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ABSTRACT

The primary objective of this dissertation was to demonstrate methods
that can be used to assess model complexity and data worth in environmental
systems. The methodology was developed within the framework of hypothesis
testing and state estimation and demonstrated by application to two well-
known environmental systems, the global carbon cycle and a lake ecosystem.
These two environmental systems were chosen because of the interest they
hold for environmental scientists and planners, and because there is a
large body of data and research that provides the required empirical
foundations for applying and testing the methodology.

For purposes of this dissertation, it was assumed that the large pool
of available data and knowledge was sufficient to develop a reference
system model that could produce outputs characteristic of the two prototype
systems. This provided a rationale for the generation of observations with
Monte Carlo simulation techniques. The results of previous research were
used to construct reference models of both the global carbon cycle and a
lake ecosystem. Populations generated by these reference models provided
the observations used in assessing both the methodology and important
features of the two environmental systems.

The populations generated by the reference models were used to
explore issues of model complexity and data worth for both linear and
nonlinear process and measurement models. This was done, for both
environmental systems, by postulating several levels of model complexity
for the process models and several levels of error for the measurement
models. The tests of model validity and the analysis of data worth and
model complexity were performed under the controlled, idealized conditions.
These conditions were established by the reference system models used to
represent each of the two systems. Under these conditions, the methodology
was successfully demonstrated, given certain assumptions regarding the
process and measurement models. For the global carbon cycle, the
postulated process models were assumed to be perfect; i.e., no model error,
and the measurement error was assumed to be normally distributed. In the
case of the lake ecosystem, errors in the postulated process models were
assumed to be normally distributed and the measurement error log-normally
distributed.
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CHAPTER 1

INTRODUCTION
1.1.Elements of Environmental Assessment

As the demands placed by modern civilizations on the natural environment
increase, the need to understand and assess envirénmental impacts also grbws.
Fulfilling this need is possible only when the processes affecting the environment can be
described by scientific laws or relationships, and the effects associated with these
processes can be observed. Furthermore, it is useful to structure this knowledge within
the framework of a scientific discipline. Given the existence of scientific laws or
relationships and observable effects, systems analysis provides such a structure for
performing assessments of environmental impacts. Defining an environmental system
and the state of the system are fundamental components of this structure.

An environmental system is a specific segment of the environment which can be
treated, in some sense, as a self-contained entity. It is assumed that this segment interacts
with the rest of environment only through external driving forces (see Figure 1.1). The
state of the system is defined by one or more qualities of the system that are measurable.
The measurable qualities are called state variables. The boundaries of an environmental
system in space, time, and number of state variables are determined by the scale of the
processes for which the environmental assessment is being performed. Environmental
systems can have global spatial scales, time scales of decades, and highly aggregated
measures of the system state such as population, capital investment, pollution and natural
resources (Forrester, 1969; Meadows and Meadows, 1972). They can be as small as a
freshwater pond with times scales of hours or days and state variables that include

chemical and biological constituents such as dissolved oxygen, nutrients and biomass.
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Figure 1.1. Schematic diagram showing idealized interaction between
environmental system, E , and all other environmental systems.



One way of characterizing or estimating both the state of environmental systems
and the impact of human development on these systems is by making direct
measurements of the system's state variables. Another way of obtaining such estimates
is by constructing abstractions or models of the system based on physical, chemical, or
biological laws. The existence of such laws implies that information about the process of
interest has been obtained from prior observations of the system of interest or from other
systems that behave similarly. These other systems may include both natural and
controlled (laboratory) systems. Estimates of the system state variables can then be
obtained from either the observations, the model, or some combination of the two.

For purposes of environmental assessment state estimates are used both to detect
changes in the environment and to determine the forces or effects that have caused the
changes. The state estimates are used to construct decision variables. Environmental
assessment is accomplished by defining rules which can be applied to the decision
variables for determining whether or not there has been an impact. The process can be
characterized schematically as shown in Figure 1.2.

However, capital and human resources are needed for both the collection of data
and the development of models. Those who develop programs to assess environmental
impact must decide how the resources should be allocated to obtain the most information.
Factors that must be included in the development of these programs include:

» The precision and accuracy of available measurement methods

« The amount of variability in the ecosystem, E, that can be explained by models
derived from observations and known scientific laws or relationships

» The state of the knowledge of ecosystems structure
« The purpose of the assessment to which the model and data are being applied

« The costs or benefits associated with outcomes of the assessment



Measurements @

Decision Rule

Environmental
Assessment

Figure 1.2. Flow diagram showing the way in which measurements of
the environmental system, E, and scientific principles are used to make
environmental assessments.



Recognizing that these are the important elements of environmental assessment, methods
that can be used to characterize the worth of data and value of developing models of the

ecosystem are needed.

1.2. Im nt Con

State estimation and hypothesis testing provide a framework for comparing the
relative value of devoting resources collecting data versus developing more complex
models. Estimates of the state of an environmental system are obtained by first
identifying the measurable properties, the state variables. Their values, or levels, are
determined by the initial conditions, the effects of driving forces, and the processes that
result in change. Water temperature, for example, could be used as a state variable to
characterize the thermal state of a water body such as a lake or reservoir (Fig. 1.3). At
any specific point in time, tg, the temperature, would summarize the effects of past inputs
such as solar radiation, river inflow, and thermal discharges. A measurement of the
temperature with some instrument, such as a thermistor, would be one way of obtaining
an estimate of the system's thermal state. The mechanism by which the measurements
are transformed to estimates of the temperature of the water body is called the
measurement model.

If enough is known about the dynamics of the system in terms of physical,
chemical and biological processes, it may be possible to construct a model that describes
the evolution of the state variables in time. Such a model provides another means of
obtaining an estimate of the system state and is called a process model. In the example of
the thermal state of the lake, the laws of thermodynamics and knowledge of the lake's

heat budget could be used to construct a model of the process describing the water
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Figure 1.3. Temperature at an arbitrary location in an hypothetical lake as
an example of an observable environmental state variable.



temperature as a function of time. The process model can be used to obtain estimates of
the state variable, water temperature. Similarly, thermistors or thermometers could be
used to measure of water temperature as a function of time. The measurement model
would also provide an estimate of the state variable, water temperature. By combinin g
the estimates obtained from both measurement model and process model it is possible to
obtain state estimates for the present, past, or future. The definition of state estimates for
each of these three cases have been defined as follows (Gelb,1974;
Schweppe, 1973):
« Filtering: The time of the state estimate coincides with the time of the last
observation (Fig. 1.4a).

« Smoothing: The time of the state estimate falls within the time span of the
observations (Fig. 1.4b).

« Prediction: The time of the state estimate occurs after the last observation
(Fig. 1.4¢).

Filteririg and smoothing are appropriate for diagnosing environmental impacts. That is,
they can be used for analyzing observed changes in the state of the system before and
after project implementation. Such estimates are important for determining compliance
with environmental standards and assuring enforcement of environmental regulations.

Prediction, or estimating the state of an ecosystem at some time in the future, also
plays an important role in environmental assessment. Determining the potential
environmental impacts of proposed development scenarios, establishing permit
limitations for waste discharges, and developing long-range environmental plans, are
examples of the ways in which prediction is applied to environmental assessment.
However, there is generally a high degree of variability in natural systems in addition to
the uncertainties associated with environmental models. The variance in state estimates

may increase rapidly as the interval between the time of the last observation and the tme
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of the prediction increases. As a result, the accuracy of predicted state estimates may be
limi;cd. This has been a source of concern for both resource managers and
environmental scientists. This concern has motivated analyses such as the one performed
by McLaughlin and Wood (1988), who developed techniques for evaluating the accuracy
of model predictions using a distributed parameter approach.

This work, however, will focus on diagnosis of environmental systems. More
specifically, it will focus on state estimates obtained by filtering. Filtering gives an
estimate of the present state by combine the present estimate of the state from the
measurement model with the present estimate from the process model. Smoothing could
also be used for diagnosis. However, filtering provides real-time estimates of the state
and is much simpler to implement than smbothing. For the cases in which real-time
estimates are not needed, it is not clear that the improved accuracy resulting from
smoothing is great enough to warrant its implementation (Meditch, 1973).

The Kalman filter (Kalman, 1960; Kalman and Bucy, 1961) is a state estimation
method for linear systems that integrates the measurement system model with a model of
the process dynamics. The Kalman filter assumes the measurement and systems

equations can be modeled by a structure of the form:

x() = FOx() + G(Om(t) +B(0u(t) (1.1)
z(t) = HOx(1) +y(t) (1.2)

where



10

x(t) = the vector of systems state variables!

u(t) = the vector of known and deterministic inputs
w(t) =uncertain white input disturbance

y(t) =uncertain white observation disturbance
Z(t) = the vector of observations

F(t), G(t), B(t) = the system coefficient matrix

H(t) = the measurement system coefficient matrix

The Kalman filter gives an estimate of the state of the system described by
equations. (1.1) and (1.2) for which the error of the estimate is unbiased and the sum of
the squared error is a minimum. For these constraints, the filter determines, at each point

in time, the weight that should be given to the estimate obtained from the system model

1 The development follows the conventions of style and notation found in the works of
Schweppe (1973) and Gelb (1974). Vectors are written as bold-faced, underlined,
lower-case Greek or English letters. Matrices are written as bold-faced, upper-case
Greek or English letters, while elements of matrices are the same Greek or English letters
in plain text (not bold-faced or underlined) with subscripts. For example, an (n x 1)
vector might be denoted by a, while an (nxm) matrix would be denoted by A. The
elements of 2 and A would be written as aj and Aij, respectively. Script H, L, R, T ( H,
L, R, and T) are used to denote important variables in hypothesis testing. Script V, with
superscript, n, (VM) is an n-dimensional vector space. Subscripts associated with the
state variables, probability distribution functions and hypotheses refer to a specific

hypothesis. For example, the state variables, Xj, are associated with the jth hypothesis,

':H,j.
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(eq. (1.1)) compared to the weight given the estimate from the measurement model

(eq. (1.2)). These weights are a function of the variance of the process model error,
w(t), and the variance of themeasurement model error, y(t). Because of the filter's
elegant simplicity, it has been applied to a wide variety of problems. Under certain
conditions, the Kalman filter can be applied to nonlinear problems by using linearization.
The Kalman filter combines the models of the system process with observations to obtain
an estimate of the system state as well as an estimate of the uncertainty of the state
estimate. It is well suited for analyzing the relative importance of developing the process
model compared to that of obtaining measurements of the system.

In the case of an environmental system for which there has been an intervention
due to some form of developmént, determining whether or not the estimate of the system
state represents adverse environmental impacts is often appropriate. Typically this is
done by comparing the model (or models) that estimate the present system state with a
model of the system under conditions of no intervention. The objective is to determine
whether changes in the state of the system are due to random fluctuations or are a result
of the inter?entions. Hypothesis testing provides a means to achieve this goal.

The first step in hypothesis testing is to establish two or more hypotheses about
the process and measurement models that describe the state of the system. A decision
variable and decision rule must then be developed (see Figure 1.2). A decision variable
is one or more numbers derived from the estimates of the state for each hypothesis. The
decision variables for each of the hypotheses are then compared by applying the decision
rule to determine which hypothesis is true. The likelihood function is commonly used as
a decision variable and, for state estimates define in terms of filtering, it can be obtained
from the output of the Kalman filter (Sage and Melsa, 1971; and Schweppe, 1973. The

likelihood function is the joint probability of the vector of observations, z(t), for a given
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hypothesis about the probability density function. For Gaussian processes, the natural
logarithm of the likelihood function obtained from Kalman filter is the weighted sum of
the squares of the difference between the observations at some time t and the expected
value of the state at the time, t, conditioned on a previous observation at time t'<t. The
log likelihood function is a statistic that can be used to test hypotheses regarding the state
of the system.

The roles of model complexity and data worth are determined by the formulation
of the Kalman filter. In equations (1.1) and (1.2) the number of state variables included
in the vector, X(t) and the structure of the coefficient matrices, F(t), G(), and B(t)
determine the level of complexity. A common, though not necessarily correct,
assumption is that increasing the level of complexity of the systems model leadstoa
reduction in the system error, ¥(t), and, as a result, yields better state estimates. The
worth of data can be examined in terms of the magnitude of the the measurement error,
(1), aqd the structure of the observation matrix, H(t), in equation (1.2).

The concept of the reference system model is also used in this report. Though not
directly related to the concepts of state estimation and hypothesis testing, it forms the
basis for the experimental design. It is apparent from Figure 1.2 that observations
obtained from the environmental system make up the essential elements of environmental
assessment. Observations are necessary both for purposes of obtaining state estimates
from the measurement model and for identifying process models. However,
observations of environmental systems are generally expensive to obtain and the
experiments are difficult to control. A reference system model (McLaughlin and Wood,
1988) is a mathematical construct of a system for which it is assumed the output
represents the true population of system state variables. Samples from the output of the

reference system model are treated as measurements of the system. In this report,
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samples from the reference system model will generally be described as "synthetically
generated observations."

The success of experiments that use reference systems models depends on how
well the dynamics of the prototype system are known. Even when the dynamics are well
known the assumption that the reference system model perfectly represents the true
system is dangerous. Such a belief can lead to circular reasoning and incorrect
conclusions regarding model validity. The reference system model should be viewed as a
form of laboratory experiment that is not identical to the actual environmental system, but
that attempts to capture important features of the prototype system. It is this latter view

that provides the basis for using reference system models in this report.

1.3.Research Objectives.

The primary objective of the report is to respond to the need for methods that can
be used to characterize the worth of data and value of developing models of the
ecosystem. More specifically, the objective is to use state estimation and hypothesis
testing to establish paradigms for:

« Testing the validity of environmental models

+ Assess the contribution of measurement error and model complexity to detecting

environmental change.

Case studies of two important environmental systems, the global carbon cycle and
lake ecosystems, will be used to construct the paradigms. These systems were chosen
for two reasons. Both are significant environmental issues and a great deal of effort has
been devoted to understanding both systems. The global carbon cycle is an important
environmental system because changes in atmospheric CO; due to the consumption of

fossil fuels and terrestrial biota may have far reaching effects on the earth's climate
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(Seidel and Keyes, 1983). Thé primary interest in lake ecosystems has been due to
concern that accelerated rates of eutrophication can seriously impair lake water quality.
The principal cause of accelerated eutrophication is the input of nutrients from
anthropogenic sources associated with municipal, industrial, and agricultural activities
(Vollenweider, 1968). For purposes of environmental assessment, resources are
currently being committed to the design of monitoring programs and the development of
process models for both of these environmental systems.

+  Synthetically generated observations from the reference systems models will be a
fundamental part of the analysis. The reservoir of knowledge about these systems
provides a sound basis for the development of the reference system models. Based on
the assumption that the reference systems models adequately describe the prototypes, the
following are secondary objectives of the report:

« Assess the effects of measurement error and model complexity on the validity of
models of the global carbon cycle and lake ecosystems

« Assess the effects of measurement error and model complexity on the ability to
detect environmental changes in the two ecosystems



CHAPTER 2
LITERATURE REVIEW

This literature review will serve three purposes. First, it will assess the need for
evaluating model complexity and data worth in environmental assessments. Second, it
will characterize the range of environmental problems for which mathematical models
have proven useful. Finally, it will survey methods which are apppropriate for the

analysis of model complexity and data worth.

2.1 N A men

The value placed on maintaining environmental quality in the United States is
reflected in the major legislation passed by Congress during the past twenty years. The
Clean Water Act, the Clean Air Act, the National Environmental Protection Act, and the
Toxic Substance Control Act (TSCA) are examples of environmental laws which
characterize the nation's environmental ethic. These laws have established requirements
for evaluating the impacts of development before a specific project is undertaken, and the
required assessments often involve mathematical modelling. A comprehensive list of
Federal laws, the responses to which have utilized mathematical modelling, is given in
Table 2.1.

The environmental assessments required by environmental laws fall into the
following areas:

Protection of human health

*Maintenance of the integrity of ecosystems

+Balancing environmental, economic, and political needs
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Table 2.1. Federal laws associated with the application of mathematical models

of environmental systems.

Clean Water Act
(Public Law 95-217)

Toxic Substances Control
Act (Public Law 94-469)

National Environmental

Policy Act (Public Law 91-190)

Surface Mining Control and
Reclamation Act (Public Law
95-87))

Coastal Zone Management
Act (Public Law 94-370)

Safe Drinking Water
Act (Public Law 93.523))

Resource Conservation and
Recover Act (Public Law
94-580)

Endangered Species (Public
Law 93-205)

Soil and Water Conservation
(Public Law 95-192)

Water Resources Planning
(Public Law 89-80)

Executive Order No. 11988
(Floodplain Management)

Flood Control Act of 1936 and
and Amendments

National Flood Insurance Act
of 1968

Sections 107, 201, 208, 209, 301, 302,303,
307,311,314,316, 404, and 405.
Sections 4, 5, and 6.

Sections 102 and 103

Sections 506, 510, and 515

Section 305

Sections 1412, 1421, 1422, 1424, 1443, and

1444

Sections 1008 and 8006

Section 7

Sections 5 and 6

Section 102

Sections 1,2, and 3

Section 73
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Table 2.1 (continued). Federal laws associated with the application of mathematical
models of environmental systems

Water Research and Section 1360
Development Act (Public Law
95-467)
Federal Reclamation Act of 43 U.S.C. 421 and 422
of 1902 and Amendments
Atomic Energy Act of 1954 10 CFR 20, 50, 61.
Clean Air Act -Sections 123, 165 and 320
(1977 as amended) Section 165

Section 320

Ott (1976) provides numerous examples of the ways in which environmental models
have been used in support of environmental legislation.

‘Mathematical models have been also widely used in the development and
implemention of environmental policies. The Ofﬁc;: of Technology Assessment
(Friedman et al., 1984), in a study of water quality modeling, concluded that
mathematical models are sophisticated tools for analyzing water resource issues that
significantly improve the basis for decision-making and can substantially reduce the cost
of managing water resources.

Barnwell and Krenkel (1982) described the need for water quality models, within
the context of environmental decision-making, in three management contexts: screening,
planning, and design. They reviewed the application of screening models in several
rivers, impoundments and estuaries and made some qualitative conclusions regarding
their effectiveness. They concluded that for rivers and impoundments the results were

fair to excellent, while in estuaries they were poor to excellent. They describe a
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successful application of a sophisticated planning model by the Northern Virginia
Planning District Commission (NVPDC). The NVPDC used the model, in conjunction
with an extensive data collection program, to examine the long-term water quality impacts
of land development patterns and best management practice strategies in the Occoquan
River Basin. Barnwell and Krenkel (1982) state that the use of models in design is
probably the most common application of water quality modeling in the United States.
As an example, they describe the application of QUAL-II (Roesner et al., 1981) on the
Holston River in Tennessee. The model was used to develop a permit under the National
Pollution Discharge Elimination System (NPDES) which led to improved dissolved
oxygen in the river.

Despite the optimism expressed by some, the use of mathematical models has
often been criticized and challenged. Although some of this criticism has focused on the
scientific basis for mathematical models (e.g., Harris, 1980), there is also much that is
related to the fact that the development and application of models for environmental issues
must be done at thc interface between science and policy-making and management. With
respect to issues not directly related to the scientific aspects of model development,
Mitsch (1983) identified several reasons for failure of models to achieve the potential
characterized in the OTA assessment:

« The propensity of models to continually get bigger and more complex; require

more and more data; have poorly defined objectives, and be understood by only
a few individuals

« Unrealistic expectations, on the part of water resources managers, regarding the
kinds of problems models can solve with a given level of resources

« Overselling of the capabilities and potential for mathematical modeling.

The source for much of this criticism, according to Cale et al, (1983), is that

there is no agreement on the best way to build, analyze, and evaluate mathematical
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models. Cale et al (1983) state that the most important question is validation of ecological
models, and the inability to construct valid models is a serious impediment to their
acceptance.

Thomann (1982) describes two reasons for developing mathematical models of
natural water systems. The first is to increase the level of understanding of cause-effect
relationships, and the second is to use the knowledge to perform environmental analysis
and provide support for decision-making. Thomann (1982) notes the increase in
complexity of water quality models from the linear systems model describing the
biological oxygen demand (BOD)-dissolved oxygen (DO) model developed by Streeter
and Phelps (1925) to the multistate, nonlinear models used to simulate the interaction of
physical, chemical, and biological systems in marine and freshwater systems such as the
Water Quality Analysis Simulation Program (DiToro et al., 1981). Thomann (1982)
concludes that this increase in complexity requires that careful attention be given to
evaluating model credibility. He suggests four stages necessary for establishing the
credibility of a model at a specific site:

» Model development: The specification of the model structure or model
identification, based on knowledge of the physical, biological and chemical
processes affecting the system. Model development also includes the estimation
of the parameters comprising the model, as well as a description of the external
inputs which drive the system. Model identification and parameter estimation
should be based on prior information obtained from field studies and laboratory
experimentation, independent of the site under consideration.

» Model calibration: The comparison of model results with data collected at the
site under consideration to determine if the model provides reasonable
simulations as initially formulated in Step 1. If model results do not compare
well with observations, parameters and input are calibrated within limits
suggested by similar studies reported in the scientific literature.

» Model Verification: The testing of the calibrated model is tested using a data set
that is independent from that used to develop and calibrate the model.
According to Thomann (1982), it is essential that the range of physical,
chemical, or biological conditions for which the verification is valid be clearly

stated. Thomann (1982) suggests a number of measures that might be
appropriate for quantifying the degree of verification. These include regression
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analyses, relative error, comparison of means using the t-test and the root mean
square error.

« Model post-audit: Examination and verification of the model's predictive
performance after it has been used to develop an environmental control
program.

Thomann's (1982) work represents an attempt to formalize the process for

establishing model credibility. However, he does not describe specific procedures for
incorporating hypothesis testing nor does he deal specifically with the issue of the amount

and quality of data necessary to develop accurate models.

2.2. Application of ironmental i

Models with varying levels of (;omplcxity have been developed for aquatic,
atmospheric, and terrestrial ecosystems. Concern about atmospheric pollution on scales
varying from hundreds of meters to global dimensions has led to the development of a
number of models. The United States Environmental Protection Agency (EPA) uses a
wide variety of diffusion/advection models to control the environmental effects of air
pollutants such as sulfur dioxide, carbon monoxide, nitrogen oxides, and particulate
matter (EPA, 1980a). The models are used to determine the emission rates of air
pollutants such that the appropriate criteria for air quality are satisfied. These emission
rates form the basis for permits issued under the Clean Air Act.

On a global scale, air quality models have been used for planning to avoid large-
scale environmental effects resulting from increased atmospheric CO; (Seidel and Keyes,
1983). Concerns about global impacts on air quality have led to the develoment of
models of atmospheric pollutants. Particular emphasis has been placed on characterizing
the distribution of CO» in the atmosphere because of its effect on the earth's heat balance
(Seidel and Keyes, 1983). Early efforts by Erikkson and Welander (1956), Craig (1957)

and Revelle and Suess (1957) were rather simple models of the exchange of carbon
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between the atmosphere, oceans, and the biosphere. Both Erikkson and Welander
(1955) and Revelle and Suess (1957) concluded that anthropogenic sources of CO; were
not contributing significantly to the levels of CO; in the atmosphere. More recently, the
results of long-term observations by Keeling et al. (1976) have provided data for more
complex models of the CO; interactions between atmosphere, oceans, and land biota
(Bacastow and Keeling, 1973; Bjorkstrom, 1979; Bolin, 1977, Machta, 1978; Oeschger
et al., 1975; Siegenthaler and Oeschger, 1978; Stuiver, 1978; and Woodwell et al., 1978)
As a result of model development and the collection of data, the importance of
anthropogenic sources, including consumption of fossil fuels and clearing of the tropical
rain forests, has become better understood. The EPA (Seidel and Keyes, 1983), for
example, has integrated an eighi—compartment model of the global carbon cycle with an
atmospheric temperature model (Hansen et al.; 1981) to obtain preliminary estimates of
the impacts of fossil fuel consumption on the global heat budget .

Much of the interest in mathematical models of water quality has been motivated
by a concern for the impact of waste discharges on dissolved oxygen and temperature of
both freshwater and marine environments. Mathematical models of dissolved oxygen
have changed little in concept since the work done by Streeter and Phelps (1925). These
concepts have been extended to the dissolved oxygen budgets of more complex systems,
and expanded to include source/sink terms such as sediment oxygen demand,
nitrogenous oxygen demand, algal respiration, and photosynthetic production of oxygen
(O'Connor and DiToro, 1970). A great deal of effort has been devoted to obtaining
consistent estimates of important rate constants ( Zison et al., 1978) The major advances
have been in the development of solution techniques which make possible the application
of dissolved oxygen models to steady-state and time-dependent problems in rivers, lakes

and estuaries (Crim and Lovelace, 1973; Johanson et al., 1976; Roesner et al., 1981).
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Requirements for the analysis of thermal pollution emerged during the late 1950's
as attention focused on the effects of cooling water discharges (Edinger and Geyer, 1965)
and impoundments (Raphael, 1962) on the temperature regimes of rivers, lakes, and
reservoirs. These first temperature models were based on heat-budget techniqucs
(Wunderlich and Gras, 1967) formulated in terms of linear first- or second-order
differential equations and did not require complex solution techniques. The temperature
models have since been extended to include more complex environments. The increase in
complexity has, however, been primarily associated with expanding the methods to
include time-dependence and variability in three spatial dimensions rather than significant
changes in heat transfer ( Isaji and Spaulding, 1981)

Application of the principles of conservation of mass expressed in differential
form have also been used by ecologists (Riley et al., 1949; Riley, 1965; Steele, 1965;
Lotka, 1956) to describe structure and productivity of ecosystems. Temperature and
dissolv_ed oxygen have important roles in biological systems. It is not surprising that
these models of biological systems would be combined with models of temperature,
dissolved oxygen, and nutrients as complex ecosystems models. Chen's (1970)
conceptual model is one of the first examples. Others, similar in concept, are those of
DiToro et al., 1975; DiToro and Matystik, 1980; Baca et al,, 1973; Scavia and Park,
1976; Behrens et al., 1975; and Water Resources Engineers, Inc., 1975). These models
are all linear in terms of the state variables. However, they all incorporate non-linear
growth-limiting functions, generally in the form of Michaelis-Menten kinetics, into the
model structure.

Complex models of terrestrial ecosystems have evolved at a rate similar to those
associated with aquatic ecosystems. As a result of the International Biological Program,

for example, compartmental models were developed for several complex ecosystems
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including the Grassland Biome (Innis, 1975), the Eastern Deciduous Biome (Goodall,
1975), the Tundra Biome (Miller et al., 1975) and the Coniferous Forest Biome
(Overton, 1975).

A difficulty common to all mathematical models is that the amount of on-site or
laboratory data required to verify model structure and estimate model parameters can be
prohibitive. Friedman et al., (1984), for example, report that the federal government
alone spends approximately $50 million per year on water-related mathematical models.
Furthermore, there is no systematic approach for determining the improvement in

accuracy that would result from increasing (or decreasing) the complexity of models.

2 rvey of riate Meth
2.3.1. State Estimation

Assessing environmental change can be considered a problem in state estimation.
According to Gelb (1974), the purpose of state estimation is to obtain an estimate of the
state of a system from knowledge of system dynamics, measurement error statistics, and
a priori information about the initial state of the system. As noted in Chapter 1, there are
three types of estimation problems: (1) filtering, or estimating the state at the time of the
last observation; (2) smoothing, or estimating the state of a system at a time prior to the
last observation; and (3) prediction, or estimating the state of a system after the last
observation.

The work of Kalman (1960) and Kalman and Bucy (1961) provides the
theoretical basis for the most widely used state estimation method, the Kalman filter. The
Kalman filter provides unbiased estimates of the state variables under conditions of
minimum variance. It also provides estimates of the variance of the difference between

the estimated state and the true state. The filter is based on the assumption that the system
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model is linear. Optimal estimation for linear systems has been extended to the more
general nonlinear case by applying first- or second-order Taylor expansions to the
nonlinear equations. The extended Kalman filter (EKF) and the linearized Kalman filter
(Gelb, 1974) are examples of Taylor series approximations used for minimum variance
estimators. While these approximations expand the scope of applications for state
estimation methods, they also introduce some difficulties associated with stability and
reliability of model error estimates (Lettenmaier and Burges, 1975; Bowles and Grenney,
1978)

’ A number of applications of filtering to the design of aquatic monitoring programs
have been reported. Moore (1971) used the EKF to find the optimal space/time
distribution of sampling for a river in which the water quality constituents of interest
included temperature, zooplankton, phytoplankton, nitrate, nitrite, ammonia, phosphate,
and total dissolved solids. Moore et al. (1976) developed monitoring strategies for the
National Eutrophication Survey with an EKF design developed from a simplified
nonlinear eutrophication model. Moore et al.'s (1976) work described hypothetical trade
offs between sample uncertainty and sampling frequency. Dandy and Moore (1979)
applied state estimation methods to the examination of both short-term (standards
violations) and long-term (water quality assessment) problems. Kitanidis et al. (1978)
have also described application of the Kalman filter to detection of standards violations.
Canale et al. (1980) described a Kalman filter method for obtaining an optimal monitoring
strategy for lake eutrophication problems. Although Canale et al. (1980) were able to use
the method in a limited way, they concluded that computational burdens associated with
its implementation were too great for practical applications of the method.

Lettenmaier (1975) formulated the EKF for a steady-state water quality model that

included such constituents as dissolved oxygen (DO) , biological oxygen demand (DO),
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inorganic nitrogen, inorganic phosphorus, temperature, and coliform bacteria. The
purpose of his study was to find the space/time tradeoff for sampling that would
maximize the power of detecting long-term linear trends or step increases. The filter
provided the spatial distribution of the estimation error. After the natural error was added
to the estimation error, the resulting variance was used to estimate the power of detecting
a trend as a function of effective independent sample size. For a fixed number of samples
per year, the optimal sample station locations were obtained using a weighted spatial
average of this power. The weighting factors were included so that the relative
importance of various water quality constituents could be considered.

A number of researchers have used state estimation techniques for estimating
model parameters. Beck and Young (1976) used the EKF to quantify the dynamics of
algal oxygen production in a DO/BOD model of the Cam River. Bowles and Grenney
(1978) and Constable and MacBean (1979) also used the EKF to analyze DO in rivers.
They estimated the rate constants for BOD, DO, and nitrification, as well as the state
variables and variance of the state estimates. Koivo and Phillips (1971; 1972; 1976) used
the EKF to obtain optimal estimates of several parameters in a DO/BOD model of rivers.
Loaiciga and Marino (1985) used an approach based on the Kalman filter to obtain
parameter estimates and develop stochastic controls for reservoir operation.

These studies have provided a great deal of insight into the design of monitoring
programs. Some of them, as discussed above, have had parameter estimation as an
objcciive. However, they have all assumed a known and fixed level of system structure
and complexity. Since the Kalman filter formulation includes both the process and
measurement dynamics, it is, as suggested by Lettenmaier (1975), a logical tool for

examining model complexity, as well as for monitoring design.
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2.3.2. Hypothesis Testing

The value of increasing model complexity can be judged quantitatively by making
hypotheses about models and then testing the validity of the hypotheses. For the analysis
of environmental impact, the Analysis of Variance (ANOVA) has been the classical way
of testing hypotheses (see, e.g., McKenzie et al., 1977) using Neyman-Pearson theory.
The models used for ANOVA are limited to testing for changes in means and the
interactions of means. The Kalman filter makes it possible to apply hypothesis testing to
estimates of states that change with time. Sage and Melsa (1971) have developed a
methodology for using the Kalman filter to assess model validity based on hypothesis
testing. In their method, the Kalman filter is used to describe the time trajectory of the
likelihood function. When the state variables are generated by a Gaussian process the
ratio of the likelihood function for the alternate hypothesis, {1, and that of the null
hypothesis, 3o, provides a sufficient statistic for testing. Sage and Melsa (1971) and
Schweppe (1973) show how the methodology can be used to determine when the
difference between two models of a system can first be detected. Willsky and Jones
(1976) have applied the method with success to certain acrospace problems. Although
problems of dimensionality (Lettenmaier, 1979) impose a limit on the size of the system
to which the Kalman filter can be applied, the method does have promise for applications

to the detection of environmental changes.

2.3.3. Analysis of Complex Systems

One of the primary goals in ecological modeling is to obtain an understanding of
environmental systems. Implicit in this goal is the assumption that increased complexity
necessarily leads to a better model of the system. Increasing complexity makes it

possible to examine the way in which scientific assumptions affect systems dynamics,
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but it is not necessarily of practical benefit for assessing environmental impact. This is
particularly true if all portions of the system are not strongly coupled or if aggregating the
dynamics of certain compartments will provide an appropriate description. Furthermore,
estimation of model parameters becomes more costly and less certain as model
complexity increases. Godfrey (1983), for example, states that parameters can be
estimated for no more than three simply connected compartments, even with noise-free
measurements. Increasing complexity may or may not improve model accuracy, but it
does increase costs. These costs are associated with obtaining correct estimates of model
parameters and determining model structure. Optimal model complexity is a function of
the marginal increase in accuracy and the marginal cost of system identification and
parameter estimation.

For complex electrical, mechanical, economic, and social systems, a number of
methods for reducing complexity have been developed. Jamshidi (1983) characterizes
time-domain methods as being either aggregation or perturbation methods. For linear
systcms; many of the aggregation methods are based on knowledge of the systems
characteristics. These characteristics can be described in terms of the eigenvalues of the

system. For a system with n independent eigenvalues, described by the equation:
Ax=X

where,
A = n x n coefficient matrix
X =nx 1 vector of states

X =nx 1 vector of the time derivatives of the states
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the system response will be a linear combination of the eigenvectors associated with each
of the eigenvalues. For some driving forces, some number m<n of the eigenvectors may
be the dominant contributors to the system response. Davison's (1966) has developed a
method for obtaining solutions in which dominant modes are retained. The ratio of the
responses of the retained modes is the same in the reduced system as in the complete
system. Aoki (1968) has also shown that methods such as Davison's (1966) are a forms
of aggregation. Litz (1982) has expanded Davison's method by developing a method
which minimizes the error resulting from neglecting the nondominant modes. These
methods require initial knowledge of the eigenvalues of the system, which can be difficult
to determine for a large, complex system. The aggregation methods have been applied to
a number of economic problems and the dominant modes methods have been used in the
application to mechanical and electrical systems. Although there has been some interest
in the effect of aggregation on ecosystem analysis (e.g., O'Neill and Rust, 1979), the
techniques described in this section have apparently not been previously applied to
environmental systems. .

Perturbation methods can be applied to both linear and nonlinear systems models
when the system can be separated into parts that respond at different time scales. In the
simplest case, such a system has two modes, called a fast mode and slow mode,
respectively. The fast mode responds at a time scale of tf, while the slow mode responds
at a time scale tg that is much greater than tg (ts>>tf). If the slow part of the system is only
weakly connected to the fast part then the two systems can be uncoupled and solved,
approximately, as separate systems (Milne, 1965). If the fast and slow modes are not
weakly coupled then the singular perturbation method can be applied (Kokotovic et al.,
1976). For small times, t = tg, the slow modes can be considered to be at their initial

values and only the fast modes are included in the solution. For large times, t>>tf, the
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fast modes can be considered to have reached steady-state values and only the slow
modes are considered. Mahmoud (1982) has extended the perturbation method to allow
separation of a complex system into n modes and discusses the specific case when n=3
(slow, medium, and fast modes).

DeCaprariis (1984) has used perturbation analysis to separate the fast and slow
variables in a lake ecosystem model. He then used stochastic analysis to describe the
autocorrelation function of the fast variables, transformed the problem into the frequency
domain, and concluded from an examination of the functional form of the variance
spectrum that the need for a complex model increased as the eutrophic level of the system
increased. De Caprariis' method is not quantitative but suggests that examining the
frequency domain is another way in which to approach the question of model complexity.

The concepts described in the papers above are appropriate for the analysis of
complex systems and have been applied to electrical, mechanical, economic, and
ecological systems. Another approach that ecologists have taken is to characterize
ecosystems structure in terms of qualities such as resilience and stability
(Hannon, 1973; Finn, 1976; Webster et al., 1975; Carney et al., 1981; Turner and
DeAngelis, 1982). These techniques are generally appropriate for linear systems ohly.
System eigenvalues are the basis for the way in which indices are determined and,
therefore, can be related to the order reduction methods discussed above.

The techniques for aggregation will be applied to the analysis of the complexity of
linear systéms in the study of the global carbon cycle (Chapter 4). The methods for
nonlinear systems are not as well developed as the ones for linear systems. Therefore,
the analysis of complexity for the nonlinear lake ecosystems models will rely on ad hoc

techniques.
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2.3.4. Mont lo Meth

The primary emphasis in this study is on state estimation and hypothesis testing.
However, observations are needed to test and demonstrate the methods. Long-term,
comprehensive data sets for ecosystems are rare. The data that are available are often
archived in a form not easily adapted to use by those not involved in the data collection.
The choice in this study has been, therefore, to rely on observations generated by Monte
Carlo simulations. By doing so, the quality of data and the frequency of sampling can be
controlled.

The method has proven useful in hydrology (Salas et al., 1980), and there are
numerous examples of the application of Monte Carlo methods to ecosystems analysis.
Ward and Vanderholm (1973) used Monte Carlo simulation in conjunction with a
dispersion model for conservative constituents. They used the simulated observations to
develop cost effective monitoring designs for detecting spills and for detecting long-term
water quality trends. Heidtke and Armstrong (1979) used data from Monte Carlo
simulations to design a monitoring program for detecting violations of water quality
standards for chlorides.

In another kind of application, Fedra (1980; 1982) and Fedra et al. (1981)
evaluated model accuracy and uncertainty in a model of lake eutrophication. The results
were used to determine the range of parameter values that satisfied a set of constraints
developed from actual observations. Homberger and Spear (1980), Hornberger (1980)
and Séavia et al. (1981) used simulation methods to describe uncertainty in the estimates
of DO, BOD, DO productivity, nutrient balance, and algal population dynamics. Gardner
et al. (1980) examined six different formulations of a simple predator-prey ecosystem

with Monte Carlo methods. Tiwari and Hobbie (1976) and Tiwari et al. (1978) examined
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the effect that - randomness in initial conditions, model parameters and forcing functions

had on ecosystems models.

2.4, Summa

As the need for quantitative description of ecosystems increases, there is a
corresponding increase in the need for methods of testing model validity of these models
and for assessing the amount of information obtained from such models. A variety of
techniques have been developed that are appropriate for these purposeé, most of which
have been applied to electrical or mechanical systems. The literature review, however,

has revealed no comprehensive methods which have been applied to ecosystem models.






CHAPTER 3
DESCRIPTION OF METHODOLOGY

State estimation and hypothesis testing are the methods which will be used to
characterize the worth of data and value of developing models of the ecosystem. This
chapter outlines the way in which these methods can be applied to testing model validity

and making environmental assessments.

The methods described in this work are developed within the framework of state-
space models of environmental systems. The use of state-space models gives the method
a considerable generality because state-space models have been applied to a wide variety
of environmental analysis. Systems with state-space structure are those for which there
is a relationship between the input and output of a system (Fig. 3.1; Lewis, 1977). For

linear systems this can be described (after Schv.veppe, 1973) as:

Discrete time
Process model:

x((n+1)A)=®(nA) x(nA) + AT(nA) w(nA) + AB(nA) u(nd) 3.1

Measurement model:

z(nA) = H(nA) x(nA) + y(nA) (3.2)
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ntin im

Process model:

dg;x(t) = F® x® + G(©) %) + BO) u(® (3.3)
Measurement model:

2(t) = H® X + ¥ (3.4)
where

X = the vector of the true state of the system

u = a known input vector

w = the random input vector for the system, with a
zero mean and covariance, Q(n)

y = the random input vector error for the measurement model,
with a zero mean and covariance, R(n)

Z = the vector of outputs
t =time
A = time increment (in the work that follows, A = 1, without loss of generality)
n = number of time increments
- @, T, A = the system coefficient matrices in discrete time
F, G, B = the system coefficient matrices in continuous time

H = the measurement system.coefficient matrix

For nonlinear systems, the corresponding models are given by
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x(n+1) = @[x(n),w(n),u(n),n)] (3.5)

z(n) = H[x(n),n] + y(n) (3.6)

for discrete time, and

8O _ prxe.z0M00 37
20 = H [x(0), ¥, 1 (3:8)

for continuous time. F and H are known nonlinear functions.

Given these mathematical descriptors, consider a specific interval of time, Ty, for
a system with p state variables, X, q output variables, z, and r forcing functions, u. The
state variables span the state space, VP, the output variables span the output space, V4,
and the forcing functions span the control or input space, V1. The matrices, F, G, F,
and G are of dimension q x q, the dimension of B is q x r, and the dimension of H is q x
p. The vector w is of dimension q x 1 and the dimension of the vector yis px 1. The
concept of a state implies that when the value of the state variables in the space, VP- is
known at time, tg (tge Ty), the response of the system for t € Ty >tg can be found for any
given input in the space, VI. The matrix H transforms X into Z in the absence of a
random forcing vector, ¥.

The state-space structure formulated above is quite general and has been applied
to a wide variety of electrical, mechanical, economic and social systems, as well as
ecosystems analysis. The analysis will be made specific to the problem of interest,

namely state estimation, by choosing X as the vector of environmental state variables, Z
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as the vector ofmeasurements of the state variables, w as the vector of random errors in
the process model, and y as the vector of errors associated with the measurements. In
general, observations are made at discrete intervals in time. Therefore, for most
purposes, it is convenient to formulate the system equations in terms of discrete time. In
the discussion that follows only equations (3.1) through (3.2) and (3.4) through (3.6) are

necessary for the analysis.

The purpose of environmental assessment is to determine if there is a change in
the environmental system of interest. Given that there is a change, it is generally
important to determine the cause of the change. This can be accomplished by stating the
problem in terms of various hypotheses about system behavior, then establishing test
procedures for deciding which hypothesis is correct. The test procedure is based on a
decision variable developed from the system. Within the context of hypothesis testing,
this decision variable is generally a test statistic. Fdr the jth hypothesis, the test statistic
has a particular probability distribution pj when the hypothesis H,; is true (see Figure
3.2). Observations of the test statistic are used to determine the likelihood that one of the
hypotheses is true, that is, it is producing the observations.

In general there can be M hypotheses. However, in this study, as in most
applications of hypothesis testing, the testing will be of a binary nature, with a null
hypothesis, Hy, and an alternative hypothesis, H, The performance of the test can then
be characterized by the probability of making one of two kinds of error, commonly
characterized as Type I and Type Il error. Type I error is the probability of rejecting the
null hypothesis, Ho, when it is, in fact, true. Type Il error is the probability of

accepting the null hypothesis, 31, when it is false. The Type I error probability, o, has
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also been called the probability of a false alarm (Sage and Melsa, 1971) or producer's
risk (Larsen and Marx, 1981). Type II error probability, B, has been called the
probability of a miss, or consumer's risk. The power of a test, 1 - B, is the probability of
rejecting the null hypothesis, Ho, when the alternative hypothesis, H,, is true.

The hypothesis testing is done by constructing a set of rules (Ghash, 1970) which
use the data to accept or reject the validity of the jth hypothesis, 3;. The rules can be
formulated in terms of two different types of sample designs. One is a fixed sample
design in which the hypothesis test is performed on a fixed number of observations. The
other, which is of interest here, is that of of sequential design.

Given a fixed sample design with a sample size N, the standard way of
formulating the problem is to develop a test for Ho against 3{; which minimizes the
probability of Type II error, B, when the probability of Type I error, ., is less than or
equal to some preassigned value. Traditional applications of hypothesis testing (e.g.,
McKenzie et al., 1977; Thomas et al., 1978), such as ANOVA, are formulated in this
way. Testing of this kind has formed the basis of most monitoring program designs for
purposes of assessing environmental impact. In these cases the hypotheses are stated in
terms of conditions before and after an expected change. This approach is data intensive
and usually site-specific. In addition, the application of classical parametric methods
using fixed sample designs, such as ANOVA , can lead to incorrect conclusions if all the
statistical assumptions are not met (Millard et al, 1985).

In many cases, however, more efficient sample designs can be obtained by using
sequential analysis as proposed by Wald (1947) and further developed by Van Trees
(1959) and Sage and Melsa, (1971). The sequential test is formulated by dividing the
sample space into three mutually exclusive regions (see Figure 3.3), R%, R1and R,

where each R spans an m-dimensional space of observations. The boundaries between
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the regions are determined by the thresholds To and T1.-An ob;ervation of the system is
made at time, K = 1 and the decision variable is computed. If the decision variable for
the first observation is in R9, the hypothesis test Hy is accepted. If it lies in R1, the
hypothesis Hy is rejected (H,; accepted). If the decision for the first observation is in R,
a second sample is taken (K = 2) and the process is repeated. The process continues

(K =3,...,N) until either H or H, is accepted.

The two basic quantities required in hypothesis testing are a decision function and
decision rule (Schweppe, 1973). The decision function converts the observations into
one or more numbers (statistics) and the decision rule provides a structure for making a
decision based the output from thc decision function. Wald (1947) defined the decision
function for sequential testing in terms of the likelihood function. Given a set of N
observations, z, the likelihood function, L;, is the joint probability of

Z1, Z2,-.., ZN, given that the j hypothesis is true. It can be expressed as

N
LJ. =pz) p(z) p(z). .. P(z) = tl;{pj(zt) (3.9)

where pj(zN) = pj(ZNII{j) is the probability density function of the random vector IN,j
given the jih hypothesis

H:z =z (3.10)

The likelihood function can be developed for multiple hypotheses for which sequential
tests can be performed. In this work, however, only binary tests will be considered
(=0,1). The decision function proposed by Wald (1947) is the ratio of the the likelihood

functions, L = L1/Lo. The decision rule requires two thresholds, an upper threshold, T,
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for deciding when to choose the alternate hypothesis, #{,, and a lower threshold, To, for
deciding when to choose the null hypothesis, ${o. Based on this formulation of the

decision function and decision rule, the process can be stated as:

« Take a sample at k=K and compute the likelihood ratio, L.
« Accept Ho if L < To and terminate sampling,
« Accept H1 if L > Ty and terminate sampling.

« Increment K and return to Step 1 if To<L <T1.

The thresholds, To and T1, can be related to the Type I error, ., and the Type I
error, B, by the following argument. Consider first the case when a sample is taken at
time k=K and results in the condition that the likelihood ratio, L, is equal to the threshold,
T1. That is

Pz 3 )

L= _(%_N__J_ =T, (3.11)
Pz )

The result of integrating over the decision region, D1 for the alternate hypothesis,

${,, as shown in Figure 3.4, is

[ty =T, [pagiy (3.12)
D, D,

The term on the left side of the equation is the power of the test for the
conventional approach to hypothesis testing, 1-B, while the term under the integral on

the righthand side is the Type I error, . The threshold, Th, is then
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(b)

Decision Region,D ———l

Figure 3.4. Decision regions, D, for (a) sequential test results in acceptance
of !-{.0, and (b) sequential test results in acceptance of H,.
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g _1-B - (3.13)

Similarly, if a sample is taken at k=K, and the likelihood ratio is equal to the

lower threshold, To, then

p(zB3L))
L=_Ei_L=TO (3.14)
p(z,NIH,O)
By integrating over the decision region, Do, we obtain
[oiaygst,) dz =7, foaygtty o (3.15)
D, Dy,
It can be seen that
T =B (3.16)

0 {1-q

In actual practice, the log likelihood function, &j@), defined as the natural
logarithm of the likelihood function, Lj, is more commonly used. Transforming the
likelihood function by taking the logarithm does not affect the usefulness of the statistic
and makes the form of the function simpler by replacing products with sums. This is
particularly useful when the distribution of zx is Gaussian, as will be the case for the
analyses conducted in this study. Assuming a sample is taken at time k=N, the decision

rules using the log likelihood functions are as shown in Table 3.1.



Table 3.1 Decision rules for sequential hypothesis tests

Status of Decision Variable Decision Rule
E1(N) - E(N) < 1n T, Choose Hg
E1(N) - EoMN) >1n T Choose H i
In To< §1(N) - Eo(N) <In Ty Continue sampling

3.3. State Estimation Applied to Sequential Testing
For dynamic systems, estimation theory, using the state space formulation of

equations (3.1) through (3.8), provides a formalism for combining the proccSé and
measurement systems to obtain an optimal estimate of the true state for linear systems. As
defined earlier, the estimate obtained at the same time as the last measurement is made is
called filtering. A widely used filtering technique for estimating the state of linear
systems is the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961), as previously
discussed. The Kalman filter gives optimal estimates that are unbiased and minimize the
mean squared estimation error, where the estimation error is the difference between the
true state and the estimated state.

" For the purposes of sequential testing, a very useful application of the Kalman
filter is in calculating the log likelihood function, &;, when the systems are formulated in
terms of state-space models. For linear state-space models (egs. (3.1) and (3.2)), the log

likelihood function, &;, is given (according to Schweppe, 1973) by
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EMN) = - i 8 (n)[H () (aln-DH (n) + R (m)] '8,
j 2 2 & WS j g

where

§j(n+1) = z(n+1) - Hj(n+l)(l>j(n)xj(nln) - mj(n+l)

x(nin) = ®(n-1)x(n-1In-1) + K(n)(z(n) - H(n)®(n-1)x(n-1In-1)

E (a+1in) = B(n) Z(aln) o) + [(n) Q(n) T(n)"

xX(nln) = the updated estimate of the state of the system at the nth time step

x(0l0) = the initial estimate of the state of the system

K(n) = the Kalman gain matrix at the nth time step

(3.17)

(3.18)

(3.19)

(3.20)

Zj(nin) = (I - K(n)H(n)]Zj(nln-1)], the updated error covariance matrix at the nth

time step

%;(010) = the initial error covariance

m;j(n) = the vector of the deterministic (mean) values of the n system states at the

nth time step.

For the nonlinear case (egs. (3.5) and (3.6)), the most commonly used approach

is to linearize the nonlinear problem about some nominal trajectory, and then solve itin

the same way as the linear problem described above (Schweppe, 1973; Sage and Melsa,

1971; and Gelb, 1974). The nominal trajectory, Xnom(n+1), n=1,..N,is a function of

the previous state, Xpom(n), and the time, n. The evolution of the trajectory is described

by
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Xnom(n+1) = ®[Xnom(n),n] | (3.21)

eq. (3.18) through (3.20) become, respectively,

§j(n+1) =z(n+1) - Hj(n+1)Qll][xnom(n),n]xj(nln) -X __(n+1) (3.22)

x(nin) = x(nin+1) + K(n)[z(n) - HX,,,(1),n]
1
- Higy @] x0ln-1) - Zorm()] (3.23)

X(nln) = x(nin-1) + K(n)[z(n) - H[X;,m(n).n}
- H[xnom(n),n](l)[z(nh-l) - XomP] (3.24)

where the elements of the matrices, HN[Xnom(n),(n)] and @ [Xnom(n),(n)], are the
first-order terms in the Taylor series expansion of H(x(n),n] and F[x(n),(n)],

respectively, as follows:

JHX,n) |

1)
H [X,om(m)n] = 9x X(0)=X, (1) = Jx(H) (3.25)

_ 0®(x,n)

&Pix, . (n)0] = 55 =1 (D) (3.26)

X(M)=Xnom(M)

Jx(H) is the Jacobian matrix of H with respect to the vector, X, and Jx(®) is the Jacobian
matrix of @ with respect to the vector, X.
Once the nominal trajectory, Xnom(n), has been chosen, the analysis can proceed

exactly as in the case for the linear state-space models. There are a number of
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possibilities for the choice of the nominal trajectory. The case of the extended Kalman
filter (EKF) results when the nominal trajectory for the nth time step is obtained from the
state estimate for that time step prior to updating, X(nin). From a theoretical viewpoint
this is most sound approach since, as Gelb (1974) states, the EKF reduces to the
conventional Kalman filter when the system dynamics and measurements are linear. It
does, however, have some drawbacks, particularly with respect to the computational
burden imposed by making the filter gain, K(n), a function of the state estimate, X(nin).
This means that the gain must be computed every time the filter is used to obtain an
estimate of the state. When the gain is independent of the state estimate, the gain can be
computed beforehand and does not change so long as the nominal trajectory does not
change. This alternate approach, in which the nominal trajectory is specified prior to

processing the measurement data, is called the linearized Kalman filter.

3.4. Application to Environmental Assessment

For illustrative purposes consider the environmental system, E, which
experiences some development. Furthermore, assume that the state of the system can be
described by a vector of state variables, X . As shown in Figure 3.5, this system is
driven by the forcing function, Bu, comprised of a natural component acting up until the
time t=tg after which the inputs from the development are added to the natural forcing
functions. The frue time history of the state variables before (Eo) and after (E1) is shown
in Figure 3.6. The objective of environmental assessment is to determine whether or not
Eo is different from E1. Within the framework of hypothesis testing, this could be stated

in terms of the following two hypotheses:
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Environmental System,

E, with State Variables,
).

ZBIJ Uj I

ty

Figure 3.5. Environmental; s‘)./stem, E, with inputs By before
development (t<t d) and after development (t>t,).
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${o: The states of the environmental system, Eo, before development are the same
as the states, E1, after development,

${,. The states of the environmental system, Eo, before development are different
from the states, E1, after development,

Estimates of the true values of the state variables, X, of the environmental system
can be obtained by making measurements z = HX + y and by estimating the state from
the systems equation, X = FX + Bu+ Gw. Combining the estimates obtained from

measurements and the systems equations, the hypotheses can be stated as
Ho: zo=Hxo+¥
Hizmm=Hx+y

where

X0 =Dxo +Buo+I'w

x; =dx; +Bu; +I'w
and

uo = The forcing functions comprised of only the natural component both before
and after time, tq, when development begins

- W = The forcing functions comprised of the natural component before time, t4,
and including the effects of development after the time development begins

The null hypothesis, Ho, is that the observations, Zo, of the system are consistent
with the statement that the state of the environmental system both before and after
development is determined by natural forcing functions only. The alternative hypothesis,

#,, is that the observations, Z;, are consistent with the statement that the state of system
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after development is determined by the natural forces plus the additional forcing functions
result from the development.

The sampling program (z = HX + y) and the systems equation (X = ®X + Bu +
I'w) are the fundamental components of hypothesis testing formulated in the manner
described above. Because of this, they are the keys to deciding how much in the way of
resources should be devoted to either or both of these components. The kinds of

questions which are appropriate in this regard are:

« Which state variables should be sampled (specification of H)?
« How many samples should be taken?
« How accurate should the measurements be (specification of R)?

« How much effort should be given to model identification, parameter estimation,
and model calibration (specification of ® and Q)?

» Is aggregation of state variables appropriate?

In general, these five questions represent a large number of degrees of freedom.
Recognizing that answering these questions usually means a large and complex problem,
solutions (or partial solutions) can be obtained only if there exist criteria for comparing
various strategies for sampling and model development. One appropriate criterion for
judging the effectiveness of a sample design and model development program is the time
period after onset of the loading required for the model to detect the difference between
the two hypotheses, Ho and H1, given a specified tolerance for Type I error, «, and
Type I error, B,

Consider the time trajectories of the state variables, X(t) in the ecosystem, E, of
Figure 3.6, which have the true trajectory, Xo(t), under conditions of no man-induced

environmental impacts, Eg. They have true trajectory, X1(t), for some known level of
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ty

Figure 3.6. Trajectory of state variables, X, in the environmental system,

E, before (i<t y) and after (>tyan interventions occurs. The
observations, z(n), are also shown (& ).
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input occurring after time, tg, under the conditions, E; .  Actual measurements of the
constituents follow the trajectory, z(t) = [z1(t), z2(t),...zn(t)]. If there are state-space
systems equation of the form of equations (3.1) and (3.2) or equations (3.5) and (3.6)
for the environmental system, E, then the log likelihood function, &;j, can be computed
for the null hypothesis, Hg, and the alternate hypothesis, H1, using equation (3.17) in
conjunction with equations (3.18) through (3.20), if the model is linear, or equations
(3.22) through (3.24) if the model is nonlinear. The hypothetical trajectories of the log
likelihood functions, &g and &, are shown in Figure 3.7. The log likelihood function
was defined as the decision variable for the sequential test. Therefore, if at time step, k =
N, a sample is taken and the log likelihood functions, £ and &1, are computed, the
decision rule can be applied to determine whether to accept Ho, accept 1, or continue
sampling. From the previous discusssion, the null hypothesis, Ho, is accepted if

E M) -EMN)<T, (3.27)

The alternate hypothesis, 31, is accepted if

E M) -EMN)>T (3.28)

If the log likelihood ratio does not satisfy the criteria given by equations (3.27)
and (3.28), no decision is made and another sample is taken. Sampling continues until a
decision is reached. Wald (1947) and Sage and Melsa (1971) show that the sequential
test procedure will always end before an infinite number of observations have made. The
log likelihood functions, &;, are random variables and will vary from one realization to

the next. The average number of samples required for a decision can be computed,
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Time, t

Figure 3.7. Hypothetical trajectory of decison variables 13
after (1>t d) development.

and § before (t<t,) and
0 1
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however. The more sensitive the test, the fewer number of samples will be required to
reach a decision. The average number of samples required to reach a decision then
provides a criterion for assessing the value of a given model/monitoring strategy. For
example, given a fixed sampling frequency, H(n) and measurement noise variance, R(n),
the average number of samples required to detect a change can be compared for models of
various levels of complexity. In a corresponding way, the worth of data for a given
level of model complexity can be determined by evaluating the way in which the time
required to detect a change varies with change in the sampling frequency, H(n), and the

measurement noise variance, R(n).

.S. Application of Hypothesis Testing to Model Validi
The application of hypothesis testing to environmental assessment has been
described above. Application of the method using models with state-space structure
contains the implicit assumption that the models used provide valid representations of the
state-space. When the validity of such models has not been established, the likelihood
function generated by the Kalman filter (eq. (3.17)) can also be used as decision variable

to test the following hypotheses:

#o: The model, z(n) = H(n)X(n) + ¥(n), gives state estimates that correctly
describe the environmental system being assessed. That is, the model is
correct.

${,: The model, z(n) = H(n)x(n) + ¥(n), gives state estimates that do no correctly
describe the environmental system being assessed. That is, the model is
incorrect.
In the statement of these hypotheses

z(n) = the observed state vector at the nth time step

H(n) = the observation matrix at the nth time step
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y(n) = the measurement noise vector at the nth time step

x(n) = ®[x(n-1),w(n-1),u(n-1),(n-1)], the true state vector for the

system at the nth time step, which may be described by either
linear or nonlinear model

When the observed state vector for the jlh hypothesis, z(n) = zj(n), has a normal
distribution, N(m;j,X;) with mean mj and variance-Z;, then it is evident from

equation (3.17), that the log likelihood function, &j(N), can be written as

28 = —[z.-m.]T ! z-m] (3.29)
) h} J ] ] J

It is also evident then that the log likelihood function, &j(N ), is the sum of the squares of
K normally distributed random variables, where K is the product of the number of

observations, N, and the number of observed state variables, L, that is, K= NL.
Furthermore, 2&;(N), is a %2 random variable with K = NL degrees of freedom, a mean
of K, and variance of 2K (Schweppe, 1973).

With this knowledge, the power of the test, 1-B, the probability of rejecting the
null hypothesis, Ho, when it is false, can be determined from the fraction of times that
the log likelihood function §(N), falls outside the critical region. In this first stage of
testing it possible to decide, after an acceptable level of P has been specified, whether or

not a given model is correct.



CHAPTER 4

LINEAR MODELS: AN ASSESSMENT
OF MODEL COMPLEXITY AND DATA WORTH
IN THE GLOBAL CARBON CYCLE!

4.1. Background

The potential impact of carbon dioxide (CO») from anthropogenic inputs on the
Earth's heat budget has been the subject of scientific interest for over a century (see, €.g.,
‘ Tyndall, 1861). CO; is a major contributor to the greenhouse effect and therefore plays
an important part in the global heat budget. Plass (1956) discussed many of the aspects
of the carbon dioxide theory of climatic change, and as discussed in the Chapter 2, there
have been a number of subsequent efforts to develop models of the flow of carbon on a
global scale. The development of these theories also provided the impetus for testing
these hypotheses with observations. In 1959, Keeling et al. (1976) began a program of
measurements of atmospheric CO» at the observatory at Mauna Loa, Hawaii. These data
have provided the documentation of the increase in atmospheric CO2. Chamey (1979)
has concluded that increasing atmospheric COz to twice its pre-1860 value could lead to
increases in global temperatures of 3.0+ 1.5 °C. Seidel and Keyes (1983) have
attributed the increase to the combustion of fossil fuels, although this conclusion has been
debated. Concemn regarding the consequences of global warming has prompted the EPA
to formulate strategies limiting increases of atmospheric CO2. Relevant knowledge has
been obtained both from the knowledge based on mathematical models of global carbon
and from direct observations of carbon levels in the oceans, atmospheric and land.

However, there is uncertainty in these estimates. A critical need identified by the EPA in

1 This chapter is substantially the same as a refereed scientific journal publication (see Yearsley and
Lettenmaier, 1987)
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its analysis was the reduction of uncertainties associated with the outcomes resulting from
implementation of the strategies. The objective of this chapter is to apply the methods of
Chapter 3 to show how state estimation and hypothesis testing can be used to assess

model complexity and data worth for linear models of the global carbon cycle.

4.2. Scope of Analysis

One of the major uncertainties in the global carbon budget is the quantification of
the sources of atmospheric input. Keeling (1973) attributed the increases in atmospheric
CO», to the combustion of fossil fuels. Stuiver (1978), however, estimated that two-
thirds of the CO5 added to the atmosphere during the period 1850-1950 resulted from the
release of terrestrial biospheric carbon associated with clearing of forests, while only one-
third originated from the combustion fossil fuel. Stuiver has calculated that the net global
biospheric flux due to sources such as deforestation and the burning of dead organic
materials was 1.2x109 metric tons (1.2x1015 grams) of carbon per year during this
period. Estimates by Woodwell et al. (1978) liave shown an even higher percentage of
atmospheric carbon coming from biospheric sources. By contrast, Machta (1973) and
Oeschger et al. (1975) treated the biota as a sink for atmospheric CO2 rather than a
source.

There has already been considerable effort devoted to the measurement of carbon
fluxes and to the development of models that simulate the time-dependent fluxes between
compartments (Bolin, 1981). The use of data for model identification and parameter
estimation has generally been done in an ad-hoc way, however, and little effort has been
devoted to quantifying the sources of uncertainty. Although recommendations for

additional model development and data collection have beem made (Bolin et al., 1979;
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Bolin, 1981), they cannot be evaluated without determining which elements of the
recommended program have highest priority..

The demonstration of the methodology in this chapter focuses onlinear models for
which it is assumed the model parameters are known. It is applied to testing hypotheses
regarding the validity of the linear models of the global carbon cycle and then applied to
testing the ability of each model to detect environmental changes as a function of
measurement error and loading input.

The test of model validity can be stated in terms of the following hypotheses:

#H: the linear model z(n) = H(n)x(n) + v(n) is no different from the nonlinear
reference system model describing the system behavior, i.e., the linear model
is valid.

#1: the linear model z(n) = H(n)x(n) + v(n) is different from the nonlinear
reference system model describing the system behavior.

As in Chapter 3, z(n) is the observed state vector at the nth time step, H(n) is the
observation matrix at the nth time step, y(n) the measurement noise vector at the nth time
step, X(n)=®(n)x(n-1) the true state vector of the system at the nth time step, and ®(n) is
the state transition matrix at the nth time step.

The second type of hypothesis testing evaluates the level of model complexity and
the value of data needed to assess environmental impact. For purposes of demonstrating
the methodology it is worthwhile to consider the hypothesis that the terrestrial biota are a
source or sink for atmospheric CO;_ The sources of fossil fuel combustion have been
well documented (Keeling, 1973), but better data and improved models are needed to
adequately test the hypothesis. regarding terrestrial biota (Bolin, 1981; Stuiver, 1978).

Tests to examine this issue can be stated in terms of the following hypotheses:
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Hy: The model zo(n) = H(n)xo(n) + y(n) is true.
#H1: The model z1(n) = H(n)X1(n) + y(n) is true.

where xo(n) is the model with terrestrial biota making no net contribution to the global
carbon cycle, and X1(n) is the model with terrestrial biota making a known net
contribution to the global carbon cycle.

The approach taken is to generate synthetic data with a reference systemn model
derived from knowledge of global carbon dynamics. The reference system model is a
nonlinear model, based on a construct described by Bjorkstrom (1979) and incorporating
current concepts about the structure of the carbon cycle and the rates at which carbon is
transferred from one compartment to ahother. In applying the Bjorkstrom model, it was
assumed that the model was perfect (no parameter error), and the only issues are the
appropriate levels of model development (complexity) and data collection. Given this
assumption, the sole source of uncertainty in the generated data, is the measurement
error. Only crude estimates of the measurement error associated with each of the various
compartments are available. Therefore, a number of different levels of measurement
error, believed to be less than actual in the case of some compartments, are used in the

Monte Carlo simulations.

4 1 of

- The reference system model of the global carbon cycle (Bjorkstrom, 1979) is
comprised of 15 compartments, including compartments for living terrestrial biota, soil,
atmosphere, warm and cold ocean surface layers, intermediate-depth ocean layers, and
deep ocean layers (see Figure 4.1). Seasonal fluctuations in atmospheric carbon, that

have been observed by Keeling et al. (1976), are not included in this model. The
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dynamics of the global carbon cycle are described in detail in Appendix I and the model
parameters shown in Table 4.1.

The transfer of carbon between most compartments is based on linear kinetics.
The buffering action in the surface seawater associated with the chemical equilibrium of
CO,, bicarbonate (HCO3), and carbonate (CO3) was modeled with the nonlinear kinetics
described by Bacastow and Keeling (1973). The rate of transfer from the atmosphere to
the terrestrial biota is also modeled by nonlinear kinetics similar to those used by
Bacastow and Keeling (1973). Initially, the model was used to simulate the dynamics of
atmospheric carbon from 1860 to 1971 using fossil fuel consumption rates estimated by
Keeling (1973). The rate of transfer of carbon from the terrestrial biota to the atmosphere
was assumed to be a constant over the entire period from 1860 to 1970. It was assumed
that the total contribution of carbon from terrestrial biota during this period was 70x10°
metric tons (70 gigatons) as estimated by Bolin (1977). Estimates of the pre-industrial
level of average atmospheric CO2 vary from 260 to 300 ppm (Stuiver, 1978).

.For this study, pre-industrial steady-state value of atmospheric CO» of 285 ppm
was used to determine the equilibrium conditions for all compartments are given in Table
4.1. The simulated levels of atmospheric CO2, using the Bjorkstrom model with this
parameter set, compared well with the observations at Mauna Loa, Hawaii, reported by
Keeling et al. (1976) (see Figure 4.2) Keeling et al. (1976) describe observations at the
South Pole that have similar long-term trends. However, the agreement between
simulated and observed atmospheric CO2 should not be considered a verification of the
Bjorkstrom model. This is because the model constructs and corresponding parameter
set are not unique. Other models of the global carbon cycle have been proposed that also

show good agreement between simulated and observed levels of atmospheric carbon



Table 4.1 Parameter values used in the nonlinear model of the global carbon
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cycle (equations 1.1-15 in Appendix I)

Vari- Description Value
able

kac Transfer rate from atmosphere to cold 6.79x10-2 year!
ocean surface

kea  Transfer rate from atmosphere to warm  1.82x10! year!
ocean surface

kwe  Transfer rate from warm ocean to cold 8.00x10-2 year-1
ocean water

ke1 Transfer rate from cold ocean surface 8.33x10-2 year'!
to ocean layer N7 .

kea  Transfer rate from cold ocean surface 2.78x10-3year!
to ocean layer N2

kic  Transfer rate from ocean layer N1 to 4.84x103year!
to cold ocean surface

koc  Transfer rate from ocean layer N to 3.38x10-3 year-!
to cold ocean surface

kaw  Transfer from atmosphere to warm 1.09x10-1 year-!
ocean surface )

kwa  Transfer from warm ocean to atmosphere 1.77x1071 year-!

kjw  Transfer rate from ocean layer N to 4.65x10-3 year!
to warm ocean surface

kpa  Transfer rate from terrestrial biota 3.01x10-2 year'!
to atmosphere

kab  Transfer rate from atmosphere to 6.02x10-2 year1
terrestrial biota

ksa  Transfer rate from soil to atmosphere 1.25x10-2 year-!

kps  Transfer rate from terrestrial biota to soil ~ 3.01x10-2 year'!

ka1 Transfer rate from ocean layer Nato 4.86x10-3 year!
ocean layer N)

k3o  Transfer rate from ocean layer N3 to 4.64x10-3 year-!
ocean layer No

k43  Transfer rate from ocean layer N4 to 3.74x10-3 year!

ocean layer N3
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carbon cycle (equations 1.1-15 in Appendix I)

Vari- Description Value

able :

kss  Transfer rate from ocean layer N5 to 3.12x10-3 year!
ocean layer Ng

kes  Transfer rate from ocean layer Ng to 2.47x10-3 year!
ocean layer N5 o

k76  Transfer rate from ocean layer N7 to 2.02x10-3 year!
ocean layer Ng

kg7  Transfer rate from ocean layer Ng to 1.42x10-3 year!
ocean layer N7

kog  Transfer rate from ocean layer Ng to 1.15x10-3 year!
ocean layer Ng

k109 Transfer rate from ocean layer Nog to 6.41x104 year!
ocean layer Njo
Factor determining increase in 0.25
photosynthetic rate

Ny  Equilibrium value for terrestrial biota 830x1015 g C

Nio Equilibrium value for ocean layer 1 1600x1015 g C

N9  Equilibrium value for ocean layer 9 2100x1015 g C

Ng  Equilibrium value for ocean layer 8 3200x1015 g C

N7  Equilibrium value for ocean layer 7 3300x1015 g C

Ng  Equilibrium value for ocean layer 6 3700x1015 g C

Ns  Equilibrium value for ocean layer 5 3900x1015 g C

N4  Equilibrium value for ocean layer 4 4000x1015 g C

N3  Equilibrium value for ocean layer 3 4200x1015 g C

N,  Equilibrium value for ocean layer 2 4000x1015 g C

Nj  Equilibrium value for ocean layer 1 4200x10158C

Ng Equjilibrium value for soil 2000x1015 g C

N,  Equilibrium value for atmosphere 670x10158C

N,  Equilibrium value for warm ocean surface 462x1015 g C

N¢ Equilibrium value for cold ocean surface 225x1015 g C
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Figure 4.2. Comparison of simulated atmospheric CO, and observed levels
at Mauna Loa, HI.
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(see, e.g., Siegenthaler and Oeschger, 1978). For the purposes of this experiment,
however, it was assumed that the Bjorkstrom model was perfect, and it is this model that
acts as the population or universe for the Monte Carlo simulations.

A simple Euler scheme was used to solve the system of equations describing the
Bjorkstrom model (Appendix I) numerically. The time step for the solution was taken
as0.5 years in order to satisfy the stability criterion for the Euler scheme imposed by the
fastest rate of carbon transfer. This rate is associated with the transfer of carbon from the
warm ocean surface layer to the atmosphere and has a time constant of approximately
0.55 years (Table 4.2). Because of this, the rate at which synthetic data could be

sampled was limited to frequencies equal to or less than two per year.

4.4. Mont 1o Meth

The reference system model was used to simulate a 100-year period showing the
response of the global carbon cycle to two different input scenarios at two different levels
of measurement noise (Table 4.2). Generation of the data sequences was accomplished
by starting the model from equilibrium, with constant, but arbitrary levels of production
of CO, from fossil fuel consumption and reduction of the terrestrial biosphere. The level
of contribution from fossil fuels was comparable to estimated inputs during the last half
of the 19th century. The input from terrestrial sources was chosen to be somewhat less
than the estimates made by Bolin (1977) and Stuiver (1978). Each input scenario was
simulated for a period of 100 years assuming that the nonlinear model was perfect. One

hundred sequences, each of 100 years in length,
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Table 4.2 Scenarios used to test hypotheses regarding the consumption of fossil
fuels and terrestrial biota

Scenario Fossil fuel Terrestrial biota Standard deviation
consumption consumption . Steady-state value

(1015 g C year}) (1015 g C year!)

1 0.25 0.25 0.01
2 0.25 0.25 0.10
3 0.50 0.50 0.01
4 0.50 0.50 0.10

were synthesized from the simulations by superimposing normally distributed
measurement noise about the simulated value. The variance associated with the
measurement noise was chosen as a fixed percentage of the steady-state value for each
compartment (Table 4.2). There is limited information regarding levels of uncertainty
(Bolin et al., 1979) for the various compartments. Keeling et al. (1976) report a daily
variability of approximately +1 ppm for atmospheric CO levels of 320 ppm. Although
observations by Keeling et al. (1976) at the South Pole are similar, there are few data
available for estimating the uncertainty of the entire atmospheric CO2 compartment.
Gardner et al. (1980) estimate it to be approximately +10%. Estimates associated with
the uncertainty in the soil compartment are as large as +50% (Woodwell et al., 1978).
Because of the limited information available regarding uncertainty of carbon levels in each
compartment, the coefficient of variation (ratio of the standard deviation of the
measurement noise to the steady-state preindustrial compartment level) in this study were

varied between 1% and 10%.
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4.5, Model Complexit

Linear models of the global carbon cycle with varying levels of complexity were
obtained by first linearizing the 15-compartment nonlinear model about the steady-state
solution. For perturbations about this steady-state, the transfer matrix, ®(n), for the
resulting linear 15-compartment model is given in Table 4.3. 'i'he complexity of the 15-
compartment linear model was reduced by aggregating compartments. The aggregaton
process was also the parameter estimation step for the aggregated models.

The aggregate system of m' states, described by the vector X'(n), is related to the

complete system of m' x m matrix C (Aoki, 1968)as
X'(n) = Cx(n) . (4.1)

An aggregated state transition matrix, F'(n), that has a minimum squared-error

property (Aoki, 1968), is given by
F' = CFCT(CCT)"! (4.2)

Studies by O'Neill and Rust (1979) have shown that aggregation error is small
when compartments with similar time behavior are combined. These findings can be
used to reduce model order in a consistent manner. It requires, first of all, however, that
the eigenvalues of the linearized 15-compartment system be determined. The eigenvalues
of a linear system describe the dynamic response of each the state variables. The
algorithm described by Grad and Brebner (1968) was used determine the eigenvalues.

The eigenvalues for the 15-compartment system, in units of yearl, are:
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Table 4.3 Coefficient matrix, @, for 15-compartment linear model (units are year1).

Biota

Deep/Intermediate Ocean

10

Biota -.0602

w g
a-—-wwhu.ox\)oo\oo
=

.0301
Atmos- .0301
phere

Warm

surface

Cold

surface

-.000641
000641

-.00115
00115

-.00142
00142 -.00242
00242 -.00312
.00312

-.00397
.00397

-.00464
.00464
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Table 4.3 (continued). Coefficient matrix, @, for 15-compartment linear model
(units are year1).

Deep/Intermediate Ocean Soil Atmos- Warm  Cold
phere ocean  ocean
surface  surface

3 2 1

Biota 0170

10 00427
9 .00595
8 .00863
7 .00919
6 0103
5 0119
4 0130
3 -.00464 0168
2 00464  -.00824 0278
1 00487  -.00948 0833

Soil - -.0125

Atmos- 0125 ~.194 1.80 1.70

phere

Warm 00464 .109 -1.88 .080

surface

Cold .00339 .00484 0679 .08 -1.97
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[ -2.03, -2.00, -.0703, -0.0259, -0.00958, -0.00865, -0.00498,
-0.00359+j 0.000728, -0.001374) 0.000417, -0.00228/ 0.000534,
-0.000954, 0]

where j = V-1 and signifies that the eigenvalue has an imaginai'y part. In linear systems
the state variables with negative real eigenvalues are stable, those with positive real
eigenvalues can be unstable, and those with imaginary eigenvalues have periodic
(sinusoidal) behavior. Therefore, the 15-compartment linear system is stable, with six
periodic modes. The eigenvalues have natural groupings. The first two (-2.03, -2.00)
represent the ocean surface layers. The atmosphere, terrestrial biota, and soil are
represented by the next three (-0.073, -0.0259, -0.00958), respectively. The remaining
nonzero eigenvalues characterize the intermediate and deep ocean response. Closed
systems, such as the global carbon cycle, have at least one eigenvalue equal to zero,
reflecting the fact that the total amount of carbon in the system remains constant. The
grouping of the eigenvalues, as well as physical considerations, imply three levels of
aggregation. Beginning with the modes whose eigenvalues have the smallest real part,
the first grouping includes the deep and intermediate ocean layers, the second includes the
terrestrial biota and the soil, and the third is the two ocean surface layers.

Based on these considerations, the evaluation of model complexity was
performed by postulating that the following three models would generate state estimates
consistent with state estimates generated by the reference system model :

« The 15-compartment model whose state transition matrix is that given in
Table 4.3

« The six-compartment model made up of the warm ocean surface layer, the cold
ocean surface layer, the atmosphere, the terrestrial biota, the soil, and the
aggregated intermediate and deep ocean layers.
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« The four-compartment mode! made up of the aggregated warm and cold ocean

surface layers, the aggregated terrestrial biosphere and soil, the atmosphere, and

the aggregated intermediate and deep ocean layers.

The application of equation (4.2) to tﬁe 15-compartment state transition matrix of
Table 4.3, for the 6-compartment model leads to the state transition matrix shown in

Table 4.4.

Table 4.4 Coefficient matrix, ®, for six-compartment linear model (units are

year!)

Biota Deep/Inter-  Soil  Atmo- Wamm Cold
mediate sphere  ocean ocean
ocean surface  surface

Biota -0.602 0.0207

Deep/Inter

mediate -0.00129 0.0191
ocean

Soil 0.0301 -0.0125

Atmo- 0.0301 0.0125 -0.198 1.80 1.70
sphere

Warm ocean 0.000465 0.109 -1.880 0.080
surface

Cold ocean 0.000824 0.0679 0.080 -1.97

The eigenvalues for this model are:

[ -2.03, 2.00, -0.0703, -0.00379, 0]
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The aggregated six-compartment model preserves the important features of the
fifteen-compartment model. That is, there is an eigenvalue that represents each of the
principal modes of the fifteen-compartment model. The first two eigenvaues characterize
the response of the surface layers, the third characterizes the response of the atmosphere,
the fourth is related to the response of the terrestrial biota and tﬁe soil, and the fifth
characterizes the deeper ocean. For time scales on the order of decades this model should
have dynamics similar to those of the complete 15-compartinent model.

The corresponding state transition matrix for the four-compartment model is

shown in Table 4.5.

Table 4.5 Coefficient matrix, @, for four—compartment linear model (units are

years'1)
Biota + Deep/Inter- Atmo- Ocean
soil mediate ocean sphere surface
Soil + Biota -0.00213 0.0207
Deep/Intermed- -0.00129 0.0956
iate ocean
Atmosphere 0.00213 -0.198 1.75
Ocean surface 0.00129 0.177 -1.85

The eigenvalues for the four-compartment model are as follows:

[-2.02, -0.0048, 0.00511, 0]
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In this highly aggregated system some of the features of the more complex system have
been modified. The response of the ocean surface layers is preserved, as is the response
of the deeper ocean. However, aggregating the living terrestrial biota and the soil was
accomplished at the expense of reducing the eigenvalues associated with the response of
the atmosphere. Aggregating the terrestrial biota and the soil also has the result of
coupling the soil more closely to the atmospheric compartment.

Simulations of the carbon cycle with the four different models, the true nonlinear
model, the fifteen-compartment linear model, the six-compartment linear model, and the
four-compartment linear model for the two different loading levels are shown in
Figure 4.3. Compartments have been combined so that the results of the more complex
models can be easily compared to the model with the highest level of aggregation, the

four-compartment model.

4.6. Results

The test of model validity exploits the fact that the distribution for the test statistic
of the null hypothesis, Ho, is known. The statistic is the log likelihood function, &g and
the null hypothesis is that the jth linear model is no different than the true nonlinear model
used to generate the data. The probability distribution function for the log likelihood
function, &, is xz with NL degrees of freedom, where N is the number of observations
and L is the number of observed state variables. The log likelihood function, €, for the
alternate hypothesis, 31, is generated by the filter for each of the postulated linear
models. If & falls within the critical region, o, for a two-tailed test on the x2
distribution,with NL degrees of freedom, the null hypothesis is rejected. The power of

the test, 1-P, is the fraction of times & falls within the critical region.
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Figure 4.3 . Simulated deviations of carbon from equilibrium conditons
for the atmospheric compartment. Loadings from the terrestrial biota are

0.25 and 0.5 gigatons per year.
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Figure 4.3 (continued) . Simulated deviations of carbon from
equilibrium conditons for the intermediate/decp ocean compartment.
Loadings from the terrestrial biota are 0.25 and 0.5 gigatons per year.
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When &) has a distribution that is the same &g, the power of the test will be equal
to the the size of the critical region a. Congruency of the two distributions means that the
postulated model is consistent, in terms of the test, with the model that generated the data.
This is equivalent to stating that the postulated model is a valid_ one. Therefore, high
levels of model validity are associated with values of 1-f that are approximately equal to
o.. Low levels of model validity are associated with values of 1-B close to 1-q.

The validity of each of the three linear models was tested using data generated by
the reference systems model for the four scenarios described in Table 4.2.

For each level of model complexity, corresponding to the fifteen-compartment, six-
compartment and four-compartment models, the power of the model to discriminate
against the null hypothesis was determined for a critical region 0=0.05. The trajectories
of the power as a function of time, for each of the three models and for the scenarios
described in Table 4.2, are shown in Figure 4.4.

In all cases in Figure 4.4, the power to reject the null hypothesis is moderately
high at the beginning, indicating a moderately low level of model validity. Initially, when
only limited data are available, the filter gives higher weight to the noise-corrupted
measurments. As the amount of data increases, the filter begins to weight the model
results more heavily, such that eventually only the differences in the mean values are
important.

The power of the test to differentiate between the true nonlinear model and the
linear models is influenced by both the level of the load and the measurement error.

When the coefficient of variation of the error is 1% and the loading from the terrestiral
biota is 0.25 gigatons per year, the hypothesis testing showed that the models were valid
at all three levels of aggregation for the entire 100-year simulation period (Fig. 4.4a).

Maintaining the coefficient of variation at this same level but increasing the loading rate to
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0.50 gigatons per year gave rise to deterioration of the linear model simulations after
approximately 40 years (Fig. 4.4b). The performance of the two models with the highest
levels of aggregation, the six- and four-compartment models was the poorest. That is,
they were the most likely to be discriminated from the true world. The way in which this
happens can be explained by examining the contributions to the likeliihood function from
individual compartments. For the ith compartment and given the jth hypothesis, the

individual contribution to the likelihood function & jis given by

. £ (n)=8..<n)i(2. md m) fori=1,..L (4.3)
1,j,obs 1,j =1 il,j 1j
with
¥ (n) =[H @) Z (nin-1) H1.~(n)+R.(n)]?1 (4.4)
il j j j j il

When the hypothesis, }Lj, is true and when the number of data, N, is large, the
individual components of the likelihood function, &; j» have normal distribution with a
mean of N and variance of 2N (Schweppe, 1973). The average value of the individual
components for 100 simulations were computed for the case in which the loading from
the terrestrial biota was 0.5 gigatons per year, the coefficient of variation was 1%, and
the number of data, N, was 100. The results, combined so the three levels of
aggregation can be easily compared, are given in Table 4.6. If the null hypothesis is true,
the combined contributions should be approximately equal to NL;, where L is the total
number of combined states in the i th aggregated compartment (i=1,2,3,4). The
difference, A, between the observed value and the value that results when the null

hypothesis is true is the portion of the likelihood function that contributes to rejecting the
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Table 4.6. Contributions of various (combined) compartments to the

likelihood function, &; j» compared to the theoretical contribution to the
likelihood function, NL;, when the null hypothesis is true.

Compartment 1: Terrestrial biota and soil

No. of state ¢ Ly NL, A1=£; o-NL,
variables in ’ ’
model

15 229 2 200 29

6 230 2 200 30

4 124 1 100 24

Compartment 2: Deep/Intermediate ocean

No. of state £2.0 Ly NL; A= o-NL2
variables in ’ |
model

15 1003 3 1000 3

6 101 1 100 1

4 101 1 100 1




83

Table 4.6 (continued). Contributions of various (combined) compamhents

to the likelihood function, &; J compared to the theoretical contribution to the
likelihood function, NL;, when the null hypothesis is true.

Compartment 3: Atmosphere

No. of state L3 NL3 —En e
variables in £3.0 A3=30-NL3
model

15 118 1 100 18

6 129 1 100 29

4 131 1 100 31

Compartment 4: Ocean surface

No. of state 14 NL4 —E, e
vaablesin o0 Ay=Ca,0-NL4
model

15 200 2 200 0

6 200 2 200 0

4 100 1 100 0
Totals
No. of state L NL A=£q-NL
variables in % %0
model

15 1560 15 1500 60

6 660 6 600 60

4 456 4 400 56
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null hypothesis. These contributions are also given in Table 4.6. It is clear from Table
4.6 that the primary contribution to rejecting the null hypotheéis comes from the
atmospheric, terrestrial biota, and soil compartments. It is also evident from Table 4.6
that the absolute contributions from each of these compartments is nearly the same for all
three levels of aggregation. However, the relative contribution is substantially less for
the fifteen-compartment model because of the presence of the ten oceanic compartments.
The mean of the likelihood function for the fifteen-compartment model is, therefore,
influenced less by the errors in simulation of the atmosphere, terrestrial biota, and soil
than the for the six- and foﬁr—compartmcnt models. Itis also apparent that the fifteen-
compartment simulates the atmospheric component somewhat more accurately then do the
other two more highly aggregated compartments.

When the coefficient of variation for the error was increased to 10% of the steady-
state compartment values, the power to detect the null hypothesis was of the order of the
level of significance of the the test at both loading levels (Figs 4.4c and 4.4d). At this
level of measurement error, none of the linearized, aggregated models could be
discriminated from the nonlinear reference system model

Estimating the worth of measurements from a given compartment or aggregated
compartment is a requirement for establishing data collection piorities. These priorities
can be inferred from the way in which increases in measurement uncertainty affect the
ability to detect change. For a given level of measurement error, this can be determined
by the length of time (number of measurements) required for the sequential testing to
reject the null hypothesis, Ho, that there is no loading against the hypothesis, 31, that
there is a given loading. This was done by defining the upper and lower threshold for
equations (3.6) and (3.7) and then investigating the way in which changes in

measurement error affected the time to detect a change. The upper and lower thresholds
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were defined by fixing the Type I and Type II errors at & = B = 0.05. The base level of
measurement error was characterized by a coefficient of variation of 1% for each
compartment. The coefficient of variation for a given compartment was then increased
from the base level of 1% up to a maximum of 20%, while keeping other compartments
at the base level.

The length of time required to detect the difference between two hypotheses, Ho
and H,, provided a measure of the importance of measurement uncertainty in the
compartment for which the uncertainty was varied. Compartments in which the detection
time increased rapidly with increases in measurement error could then be identified as
ones with high priority for improving measurement quality, while the converse would be
true for those compartments that responded slowly, or not at all, to changes in
measurement error. Compartments evaluated in this way included the atmosphere,
terrestrial biota, soil, ocean surface, and the intermediate/deep ocean layers. The results
of this analysis for two different levels of input from the terrestrial biota are shown in
Figures 4.5 through 4.9.

The compartments for which detection times change most rapidly as a function of
measurement error are the living terrestrial biota and atmospheric compartments. For the
six- and fifteen-compartment models, increasing the measurement error, as represented
by the coefficient of variation, from 1% to 20% in the terrestrial biota or atmospheric
compartments, results in an approximate two-fold increase in the time required to detect
the input (Figs 4.5 and 4.6). The four-compartment model is even more sensitive to
increases in the measurement error of these compartments. The effect of measurement
error in the soil compartment is of less importance, but still significant (Fig 4.7). This is

particularly true in the case of the four-compartment model.
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Figure 4.5. Time required to detect an input from the terrestrial biota when

the measurement error of the atmospheric compartment is varied
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Figure 4.6. Time required to detect an input from the terrestrial biota when

the measurement error of the terrestrial biota compartment is varied.
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when the measurement error of the deep and intermediate ocean
compartments are varied.
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The role of the oceanic measurements in detecting input from terrestrial biota is
very small. The deep and intermediate ocean.compartment measurements have a slight
effect on the detection times for the fifteen- and six-compartment models, and a
somewhat larger effect on detection times for the four-compartment model (Fig. 4.8).
The measurements in the two ocean surface layers have no noticeable effect on detection

times for either loading level for any of the three levels of model aggregation (Fig. 4.9).

V. Summary

. While the results presented in this chapter are specific to the global carbon cycle
they do demonstrate the way in which linear state-space models and hypothesis testing
can be used to determine the relative value Qf measurements compared to model
complexity. These concepts were used to test model validity. They were also used to
develop relationships characterizing the trade-off between model complexity and data
worth when the criterion was the time to detect changes in the global carbon cycle caused
by the consumption of fossil fuels and terrestrial biota. For purposes of designing
sampling programs to detect such changes, the methodology illustrated the importance of
the dynamic response of state variables. For detecting changes in atmospheric carbon
due to fossil fuel and terrestrial biota consumption, the study showed that there was little
value in measurements made in those compartments with very fast response times (the

ocean surface) or very slow times (the intermediate and deep ocean).



CHAPTER 5
NONLINEAR MODELS: AN ASSESSMENT

OF MODEL COMPLEXITY AND DATA WORTH
IN AN HYPOTHETICAL LAKE ECOSYSTEM

1.In ion

Cultural eutrophication of lakes and reservoirs, characterized by the proliferation
of nuisance algal blooms, has been a major concern of state and federal environmental
agencies. Excessive loadings of nutrients, particular phosphorus, and, to a lesser degree,
nitrogen have been cited as the primary sources of the problem (Vollenweider, 1968).
Treatment facilities for controlling these nutrients are expensive to construct and operate.
Studies such as the one conducted for EPA by Horowitz and Bazel (1978) have been
critical of state and federal environmental agéncics for subsidizing such facilities in the
absence of adequate environmental assessments. It is clear that the environmental
assessments of lakes for which there is a potential for cultural eutrophication should be
done with care.

The need for obtaining accurate assessments of the effects of cultural
eutrophication in rivers, lakes, and reservoirs has led to the development of numerous
models of lake ecosystems. These models range in complexity from the very simple
models of total phosphorus (Dillon, 1975; Larsen and Mercier, 1976; Vollenweider,
1975) to very complex ecosystems models (Thomann et al., 1975; Patten et al., 1975;
DiToro et al., 1975; Chen and Orlob, 1975; Scavia, 1980). While the simple models of
total phosphorus are appropriate only for aquatic environments in which phosphorus is
the limiting nutrient, they have proven of vaiuc for estimating the state of eutrophication in
lakes as small as 3.43 hectares (Mericas and Malone, 1984) and as large as the Great

Lakes system (Chapra, 1977). Development of more complex models has been in
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response to the need to understand, manage, and control eutrophication problems in the
broader context of growth limited by the availability of more than one nutrient and/or the
availability of light. Another important factor in the development of more complex
models has been the need to characterize the variability of state variables in both time and
space.

Despite the attention given to the development of eutrophication models, many
questions remain regarding the degree of complexity required in such models. Extensive
studies both in the field and laboratory are often necessary to make such models more
complex. Unfortunately, it is not always the case that these efforts lead to increases in the
accuracy of the state estimates (Schindler, 1987). The development of more complex
models requires additional efforts for identifying model structure and for estimating the
parameters in the model once model structure has been identified. It is often difficult and
expensive to design and carry out the appropriate experiments.

Another issue in the development of lake ecosystem models that has received
limited attention is the characterization of the uncertainty of ecosystem models. Scavia et
al. (1981) used Monte Carlo methods and first-order uncertainty to obtain variance
estimates for a dynamic eutrophication model of Saginaw Bay, Lake Huron. Mericas and
Malone (1984) examined the variability in total phosphorus concentrations in a small
hypereutrophic lake. They conducted this examination by modifying the basic
Vollenweider model so that it included stochastic processes . Ferrara and Griffin (1986)
investigated the value of increase in model complexity for trophic state simulation in
reservoirs by comparing the predictions from a model of total phosphorus with
predictions from a multicomponent model that included three forms of phosphorus and
dissolved oxygen. They used a number of test statistics for their analysis, including the

root-mean-squared error, the t-statistic, and the differences in the means of the
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predictions. Ferrara and Griffin (1986) concluded that for long-term, steady-state
conditions there was little difference between the two models. .However, for the time-
dependent case the predictions from the two models were significantly different from one
another.

An example in which hypothesis testing was used to assess model validity has
been described by Thomann et al. (1979). They used the t-statistic to determine a
verification "score" for a three-dimensional eutrophication model of Lake Ontario.
Thomann et al. did not, however, extend their analysis to include making decisions about
whether to accept or reject the model based upon the results of the test. Rather they used
the results to make qualitative statements to describe model effectiveness.

The methodology described in Chapter 3 provides a quantitative means of both
assessing model validity and detecting changes in the state of an environmental system.
Once the levels of Type I and Type II error have been established the method provides a
mechanism for deciding whether or not to accept the model and then to decide whether or
not there has been an impact on the environment. The method for evaluating model
complexity and data worth in linear state-space models was demonstrated in Chapter 4
with specific emphasis on the global carbon cycle. The spectrum of lake eutrophication
models includes both linear and nonlinear models, however. Therefore, this application
of hypothesis testing to the analysis of lake eutrophication models draws upon the
methods for nonlinear models described in Chapter 3. Furthermore, it expands the scope
of the analysis to include the role that parameter estimation plays in assessing the trade-off

between model complexity and data worth.
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5.2. Scope of Analysis

Models developed to assess the impacts of cultural eutrophication and to develop
management strategies for controlling it, describe the flow of nutrients between and
within the trophic levels of the lake ecosystem. The process of model identification and
parameter estimations for these models has been based upon numerous studies both in the
laboratory and in the field. The predominant approach to the development of lake
ecosystems model has been to formulate them with state-space structure. There has also
been a general consensus regarding the kinetics of important processes such as nutrient
uptake and light limitation. Due to many of the difficulties associated with data collection
and modeling, there is still debate about the validity of the structure most commonly used
for ecosystem models. Nevertheless, the work described in this chapter is based upon the
notion that existing lake ecosystem models, widely applied and tested under field
conditions, represent the important features of these systems.

Based upon the assumption that there are ecosystems models available that
describe the state space for lake ecosystems, a system of reference models was
developed. The reference model system used to generate the state variables for the
prototype ecosystem was comprised of two models (Fig. 5.1). One model was used to
generate water temperatures and one was used to generaie the ecosystem state variables.
The specific lake ecosystem model used as the reference model for this analysis was
based upon work done by Tetra Tech (1980). The Tetra Tech model has been used to
make environmental assessments of eutrophication under a wide variety of field
conditions. Examples of applications include Lake Washington (Chen and Orlob, 1975)
near Seattle, Washington, San Francisco Bay (Chen and Orlob, 1975), and Lake Harding
on the Chattahoochee River in Georgia (Tapp, 1978). The Electric Power Research

Institute (EPRI) has supported the development of the Tetra Tech model



96

Meteorological
Input

> Reference Temperature
Model

Simulated Water

Temperature

Reference Ecosystem Nutrient
Model Inflow

Simulated Ecosystem
State Variables
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to evaluate the flow of energy and nutrients in power plant cooling systems. The model
structure is similar to that of other well-tested models (Scavia, 1980; DiToro et al., 1975).

In the analysis of the global carbon cycle, it was assumed that the generating
model was completely deterministic. This restriction was removed from the lake
ecosystem model by specifying the environmental forcing functions of heat flux and
nutrient loading rates as stochastic processes. The nature of the uncertainty for these
forcing functions was developed from data used for the study of Lake Washington.

It was also possible to better define the nature of measurement error for lake
ecosystems compared to the global carbon cycle. Estimates of the magnitudes of
measurement error were obtained from the results of a number of laboratory and field
studies (Bottrell et al., 1976; Marquis, 1985; EPA, 1980b and Scavia et al., 1981).

The hypothesis testing methodology 6f Chapter 3 was applied to the data
generated with the reference system model to investigate issues of model complexity and
data worth in the hypothetical lake ecosystem. Three levels of model complexity were
postulated (Fig. 5.2). For each level of complexity the null hypothesis, #H(, was that the
postulated model was the same as the reference system model. The alternate hypothesis,
${,, was that the postulated model was not the same as the reference model. These
hypotheses formed the basis for testing the validity of each of the postulated models with
respect to the data generated synthetically by the reference model.

The three levels of complexity identified in Figure 5.2 correspond roughly to the
way in which ecosystems analysts increase the complexity of their analyses of lake
ecosyétems. The least complex model (Fig. 5.2a) corresponds to the single-compartment

total phosphorus model that has been used for the analysis of steady-state
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(Vollenweider, 1968) and time-dependent (Chapra, 1977; Mericas and Malone, 1978;
Lorenzen, 1979) conditions. The second level of complexity '(Fig. 5.2b) is made up of
two compartments, dissolved inorganic phosphorus and total phytoplanktonpopulation.
The highest level of complexity was constructed by including zooplankton as a state
variable (Fig. 5.2¢). '

There were two components of the analysis, model validation and environmental
assessment. Hypothesis testing based upon the methodology of Chapter 3 was used as
the decision-making tool. For model validation, the hypothesis testing was stated in

terms of the following hypotheses:

$ - The null hypothesis that the model generates state variables from the the
same population as that from which the observations were taken.

# - The alternative hypothesis that model does not generate state variables from
the same population as the observations.

Environmental assessment of the impact of increased phosphorus loading upon

lake eutrophication was state in terms of the hypotheses:

$ - The null hypothesis that the model and data describe a condition in which
there has been no impact from increased nutrient loading.

# | - The alternative hypothesis that model and data describe a condition in which
there has been an impact from a specific level of increased nutrient loading.
The procedure used for model validation and environmental assessment was
similar to that used for the model of the global carbon cycle, with two important
exceptions. First of all, for the two highest levels of complexity the ecosystems models
have a state-space structure based on nonlinear dynamics. It was necessary, therefore, to

generate the likelihood function with the linearized Kalman filter. The other major
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difference between the analysis of the lake ecosystem and the global carbon cycle was the
way in which parameter estimation was treated. For the lake ecosystems model,
parameter estimates were obtained from the generated data. This is in contrast with the
analysis of complexity of the global carbon model for which the models of lesser
complexity were obtained by aggregating the parameters of the most complex linear
model. The major elements of the analysis can be summarized in the following steps:

« Step 1: Generate the time history of the state variables for the prototype lake

ecosystem with the two reference systems, the thermal model and the ecosystem

model. The time history of the environmental forcing functions includes a period

of natural, or background conditions, followed by a period of incremental change.

+Step 2: Sample the prototype by adding measurement error to the state variables
generated in Step 1, above.

« Step 3: Estimate system structure parameters and system error using the samples
obtained in Step 2, above.

+ Step 4: Perform hypothesis testing on background data, using the parameters
obtained in Step 3, to assess model validity.

« Step 5: Perform hypothesis testing on the data collected after the incremental

change in loading to assess the ability of the model/measurement system to detect
environmental change.

5.3. Monte Carlo Methods

Following the generalized procedure described above, the first step was to
generate the ecosystem state variables with the two reference models, the temperature
model and the lake ecosystem model. The reference system model for the lake ecosystem

included the following state variables:

« Zooplankton (two classes)
« Phytoplankton (three classes)
* Attached algae
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« Benthic animals
* Detritus
+ Organic nitrogen
+ Ammonia nitrogen
« Nitrate nitrogen
+ Organic phosphorus
+ Orthophosphorus
» Dissolved silica
,  *Detritus

» Organic sediment

For purposes of investigating the néturc of model complexity and data worth, the
reference ecosystem was assumed to have a simple geometry (Fig. 5.3). It was assumed
to be a continuously stirred tank reactor (CSTR) with no vertical or horizontal variations
in the state variables.

The temperature in a lake is determined by the transfer of heat between the
atmosphere and water surface, both long- and short-wave radiation, advection due to the
inflow from tributaries and heat transfer across soil and water boundaries (Fig. 5.4). The
state-space formulation for the temperature model is derived from the the conservation
equation associated with heat transfer in well-mixed water body (Raphael, 1962; WRE,
1968; Wunderlich and Gras, 1967). The validity of this approach has been demonstrated
in a number of cases, including the studies performed by WRE (1968) and Walters
(1976). A more complete description of the temperature reference model is given in
Appendix II. An implicit formulation of the finite difference method was used to obtain

solutions to the heat budget equation.
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The lake ecosysterm model was based upon the work of Tetra Tech (1980) and
was formulated in terms of the conservation equations given in Appendix III. For the
hypothetical lake system of Figure 5.3, the model simulates the dynamics of the
constituents enumerated above. For this model, Figure 5.5 shows the structural
relationship between compartments and the nature of the energy and nutrient transfers.
As in the case of the temperature model, the finite difference equations were solved by the
implicit method.

The reference model pair, the temperature and ecosystem model, were used in a
two-stage process to investigate model complexity and data worth. In the first stage, the
primary objective was to verify that the algorithms for parameter estimation and
hypothesis testing were working properly, as well as to provide conditions for which it
was easier to discern how the fundamental relationships were affected by model
dynamics. In this stage the two models were used to simulate daily values of the state
variables with the external environmental forcing of solar radiation restricted so there was
representative daily variability within a year, but no variability from year to year.
Tributary inflow was assumed to be constant throughout the year. Furthermore, the
parameters for the ecosystem reference model were chosen so that the reference model
was of the same level of complexity as the most complex of the three models being
investigated. Randomness in each of the Monte Carlo simulations, for this stage, was a
result of superimposing measurement error upon reference model output.

In the second stage of analysis, the problem was made more complex by
introducing year-to-year variability into the environmental forcing functions of solar
radiation and tributary inflow. The complexity of the ecosystem reference model was also
increased to provide a more realistic basis for analysis. Randomness was induced not

only by measurement error, but by variability in the environmental forcing functions.
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Actual environmental data was used such that the variability was representative of that

which might be expected under natural conditions.

5.4. Measurement Error

In contrast to the global carbon cycle, for which estimates of typical measurement
error are difficult to obtain, the extensive interest in and numerous observations of
nutrient flow in lakes, rivers, estuaries, and the oceans comprise a considerable data base
that can be used to characterize measurement error. The measurement error for state
variables in aquatic ecosystem has several components. In a study of spatial
heterogeneity in the ocean, Platt et al. (1970) separated the total variance, $T2, into several

components as follows:

where,
o2 = the variance due to sub-sampling and analytical errors,
$12 = the variance of replicates taken at the same location,

$»2 = the variance due to real differences between stations.

From their analysis, Platt et al. (1970) concluded that the variance of analytical/sub-
sampling errors and replicates accounted for only 10% of the total variance. The real
differences between stations was generally much larger, both in space and time. These
results, as well as others (Harris, 1980), demonstrate the importance of "patchiness” in
the variability of observations of ecosystem states in a marine environment. Similar

results have been reported for lake ecosystems. Scavia et al. (1981), in their study of
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variance estimates for a dynamic eutrophication model of Saginaw Bay, Lake Huron,
determined the standard deviation of eight ecosystem state variables. Their results are
given in Table 5.1.

Table 5.1 Range of coefficient of variation for eight ecosystem state variables
in Saginaw Bay, Lake Huron (after Scavia et al., 1981).

State Variable Coefficient of
Variation (percent)

Phytoplankton 47-87

Herbivores 36-100
Carnivores 50-100
Organic-N 32-67

Ammonia . 44-160
Nitrate : 10-88

Organic-P 56-150
POy 20-180

Marquis (1985), in a study of Moses Lake, Washington, also obtained estimates
of the variability in the measurements of ecosystem state variables. Marquis
(1985)estimated the coefficient of variation of NO3-N, Total P and Chlorophyll a for
three different sampling strategies. These strategies included: 1) identical path transects;
2) irregular path transects; and 3) composites. The results are given in Table 5.2.

In a comprehensive review of data collected during the International Biological
Program (IBP), Bottrell et al. (1976) examined the methods used to estimate biomass and
production of zooplankton. As part of their study they compared the efficiency of various
sampling devices. The results, in terms, of the coefficients of variation are

given in Table 5.3.
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Table 5.2 Coefficient of variation (%) of observations of three ecosystem
variables in Moses Lake, Washington using three different sampling strategies
(after Marquis, 1985).

Sampling NO3 Total P Chlorophyll a
Strategy
Identical Path
Transects
7/ 4/83 4 6 3
10/25/83 10 22 24
Identical and Irregular
Path Transects
7/4/83 23 9 18
10/25/83 _ 16 14 16
Identical and Irregular Path
Transects and Composites
7/ 4/83 47 22 18

10/25/83 S 15 21 16
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Table 5.3 The coefficient of variation (%) in the estimates of the numbers of
several species of zooplankton using various sampling devices.

Species Sampling Device

Schindler Hand Pump  Friedinger Ruttnér

Killicottia 30 40 31 42
longispina

Polyarthra 28 40 19 23
vulgaris :

Bosmina 47 37 51 63
longispina

Holopedium 50 74 60 86
gibberum

Cyclops 16 68 38 45
nauplii

Cyclops 21 54 21 43

copepodites
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The results of these studies provide a rationale for choosing levels of measurement
errors that are representative of those found in actual field studies. As described
previously, both the reference model and the postulated models are based upon the
assumption that the lake ecosystem behaves as a CSTR. Therefore, the measurement
error includes the elements of error enumerated in equation (5; 1). However, the
definition of error given by Platt et al. (1970) (eq. 5.1) implies temporal as well as
spatial variability. In this study of the lake ecosystem, temporal variability is excluded
from the definition of measurement error. The discussion of measurement error refers
only to subsampling and analytical errors, replication variance, and spatial variance.
Aggregating the spatial error in this way makes it less explicit when considering the issue
of space-time distribution of sampling design. Nevertheless spatial sampling strategies,
such as the ones proposed by Stauffer (1988) for estimating epilimnetic chlorophyll a, can
be developed to reduce the measurement error as defined for this study.

Based upon these results, three different scenarios for measurement error were
considered. It was assumed that the coefficient of variation for each of the three state
variables had one of three values, 10%, 30%, or 50%, and that for any given scenario
this value would be the same for all state variables. This range was somewhat less than
the maximum ranges shown in Tables 5.1 through 5.3, but it was necessary to limit the
coefficient of variation to keep the variations small enough such that the first-order
approximation was reasonable. When comparing the coefficient of variation used in this
analysis it is evident that the range was large enough to represent the variability that might
be experienced in a real sampling program.

The results of studies such as those done by Thomann et al. (1979) and Scavia et
al. (1981) suggest that the log-normal distribution is a more reasonable characterization

of the sampling error. Characterizing the sampling error with this distribution has the
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additional virtue of always producing positive values for the random variables. The

measurement model used for the analysis of lake ecosystems was, therefore, of the form
Inz=Inx*lny (5.2)

The measurement model was incorporated into the Monte Carlo simulations by
drawing random variables from a normal distribution with mean, [y, and variance, Oy,

given (according to Loucks et al., 1981) by

®

By = In(—"=—) (5.3)
\/ 1+ s?ﬁz
5, =In(l + s%%) | (5.4)

where

s2 = the sample variance

X = the arithmetic mean

The normally distributed variables generated in this way were added to the natural
logarithm of the value of the state variable simulated by the reference ecosystem model
and then transformed into real space by taking the anti-log of the sum. The observation
matrix, H, that was part of the equation which generated the likelihood function
(eq. (3.17)) in the filter equations also had to be treated differently. This was done by a

first-order expansion (Schweppe, 1973) of the nonlinear observation matrix to give
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HOD =1y . (5.5)

where
H(D) = the first-order expansion of the observation ma&ix, H, as defined
by equation (3.24)
I = the identity matrix
x' = a vector whose ith element is equal to 1/xj nom
Xi nom= the nominal value of the ith state variable along its linearized trajectory
. Model of th E
.1 Environmen h risti

Simulations of the ecosystem state variables were performed for the hypothetical
lake of Figure 5.3 using the reference models described above. The primary
environmental forcing functions were assumed to be similar to those that influence Lake
Washington. The 20-year meteorological record (January 1952-January 1972) of
observations from the U.S. Weather Service's observation station at the Seattle-Tacoma
International Airport was the source for data used to describe the transfer of heat across
the air-water interface of the hypothetical lake. The solar radiation portion of this record
also provided the information necessary to characterize the energy available for
photosynthesis. The freshwater inflow characteristics were based upon a similar period
of record using data collected by the U.S. Geological Survey at the gaging station on the
Cedar River at Renton, (U.S.G.S. gaging station 12-1190) Washington.

In the initial (testing) phase of this part of the study one year of weather data was
picked at random from the record at Seattle-Tacoma International Airport and used to

establish the heat-flux between the water surface and the atmosphere, as well as to
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quantify the solar energy available for photosynthesis. Values for the inflow rate of water
and dissolved.inorganic phosphorus was held constant so that the behavior of the
parameter estimation algorithm and the likelihood estimator could be controlled. The rate
of inflow was chosen such that the lake residence time (lake volume divided by mean
annual inflow) was one year. |

In the second phase of the study, the meteorological data and nutrient loadings
were treated as stochastic processes drawn from évailablc data in the following way. The
streamnflow measurements were obtained from the record of the Cedar River gage at
Renton, Washington, described above. These data were adjusted by a constant ratio such
that the average annual flow, Qavg, would give rise to an average lake residence time of
one (1.0) year, similar to that of the first phase. The water temperature of the inflow was
assumed to be equal to the monthly-averaged air temperature at the Seattle-Tacoma
International Airport.

For specifying the concentrations of the primary nutrients it was assumed that total
and inorganic phosphorus could be treated as flow-dependent variables in a manner
similar to that done by Hirsch (1988). Hirsch (1988) treated the concentration of
phosphorus as a product of a flow effect, a seasonal effect, a hysteresis effect, and noise.
Hirsch's model was simplified in the simulations of the hypothetical lake ecosystem
described below by modeling the total phosphorus concentration, TP, as the product of a

flow effect, a deterministic component, and noise
TP = A*N*QB (5.6)

where

TP = the total phosphorus concentration
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A = the deterministic component
N = the noise component

Q = the river flow
Equation (5.9) can be written in terms of the the loading, Q*TP, as
TPicad = A*N*QB (5.7)

where B'=B+1.

Taking the natural logarithm of both sides gives
In TPjgag =In A + In N + B*Q (5.8)

The coefficients A and B were determined from a least-squares fit of the
rclatioﬁship between the natural logarithm of total phosphorus loading and the natural
logarithm of flow for measurements in the Cedar River at Renton, November 1970
through September 1971. The results of the least-squares analysis are given in Table 5.4.
Selected results from coastal streams in the State of Washington, in an analysis of total
phosphorus measurements at U.S.G.S. NASQAN stations (Faris and Lettenmaier; 1988)
are also given in Table 5.4 for purposes of comparison.

The dissolved inorganic phosphorus (PO4-P) was assumed to be a constant
fraction of the total phosphorus corresponding to the mean fraction (0.75) in the record of
data from the sampling station at Renton for the same period. The noise term was
assumed to have a log-normal distribution with mean and variance calculated from the

residuals of the least-squares fit.
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Table 5.4. Slope, intercept and R2 for least-squares analysis of equation (5.7).

Sampling Station Intercept, In A Slope, B' R?2

Cedar River at -14.425 1.577 0.67
Renton, Washington

Willapa River near -9.864 1.081 0.74
Willapa, Washington

Chehalis River near -9.397 0.058 0.86
Chehalis, Washington '

Queets River near -12.756 1.358 0.66
Queets, Washington

Elwha River near ' -12.938 1.403 0.65
Port Angeles, Wash

Puyallup River near -10.865 1.299 0.38
Puyallup, Washington

Snohomish River near -11.780 1.200 0.48
Snohomish, Washington

Skagit River near -18.802 - 1.926 0.49

Mount Vernon, Wash.

5.5.2 Ecosystem Model Parameters

Once the state variables have been chosen, it is necessary to specify the parameters
in the state-space model before the lake ecosystem data can be synthetically generated.
The parameters required for the thermal model and the aquatic ecosystem model, as well
as the specific role each of the parameters plays in the dynamics of the state-space
equations, are described in Appendices II and ITI.

The reference models chosen to generate the ecosystem sample space are based
upon constructs that derived from field experiments conducted in a number of different
aquatic ecosystems. These experiments provide a basis for choosing ecosystem model

parameters such that the sample space generated will be representative of of results
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obtained in actual ecosystems. For example, Chen and Orlob (1975) applied a model
similar to the reference model used in this thesis to simulate the ecosystems dynamics of
Lake Washington reported by Chen and Orlob (1975). Scavia (1980) also has provided
estimates for typical values of ecosystem parameters in the ecological modelling of Lake
Ontario. Scavia et al. (1981) compiled a comprehensive survey of the statistics for
ecosystems model parameter values in their study of variance estimates for a dynamic
eutrophication model of Saginaw Bay. Zison et al. (1978) and Lehman et al. (1975) have
also summarized estimates of parameters for ecologic models. In general, the results of
these and similar studies suggest a range of parameters that lead to ecosystem dynamics
typical of north temperate lakes. It is from this range that parameters were chosen for the

several experiments reported below.

5.6. Model Complexity

The methods of analysis for linear state-space models have been well developed,
and, as a result, the investigation of complexity for such models can be based upon a
rigorous theoretical foundation. The corresponding theory for nonlinear models has not
been developed nearly so well. For this reason, the analysis of model complexity for the
nonlinear lake ecosystem models was organized in a way that corresponds to the approach
ecologists have used in analyzing lake ecosystems. That is, it followed a trophic level
approach to the examination of model complexity (Fig. 5.2). In the least complex model
the only state variable was the pool of the limiting nutrient, which in this case was
phosphorus. The most complex model was a three-compartment model that included the

limiting nutrient, primary producers, and secondary producers.
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5.6.1 Model 1

The single compartment model with total phosphorus as the state variable has
proved to be a useful tool for both limnological research and water quality planning.
Vollenweider (1968, 1969) demonstrated the value of this approach in a comprehensive
study of the nature of eutrophication of lakes and flowing watérs. Vollenweider (1975)
incorporated the results of additional limnological studies into a modification of his initial
work. A number of others, including Dillon (1975), Dillon and Rigler (1975), Larsen
and Mercier (1976) and Chapra and Tarapchak (1976), examined the response of lakes in
terms of the constructs of the single compartment total phosphorus. Two typical
examples of the way in which the model has been used for water quality planning were in
the Great Lakes and in Long Lake, near Spokane, Washington. Chapra (1977) examined
the water quality impacts of phosphorus control strategies in the Great Lakes and Patmont
et al. (1987) used the model to assist the State of Washington Department of Ecology in
establishing a water quality criterion for total phosphorus in Long Lake.

The total phosphorus model, assumes that the water body can be described by a
continuously stirred reactor (CSTR), and the budget of total phosphorus is determined by
the inflow from natural and anthropogenic sources, outflow and internal losses due to
sedimentation (Fig. 5.2a). Given these assumptions and following the notation given by
equation (3.1), the state-space structure of the process model for total phosphorus can be

written as follows:

- x(n+l) = xl(n+1) = <I>u(n)xl(n) + ul(n) + wl(n) (5.9
where

x1(n) = the total phosphorus concentration in the CSTR at time, t=n



118

F
@, =01 - )
u,(m) = W_\(;nl +FoXin

wi(n) = a normally distributed random variable with zero mean and variance,

Qi(n)
n = the time increment (n = 1...N)
V = the volume of the water body
W(n) = the total phosphorus loading from anthropogenic sources
X1,in = the total phosphorus concentration of the inflow
Fin = the inflow rate of water
F = the outflow rate of water
Ag = the lake surface area

ws = the settling velocity

5.6.2 Model II

Model II is a two-compartment model with two state variables, the primary
producers or phytoplankton and the limiting nutrient. In this case, the limiting nutrient is
assumed to be phosphorus (Fig. 5.2b ). This model has also been widely applied to the
investigation of lake eutrophication (cf, Wang and Harleman, 1983, Imboden and
Gachter, 1978; Walters, 1980; Gasperino and Soltero, 1977), although in many of these
examples the spatial complexity was increased to include variability with depth.

Model I is a nonlinear model with a form similar to, but somewhat simpler than
the general nonlinear form defined by equation (3.5). For the CSTR, the mass balance
equations for Model II lead to the following discrete-time formulations of the process

model;
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where
x1(n) = the concentration of inorganic phosphorus at time t =n
xo(n) = the total biomass of phytoplahkton attimet=n

@ &mm) =1-%

d)u(K(n)J]) = BP(RH - Gn)

®71(X(n),n) =0
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: 2in
u,(n) =—;

w(n) = a normal random vector with zero mean and covariance,Q(n)
X1,in = the concentration of inorganic phosphorus in the inflow

x2,in = the concentration of total biomass in the inflow

G = the phytoplankton growth rate (see Appendix III)

Ry = the phytoplankton respiration rate (see Appendix III)

Az = the average water depth in the lake ecosystem

Bp = the ratio of phosphorus to total biomass in phytoplankton
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5.6.3 Model IT1
Model 1 is a nonlinear model obtained by adding another trophic level (Wang
and Harleman, 1983), secondary producers, to Model II as shown in Figure 5.2c. The

state-space structure for the process model is given by

@] [y @mm  opamun @ ym,n | x,m)
D) | | @,&M)n)  Dp&MN)N)  PpM)0) | X 0)
X,(n+1) | D, &X(n),n)  P,X(n),n) D (x(n),n) | x;(n)

X(n+1) =

[ u,(n) w,(n)
#| U@ [4| W) (5.11)
_u3(n) w3(n)

where
x1(n) = the inorganic phosphorus at time t=n
x2n) = the total biomass of phytoplankfon at time t=n
x3(n) = the total biomass of zooplankton at time t=n
O, @&mn) =1- 3
@, x®m),n) = ByR; - Gp)
&@.) = BTG,
©21(x(n),n) =0
®,,&xM).n) =1+Gy- Ry -

GC

D,,(X(n),n) = —=

¥ _ E
Az V
P31(x(n),n) =0
®32x(n),n) =0
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<I>33(x(n),n) =1+G,-R, - %

¢ ¢
FXin
ul(n) = -
Fx..
2in
u2(n) = v
FX3m
Uy () = v

X1,in = the concentration of inorganic phosphorus in the inflow
x2,in = the concentration of total phytoplankton biomass in the inflow
x3,in = the concentration of total zooplankton biomass in the inflow
> G¢ = zooplankton growth rates (see Appendix III)
R¢ = zooplankton respiration rates (see Appendix IIT)
Bt = ratio of organic phosphorus to total biomass in zooplankton

v = the grazing efficiency of the zooplankton

3.7. Results-Constant Environmental Conditions

The reference model and hypothesis testing software used in the analysis were
extensive and complex. For purposes of testing the software, as well as to obtain insights
into some of the fundamental behavior of the processes, a relatively simple problem was
analyzed first. Data were generated by the ecosystems population model for an ecosystem
whose level of complexity was equivalent to that of the most complex model, Model III.
Values of the structural parameters used in the reference model are given in Table 5.5 and
are based upon the results presented by Chen and Orlob (1975) from their work on Lake

Washington.
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Table 5.5. Parameter values used in the simplified ecosystem reference model.

Parameter Value
Maximum phytoplankton growth rate 1.0 days-!
Maximum phytoplankton respiration rate 0.05 days-!
Michaelis-Menten constant for 0.005 mg/1

inorganic phosphorus
Phytoplankton settling rate 0.05 m/day
Optimal solar radiation 0.025 kcal/m?/sec
Maximum zooplankton growth rate 0.20 days-1
Maximum zooplankton respiration rate 0.02 days-!
Zooplankton mortality rate 0.03 days-1
Michaelis-Menten constant for 0.50 mg/1 C

zooplankton growth

The environmental forcing functions used in the part of the process also had a
simple form. The lake residence time and phosphorus loading rate were specified by
fixing both the tributary inflow and total phosphorus concentration at constant values.
One year of daily-averaged values of solar radiation, wind speed, air temperature, cloud
cover, and relative humidity, drawn at random from a 20-year data record from the
Seattle-Tacoma Airport, was used to define meteorologic conditions. In the multi-year
sequences of data generated for model testing, the tributary inflow, total phosphorus
concentration, and daily meteorologic data remained constant throughout the simulations,
based upon these values.

- The meteorologic data were first used, in conjunction with the heat-balance model,
to develop the thermal regime for the hypothetical reservoir (Fig. 5.3). Temperatures
simulated by the heat-balance model were used to define the thermal regime for the

simplified version of the ecosystem.
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The simplified ecosystem reference model, with a structure identical to Model 111,
was used to generate sequences of the ecosystem state variables, primary nutrients,
primary producers, and secondary producers. Sequences of state variables were
generated for conditions representing one year of low nutrient loadings (background),
followed by 25 years with a constant increment of nutrient loading added to the
background. To ensure that the first year of background conditions represented a quasi-
steady-state, the reference model was run an additional five years at the beginning to
stabilize any errors introduced by incorrect assumptions regarding initial values of state
variables. Scenarios representative of low, medium, and high phosphorus loading
conditions were were examined, using the background and incremental values given in

Table 5.6.

Table 5.6 Scenarios for nutrient loading rate and coefficient of variation of
measurement evaluated in the first stage of the ecosystem model tests.

Scenario PO4-P Conc. PO4-P Conc. Measurement
of Inflow Increment Error -CV
1 0.01 mg/l 0.001 mg/ 0.1
2 0.01 mg/1 0.001 mg/l 0.3
3 0.01 mg/l 0.001 mg/l 0.5
4 0.02 mg/t 0.002 mg/t 0.1
5 0.02 mg/1 0.002 mg/l 0.3
6 0.02 mg/l 0.002 mg/l 0.5
7 0.05 mg/l 0.005 mg/l 0.1
8 0.05 mg/l 0.005 mg/l 0.3
9 0.05 mg/l 0.005 mg/t 0.5

Each of the sequences generated in this way was basically deterministic since there

was no year-to-year variability in the environmental forcing functions. However, within
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the year there was natural variability in the meteorologic conditions that gave rise to
seasonal (within-year) variations in water temperature and solaf radiation. From each of
these deterministic sequences, 26-year sequences (one year of background and 25 years
of background plus increment) were generated in Monte Carlo fashion by introducing
measurement error according to the model described above (eci. (5.2) and Table 5.6).

The trajectories of state variables for the first five years, under the various nutrient loading
conditions, are shown in Figures 5.6 through 5.8. The sequences generated from the
Monte Carlo simulations were used to perform the parameter estimation, model

validation,and environmental assessment.
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