),nl,
write("<command><statistic><site name><month><year 1><year 2>"),nl,nl,
write("Do you want to see a list of the words available? (y/n) "),
readIn(Ans),!,
upper_lower(Ans,Answer),
list_commands(Answer).

perform(select,B,_,D.E,F):-
select_site(Site),!,
old_context(command,A),

perform(A,B,Site,D.EF).

perform(memory,_,_,_,_,_):-show_memory.

perform(A,B,none,D,EF):- ! ,ni, %--- catch the rest of the
write("Either a site has not been choosen or ™), % combinations of keywords
nl,

write("the site number entered is not a valid site.”),
nl select_site(Site),
perform(A,B,Site,D E,F).

perform(_,_,_,_,_,__):- nl’!9
write("No form for this sentence. Please reword."),nl,
write("Type 'help.'for help™),nl.

run_policy(Percent,Demand,Mon):- %--- Runs the POLICY .EXE code
readdevice(Current_device), % from DOS to get the policy
openwrite(polfile,"code.in"), % data given a specific situation
writedevice(polfile),
getpolicy(Percent,Demand,Mon PolicyCode),
write(PolicyCode),
closefile(polfile),
openwrite(garbage,"garbage.dat™),
writedevice(garbage),
system("Policy” 0,DosErrorLevel),
write(DosErrorLevel),
closefile(garbage),
readdevice(Current_device),
writedevice(screen).



read_policy(Yield,Loss,Oplist):-
readdevice(Current_device),
openread(codeout,"code.out"),
readdevice(codeout),
scan_lines(5,Yield),
scan_lines(5,Loss),
read_years(Backlist,[],codeout),
reverse_lists(Backlist,Oplist),
closefile(codeout),
readdevice(Current_device).

read_years(Oplist,Sublist,Fname):-
not(eof(Fname)),!,
readin(Line),
scanner_int(Line, Ylist),
addlists(Ylist,Sublist, Newoplist),

read_years(Oplist,Newoplist,Fname).

read_years(Oplist,Oplist,_).

scan_lines(Nlines,Olist):-
scan_lines_aux(Nlines,Olist,1,[]).

scan_lines_aux(Nlines,Olist,Icount,Nlist):-
Icount<=Nlines,!,
readin(Line),
scanner(Line,Sublist),
append(Nlist,Sublist,Newlist),
Newlcount = Icount + 1,

scan_lines_aux(Nlines,Olist,NewIcount, Newlist).
scan_lines_aux(Nlines,Olist,Icount,Olist):- Icount > Nlines.

scanner("",[].

scanner(Str,[Tok1IRest]):-
fronttoken(Str,Sym,Str1),!,
str_real(Sym,Tok1),
scanner(Str1 Rest).

scanner_int("",[]).

scanner_int(Str,[Tok1[Rest]):-
fronttoken(Str,Sym,Strl),!,
str_int(Sym,Tok1),
scanner_int(Str1 Rest).

getpolicy(Store,Demand,Mon PolCode):-
syn(Mon,Month),
frontstr(3,Month M1, ),
concat("C",M1,S),
concat(S,"1",S1),
concat(S1,".",82),
concat(S2,Store,S3),
concat(S3,".",54),
concat(S4,Demand,PolCode).

87

%--- Reads the data file created by
% POLICY.EXE

%--- Reads the years which had
% economic losses given the
% current situation

%--- scans string and makes a list
% out of the tokens

%--- scans string for tokens, which
% in this case are real numbers

%--- does the same for integers

%--- makes the policy code ascii
% file required by POLICY.EXE



find_delim(S,Count,C):-
frontchar(S,CH,S2),

CH<>'',CH<>'.',CH<>"?",CH<>',,

C2=C+1,
find_delim(S2,Count,C2).
find_delim(_,Count,Count).

get_noise(S,52,X):-
next_word(S,52,X),
not(word(_,X, )),
not(int(X)).

terminator(S):-
frontchar(S,CH,_),
CH=".".

terminator(S):-
frontchar(S,CH,_),
CH='?.

next_word(S,52,W):-
find_delim(S,Count,0),!,
Count>0,
frontstr(Count,S,W,S3),
strip_space(S3,52).

next_valid_word(S,S2,W):-
find_delim(S,Count,0),!,
Count>0,
frontstr(Count,S,W,S3),
word_or_number(W),
strip_space(S3,52).

next_valid_word(S,S2,W):-
get_noise(S,S1,),
next_valid_word(S1,S2,W).

word_or_number(W):-! ,word(_,W,_).

word_or_number(W):-!,int(W).

strip_space(S,S2):-
frontchar(S,Ch,S3),
Ch=""1,
strip_space(53,52).
strip_space(S,S2):-
frontchar(S,Ch,S3),
Ch=","!,
strip_space(S3,S2).
strip_space(S,52):-
frontchar(S,Ch,S3),
Ch=""1,
strip_space(S3,52).
strip_space(S,S).

%--- peels delimiters off the
% end of a token (word).

%--- gets rid of noise or words not
% defined in the lexicon

%--- finds the terminator of input,
% not required, in this code

%--- find the next keyword or number
% in the input string

%--- Is it a word defined in the lexicon?
%--- Is it a number?

88



find_stat(Stat,List,Value):- %--- takes a list and stat
Stat=average,!, % and then finds the value
length_of(List,N),meanlist(List,Value,N). % of that stat.

find_stat(Stat,List,Value):-

Stat="standard",!,

length_of(List,N),standardList(List,Value,N).
find_stat(Stat,List,Value):-

Stat=skew,!,

length_of(List,N),skew(List,Value,N).
find_stat(Stat,List,Value):-

Stat=variance,!,

length_of(List,N),varian(List,Value,N).
find_stat(Stat,List,Value):-

Stat=lowest,!,

minimum(Value,List).
find_stat(Stat,List,Value):-

Stat=highest,!,

maximum(Value,List).
find_stat(Stat,List,Value):-

Stat=sum,!,

sumlist(List,Value).

units(flow,"(cfs)"). %--- de

units(average,”(cfs)").
units(_,"").

fining units for printing

/* the help screen

list_commands(Answer):-nl frontchar(Answer,A,_),A="Y',!,
write(" Commands Statistics Sites Months
write("

*/

Years"),nl,
")1n11

write(" what average Cedar 1 January
write(" list standard (dev.) Cedar 2 February

1929 "),nl,
to 1976 "),nl,

write(" plot skew Cedar 3 March "),nl,
write(" help variance Lake Washington April™),nl,
write(" show all Tolt 1 May"),nl,
write(" select(site) lowest Tolt 2 June™),nl,
write(" highest Main Stem Tolt July™),nl,
write(" cdf Inflow 1 August™),nl,
write(" sum Inflow 2 etc."),nl,

write(" Inflow 3 "),nl.

list_commands( ).

purge:-retractall(_),fail. %--- purge all databases

purge:-retractall(_ record),fail.
purge:-retractall(_,current_context),fail.
purge.

89



[*enme : NLP_INC.PRO *f
% **** this file includes all the toolbox files needed.

%project "nlp"”

include "c:\\prolog\toolbox\W\gdoms.pro"
include "c:\prolog\toolbox\gglobs.pro”
include "globdef.pro”

database %--- this DB is necessary for plotting
Scale(ScaleNo,x,x,y,y)
activeScale(ScaleNo)
axes(Integer,Integer,Integer,Xmarker,Ymarker,Col Row,Col,Row)
insmode
lineinpstate(STRING,COL)
lineinpflag

include "c:\\prolog\\toolbox\\tpreds.pro”
include "c:\\prolog\toolbox\\gpreds.pro”
include "c:\\prolog\toolbox\ggraph2.pro"
include "c:\\prolog\toolbox\\menu.pro"
include "c:\\prolog\\toolbox\\status.pro"

domains
sentence = string
list = symbol*
flows = real

flowlist = flows*
listlist = flowlist*
ilists = integerlist*
siteName = symbol

year = integer
month = symbol
fname = string

include "c:\\prolog\\toolbox\lineinp.pro”



/™ - NLP_DB.PRO ----- */
9 ***** contains clauses associated with the streamflow and lexicon databases

%project "nlp”

database - record
word(symbol,symbol,symbol)
syn(symbol,symbol)
month_integer(symbol,integer)
sitenumber(integer,symbol)
siten(integer,symbol)
sitename(symbol,symbol)
site1(integer,year,flows)
siteS(integer,year,flows)
site7(integer,year,flows)
site8(integer,year,flows)
site11(integer,year,flows)
site15(integer,year,flows)
site16(integer,year,flows)

[Heemcmeeeenaee Database Predicates --------------- *f
consultFiles
consultWords
my_consult(string)
repfile(file)

[¥emmmmmeeaaaae data bases */

consultFiles:-
my_consult("site1.dat”),
my_consult("site5.dat"),
my_consult("site7.dat"),
my_consult("site8.dat"),
my_consult("site11.dat"),
my_consult("site15.dat"),
my_consult("site16.dat").

consultWords:- my_consult("words.dat"),
my_consult("words2.dat™).

my_consult(FileName):- %--- open files and assert
openread(datafile FileName), % facts
readdevice(datafile),
repfile(datafile),
readterm(record, Term),
assertz(Term),
fail.

my_consult(_):- eof(datafile),! closefile(datafile).

repfile().
repfile(File) :- not(eof(File)), repfile(File).

91



/* ' NLP_FLOW.PRO */
%**** the streamflow and list handling predicates.
%project "nlp"
predicates
writcheads(ilists)
siteflow(symbol,integer,year,flows)
writeflist(flowlist)
writeS(flowlist,integer)

seq_yearf(symbol,year,year,flowlist)
yearf(symbol,integer,year,year,flows)

clauses

/* Seting Up Data */
siteflow(site1,Mon,Year,Flow):- !,sitel(Mon,Year,Flow).
siteflow(site5,Mon, Year,Flow):- !,site5(Mon,Year,Flow).
siteflow(site7,Mon,Year Flow):- !,site7(Mon,Year,Flow).
siteflow(site8,Mon, Y ear, Flow):- | site8(Mon, Year Flow).
siteflow(site11,Mon, Year,Flow):- ! site1 1{Mon,Year,Flow).
siteflow(site15,Mon, Year,Flow):- !,site15(Mon,Year,Flow).
siteflow(site16,Mon, Year Flow):- !,site16(Mon, Year ,Flow).

/ /
writeflist(List):-writeS(List,0),nl. %--- write flow list.
write5(List,12):- !, nl, write5(List,0). %--- write list 12 across.

writeS([HeadlTail],N):- !,
writef("%-5.1f " ,Head),
N1=N+1,write5(Tail,N1).
write5(0,.).

writeheads([[Head!_]ITlist]):- !,
write(" ",Head),

writecheads(Tlist).

writeheads([]).

yearf(Site,Month,Yearl,Year2 F):- %--- make list between two
siteflow(Site,Month,Y F), % years, for a particular month.

Y<=Year2,Y>=Yearl.

seq_yearf(Site,Year2,Year2 Rlist):-!, %--- make list for all months
findall(F,siteflow(Site, _,Year2,F),Rlist).
seq_yearf(Site,Yearl,Year2,L):-Yearl<>Year2,
Y2=Year2-1,
seq_yearf(Site,Year1,Y2 List),!,
findall(F siteflow(Site,_,Y2,F),AList),
append(AList,List,L).

92



/* - NLP_STAT.PRO --*/
%**** statistical and list clauses

%project "nip"

/* StatiStics «--escsemreccccnncs */

predicates

list_existing_windows(integer)
length_of(flowlist,integer)
find_stat(symbol,flowlist,flows)
meanlist(flowlist,flows,integer)
sumlist(flowlist,flows)
sumlist1(flowlist,flows,flows)
standardList(flowlist,flows,integer)
varl(flows,flows,flows,flowlist)
varian(flowlist,real integer)
sumMinusMean(flowlist,flows,flows)
skew(flowlist,flows,integer)
skew1(flows,flows,flows,flows flowlist)
cube(flows,flows)
quicksort(flowlist,flowlist)
split(flows, flowlist,flowlist,flowlist)
append(flowlist flowlist,flowlist)

/*
the s-notation distinguishes predicates that operate on lists of lists
ie. members(_,_).

*/
members(integer, ilists,integerlist)
n_element(integerlist,integer.integer)
reverse_lists(ilists,ilists)
reverses(ilists, ilists,ilists)
int_real(integer.real)
ints_reals(integerlist, flowlist)
int(symbol)

add(flows flowlist.flowlist)
addlists(integerlist,ilists,ilists)
head(flows,flowlist)
maximum(integer,flowlist)
maxi(integer,integer,flowlist)
minimum(integer,flowlist)
mini(integer integer,flowlist)

FACTREEER e Many of these statistical and list clauses are from
Townsend, pp 70-90 *

minimum(Minimum,[HeadITail]):- %--- find minimum element
mini(Minimum,Head,Tail).

mini(Start,Start,[]).

mini(End,Start,[HeadITail}):-
Head <= Start,
mini(End,Head,Tail).

93



mini(End,Start,[HeadlTail]):-
Head >= Start,
mini(End,Start, Tail).

maximum(Maximum,[HeadiTail]):-
maxi(Maximum, Head,Tail).
maxi(Start,Start,[]).
maxi(End,Start,[HeadITail}):-
Head >= Start,
maxi(End,Head, Tail).
maxi(End,Start,[HeadlTail]):-
Head <= Start,
maxi(End,Start,Tail).

reverse_lists(Inlist,Outlist):-
reverses(Inlist,[],Outlist).

reverses([1,Inlist,Inlist):-!.

reverses([HeadITail),List1,List2):-
reverses(Tail,[HeadlList1],List2).

members(Element,[[ElementTail]l_],Tail):-!.

members(Element,[ |Tail],Result):-
members(Element,Tail Result).

n_element([Headl_],1,Element):-
Element=Head,!.

n_element([_|Tail},No,Element):-
NN=No-1,!,
n_element(Tail NN ,Element).

%--- find maximum element

%--- reverses a list of lists

%--- Determines if element is
% the head of one of the lists
% and then returns the assoc tail.

%--- At what position in the list
% is this element?

int(X):-str_int(X,1),I=I.
int_real(X,Y):-Y=X.

ints_reals([],[1):-!.

ints_reals({XIT},[YIU]):-
int_real(X.Y),
ints_reals(T,U).

append({],L,L).
append([XIL1],L2,[XIL3]) :-
append(L1,L2,L3).

head(X,[XI_]).

add(X,[1.[X]).
add(X,L,[XIL]).

addlists(X,[1.[XD.
addlists(X,L,[XIL]).

%--- check to see if the string object is
% an integer
%--- convert an integer to a real or vice versa

%--- converts a list of integers to a list
% of reals

%--- appends a list to the end of another
% from Turbo Prolog 1.0 manual pg. 49

%--- add an object to the front
% of alist

%--- add a list to the front
% of another list

94



95
quicksort([1.[]). %--- used to rank, (for cdf)
quicksort([XITail],Sorted) :-

split(X,Tail,Small,Big),
quicksort(Small,SortedSmall),
quicksort(Big,SortedBig),
append(SortedSmall,[XISortedBig],Sorted).

split(X,[1.(1.[1):- X=X. %--- used to sort and rank
split(X,[YITail},[ YISmall},Big) :-

X>Y,!,

split(X,Tail,Small,Big).
split(X,[Y1Tail},Small {YIBig]) :-

split(X,Tail,Small,Big).

meanlist(X,A,N):- %--- finds the mean of a list
sumlist(X,Sum),A=Sum/N.

sumlist([HeadiTail},Sum):- %--- sums a list
sumlist1([HeadITail},0,Sum),!.
sumlistl([HeadITail],X,Sum):-
Temp = X + Head,
sumlist1(Tail, Temp,Sum).
sumlist1([],Sum,Sum).

sumMinusMean([IlIs},Mean,Sum):- sumMinusMean(Is,Mean,IsSum),
Sum=abs(I-Mean)*abs(I-Mean)+IsSum.
sumMinusMean([],_,0).

standardList(List,Standard,N):- %--- finds standard deviation
varian(List, Variance,N),
Standard = sqrt(Variance),!.

varian(List, Variance,N):- %--- finds variance
meanlist(List,Mean,N),
length_of(List,Count),
var1(Sum,0,Mean List),
Variance = Sum / Count,!.

varl(Sum,Sum,_,[]) :- .

varl(Sum,Running,Mean,[HeadITail]):-
Newrunning = Running + (Head - Mean) * (Head - Mean),
var1(Sum,Newrunning,Mean,Tail),!.

skew(L ist,Skew,N):- %--- finds the skew
meanlist(List, Mean,N),
standardList(List,Standard,N),
skew1(Sum,0,Mean,Standard List),
Skew=Sum /N,!.

skew1(Sum,Sum,_,_,[]):-!.

skew1(Sum,Running,Mean Standard,{HeadITail]):-
Expr = (Head - Mean) / Standard,
cube(Expr,Exp3),
Newrunning = Running + Exp3,
skew1(Sum,Newrunning Mean,Standard, Tail),!.



cube(Expr,Cube):- Cube = Expr * Expr * Expr.

length_of({].0). %--- from user manual pg. 187
length_of([_IT],L):-

list_existing_windows(0).
list_existing_windows(N):-

length_of(T,TailLength),
L = TailLength + 1.

not(existwindow(N)),!,
N1=N-1,
list_existing_windows(N1).

list_existing_windows(N):-

existwindow(N),
shiftwindow(N),
write(N," "),readchar( ),
N1=N-1,

list_existing_windows(N1)./*----- NLP_PLOT.PRO

%**** plotting clauses

%project "NLP"
%include "c:\\prolog\\toolbox\\gbar.pro”

/*

Plotting */

predicates

clauses
/ %

function(flowlist,real integer,integer,real,integer,integer)
plot_list1(flowlist,string,string,string string,integer,integer,integer)
determine_Xscale(string,integer,integer,integer,integer,integer real)
determine_yscale(integer integer real real integer)
barchart(integerlist,string string)

plots a list */

plot_list1(List, Title, Xlabel,Ylabel, TimeFrame, Yearlnit,Fore Back):-

maximum(Y max,List),
minimum(Ymin,List),
length_of(List,Length),
determine_Xscale(TimeFrame, YearInit,Length, Xmin Xmax,Xunit,SFactor),
determine_Yscale(Ymin,Ymax,Yminr,Ymaxr, Yunit),
graphics(5,Fore Back),
makewindow(10,Back Fore,Title,0,0,22,79),
makestatus(7,"Enter <CR> to retum to menu."),
attribute(Fore),
Xbegin = Xmin - 1,
defineScale(1,Xbegin, Xmax,Yminr,Ymaxr),
makeAxes(1l, ,GWindow,
marker(Xunit,d,4),
marker(Yunit,d,4),3,4,3,2,Fore),
Gwindow=Gwindow,
axisLabels(1,Xlabel, Ylabel),
function(List,0.0,0,Length,SFactor,Y earInit Fore),

%--- use for debuging, lists window
% numbers for all open windows



readln( ),
removewindow(10,0),
text,
removewindow(20,0).

plot_list1(_,_,_s_s_s_s_,_) :- Llext.

determine_Xscale(TimeFrame,Y earInit,Length,Xmin,Xmax,Xunit,SFactor):-
TimeFrame="allmonths",!,
SFactor=1.0/12.0,
Xunit=1,
Xmin=Yearlnit,
XLength=Length div 12,
Xmax=XLength+Yearlnit.

97



determine_Xscale(TimeFrame,Yearlnit,Length,Xmin,Xmax,Xunit,SFactor):-
Length < 20,
TimeFrame="monthly",!,
SFactor=1.0,
Xunit=2,
Xmin=Yearlnit,
Xmax=Length+Yearlnit.
determine_Xscale(TimeFrame,YearInit,Length,Xmin, Xmax,Xunit,SFactor):-
TimeFrame="monthly",!,
SFactor=1.0,
Xunit=$,
Xmin=Yearlnit,
Xmax=Length+Yearlnit.
determine_Xscale(TimeFrame,_,_,Xmin, Xmax,Xunit,SFactor):-
TimeFrame="oneyear",
SFactor=1.0,
Xunit=2,
Xmin=1,
Xmax=12.

determine_yscale(Ymin,Ymax, Y minr,Ymaxr,Yunit):-
Yrange=Ymax-Ymin,
Y=Yrange/100,
Y>9,!,
Yminr=(Ymin div 100)*100.0,
Ymaxr=(Ymax div 100)*100.0 + 100.0,
Yunit=100.
determine_yscale(Ymin,Ymax,Yminr,Y maxr,Yunit):-
Yrange=Y max-Ymin,
Y=Yrange/100,
Y<=9,1,
Yminr=(Ymin div 50)*50.0,
Ymaxr=(Ymax div 50)*50.0 + 50.0,
Yunit=50.

function(_,_,N,Length,_, , ):- %--- function plots one segment at
L2 =Length - 2, % atime
N>L2,t.

function([HeadITail),Y 1, N,Length,SFactor, Yearlnit,Color) :-
Y1=0.0,!,
Nl=N+1,
YY 1=Head/1.0001,
X1=N/1.0001+Yearlnit,
X2=N1/1.0001*SFactor+Yearlnit,
head(Head2,Tail),
Y2=Head2/1.0001,
scaleLine(X1,YY1,X2,Y2,Color),
function(Tail, Y2,N1,Length,SFactor,Yearlnit,Color).



function([HeadITail}],Y 1,N,Length,SFactor,Y earlnit,Color):-
N1=N+1),
X1=N/1.0001*SFactor+Yearlnit,
X2=N1/1.0001*SFactor+YearlInit,
Y1=Head/1.0001,
head(Head2,Tail),
Y2=Head2/1.0001,
scaleLine(X1,Y1,X2,Y2,Color),
function(Tail,Y2,N1,Length,SFactor,Y earInit,Color).

Rk

/* *
BAR CHART of OPTIMAL POLICIES (modified, not really a bar now)

e e o e oe -ul"l"l-/

barchart(Oplist,Year,Month):-
Fore = 63,
Back =1,
concat("OPTIMAL RESERVIOR OPERATION POLICY FOR SUMMER OF ",Year,Title),
graphics(5,Fore,Back),
makewindow(10,Back,Fore,Title,0,0,22,79),
makestatus(7,"Enter <CR> to return to menu."),
attribute(Fore),
concat("Weeks After ",Month,Substr),
concat(Substr,” 1st”,Subtitle),
Xlabel = Subtitle,
Ylabel = "STAGE",
ints_reals(Oplist,List),
Ymaxr =5,
Yminr =0,
length_of(List,Length),
defineScale(1,0,16,Y minr,Ymaxr),
makeAxes(l,_,GWindow,
marker(1,d,4),
marker(1,d,4),3.4,3,2,Fore),
Gwindow=Gwindow,
axisLabels(1,Xlabel,Ylabel),
function(List,0.0,0,Length,1,1 Fore),
readin( ),
removewindow(10,0),
text,
removewindow(20,0).

99



100

/* . - WORDS.DAT and WORDS2.DAT---=--menmmememeccaae */
%*****  THE LEXICON

%

word("site","site1","site1")
word("site","site5","site5")
word("site","site7","site7")
word("site","site8","site8")
word("site","site11","site11")
word("site","site15","site15")
word("site","site16","site16™)
word("site","inflow1","site1")
word("site","inflow2","site5™)
word("site”,"inflow3","site7")
word("site","tolt1","site11")
word("site","tolt2","site15™)
word("site","tolt3","site16™)
word("site","lake","site8")
word("site”,"north","site15")
word("site","south”,"site16")
word("site”,"main","site11")
word("site","cedarl”,"site1™)
word("site","cedar2","siteS™)
word("site","cedar3","site7™)
word("site","cedar4”,"site8")
word("command”,"forget","”forget")
word("command”,"clear","forget")
word("command”,"not","forget")
word("command”,"memory”,"memory")
word("command”,"resize","resize™)
word("command”,"plot”,"plot”)
word("command”,"help”,"help™)
word("command”,"list","list"™)
word("command”,"what","what")
word("command”,"show","what")
word("command","select","select™)
word("command”,"yield","yield"™)
word("command"”,"loss","loss™)
word("command”,"losses","loss")
word("command”,"economic”,"loss")
word("command"”,"yields","yield")
word("command”,"policy","policy™)
word("command”,"policies”,"policy")
word("command"”,"operating","policy™)
word("command”,”operation”,"policy")
word("stat","cdf”,"cdf™)
word("stat","average”,"average")
word("stat","mean","average™)
word("stat","standard","standard")
word("stat","variance”,"variance")
word("stat","skew","skew")
word("stat","all","all")
word("stat","sum","sum")




word("demandword”,"demand","demand")
word("percentword","percent”,"%")
word("percentword”,"%","%")
word("month","summer”,"summer")
word("stat","low","low")
word("stat","lowest","lowest")
word("stat","minimum”,"lowest")
word("stat","high","highest™)
word("stat","highest","highest")
word("stat”,"maximum”,"highest")
word("stats",">","greater than")
word("stats","<","less than")

word("stats",">=","greater than or equal to")

word("stats”,"<=","less than or equal to")
word("stat","cdf","cdf™)
word("month","january”,"january™)
word("month”","february”,"february")
word("month","march”,"march")
word("month”,"april","april")
word("month","may","may")
word("month”,"june","june")
word("month","july","july")
word("month","august","august")
word("month","september”,"september™)
word("month","october”,"october™)
word("month","november”,"november")
word("month”,"december”,"december”)
word("month”,"summer”,"summer")
word("month","jan"," january")
word("month","feb","february™)
word("month”,"mar","march")
word("month”,"apr","april")
word("month”,"may","may")
word("month","jun","june")
word("month”,"jul","july™)
word("month”,"aug","august")
word("month","sep","september™)
word("month","oct","october™)
word("month”,"nov","november")
word("month","dec”,"december”)
word("conj","and","and")
word("sites","site”," unknown")
word("sites”,"cedar”,"unknown")
word("sites","tolt","unknown")
word("sites","inflow","unknown")
word("stats","lowest","unknown™)
word("stats","highest","unknown™)
syn("january","January")
syn("february","February")
syn("march","March™)

syn("april”," April™)

syn("may","May")

101



syn("june","June")
syn("july”,"July")
syn("august”"," August”)
syn("september”,” September™)
syn("october”,"October™)
syn("november”,"November")
syn("december”,"December")
syn("jan","January")
syn("feb","February")
syn("mar","March")
syn("apr"," April™)
syn("may","May")
syn("jun","June™)
syn("jul","July™)

syn("aug"," August”)
syn("sep”,"September™)
syn("oct","October™)
syn("nov","November")
syn("dec"”,"December™)
syn("memory","memory")
syn("all","all™)
syn("cdf”,"cummulative distribution function™)
syn("standard”,"standard deviation™)
syn("skew","skew™)
syn("mean”,"average")
syn("average”,"average™)
syn("variance”,"variance")
syn("sum","sum")
syn("summer"”,"sum of June, July and August")
syn("lowest","lowest")
syn("highest","highest™)
syn("low","lowest")
syn("high","highest™)
syn("inflow","site™)
syn("cedar","site")
syn("tolt","site")
syn("what","what")
syn("show","what™)
syn("list","what™)
syn("plot","plot™)
syn("memory","memory")
syn("inflow1","site1")
syn("inflow2","site5"™)
syn("inflow3","site7")
syn("lake","site8")
syn("main","site11")
syn("north","site15")
syn("south","site16")
syn("cedar1","site1™)
syn("cedar2","site5")
syn("cedar3","site7™)
syn("inflow1","site1")

102



103
syn("inflow2","site5"™)
syn("inflow3","site7™)
syn("tolt1","site11")
syn("tolt2","site15")
syn("tolt3","site16™)
syn("site1","site1™)
syn("site5","site5™)
syn("site7","site7")
syn("site8","site8")
syn("site11”,"sitel11™)
syn("site15","site15™)
syn("site16","site16")ymonth_integer("jan",1).
month_integer("feb",2).
month_integer("mar”",3).
month_integer("apr" 4).
month_integer("may",5).
month_integer("jun",6).
month_integer("jul”,7).
month_integer("aug",8).
month_integer("sep”,9).
month_integer("oct",10).
month_integer("nov”",11).
month_integer("dec”,12).
sitenumber(1,"site1™).
sitenumber(5,"site5™).
sitenumber(7,"site7").
sitenumber(8,"site8").
sitenumber(11,"site11™).
sitenumber(15,"site15).
sitenumber(16,"site16™).
siten(1,"sitel1").
siten(2,"site5™).
siten(3,"site7™).
siten(4,"site8").
siten(S,"site11").
siten(6,"site15").
siten(7,"site16").
sitename("sitel”,"Cedar 1™).
sitecname("site5","Cedar 2").
sitename("site7","Cedar 3™).
sitename("site8","Cedar 4™).
sitename("site9","Lake Washington™).



/* ' portion of SITE1.DAT -----srenenemnceeeeaeees
%**** the streamflow data
%
site1(1,1929,114.)
site1(1,1930,221.)
site1(1,1931,491.)
site1(1,1932,634.)
site1(1,1933,1025.)
site1(1,1934,1490.)
site1(1,1935,1241.)
site1(1,1936,871.)
site1(1,1937,178.)
site1(1,1938,655.)
site1(1,1939,978.)
site1(1,1940,339.)
site1(1,1941,361.)
site1(1,1942,296.)
site1(1,1943,484.)
site1(1,1944,296.)
site1(1,1945,1007.)
site1(1,1946,531.)
site1(1,1947,749.)
site1(1,1948,440.)
site1(1,1949,229.)
site1(1,1950,440.)
site1(1,1951,604.)
site1(1,1952,196.)
site1(1,1953,1508.)
site1(1,1954,500.)
site1(1,1955,380.)
site1(1,1956,339.)
site1(1,1957,220.)
site1(1,1958,629.)
site1(1,1959,1050.)
site1(1,1960,215.)
site1(1,1961,844.)
site1(1,1962,821.)
site1(1,1963,503.)
site1(1,1964,646.)
site1(1,1965,931.)
site1(1,1966,425.)
site1(1,1967,1121.)
site1(1,1968,885.)
site1(1,1969,533.)
site1(1,1970,723.)
site1(1,1971,950.)
site1(1,1972,737.)
site1(1,1973,557.)
site1(1,1974,1203.)
site1(1,1975,931.)
site1(1,1976,972.)
site1(2,1929,85.)



site1(2,1930,881.)
site1(2,1931,419.)
site1(2,1932,706.)
site1(2,1933,229.)
site1(2,1934,423.)
site1(2,1935,633.)
site1(2,1936,257.)
site1(2,1937,301.)
site1(2,1938,217.)
site1(2,1939,445.)
site1(2,1940,587.)
site1(2,1941,248.)
site1(2,1942,353.)
site1(2,1943,517.)
site1(2,1944,346.)
site1(2,1945,697.)
site1(2,1946,322.)
site1(2,1947,696.)
site1(2,1948,478.)
site1(2,1949,489.)
site1(2,1950,564.)

sitename("site11","Main stem of Tolt").
sitename("site15","North Fork of Tolt").
sitename("site16"," South Fork of Tolt").

105



