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Chapter One

INTRODUCTION

l.1 Statement of the Problem

Overland flow is of fundamental importance to the
hydrology of arid and semi-arid regions and on disturbed
hillslopes under any climate. In these areas, overland
flow is the dominant mechanism in the generation of
floods, soil erosion and the transport of pollutants.
However, our knowledge of overland flow on natural
hillslopes and our ability to predict the above-mentioned
processes is limited. Much work needs to be done to
increase our understanding on the processes of overland
flow, and thus, to improve our capability for prediction.

Natural hillslopes are not planar surfaces with
homogeneous physical and hydraulic properties. Topography,
surface roughness and soil hydraulic properties on natural
hillslopes vary over distances of centimeters to meters.
These spatial variations strongly influence the
characteristics of overland flow, including the
distributions of depth and velocity fields and the
characteristics of hydrographs. The nature of these
spatial variations cannot generally be identified by the
usual inverse methods of calibrating available
mathematical models or comparing basin runoff to sparse

hydrological records. Yet, the resulting spatial
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variabilities of depth and velocity fields strongly affect
the spatial variability of the shear stress field in
overland flow, and therefore have significant impacts on
soil erosion, contaminant transport, and eventually
hillslope geomorphology.

The characteristics of overland flow on natural
hillslopes depend on the hillslope hydraulic properties.
To analyze the impacts of hillslope spatial variations on
the characteristics of overland flow, and to examine the
relationships between the surface flow process and
hillslope soil and vegetation features, detailed analysis
of surface runoff on a spatially-varied hillslope is
necessary. The relationships between overland flow and
hillslope physical features and thé description of
detailed flow fields of surface runoff are also necessary
input data to any of the physically-based erosion and
transport models, which have been déveloped during the
last decade (e.g., Simons et al., 1975; Foster, 1982; and
Zhang, 1985).

The significance of spatial variability in soil-water
parameters, surface roughness, topography and vegetation
cover to the hydraulic and hydrologic response of
hillslopes, including erosion, is widely recognized
through field studies (Izzard, 1944; Emmett, 1970 and
Abrahams et al., 1986) . Dunne and his co-workers (Dunne

and Dietrich, 1980; Dunne, 1983 and Aubry, 1984) conducted
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field experiments to investigate overland flow processes
and hillslope soil and vegetation features at plot scales.
In the study, they made a series of direct and detailed
measurements of surface runoff hydraulics on natural
hillslopes and characterized the actual values of depth,
velocity, resistance, their local variability and
systematic downslope variation. These studies provided a
comprehensive set of hydraulic data for surface runoff
over plots on natural hillslopes and characterized the
hydraulics of overland flow under the conditions of a
realistic range of surface resistance, gradient,
infiltration capacity and precipitation intensity. These
field studies provide an insight into the hydraulics of
overland flow on natural hillslopes. However, since the
spatial characteristics of natural hillslopes vary
significantly from place to place, field studies alone
cannot lead to generalizations about hillslope hydraulic
and hydrologic processes and hydraulic parameters.
Physical and mathematical modeling is required.

While field studies clearly indicate the importance
of two-dimensional flow on natural hillslopes where soil
properties, microtopography and water interact in a
complex manner, theoretical and modeling studies of
dverl&nd flow in the past several decades have been
limited to one-dimensional and homogeneous surfaces and

dominated by use of the kinematic-wave equation (KWE). By
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constraining the flow paths in one dimension and
idealizing natural hillslopes as homogeneous planes,
current models ignore the real, measurable spatial
variations in hillslope characteristics. As a result,
significant errors are created in, for example, the
predicted distributions of flow velocity, depth, and shear
stress, and in the predicted outflow hydrograph, and
several interesting and important overland flow features
are ignored. There are a few studies of two-dimensional
overland flow, but only on the most simple surfaces and
the effects of spatially-varying hillslope properties have
not been incorporated. Without considering spatially-
varying hillslope properties and relating them to the
characteristics of overland flow, runoff models are of
limited use for understanding the mechanics of runoff,
soil erosion and pollutant transport.

In most modeling of runoff, the characteristics of
overland flow, e.g., depth and velocity, and hydraulic
parameters, e.g., surface resistance, have been back-
calculated from plot or basin hydrographs without using
field measurement of the spatial variations of flow and
hillslope characteristics (e.g. Woolhiser et al. 1970). In
so doing, current models lump the effects of spatial
variations of hillslope characteristics with a few model
parameters, especially, the parameters representing

infiltration and surface roughness. The spatial variations
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of hillslope characteristics vary widely for individual
hillslopes and among different hillslopes. Simply lumping
hillslope spatial variations with a few model parameters
by the back-calculation from plots or basin hydrographs
will result in the values of the model parameters being so
variable for the "same" hillslope conditions that they are
hard to use for prediction. As a result, current
physically-based models lose their predictive nature, and
become "parameter-fitting” or "parametrically-fitted"
models.

Physically-based, multi-dimensional mathematical
models, which incorporate the realistic spatial
variability in hillslope characteristics, are necessary
to: analyze and interpret field results in a realistic
conceptual framework: draw generalizations about overland
hydraulic processes and the hydraulic and hydrological
parametefs of hillslopes; and accurately predict the
hydraulics and hydrology of overland flow. The expansion
of model dimension and explicit incorporation of spatial
variations in hillslope characteristics reduce the
constraints in flow paths and allow runoff processes to be
examined realistically.

In recent years it has been increasingly appreciated
that for adequate hydraulic and hydrological
characterization of overland flow on natural hillslopes it

is necessary to study the effects of spatially-varying
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hillslope properties on the variability of overland flow.
This is the concern of recent studies by Smith and Hebbert
(1979), Freeze (1980), Matias and Correia (1987) and
Loague (1988). These studies, based on either the one-
dimensional KWE or parametric equations, such as travel
time routing and unit hydrographs, aimed at examining the
bulk effects of spatially varied infiltration on
hydrographs. Little attention has been paid to the effects
of other spatially variable controls, such as topography
and surface roughness. Because of the limitations of the
available overland flow models, no attempt has been made
to relate these spatial variations to measurable
characteristics of overland flow. Therefore, the
influences of spatial variations of these hillslopes
variables are still largely unknown. Yet, it is widely
reported in field studies that these effects are
important.

Characterization of the hydraulics and hydrology of
overland flow requires detailed simulations of overland
flow fields using a physically-based and multi-dimensional
model for assessing the significance of various aspects of
variability on the hydraulic and hydrological responses
of hillslopes. Such understanding should ultimately lead
to better prediction of overland flow and its associated

soil erosion.



1.2 Research Objectivgs

This research will develop a two-dimensional,
hydrodynamic and numerical model for overland flow. The
model explicitly incorporates realistic spatial variations
in physical characteristics of hillslopes. Based on the
detail simulation results of the model, the impacts of the
spatial variations of hillslope properties on the
characteristics of overland flow is examined, and the
implications of the spatial variability of the overland
flow on soil erosion are also discussed. Through
quantitative analysis of the relationships between the
characteristics of overland flow and spatial variations of
hillslope characteristics, the study will provide a
fundamental and realistic framework necessafy for the
Prediction of surface runoff and soil erosion on spatially
varied hillslopes.

These goals will be accomplished through the
following specific objectives:

(1) to develop a mathematically rigorous and
physically sound two-dimensional hydrodynamic and
numerical model for overland flow. The model explicitly
addresses spatial variations in infiltration, surface
roughness and microtopography. Rainfall»impacts will also
be considered. The development of the hydrodynanmic
equation begins with the Navier-Stokes equation. The

resulting model is solved by a numerical method, based on
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the MacCormack finite-difference scheme. The complete
hydrodynamic and numerical model is tested and validated
with experimental data and compared with available models.

(2) to use the overland flow model to examine the
effects of spatial variations in infiltration, surface
roughness and microtopography on characteristics of
overland flow. To achieve this, the overland flow model is
used to conduct a series of systematic simulations for
spatial variations of infiltration and surface roughness.
Both the random and trending variations for these two
variables are simulated. The impacts of microtopography on
the characteristics.of overland flow are analyzed based on
model simulations for a series of mathematically-generated
topographic surfaces and two field plots with realistic
microtopography. Based on the simulation results, the
study identifies the roles of different spatial variations
of hillslope characteristics in overland flow and
important hydraulic parameters of hillslopes.

(3) to examine the implications of the spatial
variability of overland flow for soil erosion. For this
purpose, the results of the spatially-variable overland
flow fields simulated by the model are used to generate
spatiall?-distributed shear stress fields. Then, a Du-Boys
type equation is used to compute the relative soil erosion
rate at individual cross-slope sections based on the

computed excess shear stress. The bias in predicting the
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excess shear stress fields and the soil erosion rate by
the approximation of a spatially-variable surface with a
homogeneocus plane will be discussed. The influences of the
Soil resistance properties and the excess rainfall rate on

the prediction is examined.

1.3 sSignificance of the Research

The research differs significantly from earlier
attempts at overland flow modeling and the analysis of the
spatial variability of overland flow. As with the
introduction of spatially-varied and multi-dimensional
modeling in groundwater flow and transport, the
development of the physically-based, two-dimensiocnal model
breaks new ground for overland flow research and should
advances overland flow modeling to a more realistic level
than previously achieved. Such a model is not only
essential for improved understanding of flood generation
in arid and semi-arid areas but for fundamental study of
soil erosion, transport and deposition processes, and
therefore of hillslope geomorphology. In addition, the
work will contribute to the ultimate solution of numerical
and physical problems associated with the hydrodynamic
equation for overland flow.

The analysis of the effects of these spatial
variations will also contribute to an improved

understanding of the processes responsible for flood
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generation in small basins, pollutant transport, and soil
erosion. The identification of the role and relative
importance of hillslope spatial variables by the detailed
model simulation suggests useful measures of hillslope
characteristics for routine hydrology and erosion

prediction.
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Chapter Two

PROCESSES AND HYDRAULICS OF OVERLAND FLOW

2.1 10ver1and Flow as A Storm Runoff Process

Several processes produce storm runoff on a
hillslope. Depending on the flow paths by which storm
water reaches a stteam, the runoff production processes
are classified as Horton overland flow, saturation
overland flow, and subsurface storm runoff. The relative
importance of each process in a region is affected by
climate, geology, topography, soil characteristics,
vegetation, and land use. Dunne (1978) summarized the
relation of the various runoff processes to their major
controls (Figure 2.1).

Two processes fhat generate overland flow are Horton
overland flow and saturation overland flow. Horton
overland flow occurs whenever the rainfall intensity
exceeds the soil infiltration capacity and the process is
considered as soil controlled (Horton, 1933). In arid and
semi-arid regions and those areas disturbed by humans,
e,g., agricultural land, and construction and mining
sites, Horton overland is the dominant storm runoff
process.

Saturation overland flow occurs when éoils become
saturated from below by rising water tables. In the

saturated areas, the soil infiltration rate reduces to
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;,:;¥ Direct precipitation and
SO return flow dominate
R hydrograph; subsurface

stormflow less important

Horton overland
flow dominates
hydrograph;
contributions from
subsurface stormflow
are less important

Subsurface stormflow
dominates hydrograph
volumetrically; peaks
produced by retum
flow and direct
precipitation
Arid to subhumid Humid climate;
climate; thin denss vegetation
vegetation o
disturbed by humans

h—dﬁmmmﬁo&“l&dm———’

Thin soils;
gentle concave
lootsiopes;
wide valley
bottoms; soils
of high to low

permeability

Steep, straight
hillslopes; deep
very permeable
soils; narrow
valley bottoms

*-_—- Topography and soils

Figure 2.1 Runoff processes in relation to their major
controls (from Dunne and Leopold, 1978).
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zero, and there may be some exfiltration from the soil
column to the surface. Besides soil properties, the
control on this process include topography of the
hillslope. Saturation overland flow is common on the
hillslopes adjacent to stream channels in humid regions
and is enhanced by shallow soils, convergent topography
and extended periods of rainfall.

Both Horton overland flow and saturation overland
flow are important for the generation of storm runoff
hydrographs and hillslope soil erosion in their respective
environments, but the emphasis of this research is on
Hofton overland flow. In the rest of this thesis, Horton

overland flow is simply referred to as overland flow.

2.2 Soil Infiltration

Overland flow is generated at a point on a hillslope
only after surface soil layers become saturated and
surface ponding takes Place. Horton (1933) showed that
when rainfall reaches the soil surface, it infiltrates the
soil surface at a rate that decreases with time. For heavy
rains, the actual infiltration follows a limiting curve,
called the infiltration capacity of the soil. The
infiltration capacity decreases rapidly during the early
part of a storm and reaches a more or less constant rate

within a short time period, generally less than 30
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minutes, as the storm continues (Figure 2.2). If the
antecédent soil moisture content is large, the constant
infiltration rate can be attained almost. immediately. This
final constant infiltration capacity is close to the
saturated hydraulic conductivity of the soil in the
absence of surface crusting (Rubin, 1966).

Theoretical consideration of infiltration and
vertical soil-water movement led to the development of the
following physically and mathematically rigorous partial

differential equation

% 3 ae 3K (0)
e

= (1)
dz

at az
Where © is the volumetric moisture content, K(8) is the
hydraulic conductivity, D is the soil water diffusivity, 2z
is the direction of gravity, and t is the time. This
eQuation, known as the Richards equation, was first
proposed by Richards (1931). Because of the boundary
conditions needed and the difficulties in solving the
partial differential equation, some simple, yet physically
based infiltration equations are often used. Among them is
the Philip equation. Philip (1957, 1958) proposed a simple

algebraic equation derived from Richards equation

1
f = — gt~1/2 , (2)
2
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where f is the infiltration capacity, S is the parameter
called sorptivity and A is the coefficient reflecting the
final infiltration capacity and generally close to the
saturated hydraulic conductivity.

It is clear from equation (2) that infiltration rates
are mainly determined by two soil hydraulic parameters.
The soil sorptivity parameter, S, dictates the shape of
the limiting curve of infiltration capacity, and the final
infiltration capacity, A, determines the final constant
infiltration rate. Any time rainfall intensity exceeds the
infiltration capacity, overland flow occurs. In large
rainstorms, it is the final infiltration capacity that
largely determines the amount of surface runoff generated
on hillslopes (Dunne and Leopold; 1978). In the following
discussions, the final infiltration capacity, A, is

approximated by soil saturated hydraulic conductivity, Kg.

2.3 Hydraulic Resistance

Overland flow generally has depths between several
millimeters and several centimeters and flow velocities of
0.5 to 20 centimeters per second. Because of the small
depth of overland flow, the boundary effect of hillslope
surfaces on the characteristics of overland flow is very
large. Strong spatial variations of hillslope properties,
therefore, result in a strong spatial variability in the

characteristics of overland flow. Over a short distance,
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the state of overland flow may change from laminar to
turbulent, and from subcritical to surpercritical, or vice
verse. Therefore, characterization of overland flow is
more difficult than is the case for deep flow in rivers
and estuaries.

The hydraulic equations for steady and uniform flow
in open channels are given by either the Darcy-Weiébach
equation or the Manning equation. For wide open channel,
they are respectively defined as: Darcy-Weisbach equation

8g

u = — hS (3)
£ f

and Manning equation

1
u = — n2/3g1/2 (4)
n

where u is the vertically averaged velocity, h is the flow
depth, f is the flow resistance parameter for Darcy-
Weisbach equation, n is the surface roughness parameters
for Manning equations, and S¢ is the flow energy slope,
which is equal to the bed slope for steady and uniform
flow.

While the Manning equation is valid for turbulent
flow only, the Darcy-Weisbach equation can be used for
both laminar and turbulent flow, with £ being a funétion

of Renolds number:
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K
o
£=— (5)
Re

where K, is theoretically determined as 24 and R, is the
Reynolds number defined as
uh
Rg = — (6)
1
where u is the dynamic viscosity of water. For turbulent
flow, the effect of Reynolds number reduces to a minimum,
as the surface roughness becomes more important. For this
case the f-Re relation has an approximate slope of -0.2 on
the Moody diagram and there are many empirical equations
derived to describe the f-Ry relation.

For overland flow, Izzard (1944) and Emmett (1970)
have shown that as bed surfaces get rougher, Ky in
equation (5) can be several orders of magnitude lager than
its theoretical value of 24. On the Moody diagram the
resistance equation (5) is the lower limit for overland
flow (Figure 2.3). The K, for this case is therefore a
parameter reflecting the surface roughness. While these
descriptions of hydraulic resistance are accurate for
steady and uniform flow in open channels, they were not
derived to deal with some of the characteristics of
overland flow, such as the local accelerations, changes in

depth, form roughness effects due to gravel,
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microtopography and vegetation roughness, and even the
effects of rainfall impact. However, an assumption is
usually made that the Darcy-Weisbach equation is
appropriate for description of overland flow and field
results are also consistent with those predicted by theory

(Dunne and Dietrich, 1980).

2.4 Factors that Cause Spatial Variability in Overland

Flow

On a plane surface, such as a paved plot or
laboratory flume, a thin film of water may flow downslope
with little cross-slope variation in depth and velocity.
On natural slopes, overland flow generally appears as a
shallow sheet of water with threads of deeper, faster flow
diverging and'conQerging around topographic protuberances
and vegetation. The flow depth and velocity may vary
markedly over a short distance, giving rise to changes in
the state of flow. Over a small area the flow may be
laminar, turbulent, or transitional, or may consist of
patches of any of these three flow states. Under certain
conditions the flow may become unstable and give rise to
the formation of roll waves. The impact of rainfall on the
sheet of flowing water further complicates the
characteristics of overland flow.

Many factors cause spatial variability of overland

flow on natural hillslopes. Some of the important ones



21

are: soil infiltration properties, surface roughness,
microtopography, the patchiness of vegetation coverage and

rainfall impact. Each of the factors is discussed below.

2.4.1 Soil Infiltration Properties

Soil infiltration determines the excess rainfall rate
at a point on hillslope surfaces. Many factors influence
the two soil hydraulic parameters S and Kg, including soil
textures and structure and vegetation. Because these soil
properties vary greatly on a given hillslope, the soil
sorptivity parameter S and saturated hydraulic
conductivity Kg show significant spatial variation for a
given hillslope. Field measurements of the parameters S
and K and their associated probability distributions and
statistical properﬁies are shown in Table 2.1. The
distributions of S and Kg are best described by a
lognormai distribution.

As a result of the significant variations of S and
K, large spatial and temporal variations in rainfall
excess are cfeated on a hillslope surface. The spatially
variable excess rainfall rate not only determines the
quantity of surface runoff but is important to the
characteristics of overland flow, including spatial
variation of depth and velocity along and across the flow

paths and the hydrographs.
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Table 2.1 Summary of distributions of S and Kg

var. dist. mean S.D. soil type reference
Ky Lognormal 20.3 21.6 variable Nielsen etal. (1973)
Ks Lognormal 98.5 121.1 sand Babalola (1978)
Kg Lognormal 25.2 16.9 clay-loam McCuen et al.(1981)
S Lognormal 32.4 36.8 clay-loanm )
K; Lognormal 1.32 .692 sandy-loam Wagenet (1981)
S Lognormal 6.56 1.61 sandy-loam
Kg Normal .698 .279 loam Vieira et al.(1981)
Kg Lognormal 1.0 1.2 loam Duffy et al.(1981)
Kg Lognormal .65 1.3 clay
Kg Lognormal 11.6 6.3 coarse-loam Achouri &

Gifford (1984)
Kg; Lognormal 16.2 5.76 - Russo &
S Normal 17.18 6.57 - Bresler (1981)

note: all units are in cm-hr system

This table is reproduced from Cundy (1982).
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2.4.2 Surface Roughness

By surface roughness, I mean specifically the skin
roughness. This surface roughness is due to the small
scale irregularities of the surface and mainly caused by
grains or small gravels and the presence of vegetation.
The effect of the surface roughness is to retard the flow,
increase flow depth, and delay the arrival time of peak
runoff discharge. Studies show that for different soil
surfaces the roughness parameters are different, and the
values of these paraﬁeters for different surfaces have
been documented (Table 2.2). Some of the values were
obtained by direct measurement and others by back-fitting
of kinematic wave predictions to measured hydrographs.
Even for the case of direct measurement, these surface
roughness parameters were almost all computed from the
hydraulic resistance equations by using measured mean flow
velocity and depth. Besides the errors in measurements of
flow depth and velocity, the effects of spatial
variability of hillslope characteristics in, e.g.,
microtopography, infiltration, and rainfall impacts are
all lumped in the surface roughness parameter. A
separation of the roughness into components relating to
the spatial variations of hillslope characteristics is
necessary for improved understanding of overland flow
processes on natural hillslopes.

Despite the extensive field studies on the effects of
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Table 2.2 Surface roughness parameters for overland flow

laminar flow turbulent flow
surface Ko Manning n
Concrete or Asphalt| 24 - 108 .01 - .013
Bare Sand 30 - 120 .01 - .01s6
Gravel Surface 90 - 400 .012 - .03
Bare Clay-Loam 100 - 500 .012 - ,033
(eroded)
Sparse Vegetation 1000 - 4000 .053 - .13
Short Grass Prairie| 3000 - 10,000 .10 - .20
Bluegrass Sod 7000 - 40,000 +17 - .48

Note: The table is reproduced from Woolhiser (1975).
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surface roughness on overland flow, little attention has
been paid to the nature of the spatial variability of
surface roughness and its effects on overland flow. Aubry
(1984), in his measurements on the Kenya hillslopes,
showed that spatial patterns of soil particle sizes,
therefore surface roughness, existed on natural hillslopes
(Figure 2.4). Through flume experiments, Wu et al. (1978)
illustrated the strong effects of spatial variability of
surface roughness on the hydrographs. To understand the
role of the spatial variability of surface roughness in

overland flow, detailed study and simulation is necessary.

2.4.3 Microtopography

One of the major characteristics of natural
hillslopes which the laboratory flumes do not reproduce,
is microtopography. Microtopography is the deviation in
local surface slope and aspect from the average slope and
aspect of the hillslope. The scales of the microtopography
may be characterized vertically by its amplitude and
horizontally by its wave length. These amplitudes and wave
lengths vary for hillslopes of different landscapes and
for different positions along a given hillslope.

For many old landscapes in arid and semi-arid
regions, such as the Kenya savanna hillslopes, slope
surfaces generally appear rather smocoth and the

microtopography is characterized by relatively small



26

TEs8NRE3 XY

HEVATION pmstery)
[ X1 &

G 100 300 00 400 100 00 00 00
OISTANCE e

=T
T
g"LM Qe
o =T

Figure 2.4 Frequency distributions of particle size in the
surface soil at various locations along a typical
hillslope in southern Kenya (from Aubry, 1984).



27

amplitudes and large wave lengths. The survey results on
Kenya savanna hillslopes (Dunne and Aubry, 1988) showed
that the microtopography had rather smooth curvature with
the amplitude generally less thah 0.10 m and the wave
length ranging from 1 to 10 m. In these landscapes, the
depressions in the microtopography on a hillslope are not
incising to form rills over most of the hillslope length.
Overland flow on these hillslopes is dominated by sheet
flow covering the whole hillslope cross-section, at least
over most of the hillslope length, however the flow does
~converge and diverge around microtopographic heights
(Dunne and Aubry, 1988). Similar microtopography may also
be found on hillslopes with surface soil formed with fine
materials, e.g., those of the loess landscapes in the
midwestern United States and in the upper-central part of
the Yellow river basin in China.

For most of young landscapes, e.g., the pasture range
lands in the western United States, surface soil is stony
and hillslope microtopography is dominated by the cobbles
and gravels of surface rubble and deeply incised rills.
This microtopography gives rise to threads of concentrated
overland flow in rills and between surface rubble. For
this case, overland flow covers only fractions of the
cross-slope sections.

The influence of microtopography on the

characteristics of overland flow, especially, the flow
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depth and velocity fields, has been demonstrated by many
field studies. The altered flow fields of depth and
velocity in ovérland flow will inevitably be reflected in
the computed values of the hydraulic resistance if the
measured mean depth and velocity are used, or the fitted
values of a surface roughness parameter if the recorded
hydrographs are used for back calculation. Emmett (1970)
showed that the existence of microtopography increased the
hydraulic resistance, f, and surface roughness parameter
Ky, and therefore delayed the rising time of the
hydrograph, whereas the study by Schumm et al. (1987)
indicated that the existence of microtopography actually
shortened the arrival time of the flow peak, therefore it
would require a small fitted value of Ky, i.e., the
existence of microtopography reduces the surface
roughness. Obviously, the influence of microtopography on
hillslope roughness depends on its geometric
configuration. If the geometric configuration is favorable
for flow convergence, the influence of the microtopoqraphy
is to reduce the hydraulic roughness of the flow:
otherwise it will increase the hydraulic roughness. Since
the possible geometric configurations of microtopography
for a given hillslope are, theoretically, unlimited, it
would be difficult to parameterize the effects of
microtopography as the hillslope roughness parameter for

hydraulic and hydrologic prediction. The effect of the
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microtopography should be examined as an independent
hillslope variable, similar to the treatment of the
saturated hydraulic conductivity, rather than a lumped

surface roughness parameter.

2.4.4 Vegetation Coverage

The effects of vegetation on the characteristics of
overland flow are complex. The evaluation of surface
roughness due to vegetation has been conducted for both
channel and overland flow. The studies of Lyatkher and
Gurin (1977), Temple (1986), Petryk and Bosmajian (1975)
and Chen (1975) showed that the existence of vegetation in
an open channel could siqnificantl? slow down the flow.
The nature of vegetation, including their heights, shapes
and stiffness, has significant effects on the overall
surface roughness and surface flow hydraulics. For
example, Kouwen and Li (1980) observed that when water
flows over a flexible vegetation, the vegetation may bend
under certain conditions and reduce its height, and
therefore reduce its resistance to the flow.

The effect of vegetation on surface roughness under
overland flow conditions was studied by Izzard (1944). He
found that the presence of vegetation could increase the
surface roughness parameter K, by several orders of
magnitude. Dunne and his co-workers (Dunne and Dietrich,

1980; Aubry, 1984) analyzed the vegetation effects based
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on their field studies of African hillslopes and suggested
that the values of K, increases with increasing vegetation
coverage (Figure 2.5). Their work demonstrated that
spatial variability in vegetation cover density exists on
natural hillslopes due to spatial variation of soil and
hillslope moisture conditions (Figure 2.6). Further
analysis of these field observations (Dunne et al., 1987)
indicated that vegetation was ciosely associated with both
high infiltration capacity and microtopographic heights.
This results in a positive relationship between measured
infiltration capacity and rainfall intensity. These
findings complicate the interpretations of vegetive
effects on the characteristics of overland flow. More
field and theoretical work must be done before vegetation
effects can be'inéorporated into practical prediction by a

physically based runoff model.

2.4.5 Rainfall Impacts

Raindrop impacts may have a significant influence on
the hydraulics of overland flow, and thus on measured
surface roughness. As raindrops enter the thin layers of
overland flow, they generate splashing craters on the
water surface and create turbulence in the flow. These
splashing impacts can causes energy loss and increase flow
resistance. This is particularly important in shallow

laminar flow over a smooth surface. The rainfall splashing
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impact on overland flow is a complex phenomena and has not
been well understood. Yoon and Wenzel (1971) showed
through a laboratory experiment that the rainfall impacts
could cause considerable retardation of shallow flow
(Figure 2.7), and thus increase the hydraulic resistance.
As the flow becomes more turbulent and the bed surface
gets rougher, the rainfall impacts become insignificant
(Izzard, 1944 and Kisisel et al, 1971).

In the absence of a sound theoretically based
computation of the effects of raindrop impacts on flow
resistance, Shen and Li (1973) have experimentally
determined the equations for the Darcy-Weisbach |
coefficient f for flow with raindrop impacts. For laminar
flow:

Kg + Ky r0-41

£ = (7)
Re

and for turbulent flow:

Ky
0.25
RB

f = (8)
where K, is the hillslope roughness and K, is the
parameter related to raindrop velocity and Ky is the
roughness coefficient of turbulent flow, r is the rainfall
intensity in in/hr. Since these equations were determined

for a smooth surface (a stainless steel plate), their
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applicability for prediction on natural hillslopes is
limited. Further study of effects of rainfall impacts on

rough surface is needed.

2.5 Summary
The hillslope properties of infiltration, surface
roughness, microtopography and vegetation can vary greatly
over short distances on a natural hillslope, and strongly
influence thé hydraulics and hydrology of overland flow.

Rainfall impacts may have significant influence on
overland flow if the flow is laminar and the slope surface
is smooth. The roles of the hillslope variables and their
associated spatial variations have not been fully
understood and their effects on overland flow have not
been described quantitatively. In chapter four, I will
examine the effects of soil infiltration, surface
roughness and microtopography on the characteristics of
overland flow by using a two-dimensional hydrodynamic and
numerical model. The effects of vegetation on overland

flow is not addressed.
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Chapter Three

DEVELOPMENT OF A TWO DIMENSIONAL OVERLAND FLOW MODEL

3.1 Background Review

The earliest scientific studies and modeling of
overland flow were carried out by Horton and his
colleagues (1934). Since then many overland flow models
have been developed. The two notable classes of ovérland
flow models are those based on empirical relationship such
as the rational and unit hydrograph methods, and those
based on the physics and hydraulics of overland flow. The
latter class is mainly based on the hydrodynamic equation
or de Saint Venant equation and its simplified forms.

Based on the principles of conservation of mass and
momentum, de Saint Venant in 1871 derived mathematically
rigorous one-dimensional equations for gradually varied
unsteady flow. The equations may br written in the
following form: continuity equation

dh d(uh)

+ =V (9)
at ax °

and momentum equation

dh du du
g— + y— +$ —— = q(s° - sf) (10)
ax ax at

(I) (II) (III) (IV) (V)



37

where h is the flow depth, u is the velocity, Vo is the
lateral inflow rate or excess rainfall rate for overland
flow, g is the acceleration of gravity,'so is the slope of
the surface and Sg¢ is the flow energy slope. The terms on
the left-hand side of the momentum equation reflect the
flow properties. Term (I) represents the pressure
differential of the flow due to depth variation and is
insignificant for steady uniform flow; (II) is the
convective inertia term and describes non-uniform flow:
(III) represents the local inertia of the flow and is
significant for unsteady flow. The terms on the right-hand
side of the equation reflect the properties of the bed on
which the water is flowing. Term (IV) is the gravitational
energy component due to bed slope. Term (V) reflects the
flow energy slope, which mainly reflects the resistance or
friction effects of the bed surface.

Because of the difficulties in its solution for
overland flow, attempts have been made to simplify the
equation. Depending on the degree of simplification of the
momentum equation, different forms of overland flow
equations can be constructed. The most commonly used
overland flow model resulting from such simplifications is
the kinematic wave equatién (KWE) . The physical theory of
the KWE was proposed by Lighthill and Whitham (1955), and
first applied to the overland flow problem by Henderson

and Wooding (1964). The underlying assumption for the KWE
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is that energy variations of the flow due to depth
pressure and local and convective accelerations are
negligible in comparison with the gravitational energy
component and friction effects of the bed slope.
Therefore, all three terms relating to flow properties on
the left-hand side of the momentum equation may be
ignored. This results in a significant simplification to

the momentum equation:

So = S¢ (11)

If we substitute equation (11) into equations (3) or (4),

we have the following general form:
u = ahf (12)

where ¢ and 8 are parameters reflecting the slope and
surface roughness of the bed and flow mode, respectively.
For different flow resistance equations, a and 8 are

expressed as: for the Darcy-Weisbach equation:

89 S5 11/2
a = [ ] B = 1/2 (13)

4

and for the Manning equation:

s 1/2
@ s — B = 2/3 (14)
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Using the method of characteristics, Henderson and
Wooding (1964) developed an analytical solution to the KWE
over a sloping plane with constant lateral inflow. Using
the same approach, Cundy and Tendo (1985) analytically
solved the KWE incorporating Philip's equation for
unsteady infiltration on a plane surface. Li et al. (1975)
developed a finite difference solution to the KWE, which
allows unsteady non-uniform lateral input. All these
models can be used to predict and simulate overland flow -
discharge, depth and velocity along the slope surface.
However, the applications of these models are restricted
to one-dimensional flow on a plane surface.

To incorporate variable slopes, Kibler and Woolhiser
(1970) introduced the kinematic cascade model for overland
flow. In the model the space dependence is removed by
making the hillslope properties and lateral inflow
Piecewise uniform in space. The hillslope is divided into
a series of plane segments with properties remaining
constant within each plane segment but varying from
segment to segment. Using the same idea, a more
sophisticate kinematic shock fitting technique was
developed by Borah et al. (1980). The method further
eliminated the time dependence of the model parameters and
lateral input by assuming each to be piecewise constant in
time. Then the KWE is solved for each cascade segment

subject to given initial and upstreanm boundary conditions.
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The kinematic cascade model provides insight into the
problem of overland flow with spatially and temporally
dependent hydraulic parameters and lateral input. Yet, it
does not allow cross-slope variation of the flow.
Furthermore the method does not allow back facing slopes
in any of the cascade planes, due to the limitations of
the kinematic wave assumptions: this is a significant
limitation if one is considering the effects of
microtopography on runoff characteristics.

Wooclhiser and Liggett (1967) showed that the
prediction error of the KWE is significant, when the
kinematic wave number (k) is small. The number is defined
as

k = —o Lo | (15)

Fo2 he
where L, is the slope length, h, is the normal flow depth,
and Fg is the Froude number for normal flow, expressed as

u
Fo = ——— (16)

(ghg) ¥
where u, is the normal velocity. This is the case for a
surface of small slope, short length, smooth surface and
with less intense rainfall. Woolhiser and Liggett (1967)
suggested that the criterion for using the KWE is k > 10.

For k < 10, the error in rising hydrograph by the KWE
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would be more than 10%. This criterion is only for flow
over a plane surface. For applications where a front face
is formed due to spatial variation in slope, roughness, or
lateral inflow along the flow path, the KWE is inadequate
(Miller, 1984). Attempts to extend the KWE to two-
dimensional overland flow have been made by Kuchment
(1980), Constantinides and Stephenson (1981) and Cordova
et al. (1982), among others. Their applications have been
limited by the kinematic wave assumption.

Morris and Woolhiser (1980) introduced the diffusion
wave approximation to the full de Saint Venant equation of
overland flow to replace the KWE. The diffusion wave model
uses the full continuity equation and simplified momentum
equation by keeping an additional term (I) in the momentum
equation to reflect the changes in kinetic energy. The

momentum equation for this model is

dh
ax

= So - St (17)

The diffusion wave model was solved by using either a
finite difference method (Morris and Woolhiser, 1980) or a
weighted residual method (Govindaraju et al., 1988). Their
solutions showed that the diffusion wave model is a good
approximation to the full Saint-Venant equation for small
kinematic wave numbers where the KWE fails. Diffusion

waves propagate only in the downstream direction, although
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they attenuate as they move downstream. Therefore, the
method is not suitable for the case where pronounced
variations of local bed gradient and local flow occurf
Ponce et al. (1978) presented the following criterion for

the diffusion wave model to be adequate:

g11l/2
] 2 30 (18)

s, [Z
where T is the wave period or length of time required for
one wave to pass. If the left hand side of the equation is
less than 30, the de Saint-Venant equation should be used.

Due to significant variations of physical and
hydraulic characteristics of natural hillslopes, neither
the KWE nor the diffusion wave model can be universally
applied to overland flow without considerable compromise
in accuracy, especially if they are used to simulate the
overland flow field. Consequently, it becomes necessary to
use the de Saint-Venant equation in modeling of overland
flow. However, due largely to mathematical and numerical
difficulties, the de Saint-Venant equation has never been
properly solved for overland flow, either mathematically
or numerically; therefore its application to overland flow
has been extremely limited.

The one-dimensional hydrodynamic equation has been
used for modeling of overland flow by Liggett and
Woolhiser (1967) and Akan and Yen (1981). Liggett and
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Woolhiser conducted extensive numerical experiments to
compare different numerical schemes in solving the
hydrodynamic equation for overland flow. This work
provided experience and guidelines for the solutions to
the hydrodynamic equation for overland flow. Akan and Yen
developed an overland flow model which consisted of a one-
dimensional hydrodynamic equation for surface flow and a
subsurface flow equation. Both studies dealt only with
one-dimensional homogenecus planes.

Chow and Ben-Zvi (1973) modeled overland flow by
using a two-dimensional hydrodynamic equation, solved by
using the Lax-Wendroff scheme. Yet, in the subsequent
example problem they had to use a much simplified version
of the hydrodynamic equation in which all the terms
related to the convective acceleration were dropped from
the hydrodynamic equation. These terms are significant in
the presence of spatial variations in hillslope
characteristics, which could not therefore be incorporated
in the model. Katapodes and Strelkoff (1979) used a
characteristic method to solve the two-dimensional flow.
They clearly point out the advantages of characteristic
methods, however, for the general overland flow case of
spatial variability in slope, roughness and infiltration,
characteristic methods are not tractable. Kawahara and
Yokoyama (1980) presented a two-dimensional overland flow

model, in which the two-dimensional shallow water equation
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was solved by a finite element scheme. Spatial variability
in infiltration and roughness were not included in their
model. Hromadka et al. (1987) developed a diffusion
hydrodynamic model, in which both the convective
acceleration and local acceleration terms were dropped
from the hydrodynamic equation.

In this paper, a two-dimensional hydrodynamic
equation is developed for overland flow. The hydrodynamic
equation is solved by a numerical scheme based on the
explicit, second-order-accurate, MacCormack finite
difference scheme. This scheme allows realistic spatial
variation of hillslope features, including surface
roughness, infiltration and microtopography.

To the best of the writer's knowledge, the
hydrodynamic equation for overland flow has not been
applied to a two-dimensional surface, and no attempt has
been made in utilizing the hydrodynamic equation, either
one-dimensional or two-dimensional, to model overland flow

on non-uniform hillslopes.

3.2 Development of the Governing Equations

The general hydrodynamic equations of continuity and
motion for an incompressible fluid with a constant density
and without consideration of surface tension can be

expressed as (Dronkers, 1964)
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+ + =0 (19)

du duu avu dwu
+ + + W
at ax ay dz
1 dp 1 por ar ar
= - — ——+ - = . XX, zxX+ Fy (20)
p Idx P ax ay daz
av duv avv wv
+ + + W
at ax ay az
1 dp 1 por ar ar
= - —— = ) QURPED & AN zy]+1-*y (21)
p dy /) ax ay az
aw duw avw dww
+ + + W
at ax ay dz
1 dp 1 a7 ar ar
= s ——+ - X2, X2, zz]+1='z (22)
p dz P ax ay dz

where u, v and w are the projections of the velocity
vector on the coordinate axes x, y and z, respectively, »
is the density of water, p is the pressure of water, and 7
is the shear or normal stress, with the following
convention: the first subscript indicates the direction
normal to the plane being considered and the second

subscript indicates the direction of stress. F F, and F,

X' vy

are the x, y, and z components of body force per unit
mass. With reference to the cartesian coordinate system
shown in Figure 3.1, where the z coordinate is parallel to

and opposite of the direction of the gravity, the body
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Figure 3.1 Schematic representation of cartesian coordinates
for overland flow.
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forces in x and y directions vanish, except that in the z

direction where
Fo=-g9 (23)

where g is the acceleration due to the gravity.

These general equations are meant here to include
both laminar and turbulent flows. For turbulent flow the
velocity components u, v and w represent mean velocity
over short time intervals. The shear or normal stresses
expressed above, therefore, include viscous stress and
Reynolds' stress arising from the transfer of momentum by
the turbulent motions. For convenience, only the shear
stress terms in equation (20) are given below. Those in
equations (21) and (22) can be defined similarly.

du
Tyx = b—— = p<u'u'> (24)
ax
du o
Tyx = uf;;-- p<u'vi> (25)
du
Tax = b— = p<u'w'> (26)
az
where s is the dynamic viscosity of water, u', v' and w'
are the fluctuations of the velocity components around
their corresponding mean value and <> indicates an average

over a short time interval. In the above equations, the

first and the second terms on the right hand sides of the



48

equations represent viscous stress and Reynolds' stress,
respectively.

For the problem of overland flow shown in Figure 3.1,
the following kinematic boundary conditions can be defined
for the general hydrodynamic equations:
at the free surface z = {(x,Y,t)

d¢ a¢ 3¢ ¢

—_— = ——— 4 Ypg—— + Vg = Weg = r(X,Y,t) (27)
dt at ¢ Ix ¢ ay ¢

at the bed surface z = n(x,Y,t)

dn. an an an
= + up, + Vg = Wn + £(x,y.,%t) (28)
dt at ax ay

where § and n are the free surface and bed surface
elevations, respectively: Ug, Ve and we are the velocity
components at the free surface in x, y, and 2 directions,
respectively; Up, Vo and W, are the velocity components at
the bed surface in x, y, and z directions, respectively: r
is the rainfall rate; and f is the infiltration rate.

Two-dimensional overland flow equations are developed
by vertically averaging equations (19) to (22) over the
flow depth and using the above kinematic boundary
conditions. In the derivation of the two-dimensional
equations, the following assumptions were made: 1) for
shallow water flow of long waves, the vertical

acceleration of a fluid particle, dw/dt, is small in
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comparison to the acceleration of gravity, 2) again in the
case of long waves, the shear stresses due to the vertical
velocity component, V2w, are also small, 3) the terms due
to horizontal shear on vertical surfaces, 38%u/dx%, 3%u/dy?,
82v/3x2 and azv/ay2 are small compared with the terms due
to vertical shear on horizontal surfaces, 82u/822 and
82v/822. Therefore, these terms were neglected in the
development of the equations. The resulting two-

dimensional overland flow equations are:

0 (£-n) aq, 9y, ,
+ + = r(XIYIt) - f(erIt) (29)
ot ax dy
da, B>/ (6-m) ] 31 By Gy dy/ (€=M ]
+ + - ugr
at ax ay
a(&-n) an 1 ¢
= - g(&-n) [ + ] + — (18, = 1Y (30)
ax Ix p
da,  dByay’/ (§-m) 31 Byydydy/ (€=M ]
+ + - v¢r
at oy ax
a(&-m on 1 ¢ n
= - g(£-n) [ + } + = (15, = 71y (31)

ay ay P

where q is the flow rate per unit width, 7€ is the shear
stress at the free surface, 1M is the shear stress at the
bed surfacé, and B is the momentum correction factor to
account for non-uniformity in the velocity distribution

and is expressed as:
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(32)

e
Jo

c.|

T
u is the vertically averaged velocity. The subscripts x
and y are the directional indices. The detailed
derivations of equations (29) - (30) are given in Appendix
A.

The first two assumptions lead to a vertical
hydrostatic pressure distribution for the flow. This 1is
valid if the bed slope is not too steep and there is no
abrupt change, e.g., hydraulic jumps or strongly
curvilinear flow in a vertical plane, in flow (Henderson,
1966) . The third assumption is proved to be valid by fhe
scaling analysis of Sokolov (1973), except at a rigid wall
where the horizontal shear may be of equal order of
magnitude to the vertical shear.

For laminar flow, the viscous stress dominates and
Reynolds' stress can be ignored. The equation for boundary
shear stress at the bed is then given by

£ oay(a? + g 5 1t/?
M, = p— 27X b4 (33)

% 8 (€-n) 2

£ g, (.2 + q,2) /2
M, = p— L X Y (34)
8 (€-n) 2




51

where f is the flow resistance factor. For laminar flow
the flow resistance, f, is defined by the Darcy-Weisbach
equation, equation (5) in chapter two.

For turbulent flow Reynolds' stress dominates and
vViscous stress may be negligible. The boundary shear

stress can then be approximated by the Manning equation as

2
n
a7 09 (f-n)4/3"x(qx2 +ay®) /2 (35)
n? 2.1/
n = — 2 /2
Ty = Ay (G ) (36)

where n is the Manning roughness coefficient.

Both Darcy-Weisbach and Manning equations are derived
for steady and uniform flow. Therefore the boundary shear
stress equations given above may only be considered as an
approximation. The coefficients Ko and n are typically
determined by fitting field data, and the two parameters
are tabulated in relation to surface conditions in Table
2.2.

The shear stress on the free surface is generally
produced by two factors: rain droplets and wind. While the
influence of wind on overland flow may be negligible, the
impact of rainfall can be significant. As raindrops fall
into flowing water, they generate splashing craters on the
water surface, and turbulence in the flow. These can cause

energy loss and increase flow resistance (Yoon and Wenzel,
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1971) . The impact is greater for shallow water and laminar
flow but less for deep water and turbulent flow. As the
water gets deeper and flow gets more turbulent, the impact
of rainfall on flow resistance may be negligible (Shen and
Li, 1973). Shen and Li (1973) obtained an empirical
relationship, equations (7) and (8) in chapter two,
between rainfall intensity and Darcy-Weisbach resistance
parameter f through a non-linear regression of the results
of flume experiments. However, since their empirical study
was only for a laboratory flume of very smooth surface,
the applicability of the relationship on natural surfaces
is very limited.

In this study, a simple description of the
relationship between rainfall impact and flow resistance
is presented. It assumes that the retardance effect of
rainfall is predominantly caused by the momentum exchange
between individual rain droplets and flowing water.
Rainfall splashing and the effects of spatial interference
between individual rain droplets are ignored. When a rain
droplet with zero velocity component in the downslope flow
direction falls into the layer of overland flow, it will
be accelerated by the flowing water in the direction of
flow until the moment when its velocity becomes compatible
with the velocity of the overland flow. During this

process, it is assumed that the rain droplet maintains its
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shape. The drag force exerted on the droplet by the
flowing water can be expressed as

c
D .
Fox = = Ayp(u=ug) |v-vyl (37)

" where Fpx is the component of the drag force acting on the
droplet, Cp is the drag coefficient, A, is the droplet
cross-section area projected on a plane normal to the x
direction, Uy is the x component of the droplet velocity,
V and V4 are the resultant velocities of the flow and the
droplet, respectively. On the other hand, the motion of
the droplet must obey Newton's second law, i.e.,

d(mdud)

F (38)

X dt
where Fy is the external force acting on the droplet and
mq is the mass of the droplet.

Provided that the slope gradient is small,

conservation of momentum for the droplet leads to

Fpx = Fy (39)
l.e.
o d(mguy)
D a-d
— A, o (u-uy) |V-V,| = ———— (40)
X A, d d P
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integration of the equation with respect to time and for a
unit area of the flow field yields the following
expression of surface shear stress due to rainfall

¢ Ix
1y = ~pr——— (41)

(§-n)

Similarly, the y component shear stress is
¢ g9
T y = -pr——L (42)

Substitution of the boundary shear stress equations
for the water surface and bed surface into equations (29),
(30) and (31) produces a closure form of a system of non-
linear partial differential equations. For numerical
solution, the system of partial differential equations may

be written in matrix form

JH au av
+ + = B (43)
it ax ay
where
(§ = n
H = qx. (43.a)
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c
"
+

-~
1

3

[ S}

(43.b)

V= + (§ - m?2 (43.c)

E = E, (43.4d)

where E;, and E, are the terms on the right hand sides of
equations (30) and (31), respectively.

The model developed above allows an explicit
incorporation of spatially variable hillslope features,
e.g., infiltration (f), surface roughness (Kgy) and
microtopography (7). Because of its complexity, this
system of partial differential equations has no known
analytical solution and may only be solved by numerical

methods.
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3.3 Numerical Approach

Many numerical models have been developed for
describing deep water flow, such as occurs in estuaries
and lakes. In these models, a hydrodynamic equation of two
or even three dimensions has been solved using numerical
methods. However, due to some physical and mathematical
difficulties, numerical schemes suitable »>r deep water
flow are not reliable when applied to overland flow. The
difficulties result from the following physical phenomena:
1) Overland flow is shallow. It is not uncommon for the
depth of overland flow to be less than centimeters or even
millimeters. So, a very small magnitude of computational
oscillation may result in a negative computed flow depth,
causing instability in the numerical solution.
2) For the case of deep water, the bed shear stress is
very small in relation to the other fluid forces, so its
impact on the stability of the numerical solutions is
small. In overland flow the bed shear stress is large in
comparison with other forces and often causes some
numerical difficulties and instability.
3) Ground surface topography and variation of local slope
gradient have significant impact. The vertical amplitude
of microtopography is often of the same order of magnitude
as or even larger than overland flow depth. Therefore, the
surface variation of overland flow is largely dictated by

the local slope gradient of microtopography. This strong
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dependency of overland flow on microtopography may cause
significant disturbance to the overland flow, i.e.,
‘regions of rapidly varying flow. This presents a great
difficulty for numerical formulation and causes numerical
instability for the solution.

4) Rainfall and infiltration represent a significant
mathematical "source" and "sink", respectively.

The numerical method used in this study is based on
the MacCormack finite-difference scheme, which was
developed for simulating aerodynamic problems (MacCormack,
1971) . This scheme possesses some advantages over many
commonly used schemes in terms of its ability to handle
discontinuities and shock waves in the flow. The scheme is
an explicit, two-step, finite difference scheme. For each
time step, the solution is composed of a sequence of
predictor-corrector steps. In the predictor step, the
method first obtains an approximate solution at a half
time step th+y fOr the computational point (i,j) using a
forward difference for the spatial derivatives. This
approximate solution is then modified using a backwarad
difference to get an improved solution for the corrector
step at time step tn+§' These procedures are then repeated
to obtain the solution at the second half time step t, ;.
To render the solution symmetrical, at the time step t .,
instead of first using a forward difference and then a

backward difference, the reverse procedure is followed.
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Application of this cyclical procedure to equation (43)

yields the following difference equations.

At time tn:

predictor (backward difference)

At At AtE; .
=n+Y% n n n n n i,j3
Hy s= H; 4= —(U; +=U;_, 1) — (Vi s=V. :_.) +

i,3 i,3 2Ax 1,3 Yi-1,3 28y i, 'i,j-1 2
(44)
corrector (forward difference)
n+y_ Mn  oney +%
Hi,ja -[Hi,]+ Hi J d‘]."'l 3 d.‘
2 2Ax
n+k
AtE;
\}“' \F“’ )+ ——-—jl’ (45)
2Ay 1,341
At time t, .,
predictor (forward difference)
n+%
At AtE; .
-n+1l +% n+k n+X 1,3
Hy,j= Hi, ‘Piu j"‘Pi 30 = Vi, 3417Y,9) *
24y 2
(46)
corrector (backward difference)
1
n+l n+§ -n+1l +1
Hi,j= 2[H° j Hi j‘ (Un [f‘ -1, j)
n+l
AtE
- —(v"‘*'1 \}"1 ) — L j] (47)
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where those variables with the overhead bars are obtained
from the predictor step and those without the overhead
bars are from the corrector step.

It has been shown (MacCormack, 1969) that the scheme
is of second-order accuracy in both time and space,
although each separate approximation of the predictor and
corrector is of first-order accuracy in space. While the
numerical properties of the scheme have not been
completely analyzed in the general non-linear form, the
convergence and stability properties of the scheme for the
linearized set of the equations have been studied by
MacCormack (1971). The Courant-Friedrich-Lewry (CFL)

stability condition for the linearized equation is

_+—

Ymax Vmax 1 1 172 -1
e, 1 Al
Ax2  Ay?

st = ¢y | ahdw
where C, is the desired Courant number and c is the wave
celerity, defined as ¢ = (gh)a. A von Neumann stability
analysis by Anderson et al. (1984) showed that the scheme
was stable when Ch S 1. However, it is important to note
that a difference scheme shown to be stable by linear
analysis may still experience numerical instability in the
solution of non-linear problems. In fact, as demonstrated
by the examples presented later in this chapter, the

stability condition for non-linear equation (43) is far

more restrictive than that provided by Anderson et al.
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3.4 Boundary and Initial Conditions

Finite-difference equations (44) - (47) give the
solutions for the interior nodes. The solutions at the
boundary nodes, however, require special treatment. Two
kinds of boundary conditions were considered in this
study: closed boundary and open boundary. At a closed
boundary, both the normal and tangential velocities vanish
because of the no-penetration and no-slip conditions.
Therefore, the mathematical expressions at closed

boundaries can be expressed as

Qe (t) =0 (49)

qy(t) =0 | (50)

The water depth at this boundary fluctuates depending on
the flow inside the boundary. At an open boundary, the
proper boundary conditions are described by Brutsaert
(1971), Liggett and Woolhiser (1967), Verboom et al.
(1982) and Lai (1986). If flow immediately upslope from
the boundary is subcritical, one condition, critical flow,

may be defined at the boundary
he = ((qy? + qy?)/q1Y/3 (51)

where, h, is the critical depth of the flow. If flow
immediately upslope from the boundary is supercritical, no

boundary condition is required. For unsteady overland
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flow, the specified boundary conditions may change during
the solution if the flow changes from subcritical to
supercritical or vice versa.

Discussions of the numerical approximation of the
boundary conditions for overland flow can be found in the
literature of Liggett and Woolhiser (1967) and Liggett and
Cunge (1975). These studies concluded that the
characteristic method was the most accurate method for
approximating the boundary conditions. Unfortunately, the .
characteristic method is too complicated to be used in a
two-dimensional model, especially with spatially varying
hillslope features. Therefore, simpler approximation
schemes were used in this model and are discussed below.

At a closed boundary, the flow depths are
approximated by an inward difference, which may be a
forward or a backward difference, while the discharge at
the boundary is specified as zero as mentioned above. At
an open boundary, if the flow is subcritical, the
discharge is determined by an inward difference and the
depth is then determined by equation (50). If the flow is
supercritical, both the discharge and depth are computed
by an inward difference.

Field studies of overland flow are usually carried
out on experimental plots of rectangular shape. For this
case, the closed boundary is the border and the open

boundary is the downslope boundary of the plot. The model
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simulations discussed in the next chapter are for overland
flow on such experimental plots. While all the boundary
conditions for the experimental plots can be solved using
the above described procedures, the author found that for
a rectangular plot where the flow is predominantly
downslope, the following approximation for the upper
boundary condition will improve the stability of the
solution. In this case, the computational boundary is not
defined at the physical boundary but a small distance, D,
downslope from it. Therefore, instead of using zero
discharge at x = 0, a non-zero discharge at x = D, which
is solely contributed by the lateral inflow from the
length of D and obtained using the steady state kinematic
wave equation, is used as the upslope boundary condition.
Numerical experiments showed that this approximation for
the upper boundary condition damped some computation
oscillations near the upslope boundary, thus providing
more stable solutions than if a zero discharge were to be
used at the boundary. Since the values of D used are
small, typically, 1 to 2 cm, its influence on the
simulation results is negligible.

If overland flow initially starts on a dry slope
surface, the initial conditions at the beginning of

rainfall excess are defined throughout the domain as

h(t=0) = 0 (52)
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qy(t=0) =0 (53)

qy(t=0) =0 (54)

The condition of zero depth induces é mathematical
singularity at the beginning of the computation.
Therefore, to start the computation, a thin film of water
is assumed to be ponded prior to the initiation of
overland flow. This assumption has been used by, e.q.,
Liggett and Woolhiser (1967), Brutsaert (1971) and Chow
and Ben-2Zvi (1973). The depth of this initial layer of
water in the simulations, ha' was small, less than one
tenth of the average depth at steady state. The time
required to build up this initial depth, t,, is determined
by the kinematic wave approximation, t, = h,/(r-f), and is
only a small fraction of the time required for hydrographs
to reach steady state. This starting procedure allows the
numerical solﬁtion of the hydrodynamic equation to begin

at time t = t, where non-zero depths are known.

3.5 Limitations of the Model

The limitations of the hydrodynamic and numerical
model (HyNuM) are the following.
1) The entire physical domain is flooded and there are no
free boundaries. The model may not be applied to the cases
where topographic heights protrude of the flow and where
there are large patchy areas where the infiltration rate

exceeds the rainfall rate. This approximation is
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acceptable for the cases where hillslope surfaces are
relatively smooth, e.g., many old landscape hillslopes and
hillslopes with surface soils formed with fine parent
materials in arid and semi-arid regions, and where
rainfall intensities exceed infiltration rates.

2) At this state of development, only the spatial
variation of steady infiltration rate, i.e., the saturated
hydraulic conductivity, is considered, and unsteady
infiltration is not allowed. As shown in Figure 2.2,
during a rainstorm event, infiltration rate for most of
soils reaches a more or less constant rate within a very
short time period, generally less than 30 minutes, and the
rainfall durations are usually much longer than the time
necessary for infiltration to reach the more or less
constant rate. Therefore, this approximation is acceptable
for many rainfall overland flow cases, and especially, for
the cases where the soil infiltration capacity is small
and where the hillslope surfaces are previously wet before
a rain storm or for overland flow during heavy rain
storms.

3) The ground change with time due to soil erosion or
deposition during a rainfall event is negligible.

4) Microtopography, infiltration, and surface roughness on
a natural hillslope usually vary over distances of
centimeters to meters. To resolve such a fine scale, the

computational grid mesh must be even smaller. Due to the
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enormous computation intensity and some stability
requirements of the model, with the very small grid scale,
the model simulation may be limited to a small area, e.q.,
a length scale less than 100 meters. For simulations on a
hillslope with a scale larger than that, it is necessary
to increase the computational grid scale. This may result
in a poor representation of the spatial variations of

hillslope features.

3.6 Model Comparisons and Tests

To evaluate the accuracy and application of the
model, two sample problems were solved. The first example
is for overland flow on a one-dimensional plane surface,
for which the hydrodynamic equation has been solved
numerically using the characteristic formulation and is
shown to be very accurate (Liggett and Woolhiser, 1967).
This example is necessarily simple, and was chosen to test
the accuracy of the hydrodynamic model. In the second
example, the case of overland flow on a three-plane
cascade is simulated to test the model against
experimental measurements and to show the model's shock-
capturing ability. For this case model results and
experimental results are compared. Model simulations for
two-dimensional overland flow due to spatial variations in
infiltration, surface roughness and microtopography will

be presented in the next chapter.
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Example 1: One-Dimensional Smooth Plane
Runoff hydrographs on a smooth impermeable plane are
simulated using HyNuM, the characteristic method of
Woolhiser and Liggett, and the KWE. The results are shown

in Figure 3.2. These results were computed for the case

defined by the following conditions:

total length of the plane: L =12 m
slope gradient: So = 0.0936%
roughness parameter: Ko = 24
rainfall intensity: r = 10 cm/hr
kinematic wave number: k =1

Froude number: Fqg = 2

where k and F, are defined in equations (15) and (16),
respectively. The computation grid was take as Ax = 1.0 m,
the timé increment was At = 0.12 s, and the value of Ch
was 0.799,

The results show that the agreement between HyNum and
the characteristic solution is very good. Since the
kinematic wave number k is much less than 10 for this

case, the solution by the KWE is not satisfactory.

Example 2: Three-Plane Cascade

In the second example, the model was run on a three-
plane cascade surface, which is described in Iwagaki's
experiments (Iwagaki, 1955). Iwagaki conducted a series of

rainfall runoff experiments in a laboratory flume, which
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Figure 3.2 Comparison of the solution by the hydrodynamic
model with the characteristic (Woolhiser and
Liggett, 1967) and kinematic solutions for the
Froude number F, = 2 and the kinematic number
k = 1. Dimensionless time t* = t u,/L,;
dimensionless discharge q* = q/(r L,).
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was made of aluminum plate which was very smooth. The
flume, 24 meters long, was divided into three sections of
equal length. Each section had a different slope. They
were, from the upslope end to the downslope end, 0.020,
0.015 and 0.010, respectively. During the experiments,
three different rainfall intensities of 389 cm/hr, 230
cm/hr and 288 cm/hr were simultaneocusly applied to the
upper, middle and lower sections. The durations of the
rainfall (t,) for three different experimental runs were
10, 20 and 30 seconds. Under these flow conditioné, it was
observed that regions of rapidly varying flow were
generated. These regions of rapidly varying flow were
caused by faster upstream flow, which resulted from
heavier rainfall input and a steeper slope, catching the
slower downstream flow, which resulted from less intense
rainfall and a smaller slope gradient.

In the computation, the spatial increment was taken
as Ax = 1.0 m, the time increments for stable solution
were At = 0.012 s for rainfall durations of 10 and 20
seconds and At = 0.006 s for rainfall duration of 30
seconds. The values of Cn are less than 0.2. From the
results the calibrated Manning coefficient, n = 0.006, was
obtained. The flow depth profiles computed by HyNuM show
good agreement with those given by Iwagaki (Figure 3.3),
although the water profiles computed by HyNum are slightly

deeper than those of Iwagaki and have small computational
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Figure 3.3 Comparison of the computed depth profiles at the
cessation of rainfall on a three-plane cascade
from the hydrodynamic model with Iwagaki's
results (Iwagaki, 1955).
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oscillations.

The computed hydrographs by both HyNuM and the
kinematic shock fitting model (Borah et al., 1980) are
compared with the experimental results of Iwagaki are
shown in Figure 3.4. The model simulation was good for the
cases with rainfall durations of 20 and 30 seconds, but
not so good for rainfall duration of 10 seconds. From
Figure 3.4 one can see that after rain stopped at 10
seconds the measured discharge slowly increased for about
5 seconds, then maintained a constant flow rate of
approximately 26 cmz/s for about 8 second, and then
dréstically rose to 75 cmz/s at about 25 seconds, i.e., 15
seconds after the rainfall stopped. This drastically
increased discharge at 15 seconds after cessation of
rainfall was caused by the arrival of the upstream flood
generated by a much heavier rainfall on the upstream
segment. For the computed hydrograph and rainfall duration
of 10 seconds, the timing of the discharge peak was
delayed by about 5 seconds and the sharpness of the peak
was reduced. These may be caused by the effects of damping
and phase error of the numerical solution. Also, in Figure
3.4a the hydrodynamic solution shows a slight rise toward
the end of the hydrograph. This shows a sign of the
beginning of the numerical ocsillations. In general, the
results show that the computed hydrographs by HyNum,

especially, the non-equilibrium hydrographs, are in closer
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agreement with Iwagaki's results than those computed with

the kinematic shock fitting model.

3.7 Summary

A two-dimensional hydrodynamic and numerical model
(HyNuM) for overland flow has been presented. The model
allows explicit incorporation of spatial variations in
some hillslope physical characteristics, which may be
surface roughness, infiltration, and microtopography. The
accuracy of the model has been tested by comparison with a
characteristic solution and experimental data. The shock-
c;éturing ability of the model has been tested using a
plane-cascade surface with a non-uniform rainfall
intensity. The results of these tests indicate that the
model has good stability and convergence properties. The
results of the tests presented in this study show promise.
The model can be used to illustrate the influence of the
spatial varying surface roughness, infiltration and
microtopography on overland flow characteristics includihg
distributions of flow depth and velocity and hydrographs.
These simulations and the discussion of the impacts of
these spatial variations on the characteristics of

overland flow will be given in the next chapter.
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Chapter Four

EFFECTS OF HILLSLOPE SPATIAL VARIATIONS ON OVERLAND FLOW

4.1 Review of Previous Work

The spatial variations of hillslope characteristics
considered in this study include soil infiltration,
surface roughness and microtopography. These variations
have strong effects on overland flow. Previous studies
have mostly emphasized spatial variation of infiltration
and its effects on the hydrograph. Little attention has
been paid to the effects of spatial variations of surface
roughness and microtopography, and no attempt has been
made to relate these spatial variations to measurable
characteristics of overland flow.

The study by Wu et al. (1978) is one of a few studies
that dealt with the effects of spatial variation of
surface roughness on the hydrographs of overland flow. In
their study, the effects of spatial variations of surface
roughness were investigated for the surfaces consisting of
two roughness elements: a butyl surface and a gravel
surface. The value of K, for a butyl surface is in the
range of 24-50 and the value for a gravel surface in the
range of 300-400. Physical experiments were conducted for
rainfall runoff on the surfaces with different
combinations of the two roughness elements and the

overland flow hydrographs were recorded. The KWE was used
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to reproduce the observed results by assuming a uniform
surface with the equivalent uniform roughness (EUR)
optimized from the observed results. The results suggested
that the concept of EUR for a surface with nonuniform
roughness distribution may be applied if the different
roughness sub-areas are small in comparison with the total
runoff area and uniformly and randomly distributed.
However, for the case where the size of roughness elements
is sufficiently large or not uniformly and randomly
distributed, the computed hydrographs by the KWE using the
optimized EURs deviated greatly from those observed. For
this case, overland flow does not behave as if it is from
a uniform surface, gnd, therefore, no EUR can be obtained
for the KWE.

Smith and Hebbert (1979) conducted a study on the
hydrologic effects of spatial variability of infiltration.
In the study, Monte Carlo simulation was employed to
analyze the effects of random distribution of soil
infiltration properties on the hydrologic response of a
hillslope. A distributed simulation model, consisting of
the KWE and infiltration model by Smith and Parlange
(1978), was used to demonstrate hydrograph bias due to
deterministic and random variation of soil saturated
hydraulic conductivity Kg. They found that as K decreased
toward the downslope boundary, runoff decreased compared

to the case where Kg increased downslope. Runon from an
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upslope area with lower infiltration rate causes ponding
with very little loss of volume was responsible for the
higher runoff on surfaces with Ky increasing downslope.
The opposite case allowed no such interaction. These
results were obtained for cases where rainfall intensity
was much larger than (7 to 14 times) saturated hydraulic
conductivity.

Freeze (1980) used a stochastic-conceptual
mathematical model of runoff processes on a hillslope to
investigate the influence of the spatial properties of
hillslope parameters on the statistical properties of the
resulting runoff. The model used the method of Smith and
Parlange (1978) to generate excess rainfall. The excess
rainfall was then routed as overland flow by a simple
travel time approach, in which the travel time of runoff
from individual grids to the downslope boundary was
randomly assigned, and the interaction of grids was
ignored. In the model, the distribution of saturated
hydraulic conductivity on a hillslope was viewed as a
spatial stochastic process and represented by a log-normal
probability density function with three parameters:
distribution mean, standard deviation and spatial
autocorrelation. The results indicated that each of these
parameters exerts an influence on statistical properties
of hillslope runoff. The distribution mean value is the

most important parameter; the standard deviation is next
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important; the autocorrelation is least important. Loague
(1988) also investigated the effect of spatial variability
on hillslope runoff by this stochastic-conceptual approach
and showed that saturated hydraulic conductivity had a
greater impact on the characteristics of hydrograph than
other hillslope and rainfall properties.

Matias and Correia (1987) used a conceptual and
deterministic rainfall runoff model in a Monte Carlo
simulation to analyze the influence of the spatial
variability of the saturated hydraulic conductivity on
flow hydrographs. The rainfall excess rate was determined
from the computations of infiltration, ponding and
redistribution of water in the soil, based on the two-
phase infiltration model by Morel-Seytoux (1978, 1982).'
Then the surface detention water was routed downslope as
overland flow by a unit hydrograph apprcach. The saturated
hydraulic conductivity in the study was defined by a log-
normal probability distribution function. It was concluded
that both the coefficient of variation and skewness of the
spatially distributed saturated hydraulic conductivity
have strong influence on the runoff hydrographs. The
coefficient of variation is more important than the
skewness. The effect of both parameters was attenuated
with the increase of rainfall intensity.

Woolhiser and Goodrich (1988) used the a simple

physical rainfall runoff model to study the impact of



79

rainfall intensity patterns and saturated hydraulic
conductivity on overland flow.‘In their model,
infiltration and excess rainfall were determined by the
Smith and Parlange (1978) model and overland flow was
routed by the KWE. Spatial variability of saturated
hydraulic conductivity was represented in only the cross-
slope strips. With the simple one-dimensional
representation of spatial variability, the study was able
to show the impact of the interaction of rainfall and soil
hydraulic conductivity on overland hydrographs. Under
heavy rainfall, more runoff was generated from a uniform
sufface with the mean value of the hydraulic conductivity
distribution than that from a surface with spatial
variable hydraulic conductivity. This is true until the
rainfall intensity reduces to a certain value, under which
more runoff is generated from a spatially variable surface
and less or no runoff is generated from the uniform
surface. These studies shed new light on the role of the
spatial variability of infiltration and its interaction
with rainfall input in determining the response of
hillslope overland flow.

All these studies contribute to our understanding of
the effects of hillslope spatial variations on the
response of overland flow. However, because the overland
flow models used in these previous studies are either

based on empirical methods, e.g., those of Freeze (1980),
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Matias and Correria (1987) and Loague (1988), or the one-
dimensional KWE model, such as those by Wu et al. (1978),
Smith and Hebbert (1979), and Woolhiser and Goodrich
(1988), they were not able to incorporate realistic two-
dimensional hillslope features into the models, and
therefore, to examine the characteristics of overland
flow, including variability of flow fields due to two-

dimensional variability of hillslope properties.

4.2 Research Objectives

In this chapter, the effects of two-dimensional
spatial variations in infiltration, surface roughness and
micrctopography on the characteristics of overland flow
will be examined using the detailed simulations from
HyNuM. I will examine the effects of the spatially
variable hillslope properties on the characteristics of
flow fields and hydrographs of overland flow. The results
of the detailed simulation will be used to identify the
role and relative importance of each spatial variable on
the characteristics of overland flow. The analysis will
address the sensitivity and variability of the flow fields
and hydrographs, due to the scales of the variability of
each hillslope variables, thus suggesting useful measures
of'hillslope characteristics for hydrological prediction.

During prediction of hydrographs using the KWE, the

spatial variations of soil hydraulic conductivity, Kg,
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surface roughness, K,, and the variable microtopography
are often ignored and represented by their mean values.
Therefore, it is important and necessary to study the
prediction bias caused in hydrographs by the approximation
of spatially variable hillslopes by homogeneous plane
surfaces.

The specific tasks to be carried out are:

(1) To generate a series of spatially variable fields
for infiltration and surface roughness based on field |
measured and hypothetical random distributions, trending
variation functions, and functions of trending variation
with embedded randomness. For microtopography, a two-
dimensional cosine-wave function will be used to generate
a series of two-dimensional corrugated microtopographic
surfaces. In addition, two microtopographic surfaces from
Kenya savanna hillslopes measured by Aubry (1984) will be
used for simulation.

(2) To use HyNuM to conduct systematic model
simulations of overland flow on surfaces with spatially
variable infiltration, surface roughness and
microtopography provided in task (1). The simulation
results will include detailed two-dimensional flow fields
and hydrographs.

(3) To examine the effects of the spatial variations
of infiltration, surface roughness and microtopography on

the characteristics of overland flow using the results of
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the detailed model simulations given in task (2). The
conclusions about the effects of these variations for
infiltration and surface roughness on the characteristics
of overland flow, including the variability of the two-
dimensional flow fields and hydrographs, will be drawn in
terms of their statistical properties. The effects of
microtopography on the characteristics of overland flow
will be analyzed in terms the characteristic scales of the
microtopography, e.g., the ratio of the vertical amplitude
to the wave length of a consecutive topographic heights
and depressions. The simulation results from the two
natural microtopographic surfaces will also be analyzed to
compare with the results from the hypothetical
microtopographic surfaces.

(4) To examine the bias in predicting hydrographs due
to the approximation of spatially variable hillslopes by
homogeneous plane surfaces. To achieve this, the overland
flow hydrographs will be generated using the KWE with the
mean values of saturated hydraulic conductivity, surface
roughness and mean slope gradient in place of the
spatially variable saturated hydraulic conductivity,
surface roughness and microtopography. The comparison of
the hydrographs from the spatially variable surfaces using
HyNuM with those computed from homogeneous plane surfaces

with the KWE will be presented.
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4.3 Representations of Hillslope Spatial Variations

4.3.1 Spatial Variation of Infiltration

For infiltration, the model simulations will ignore
unsteady infiltration and only steady infiltration will be
considered. Steady infiltration is represented by the
saturated hydraulic conductivity, Kg.

Field studies have shown that saturated hydraulic
conductivity on a hillslope varies significantly in space.
While most studies indicate the spatial variation of
saturated hydraulic conductivity to be a random process,
some, e.g, Freeze and Cherry (1979), Smith and Hebbert
(1979) and Grah et al. (1983), suggest that there may be a
gradation of hydraulic properties through hillslope soil
formation, thus resulting in a deterministic or trending
variation. For example, the saturated hydraulic
conductivity may have a downslope trending variation
according to the downslope trending variation of soil
textures which may be caused by the preferential sediment
transport on hillslopes. On a hillslope, more complex
patterns may exist, for example, the randomness may be
embedded in systematic trends. In this section, the three
variation patterns, random, trending, and trending with

embedded randomness, will be studied.

Random variation: The saturated hydraulic conductivity Kg

is usually thought to be log-normally distributed (see
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Table 1 for summary of evidence) and may be described by

the following function

Y = Ln(Kg) (55)

Y © N(py, oy) (56)

where Y is the log-arithmically transformed variate of Kg
and distributed according to a normal probability
distribution function, [y is the mean of the transformed
variate and oy is the standard deviation of transformed
variate. The mean ugg and standard deviation Ogs for the
arithmetic scale of Ks are related to the transformed

parameters by

1

brg = €Xp(Uy + = gy?) (57)
2

Ogs = €XP(2uy+ay?) (exp(oy?)=1) (58)

Runoff from a plane 50 meters long and 10 meters wide
was simulated based on a 1 meter by 1 meter spacing grid
for a total of 561 grid points. The values of K  are
generated from the log-normal probability density function
and randomly assigned to each of the 561 grid points on
the plane. Three random variation patterns of Kg are
generated from the log-normal distribution function based
on three different values of og.. The combinatipns of the

different variation patterns of Kg with spatially constant
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slope gradients (Sy), surface roughness, and rainfall

intensities are shown in Table B.1l (Appendix B).

Trending variation: Trending variation of saturated
hydraulic conductivity may exist in either cross-slope or
downslope directions. However, hillslope soil catena and
vegetation distribution are more likely to result in
trending variations of saturated hydraulic conductivity in
the downslope direction than in the cross slope direction.
In this study, trending variation in the downslope
direction will be considered.

Downslope trending variations may take a variety of
different forms. For the purpose of simulation, it is
sufficient to examine the effects of trending variation of
Ky using a linear variation. A similar linear variation of
Ks was used by Smith and Hebbert (1979). The downslope

trending variation is assumed to have the following form:

= 9)
Kg = Kg° + G x (59)

where KSU is the saturated hydraulic conductivity at the
upper boundary of the plane, x is the downslope distance
from the upper boundary, and G is the gradient of the

variation and defined as

c=-S s (60)
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where KSL is the saturated hydraulic conductivity at the
lower boundary of the plane, and Lo is the total length of
the slope. For the downslope increasing case, KsL is
greater than KSU and G takes a positive value; for the
downslope decreasing case, KsL is less than KSU and G
takes a negative value.

Different variation patterns of K are generated and
the combinations of these trending variations of Kg with
spatially constant slope gradient, surface roughness and

rainfall intensity are shown in Table B.2.

Trending variation with embedded randomness: The spatial

variation of Kg for this case is composed of two parts and

expressed by the following form

K = (KU +Gx ) + 6 (61)

The first two terms represent a deterministic trend of
linear variation in downslope direction. The term, §,
represents a random variation. For simplicity, it is
assumed that 6§ is varied according to a uniform random
distribution with mean bgg and standard deviation Oks
From the equation, the values of Ky are generated and
assigned to each of the 561 grid points on a plane 50
meters long and 10 meters wide. Table B.3 lists the cases

used for the simulation.
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4.3.2 Spatial Variation of Surface Roughness

Spatial variation of surface roughness has been
frequently observed in the field (e.g., Aubry, 1984), but
has not been rigorously studied and summarized. For the
purpose of parameter study, it is assumed that surface
roughness also has random and trending variations and
combinations of the two. The three spatial variations will

be simulated for surface roughness.

Random variation: Due to lack of field knowledge about the
nature of the spatial variation of the surface roughness
on a hillslope surface, the specific distributions of
hillslope surface roughness remain unknown. It is assumed
in this study that the spatial variation of surface
roughness is distributed according to a uniform

probability distribution function, i.e.,

Ko = Komin * (Komax ~ Komin) ¢ (62)

where Komin is the minimum value of Ko, Koma is the

X
maximum value of Ko, and § is a random variable having a
uniform (0,1) distribution. The mean, bgos and standard
deviation, Ogor fOr the function are

K - K :
omax omin
bko = (63)

Ok = omax _ omin (64)
J12
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The random fields of surface roughness are generated
on a 50 by 10 meter plane in the same way as those of
randomly varying saturated hydraulic conductivity. Six
random variation patterns of K, are generated for model
simulation, based on two different values of the
distribution means, bgor and three different values of
standard deviation, Ogo- Table B.4 shows the list of
different combinations of these spatially variable

roughness fields with other variables.

Trending variation: The effect of trending variation for
surface roughness may again be sufficiently demonstrated
by assuming the linear variation in both increasing and
decreasing directions of the slope. Similar to the
trending variation of saturated hydraulic conductivity,
linear variation of surface roughness may be expressed by

the following function:

= U
Ky = Kg° + G x (65)

where KOU is the surface roughness at the upper boundary
of the plane, G is the gradient of the variation in
surface roughness and is defined as
L _ U
Ko Ko

G = —m (66)

Lo
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where KoL is the saturated hydraulic conductivity at the
lower boundary of the plane. For the downslope increasing
case, KOL is greater than KOU and G takes positive values;
for the downslope decreasing case, KoL is less than KoU
and G takes negative values. Several trending variation
surfaces are produced from equation (65). The cases for

model simulation are listed in Table B.5.

Trending variation with embedded randomness: Similar to
the cases of variable infiltration, it also assumed that

surface roughness, K is composed of two kinds of

ol
variations, a linear downslope trending variation and a

uniform random variation, i.e.,

_ u L
Ko = (Ko +Gx ) + 6 (67)

where § is the uniform random distribution with mean bko
and standard deviation Oko* The variation fields of K, are
generated in the same way as those of Kg. The cases in

Table B.6 are used for the simulation.

4.3.3 Hillslope Microtopography

Patterns of hillslope microtopography have been
measured and the effects of the microtopography on the
characteristics of overland flow have been studied
(Emmett, 1970 and Aubry, 1984). These studies on
experimental plots on hillslopes demonstrated the

significant effects of microtopography on overland flow.
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However, it is difficult to quantify and generalize these
effects as functions of the characteristics of
microtopography using natural hillslope microtopography,
since observed microtopographic patterns of natural
hillslopes are often very complicate and vary greatly from
hillslope to hillslope and from region to region.

To quantify and generalize the microtopographic
effect, a systematic representation or parameterization of
microtopography of hillslopes is necessary. In this study,
it is assumed that the microtopographic patterns may be
approximated by the two-dimensional corrugated surface

defined by the following mathematical function

Z =12, - xS, - YS, + axCOS(wa/AX) + a COS(Zﬂy/XY) (68)

o

Yy 4

where Z is the ground surface elevation, Z. is the ground

o
surface elevation of the upper boundary, S is the slope
gradient, a is the variable defining the amplitude of
microtopography and A is the wave length of micro-
topography. The subscripts x and y index the downslope and
cross-slope directions, respectively. This function
emphasizes the roles of the vertical amplitude, expressed
as € = 2(ax+ay), and lateral extent of topographic
perturbations which are represented by simple
trigonometric waves with wave length of Ay and xy. From
the equation, different forms of microtopography may be

generated according to the combinations of different
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values of a,, ay, Ay ky, S, and Sy. Two typical
microtopographic surfaces are shown in Figure 4.1.

The effects of the microtopography generated from
equation (68) can be examined by systematically varying
each of the parameters. The microtopographic patterns,
hillslope variables, and rainfall intensities used for
model simulations are listed in Table B.7.

In addition to these hypothetical microtopographic
surfaces, model simulations are performed for the observed
microtopographic surfaces shown in Figure 4.2. These

surfaces were measured by Aubry (1984) from Kenya Savanna

hillslopes.
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Figure 4.1 Typical two-dimensional corrugated microtopo-
graphic surfaces generated by equation (68).
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4.4 Analysis of the Simulation Results

In this section, the responses of overland flow from
slope surfaces with spatially varying infiltration,
surface roughness and microtopography are simulated using
HyNuM. The cases simulated were given in Tables B.1l to
B.7. Based on the simulation results, the effects of the
spatial variation in infiltration, surface roughness and
microtopography on the characteristics of overland flow
along the flow paths and the characteristics of runoff
hydrographs at the bottom of hillslopes will be analyzed.
These cases are also simulated by the KWE from the
corresponding homogeneous plane surfaces with the mean
values of the hillslope properties, and the comparisons of
overland flow fields and hydrographs from both the

variables and homogeneous surfaces are presented.
4.4.1 Effects of Spatially Varying Infiltration

1) Effects of random variation

The cases listed in Table B.1 are simulated by HyNuM
with spatially variable Kg and the KWE with the constant
value, Kg = Kgg- Two typical hydrographs from these
simulations are shown in Figure 4.3. The hydrographs
simulated from the variable Ky surface are matched very
well by those computed with the KWE with Kg = byggs
although there are some numerical oscillations for the

cases of spatially variable Kg surfaces around the steady
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flow rate. For given slope and rainfall intensity, the
characteristics of the hydrograph are determined by the
distribution mean, Kgg- The spatial variation of Kg,
represented by the standard deviation Okgs: does not affect
the hydrographs. This indicates that for plane surfaces
with randomly variable K, a simple KWE can be used to
predict hydrographs using Kg = ugg wherever the entire
surface generates Hortonian runoff.

For each simulation, overland flow fields of depth
and velocity are generated. The steady flow fields are
used to analyze the effects of spatially variable Kg on
the characteristics of overland flow along the flow paths.
The typical flow fields for two of three random variation
patterns of Kg with different Ogg are shown in Figure 4.4.
The effects of the spatially variable Kg on the flow
fields are rather obvious, especially, on the distribution
of flow depth. Its influence in altering the flow
direction is small, since the pressure gradient due to
depth variation in the cross-slope direction is much
smaller than that due to the downslope gradient.

Typical cross-slope profiles of mean depth, velocity
and flow direction, and the corresponding cross-slope
variations are shown in Figure 4.5. The velocity at each

grid point is defined by its magnitude at the point

V= (u? + v2)1/2 (69)
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and the flow direction, ¢, at each grid point is defined

by
¢ = tan'l(u/v) (70)

The results again show the cross-slope variations in flow
fields due to spatially variable K.

To compare the impact of spatially variable K  on the
overland flow field under different rainfall, slope, and
roughness conditions, the mean cross-slope deviations, og,,
and mean cross-slope coefficient of variation, CV,, are
defined to reflect the overall spatial variabilities of

the flow fields, and they are expressed as

1
2 = .2
O = ~ ¥ § (A5 = 9;) (71)
O %
CVe = — (72)
a

where N is the total number of grid points, hij is the

value of the variable of interest at node (i,]), Q; is the

i
cross-slope mean of the variable of interest in ith row,
and 11 is the mean of the variable for the whole flow
field. Here, 1 may be h, V or ¢.

The results for depth, velocity and flow directions

are shown in Table 4.1. The variability of the flow,

represented by the values of Oup, CVaps Tayr CVay and Tngs
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Table 4.1 Computed mean cross-slope deviations in depth
(Oup+ CVip), velocity (Oxy, CV,y) and flow
direction (o*¢) for random variation in Kg

CASE o o CVap O, CVoy o
(cmﬁﬁr) (cm (cm/s) (dé%)
r = 15 cm/hr; S, = 5%; K, = 512; ugg = 5 cm/hr
FOR1 1.0 .0379 .0745 3.23 .173 .60
FOR2 1.5 .0389 .0768 3.41 .185 .64
FOR3 2.0 .0523 .103 3.81 .203 .78
r = 15 cm/hr; S, = 5% K, = 1000; Kgs = 5 cm/hr
FOR4 1.0 .0167 .0262 1.57 .106 .44
FORS 1.5 .0258 .0403 1.66 .112 .49
FOR6 2.0 .0332 .0514 1.79 .120 .55
r = 15 cm/hr; Sy, = 10%; Ko = 512; ugg = 5 cm/hr
FOR21 1.0 .0549 .137 7.25 .314 .46
FOR22 1.5 .0730 .183 8.51 .365 .67
FOR23 2.0 .0797 .199 8.98 .379 .77
r = 15 cm/hr; S, = 10%; Kg = 10007 puge = 5 cm/hr
FOR28 1.0 .0261 .0517 3.16 .170 .33
FOR29 1.5 .0283 .0558 3.40 .183 .36
FOR30 2.0 .0425 .0842 3.82 .204 .45
r = 11 cm/hr; Sy = 5% Kq = 1000; ugg = 5 cm/hr
FOR31 1.0 .0223 .0409 1.28 .121 .46
FOR32 1.5 .0332 .0606 1.43 .133 .55
FOR33 2.0 .0440 .0802 1.61 . 149 .66
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increases as the spatial variability of Kg, i.e., O+
increases. However, depending on mean excess rainfall rate
(Vg = r-Ugs), slope gradient of the plane and surface
roughness, the influences of the spatially varying Ks on
the cross-slope variations of the flow characteristics can
be different.

The impact of spatially varying Kg on the spatial
variability of the depth and velocity decreases as slope
gradient decreases. With the decrease in slope gradients,
flow depth increases and velocity decreases. It is these
increased depth and decreased velocity that result in the
decrease in spatial variability of flow fields. The
variation-of flow directions, however, increases as the
local slope decreases. This is because that as slope
increases, the influence of slope becomes dominant and the
flow is forced along the slope direction. While at small
slope, the influences of depth and velocity differentials
due to spatially variable Kg increases and the flow
direction mayrdeviate more from the slope direction.
Evidence of the impact of slope can be seen by comparing
cases FOR1-3 with FOR21-23 or cases FOR4-6 with FOR28-30.

As surface roughness increases, the depth increases
and velocity decreases. As a result, the spatial
variability of the flow field becomes smaller for rougher
surfaces than that on smoother surface for the same

spatially variable K surface. This is illustrated by
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comparing cases FOR1-3 with FOR4-6 or cases FOR21-23 with
FOR28-30.

The influence of the excess rate of rainfall rate is
somewhat complicated since both flow depth and velocity
become greater as the excess rate of rainfall increases..
Comparison of cases FOR4-6 with FOR31-33 shows that while
the values of 0,y, CV,y, CVsp and Txg decrease as the
excess rate of rainfall increases, the value Oxp lncreases
with the excess rate of rainfall.

The simulation results suggest that conditions that
favor increasing flow depth and decreasing flow velocity
reduce the spatial variability of the flow fields due to
spatially varying Kg. The reasons for this are not
immediately clear from the two-dimensional hydrodynamic
equation (equations 29 - 31). To understand the physics
behind these, one needs to understand the behavior of the
dependent variables, e.g., depth and velocity, as the
functions of the independent variables, such as, slope and
surface roughness; and the relationships among the
dependent variables themselves though detailed
examinations of equations (29) - (31). This is beyond the
scope of this research.

From Figure 4.5, it is clear that the KWE with Kg =
Lgs approximates the mean depth and velocity profiles from
the variable Kg surfaces quiet well, but it slightly

overestimates the velocity profiles at steady state. The
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reason is that the mean velocity for the variable surface
is obtained by directly averaging the variable cross-slope
velocity, while the mean velocity for the assumed plane is
computed using the mean cross-slope depth. Because of the
non-linear relationship between depth and velocity, for a
given discharge the velocity computed from the mean depth
will be greater than that by directly averaging the
variable cross-slope velocity. For both depth and velocity
profiles, the KWE fails to predict the substantial cross-

slope variations.

2) Effects of trending variation

The cases of trending variation listed in Table B.2
were simulated using HyNuM. First, the model simulation
are for equilibrium hydrographs, and the results are shown
in Figure 4.6. The shapes of the hydrographs are different
for the surfaces with downslope increasing Ky and
downslope decreasing K;. In comparison with those
generated by the KWE with constant values of Kg = ugg, the
hydrographs from surfaces of downslope increasing Kg
initially rise slower and then faster. This becomes more
pronounced, as the gradient of variation, G, increases.
For downslope decreasing Kg, the sequence of slow down and
speed up of the rise of hydrograph is reversed.

Besides hydrograph shapes, the results show that the

time to steady flow for the two different trending
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Figure 4.6 Comparison of computed steady state hydrographs

from a surface with trending variation in steady
infiltration to those computed by assuming a
uniform steady infiltration K_. = [T

a) V, = 10cm/hr; Ko = 512; 3§, = .05

b) V, = 10cm/hr; Ky = 512; s, = .10
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variations are also different. The ratios of the time to
steady flow for the variable K  surfaces (tpl) to those
corresponding to uniform surfaces with Kg = ugg (tpo) are
shown in Table 4.2. For cases of downslope increasing Kg,
the ratio of tpl/tp0 are all less than unity, while the

ratio of tpl/t O for downslope decreasing Ky are all

P
greater than unity. The results indicate that runoff
reaches steady state faster on surfaces with downslope
increasing Kg, and slower on surfaces with downslope
decreasing Kg. The larger the absolute values of G, the
faster runoff reaches steady state for downslope
increasing Kg, and the slower runoff reaches steady state
for downslope decreasing Kg. For the cases simulated, the
time to steady state is shortened by as much as 14% for
case FI1 of downslope increasing Kg and delayed by as much
as 28% for case FD13 of downslope decreasing Kg.

In comparison with uniform K surfaces, surfaces with
downslope increasing Ky generate more water on the upper
part of the slope and less water on the lower part of the
slope. Therefore, surfaces with downslope increasing Kg
contribute less water to the hydrographs than uniform Kg
surfaces during the early stage of runoff. Thus,
hydrographs for downslope increasing KS surfaces rise
slower initially. When water generated from the upper part

of the slope arrives at the bottom of the slope, more

water is contributing to the hydrographs from the surfaces
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Table 4.2 Time to peak for steady state hydrographs from
surfaces with trending variation in K

po)

relative to that from uniform surfaces (tp )
CASE G tpl/tpO CASE G tpl/tpO
(cm/hr/m) (cm/hr/m)

15 cm/hr; Sy 5% Ko = 512; pgg = 5 cm/hr

FD1 -0.20 1.13 FI1l 0.20 .86
FD2 -0.12 1.07 FI2 0.12 .92
FD3 -0.04 1.01 FI3 0.04 .99
15 cm/hr; S« 5%; Ko = 10007 g = 5 cm/hr

FD4 -0.20 1.19 FI4 0.20 .88
FDS -0.12 1.09 FIS 0.12 .92
FD6 -0.04 1.02 FI6 0.04 .98
15 cm/hr: Sy 10%; Ky = 512; ugg = 5 cm/hr

FD7 -0.20 1.13 FI7 0.20 .89
FD8 -0.12 1.09 FI8 0.12 .95
FD9 -0.04 1.02 FIO9 0.04 .98
15 cm/hr; Sy 10%:; Ky = 1000; pugg = 5 cm/hr

FD10O -0.20 1.18 FI1l0 0.20 .88
FD1l1 -0.12 1.08 FI1ll 0.12 .92
FD12 -0.04 1.02 FIl2 0.04 .96
11 cm/hr; Sy = 5%: K, = 1000; bgsg = 5 cm/hr

FD13 -0.20 1.28 FI1l3 0.20 .89
FD14 -0.12 1.23 FIl4 0.12 .91
FD15 -0.04 1.09 FI1l5 0.04 .99
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with downslope increasing K, than from the uniform K¢
surfaces. The hydrographs rise faster for surfaces with
downslope increasing K  than for uniform Kg surfaces.
Because more water is generated from the upper part of the
slope on the surface with downslope increasing Kg, a
deeper and faster flow wave is created from the upper part
of the slope and catches up with the downslope slower
flow. Therefore, the concentration time or time to
equilibrium discharge is shortened for the surface with
downslope increasing Kg.

For surfaces with downslope decreasing Kg the
opposite occurs. For this case, more water is generated on
the lower part of slope and less water on the upper part
of the slope relative to uniform Kg surfaces. Thereforef
hydrographs initially rise faster, then slower on the
surfaces with downslope decreasing Kg than on the uniform
Kg surfaces. Since less water is generated on the upper
part of the slope on the surfaces with downslope
decreasing Kg than that on the corresponding uniform Kg
surfaces, the flow is shallower and the velocity is
smaller on the upper part of the slope of the surface with
downslope decreasing Kg than on the uniform Kg surface. As
a result, the concentration time or time to equilibrium
discharge is longer for the surface with downslope

decreasing Kg than that from uniform Ky surface.
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The impact of the trending variations on the
characteristics of non-equilibrium hydrographs is more
significant. To show the impact, an arbitrary rainfall
duration of t, = 0.75 ts0 is chosen for the simulation.
The results are shown in Figure 4.7. The impact of
downslope decreasing Kg is relatively simple. The peak
discharges for these cases occur at about the time of
cessation of rainfall, tr, the same as those from
spatially uniform surfaces with Kg = bgg- This is also
indicated by the ratio of tpl/tpQ in Table 4.3, where tpl
and tp0 are the times to peak discharges from surfaces
with downslope decreasing Kg and uniform surfaces of Kg =
Hge s respectivelyi However, downslope decreasing Kg has
caused higher peak discharges. This is indicated by the
hydrographs in Figure 4.7 and the values of qpl/qp0 in
Table 4.3, where qpl is the peak discharges from downslope
decreasing Kg and qpo is the peak discharge on the
spatially uniform surfaces with Kg = Wgg- The results show
that the peak discharge increases as the absolute value of
G increases. Comparison of cases FD10-12 with cases FD13-
15 indicates that for given values of slope and surface
roughness, the percentage of increase in peak discharge
from the corresponding uniform surface of Ks = Ugg bécomes
larger as the excess rainfall rate decreases. The maximum

increase in peak discharge is as much as 72% for case

FD13. These higher peak discharges for surfaces with
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Figure 4.7 Comparison of computed hydrographs from a
surface with trending variation in steady
infiltration to those computed by assuming a
uniform steady infiltration Kg = pgg-

a) Vo = l0cm/hr; Ko = 512; 8y = .05

b) Vo = 10cm/hr;: Ky = 512; Sy = .10
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Table 4.3 Peak and time to peak for hydrographs from

surfaces with trending variation in Kg pl)
relative to those from uniform surfaces ( ,tpo)
CASE G ggl ggl CASE G ;p_l gt
(cm/hr/m)  t.° q,.° (cm/hr/m) t-° q.©
p P P p
r = 15 cm/hr; Sy = 5% Ky = 5127 ugg = 5 cm/hr
FD1 -0.20 99 l.46 FI1 0.20 1.22 1.31
FD2 =-0.12 99 1.29 FI2 0.12 1.30 84
FD3 -0.04 99 1.10 FI3 0.04 .99 89
r = 15 cm/hr; S, = 5%; Ky = 10007 pugg = 5 cm/hr
FD4 -0.20 1.01 1.42 FI4 0.20 1.26 1.03
FD5 =-0.12 1.01 1.26 FI5 0.12 1.30 .79
FD6 -0.04 1.01 1.09 FI6 0.04 1.02 .90
r = 15 cm/hr; S, = 10%; Ko = 5127 ugg = 5 cm/hr
FD7 -0.20 1.01 1.43 FI7 0.20 1.25 1.15
FD8 -0.12 1.01 1.27 FI8 0.12 1.33 .76
FD9 -0.04 1.01 1.09 FIOo 0.04 1.01 .90
r = 15 cm/hr; Sy = 10%; Ky = 10007 ugg = 5 cm/hr
FD10 -0.20 1.00 1.44 FI1O0 0.20 1.26 1.04
FD11 -0.12 1.00 1.28 FIl1l 0.12 1.32 .72
FD12 -0.04 1.00 1.10 FI12 0.04 1.00 .89
r = 11 cm/hr; Sy = 5%; K, = 1000; Kgs = 5 cm/hr
FD13 =-0.20 .99 1.72 FI1l3 0.20 1.17 2.03
FD14 -0.12 .99 1.46 FI1l4 0.12 1.24 .94
FD15 -0.04 .99 1.17 FI1S5 0.04 1.02 .81
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downslope decreasing Ky are caused by the early
contribution of runoff from the lower part of the slope
where infiltration rates are smaller and more water is
generated.

The influence of downslope increasing Kg on the
hydrograph is complex. The peak discharges for these cases
do not always occur at the time of rainfall cessation. The
ratios of tpl/tpo in Table 4.3 suggest that the times to
peak discharge are generally delayed. For some cases, the
delay in comparison with the corresponding uniform Kg
surfaces is significant, e.g., as much as 33% for case
FI8. The shapes of the hydrographs and the peak discharges
are also different from those computed for the
corresponding uniform surface. For the cases of G < 0.12
(cm/hr)/m, the peak discharges are smaller than those
generated from the corresponding uniform surfaces. As G
increases to 0.2 (cm/hr)/m, the time to peak discharge is
still delayed, and the magnitudes of the peaks have
significantly increased. For case FI15, the hydrograph
from the downslope increasing Kg surface is even greater
than that from downslope decreasing K surface, and the
peak discharge is almost doubled that of the corresponding
uniform Ky surface. The initial lower discharge results
from the early contribution of runoff from the lower part
of the slope where less water is generated because of

larger infiltration rates. The noticeable increase of
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discharge after the cessation of rainfall is caused by the
arrival of flow waves from the upper part of the slope
where infiltration rates are smaller and more water is
generated.

Significant prediction errors result from assuming a
homogeneous plane with Kg = Ugg when the slope has a
trending variation in K;. However, in the absence of
cross-slope variations in Ky, the hydrographs from the
trending variation in Ky may be approximated using a
kinematic cascade model with the trending variation in Kg

being assigned to each cascade element.

3) Effects of trending variation with embedded
randomness

The effects of trending variation with embedded
randomness in K are simulated for four different cases
listed in Table B.3. Two of the resulting hydrographs are
shown in Figure 4.8. These results are almost identical to
those computed with only trending variation. This
indicates that the characteristics of hydrographs are
mainly influenced by the trending variation, and the
embedded random variation has little impact on the
hydrograph characteristics. Bias in hydrograph
characteristics can result if the KWE model is used with

spatially constant Kg.
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x fow)

Comparison of computed steady state hydrographs
from a surface with trending steady infiltration
and embedded randomness to those computed by
assuming a uniform steady infiltration Kg = pgg
for S, = .10, K, = 1000, and V, = lO0cm/hr.

a) downslope increasing and emgedded randomness
b) downslope decreasing and embedded randomness
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Embedded random variation strongly influences the
flow fields. This is shown by the flow fields in Figure
4.9 and the cross-slope variation of depth, velocity and
flow direction in Figures 4.10 and 4.11. The profiles
simulated using the KWE model by assuming a constant value
of Ky = ugg approximated those from spatially variable Kg
rather well. However, the cross-slope variability in flow
can not be predicted by the KWE model. For the cases with
small random variation in Kg, the cross-slope variability
of the flow is relatively small. As the randomness in Kg,
Or Oyg: increases, the variability in the flow field can
be significant as indicated by the results in the above

section.
4.4.2 Effects of Spatial Variation in Surface Roughness

1) Effects of random variation

Simulations were performed on surfaces with spatially
variable roughness, Ky, using HyNuM, and for a uniform
plane with constant Ky = Uk, using the KWE. Figure 4.12
shows two simulated hydrographs. As for the results from
the case of randomly variable Ky, the spatial variation of
K,, represented by Ogos does not affect the hydrographs.
For given values of slope, saturated hydraulic
conductivity, and rainfall intensity, the resulting
hydrographs are only influenced by the distribution mean,

Kgo- For the randomly distributed Ky, the flow hydrographs
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Figure 4.10 Comparison of the computed cross slope mean
profiles of depth, velocity and flow direction
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profiles of depth, velocity and flow direction
on surfaces with downslope decreasing steady
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Comparison of computed hydrographs from a
surface with spatially variable roughness to
those computed by assuming a uniform roughness
parameter K, = u o°

a) Vo, = 10cm/hr; Sy = .05

b) Vg, = 1l0cm/hr; Sy = .10
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can be accurately predicted by the KWE with constant Ko =
Ko

Two typical flow fields for the spatial distributions
of K, for different oy, are plotted in Figure 4.13. The
flow fields strongly reflect the spatial variation of Kg-
The mean cross-slope flow depth, velocity and flow
direction along with those computed by the KWE with Ky =
bgo are shown in Figure 4.14. The flow depth, velocity,
and flow direction have considerable variations around
their mean values. The variability of flow fields
expressed in terms of o, and CV, are presented in Table
4.4. For a given slope and excess rainfall rate, the
spatial variability of the flow fields, represented by
Oxhs CVins Oays CV*§, and Oxgys increases with increasing
Oro"

The influences of spatially variable K, on flow
fields are different under different rainfall and
hillslope conditions. For a given variation of surface
roughness, Ogor as the mean surface roughness, uyg,,
increases, there is a reduction in the values of CV,p,
Oxyr CVay, and Oagys except for the value of g,,. For
smaller excess rainfall rate, e.g., V, = S5cm/hr, O.p
increases as Bxo increases, while for a larger excess
rainfall rate, e.g., V4, = l0cm/hr, o, decreases with

increasing pg,. The influence of surface slope is similar

to the case with spatially varying Kg, i.e., as surface
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Table 4.4 Computed mean cross-slope deviations in depth
Y CV*h), velocity (Owys CV,iy) and flow
direction (o*¢) for random variation in K,

CASE

GKO O*h CV*h G*V CV*V 0*
(cm) (cm/s) (deg)

r = 15 cm/hr; Sy = 5%; Kg = 5 cm/hr; bgo = 512
RUR71 51.2 .0434 .0852 3.73 .195 .864
RUR91 102.4 .0539 .107 4.06 .212 1.18
RURS1 153.6 .0789 .158 6.05 .315 2.69

r = 15 cm/hr; S, = 5%; Kg = 5 cm/hr; ug, = 1000
RUR72 100 .0093 .0390 1.64 .111 .738
RUR92 200 .0439 .0699 1.81 .131 1.37
RURS82 300 .0818 .130 3.41 .218 2.08

r = 15 cm/hr; S, = 5%; Kg = 10 cm/hr; puyp, = 512
RUR212 51.2 .0154 .039 1.46 .126 .539
RUR232 102.4 .0281 .0703 1.75 .148 .983
RUR222 153.6 .0441 .110 2.20 .184 1.34

r = 15 cm/hr; S, = 5%; Kg = 10 cm/hr; Wggo = 1000
RUR112 100 .0190 .0380 1.10 .118 .653
RUR132 200 .0350 .0700 1.31 .138 1.28
RUR122 300 . 0540 .110 1.77 .184 1.69

r = 15 cm/hr; S, = 10%; Kg =5 cm/hr; pugo = 512
RUR11 51.2 .0465 .120 6.33 .272 .403
RUR31 102.4 .0700 .176 9.11 .379 .726
RUR21 153.6 .0838 .210 - - -

r = 15 cm/hr; S, = 10%; Kg =5 cm/hr; Hgo = 1000
RUR12 100 .0231 .0460 3.06 .164 .378
RUR32 200 .0478 .0878 3.92 .207 .647
RUR22 300 .0711 .140 4.93 .254 .765
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Table 4.4 continued.

r = 15 cm/hr; Sy = 10%; Kg = 10 cm/hr; Ko = 512
RUR41 51.2 .0137 .0430 2.56 .176
RUR61 102.4 .0266 .0835 3.00 .201
RURS1 153.6 .0346 .110 3.36 .226

r = 15 cm/hr; Sy = 10%; Kg = 10 cm/hr; Ko = 1000
RUR42 100 .0150 .0380 1.85 .158
RUR62 200 .0285 .0718 2.18 .184
RURS52 300 .0487 .110 2.46 .205

.270
.455
.509

.316
.565
.760
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slope decreases the spatial variability of the flow due to
the spatially varying K, becomes smaller. The only
exception is the spatial variability of flow direction,
which increases as slope decreases. The reason for this is
due to the increasing impact of slope gradient as the
slope gets steeper. As the flow depth increases and
velocity decreases due to increasing mean surface
roughness and decreasing slope, the variability of flow
fields decreases. However, for the same hillslope
conditions, as the excess rainfall rate increases, the
variability of the flow fields due to spatially variable
surface roughness increases, even though the flow depths
become greater. This is caused by the increase of flow
velocity with increasing excess rainfall rate. I have not
been able to explain sufficiently the physics behind these
findings for the reason given in section 4.4.1.

As for the cases of randomly variable K, the KWE
with K, = pygo can provide good approximations of the mean
flow depth and velocity, however, it can not predict the

cross-slope variation of the flow fields.

2) Effects of trending variation

Simulated equilibrium hydrographs on surfaces with
the trending variation of K, (Table B.5) are shown in
Figure 4.15. The impacts of the trending variation of K,

are similar to those of K. In comparison with those
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Figure 4.15 Comparison of computed steady state hydrographs

from a surface with trending variation in
roughness to those computed by assuming a
uniform roughness K

a) Sy = .05; gl 80 = 10cm/hr
b) Sy = .05; Ko = 512. Vg = écm/hr
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computed from the uniform surfaces with Ky = Mgo+ the
hydrographs from downslope increasing K, initially rise
slower and then faster. This becomes more pronounced, as
the gradient of variation, G, increases. For downslope
decreasing Ko, the sequence of slow down and speed up of
the hydrograph rise is reversed.

The time to steady flow also differs between the
different trending variations. The ratios of the
equilibrium times for variable K, and uniform K, surfaces
are shown in Table 4.5. For downslope decreasing K,, the
ragios‘of tpl/tpo are all greater than unity, while the
ratios of tpl/tp0 for downslope increasing K, are all less
than unity. Therefore, the runoff reaches its steady flow
faster on the surface with downslope increasing K, than
that from the uniform surface with Ky = bk’ ON surfaces
with downslope decreasing K, flow equilibrates slower. The
larger the absolute value of G, the faster runoff reaches
the steady state for downslope increasing K, and the
slower runoff reaches the steady state for downslope
decreasing K,. For downslope increasing K,, the time to
steady state is shortened by as much as 12% (RI10), and
for downslope decreasing Ky, the time to steady state is
delayed by as much as 28% (RD1l0).

These effects of trending variation in K, on the
equilibrium hydrographs may be explained as follows. For a

surface with downslope increasing Ko/ the velocity
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Table 4.5 Time to peak for steady state hydrographs {rom

surfaces with trending variation in Ko (tp )
relative to that from uniform surfaces (tpo)
1 0 1 0
CASE G t.*/t CASE G t.“/t
2 p 2
(m~1) P (m~1) PP

r = 15 cm/hr; Sy = 5%; Kg = 5 cm/hr; bgo = 512

RD1 -12.48 1.07 RI1 12.48 .89

RD2 -8.48 1.04 RI2 8.48 .93

RD3 -4.48 1.01 RI3 4.48 .95
r = 15 cm/hr; Sx = 10%; KS = 5 cm/hr; bgo = 512

RD4 -12.48 1.05 RI4 12.48 .90

RDS -8.48 1.04 RIS 8.48 .98

RD6 -4.48 1.04 RI6 4.48 .98
r = 11 cm/hr; Sy = 5%; Kg = 5 cm/hr; Ko = 512

RD7 -12.48 1.08 RI7 12.48 .91

RDS ~8.48 1.08 RIS 8.48 .95

RD9 -4.48 1.03 RIO 4.48 .99
r = 11 cm/hr; Sy = 5%; Kg = 5 cm/hr; Ko = 1000

RD10O -12.48 1.11 RI1O0 12.48 .88

RD1l1 -8.48 1.08 RI1l1 8.48 .94

RD12 -4.48 1.01 RI12 4.48 .95
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decreases downslope. Therefore, there is less water
flowing off the lower part of the slope from a surface
with downslope increasing K, than from a uniform Kj
surface during the early stage of runoff. This results in
an initially slower rise in hydrographs for the surface
with downslope increasing K,. However, as time elapses,
the faster flow generated from the upper part of the slope
with downslope increasing K, starts catching up with the
slower flow on the lower part of the slope, thus creating
a flow shock wave with greater depth and velocity. As many
of the waves continue arriving at the bottom of the slope,
the rise of the hydrograph becomes faster for the surface
with downslope increasing K,. Also, because of the
creation of the deeper and faster flow waves, the
concentration time is shorted for the surface with
downslope increasing |

For surfaces with downslope decreasing K, the
opposite occurs. The flow velocity increases as K,
decreases downslope. Therefore, hydrographs initially rise
faster, then slower on surfaces with downslope decreasing
K, than those from uniform K, surfaces. With the slower
flow on the upper part of the slope and faster flow on the
lower part of the slope, no shock waves can be generated.
As a result, the concentration time becomes longer for the
surface with downslope decreasing K, than that for the

corresponding uniform K, surface.
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As for the trending variation of Kg, the impact of
trending variation of K, on non-equilibrium hydrographs
are also more significant. The results for a rainfall
duration of t, = 0.75 ts0 are shown in Figure 4.16. The
peak discharges for cases of downslope decreasing K, occur

at about t the same as those from uniform surfaces with

r’
Ky = Hgo- This is also indicated by the ratio of tpl/tpO
in Table 4.5. Downslope decreasing K, has caused
significant increase in peak discharge. As the absolute
values of G increase, the peak discharges increase from 7%
to as much as 17% (Table 4.6) compared with those from
uniform roughness surfaces with Ky = bgo- These higher
peak discharges for surfaces with downslope decreasing Ko
are caused by the early contribution of runoff from the
lower part of the slope where the surfaces are smoother
and water runs off the surfaces faster.

The hydrograph response for downslope increasing Ko
is similar to that for downslope increasing Kg but the
effect of trending variation of K, is stronger than that
of trending variation of Kg. The peak discharges for these
cases do not always occur at the time of rainfall
cessation. The the ratio of tpl/tpo in Table 4.6 suggests
that the time to peak discharge is generally delayed. The
percentage of delay in comparison with the corresponding

uniform K, surface is as much as 32% for case RI2. Thus,

the delay of peak discharge can be significant. The shapes
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Figure 4.16 Comparison of computed hydrographs from a
surface with trending variation in roughness to
those computed by assuming a uniform roughness
K., = #Koo
af s, =0.05; K, = 512: Vg = locm/hr
b) Sy = .05; Ky = 512; Vg = 6cm/hr
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Table 4.6 Peak and time to peak for hydrographs from
surfaces with trending variation in Ko
relative to those from uniform surfaces 8

1 1l 1
CASE G t.= = CASE G =
ml) R o (m°1)  £Ro §9°
P P P <
r = 15 cm/hr; Sy = 5%; Kg = 5 cm/hr; bgo = 512
RD1 -~12.48 .99 1.16 RI1 12.48 1.28 1.26
RD2 -8.48 1.00 1.15 RI2 8.48 1.32 .71
RD3 -4.48 1.01 1.11 RI3 4.48 1.00 .91
r =15 cm/hr: S, = 10%; Kg = 5 cm/hr; Bgo = 512
RD4 -12.48 1.00 1.17 RI4 12.48 1.26 1.21
RDS -8.48 1.00 1.12 RIS 8.48 1.30 .84
RD6 -4.48 1.00 1.07 RI6 4.48 1.00 .91
r = 11 cm/hr; S, = 5%; Kg = 5 em/hr; pug, = 512
RD7 -12.48 1.00 1.17 RI7 12.48 1.26 .96
RD8 -8.48 1.00 1.12 RIS8 8.48 .98 .89

RD9 -4.48 1.00 1.07 RI9 4.48 1.00 1.00




136

of the hydrographs and the peak discharges are also
different from those computed from the corresponding
uniformly rough surface. As the values of G increases from
4.48/m to 12.48/m, the hydrographs change from single
peaks to double peaks, and the higher peaks shift from the
time immediately after rainfall cessation to that
occurring some time after rainfall cessation. For smaller
values of G, the peak discharges are smaller than those
generated from the corresponding uniformly rough surfaces.
For G = 12.48/m, the magnitudes of the peaks are larger
than those from the corresponding uniform surfaces, and
some are even greater that those from surfaces with
downslope decreasing K,, e.g., cases RI1 and RI4. The
initial lower discharge results from the early
contribution of runoff from the lower part of the slope
where the surface is rougher and less water runs off the
surface. The noticeable increase in discharge after the
cessation of rainfall is caused by the arrival of the flow
shock waves, which are produced by faster flow from the
upper part of the slope catching up with the slower flow
on the lower part of the slope.

From the results, one can see that the resultant
hydrograph from the trending variation Ko surface can not
generally be reproduced using the KWE with the constant
values of Ky = pgo. Again, in the absence of the cross-

slope variation in K,, the above results simulated by the
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two-dimensional model may also be approximated by a KWE

based cascade model.

3) Effects of trending variation with embedded
randomness

The effects of trending variation with embedded
randomness in K, are simulated for four different cases
listed in Table B.6. The resulting hydrographs are shown
in Figure 4.17. These results are almost identical to
those computed with only trending variation. Clearly, the
embedded variations in K, exert no influence on the
characteristics of the hydrograph. The hydrograph from the
spatially variable K, surface is mainly determined by its
trending variation component. The embedded random
variation, on the other hand, has a strong influence on
the flow fields. The flow fields and the mean flow
profiles in depth, velocity and flow direction along the
spatially variable K, surfaces are in Figures 4.18, 4.19,
and 4.20.

Significant errors can be generated in both
hydrographs and flow fields if the KWE is applied on the

assumed homogeneous surfaces with Ko = uKo.
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Figure 4.17

Comparison of computed steady state hydrographs
from a surface with trending variation in
roughness and embedded randomness to those
computed by assuming a uniform roughness K, =
bgo for Sy = .05, Ky = 512, and V, = l0cm/hr.
a§ downslope increasing and embedaed randomness
b) downslope decreasing and embedded randomness
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case: RTI1 case: RTD1

Computed steady state flow depth and velocity

fields from a surface with downslope trending

variation in roughness and embedded randomness.

The contour lines represent depth in cm and

vectors represent velocity in cm/s.

RTI1: S, = .05; Vg = 10cm/hr; G = .0848;
Hgo = 0: Ogo = 51.2:

RTIl: S, = .0S5; Vo = 10cm/hr; G = -.0848;
Bro = 0F Ogo = 51.2
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Figure 4.19 Comparison of the computed cross-slope mean
profiles of depth, velocity and flow direction
on surfaces with downslope increasing roughness
and embedded randomness to those computed by
assuming a uniform roughness K, = ug for
s, = .08, Vg = 10cm/hr, Ko = 512, and CVgg = .1.
wﬁere hsd = gy; Vsd = gy; ¢sd = %

a) depth; b) flow direction
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Figure 4.19 continued.
C) velocity
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Figure 4.20 Comparison of the computed cross-slope mean
profiles of depth, velocity and flow direction
on surfaces with downslope decreasing roughness
and embedded randomness to those computed by
assuming a uniform roughness K, = ug for
S, = .05, Vg = 10cm/hr, Ko = s$2, and Cvg, = .1.
wﬁere hsd = 0); Vsd = oy’ ¢sd = %%

a) depth:; b) flow direction
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Figure 4.20 continued.
c) velocity
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4.4.3 Effects of Hillslope Microtopography

1) Effects of two-dimensional corrugated
microtopography

The effects of microtopography on hydrographs and
flow fields are examined. The hydrographs from surface
having two-dimensional microtopography with corrugations
aligned both downslope and across the slope on a generally
plane surface and those from corresponding smooth plane
surfaces are shown in Figure 4.21. The computed
hydrographs from the assumed planes having mean slope
match those computed from the two-dimensional corrugated
microtopographic surfaces quiet well. Clearly, the two-
dimensional corrugated microtopography has no influence on
the characteristics of the hydrograph. Although
microtopographic heights slow down the flow velocity
immediate upslope from them, they force the flow to
concentrate into nearby depression paths where the flow is
deeper and velocity is faster. For these cases, the
geometry of the microtopographic heights and depressions
are symmetrical. Therefore, the overall runoff rate and
the "apparent” flow resistance, i.e., the overall flow
resistance of the surface by back fitting the hydrograph,
have not been altered due to the existence of the

microtopography.
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Comparison of computed hydrographs from
surfaces with corrugations aligned in both the
downslope and cross-slope directions to those
computed by assuming a plane surface with a
mean slope.

a) §, = .10; V° = 5cm/hr; K, = 1000

x
b) 8, = .10; Vo = l0cm/hr; ﬁo = 512
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These results are obtained on corrugated surfaces
with large wave length (A > 2.83 m) and relative small
amplitude (¢ < 6 cm). In the simulations, the
microtopographic heights are completely inundated. If the
microtopographic amplitude, €, is so large that the
microtopographic heights protrude out of the flow, or if
the corrugated wave length becomes so small that the
microtopographic heights are acting as individual
blockages, then the surface resistance to the flow would
increase, and the rise of the hydrographs would be
delayed. Unfortunately, due to the limitation of the
numerical modei, these cases could not be simulated.

In addition to the scales of microtopographic
amplitudes and wave lengths, the geometric configurations
of microtopography will also influence the characteristics
of hydrographs. If the configuration is favorable for the
convergence of flow, the effects of microtopography are to
reduce the overall or "apparent" resistance of the
surface; otherwise, the effects of microtopography are to
increase the "apparent" resistance of the surface. These
can be illustrated by the following example.

In this example, HyNuM is applied to two kinds of
idealized microtopographic surfaces generated with
equation (68). The first surface has corrugations aligned
only downslope, and the second has corrugations aligned

only across the slope (Figure 4.22). Clearly, the
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Figure 4.22 Surfaces with corrugations aligned only in the

downslope or cross-slope direction.
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geometric configuration of the first microtopographic
surface is more favorable to the convergence of flow than
is the second surface. The hydrographs generated from the
two surfaces along with those computed from the assumed
homogeneous planes are shown in Figure 4.23. These
hydrographs were all generated with surface roughness

parameter, K. = 512.

o
For equilibrium hydrographs, the runoff reaches
steady state faster on the first surface than those on the

second surface or the assumed plane. The convergence of
flow on the first surface results in a deeper and faster
concentrated flow, and therefore, quicker runoff. To match
the hydrograph generated on the first surface with that
from the assumed homogeneous plane, the value of K, should
be reduced from 512 to 380; the "apparent" flow resistance
due to the existence of the microtopography is reduced.
The change of K, required to match the hydrograph
from the second surface with that from the equivalent
homogeneous plane is insignificant. As the flow approaches
the "roll-wave" type microtopographic mount, while the
velocity decreases, the depth increases:; as the water
flows over the microtopographic mount, although its
velocity increases the flow depth becomes smaller. Since
the flow velocity and depth compensate each other, the

resultant flow rate has not been significantly altered.

The effect of microtopography is greater for non-
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Figure 4.23 Comparison of computed hydrographs from two
surfaces (Fig. 4.22) with corrugations aligned
in the downslope and cross-slope directions for
s, = .05, V° = 10cm/hr, and Ly = 1200cm.
a¥ equilibrium case
b) non-equilibrium case
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equilibrium. The flow peak generated from the first
surface is much higher than that computed from the second
surface and the plane. The flow peak from the plane is
slightly higher than that from the second surface.

For these cases, the assumed homogeneous plane may
not be used in hydrograph prediction, because
microtopography on natural hillslopes may take many forms.
The effects of two natural microtopographic surface will
be demonstrated later.

The effects of the two-dimensional microtopography
with corrugations aligned both downslope and across the
slape on the characteristics of overland flow fields is
examined next. Two typical flow fields generated on the
two-dimensional corrugated microtopographic surfaces are
shown in Figure 4.24. The impact of microtopography on the
flow directions is much stronger than is the case with
spatially varying infiltration and surface roughness. The
profiles of the mean cross-slope flow depth, velocity and
flow direction along with those computed from the
corresponding plane surfaces with mean slopes are shown in
Figure 4.25. The depth, velocity, and flow direction
simulated from the variable surfaces vary significantly
around their mean values. The variability of the flow
fields, represented by the values of CV,),, G4/ CVay, Oay
and Oxgys is shown in Table 4.7. While the variations of

depth and velocity for the cases simulated are abou*
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Figure 4.24 Computed steady state flow depth and velocity
fields from surfaces with corrugations aligned
in both the downslope and cross-slope
directions. The contour lines represent depth in
cm and vectors represent velocity in cm/s.

M342: S, = .05; Vg = locm/hr: Ko = 512i
€ = 4cm; A, = A, = 566cCnm
M332: S, = .08: Ve = Tocm/hr; Ko = 512

°=
€ = 4cm; Ay = XY = 424cnm
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4.25 Comparison of the computed cross-slope mean
profiles of depth, velocity and flow direction
from surfaces with corrugations aligned in both
the downslope and cross-slope directions to
those computed by assuming a uniform plane with
a mean slope for S, = .10, Ko = 1000, Vo

Scm/hr, and €/l = .0091.

where hsd = o/ Vsd = oy; ¢sd = P

a) depth; Db) flow direction
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Table 4.7 Computed mean cross-slope deviations in depth
(Oxpns CVap), velocity (0,y, CV,y) and flow
direction (o*g) from the two-dimensional

ro

corrugated mi topography
CASE € A=A g CVan lo 2 CV, o)
Vv *

(cm) (‘cm)y (cm (cm/s) (dgg)
r = 15 cm/hr; S, = 5%; Kg = 5 cm/hr: K, = 512
M321 2 283 .0405 .0874 2.76 .180 5.07
M331 2 424 .0474 .1010 3.07 .204 4.73
M341 2 566 .0384 .084 2.57 .182 3.30
M322 4 283 .0746 .1640 4.25 .277 9.96
M332 4 424 .0886 .1880 5.00 .303 9.54
M342 4 566 .0620 .1350 3.47 .227 3.56
M323 6 283 - - - - -
M333 6 424 .1030 .2260 5.58 .344 14.03
M343 6 566 .0796 .174 3.74 .239 9.73
r = 15 cm/hr; S, = 5%; Kg =5 cm/hr; K, = 1000
M361 2 283 .0376 .0673 1.56 .142 5.13
M371 2 424 .0321 .0565 1.41 .131 4.69
M381 2 566 .0296 .0525 1.36 .129 3.26
M362 4 283 .0729 .1290 2.47 .211 9.82
M372 4 424 .1010 .1780 3.28 .200 9.81
M382 4 566 .0567 .100 1.68 .150 6.53
M363 6 283 - - - - -
M373 6 424 .1011 .1780 3.28 .260 14.14
M383 6 566 .0867 .1540 2.25 .187 9.90
r = 15 cm/hr:; Sy = 10%; Kg =5 cm/hr; K, = 512
M21 2 283 .0326 .0862 4.77 .247 2.66

(.501) (.110) (5.33) (.321) (2.81)

M31 2 424 .0473 .1000 5.18 .274 2.43
M41 2 566 .0245 .0679 3.85 .215 1.62
M22 4 283 .0383 .1050 4.95 .260 6.75
M32 4 424 .0448 .1200 5.19 .275 4.68
M42 4 566 .0237 .0650 3.88 .213 3.15
M23 6 283 .0384 .1050 4.96 .261 7.36
M33 6 424 .0501 .1390 5.59 .285 7.36
M43 6 566 .0459 .1250 5.18 .271 5.27
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r = 1% cm/hr; Sy = 10%; = 5 cm/hr; o 1000
M61l 2 283 .0260 .0544 2.79 .187
M71 2 424 .0258 .0548 2.63 .184
M81 2 566 .0244 .0518 2.43 .175
M62 4 283 .0356 .0823 3.00 .210
M72 4 424 .0371 .0798 2.91 .199
M82 4 566 .0279 .0619 2.44 .176
Mé63 6 283 .0476 .1050 3.05 .205
M73 6 424 .0482 .1040 3.29 .213
M83 6 566 .0358 .0800 2.53 .180

r = 15 cm/hr; Sy = 10%; = 10 ecm/hr; K. = 512
M1l0O1 2 283 .0097 .0339 2.10 .186
M11l1 2 424 .0100 .0342 2.07 .185
M1l21 2 566 .0092 .0318 1.99 .180
M1l02 4 283 .0246 .0868 2.60 .231
M1l1l2 4 424 .0237 .0802 2.35 .213
M122 4 566 .0180 .0630 2.07 .190
M103 6 283 .0247 .0650 2.56 .210
M113 6 424 .0270 .0935 2.36 .210
M1l23 6 566 .0226 .0795 2.13 ..193

NN

W s o

=N

[

.57
.35
.62

.80
.66
.18

.19
.99
.74

.44
.31
.60

.74
.67
.15

.94
.94
.71
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as those from surfaces with spatially varying Kg or K,
the variations of flow directions are about one order of
magnitude greater than those from spatially varying Ky or

K. surfaces.

o

For given microtopographic wave length, A, the
variability of flow fields, represented by the values of
CVin+ Fxns CVay, Jxy and Tagys increases with increasing
microtopographic amplitudes. For a given microtopographic
amplitude, as the wave length of the microtopography is
shortened, the variability of flow direction, Tugys
increases, while the variation trends for flow depth and
velocity are not consistent. For some cases, the values of
CVin+ Oxpr CVay and o,y computed with A = 424 cm are even
greater than those computed with A = 283 cm.

These results may not reflect the true impacts of
microtopography on sheet flow. One would expect that as
the wave length of the microtopography is reduced,vwith a
fixed amplitude, the surfaces become more rugged, and
therefore the spatial variation of the flow would be
greater. The error may be introduced by the spatial
resolution of the numerical solution. In the simulation,
the same grid size of Ax = Ay = 1 m was used for numerical
solution of all three wave lengths. As the wave length of
the microtopography gets shorter, the spatial resolution

of the computational mesh grid is poorer. The net result

is that more of the original features of the
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microtopographic surfaces are smoothed out. This appears
to be the reason that the flow fields computed on surfaces
with A = 283 cm have less variability than those computed
from surfaces with A = 424 cm. Since there are smoothing
effects resulting from the computational spatial

- resolution, the microtopography with A = 424 cm is rougher
than that with A = 566 cm. Consequently, the computed flow

from the surfaces with )

424 cm are more variable than
those from surfaces with A\ = 566 cm. The spatial
resolution error can be reduced by increasing the number
of grid points, i.e., reducing the grid sizes. This is
illustrated by case M21 in Table 4.7. The values inside )
in Table 4.7 were simulated using Ax = Ay = 0.5 m. With
this finer grid, the error introduced by the spatial
resolution of the numerical solution was clearly reduced.
Due to the constraints in time and computer availability,
simulations with this finer mesh have not been done for
the other cases.

The variabilities of the flow fields due to
microtopography are different depending on excess rainfall
rate, slope, and surface roughness. Comparison of cases
M61-83 with cases M101-123 shows that as the excess
rainfall rate increases, the spatial variability of the
flow, reflected by all the values of CV, and Car
increases. These results again show that deeper flow and

greater flow velocity resulting from greater excess
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rainfall rate cause more spatial variability in the flow.
The influence of slope gradient on the spatial variability
of the flow due to microtopography is different from those
due to spatially variable Kg or K, . The results show that
as the slope gradient becomes smaller, while the
variability of velocity, o4y, is reduced, the variability
of flow depth, CV,, and o,),, become larger even though the
flow is deeper. The influence of slope on flow direction
due to microtopography is similar to the influence due to
spatially variable Kg or K,, that is, as the slope becomes
smaller, the variability of flow direction Oxg become

larger. As the surface roughness, K increases, the

o
variability of the flow, represented by all the values of
0. and CV,, decreases. For the reason given in section
4.4.1, it is beyond the scope of this work to explain
fully the physics behind these findings.

Above simulation results show strong influences of
microtopography on overland flow. For surfaces with the
corrugation aligned in the downslope direction, the
characteristics of the hydrograph have been significantly
affected. However, for the two-dimensional corrugated
microtopography simulated, the influences of the
microtopography are mainly on spatial variability of flow
fields, and the influence on the hydrograph shape is

negligible. For these cases, the KWE with an average slope

can be used to predict the outflow hydrograph and the mean
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characteristics profiles of the flow. However, spatial
variability of the flow fields can not be predicted by the

KWE with the assumed homogeneous planes.

2) Characteristics of sheet flow on natural
microtopography

The patterns of the microtopography on natural
hillslopes are complicated, and so are the responses of
overland flow on such surfaces. To examine the impacts of
microtopography of natural hillslope surfaces on the
characteristics of overland flow, the model was applied to
the two natural hillslope surfaces shown in Figure 4.2.
These two microtopographic surfaces are chosen from the
field study of Aubry (1984). Both of the plots are 6.0 m
long and 2.5 m wide, and the average downslope gradients
are 4.07% for plot KR-9 and 4.2% for plot KR-10. For
numerical simulation, both plots were subjected to a
hypothetical rainfall intensity of 15 cm/hr. An average
infiltration rate of 5 cm/hr was assumed. In the
simulation, the same mesh size as that used in field
measurement, Ax = 0.5 m and Ay = 0.25 m, was chosen as the
computational mesh size. Surface roughness K, = 5000 was
chosen for the simulation; the actual surfaces are short
grass prairie surfaces.

The equilibrium hydrographs from the two plots along

with those from the corresponding plane surfaces with the
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average slopes are shown in Figure 4.26. One can see that
the shapes of the hydrographs computed from variable
microtopographic surfaces and the corresponding plane
surfaces are different. The hydrograph for plot KR-9 rises
to steady state much slower than for the corresponding
plane surface. The ratio of tpl/tpo is about 1.48 (Table
4.8). The time to steady state from plot KR-10 is also
longer than that from the corresponding plane surface, and
the ratio of tpl/tp° is about 1.16 (Table 4.8). The
hydrograph rise from plot KR-10 is initially faster then
slower than that from the corresponding plane surface.
This initial quick rise of the hydrograph is presumably
caused by early concentrated runoff from the depression
paths. In comparison with plot KR-10, plot KR-9 lacks
concentrated depression paths, and therefore, there is no
initial quick hydrograph rise from plot KR-9. For the
simulated equilibrium hydrographs, the microtopographic
effects of both plots give rise to the increase of the
"apparent" flow resistance, and therefore, would increase
the values of the back calculated surface roughness. To
match the hydrographs from plots KR-9 and KR-10 by those
computed from the corresponding planes, back fitted values
of K, would increase from 5000 to 9000 for plot KR-9 and
7800 for plot Kr-10.

The model was run to examine the influence of the

microtopographic surfaces on non-equilibrium hydrograph,
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Figure 4.26 Comparison of computed steady state hydrographs
from natual microtopographic surfaces to those
computed by assuming a plane surface with a mean
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and the results are shown in Figure 4.27. The duration of
rainfall was again taken as 75% of the time to steady
state from the corresponding plane surfaces. For plot KR-
9, the peak discharge occurred at the time of cessation of
rainfall, the same as from the corresponding plane
surface. However, the peak discharge from the
microtopographic surface was smaller than computed from
the corresponding plane surface. From Table 4.8, the ratio
of qpl/qpO is about 0.78. For plot KR-10, the time to peak
discharge is also about at the end of rainfall but the
peak discharge is higher than computed from the
corresponding plane surface. From Table 4.8, the ratio of
qpl/qp0 is about 1°lf

The results indicate that large errors may be
generated in prediction of hydrographs on natural
hillslopes if a one-dimensional model with the averaged
slope is used. This is different from the cases of the
two-dimension corrugated-microtopographic surfaces above,
where the hydrographs computed for the corrugated
microtopography were about same as those computed from the
corresponding plane surfaces.

The computed flow fields for the two plots are shown
in Figure 4.28. These flow fields clearly reflect the
impact of the microtopography. Figures 4.29 and 4.30 shows
the comparison of the averaged cross-slope depth, velocity

and flow directions simulated on the two microtopographic
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surfaces and those computed from the assumed plane
surfaces with the averaged slopes. The results show that
the depth, velocity, and flow directions on the variable
microtopography have significant deviations from their
cross-slope mean values. From Table 4.9, the values of
CVyp and CV,y, for plot KR-9 are 0.165 and 0.641,
respectively, and the values for KR-10 are 0.445 and
0.779, respectively. Except for CV,, of KR-9, which is
about the same magnitude as from spatially variable Kg and
Ko surfaces, all the other values of o, and CV, are
significantly greater than those computed from the
spatially variable K, and K,. This indicates the dominant
impact of hillslope microtopography on the variability of
overland flow fields.

Clearly, the characteristics of sheet flow on natural
hillslope surfaces can not be reproduced with a one-
dimensional model. For the two plots simulated,
considerable errors were generated even in the cross-slope
average depth and velocity profiles when plane surfaces

with mean slopes were used to represent the natural state.

4.5 Summary

A two-dimensional hydrodynamic and numeric model for
overland flow (HyNuM) is used to simulate the influence of
spatial variations of hillslope hydraulic and physical

properties on the characteristics of overland flow,
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Table 4.8 Peak and time to peak for hydrographs_from_ two

natural microtopographic surfaces (q,, tE )
relative to those from uniform planeg (qp ,tpo)
tr > ts tr = .75 ts
PLOT 1 o] 1 o] 1 o
®p /%p *p /p 9/ 9p
KR-9 1.48 1.0 .778
KR-10 1.16 1.0 1.080

Table 4.9 Computed mean cross-slope deviations in depth

(Oxn+r CVap). velocity (O4y, CV,y) and flow
direction (o*g) from two naturaY

microtopographic surfaces
(cm) (cm/s) (deg.)
KR-9 .0967 .1650 .641 .595 14.45
KR-10 .3360 .4450 1.11 .779 13.90
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including flow fields and hydrographs. The three hillslope
variables evaluated are steady state infiltration (Kg)
surface roughness (K,) and microtopography. The bias in
calculating the characteristics of oVerland flow using the
simple one-dimensional model, specifically, the KWE and
with the assumed homogeneous planes in place of the
spatial heterogeneous surface are discussed. The results

are summarized below.

4.5.1 Effects on the characteristics of hydrographs

1. For random spatial variation in Kg and Ky, a
hydrograph is only influenced by the distribution mean of
Ks and K,, not by the variations, represented by Ogs ©OF
Ogo When overland flow is produced over the entire
surface. For these cases, hydrographs can be accurately
predicted using a one-dimensional model, e.g., the KWE,
using assumed homogeneous planes with the corresponding
mean values of Kg and K,.

2. By altering flow depth and velocity profiles along
a slope, trending variation with or without the embedded
randomness in Kg and K, strongly influences a hydrograph,
including its timing and peak discharge. If rainfall
durations are longer than the times to steady state runoff
of a hillslope, the effects of the trending variations in

Ky and K, on the equilibrium hydrographs are on the times

S

to steady state runoff and hydrograph shapes in the rising
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and falling limbs. In comparison with those from
homogeneous planes with the constant values of K  or K,
the times to steady state runoff will be shortened for
downslope increasing Kg or K,, but delayed for downslope
decreasing Kg or K,.

The effects of the trending variations on non-
equilibrium hydrographs also include the magnitudes of the
peak discharges and the effects are more significant.
Depending on the duration of rainfall, the characteristics
of the resultant hydrographs can differ significantly. The
effects on non-equilibrium hydrographs for an arbitrary
duration, tr = 75% ts°, are simulated. For downslope
decreasing variations, the times to hydrograph peaks are
the same as those from the corresponding homogeneous
planes but the peak discharges are higher than those
computed from the corresponding homogeneous planes. The
hydrograph peaks increase with the magnitudes of the
gradient of variation, G. For downslope increasing
variations, the times to hydrograph peaks are generally
delayed and the magnitudes of the peak discharges may be
lower or higher than those computed from the corresponding
homogeneous planes. Higher hydrograph peaks occur for
large G values.

For these cases, the hydrographs predicted by
assuming homogeneous planes with mean values of Kg or Ko

will have significant errors. The results also show that
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where overland flow is produced from the entire surface on
a hillslope the characteristics of hydrographs produced
from surfaces of trending variations with embedded
randomness in Kg or K, are determined by the trending
variation components.

3. Depending on its geometric configuration,
microtopography may have differing éffects on a
hydrograph. The microtopography with the two-dimensional
corrugated cosine-waves aligned in both downslope and
across the slope have no effects on a hydrograph. For
these cases, hydrographs can be accurately predicted using
the KWE for equivalent representative homogeneous planes
using the mean slopes. However, for surfaces with the
geometric configurations favorable to convergence of flow,
e.g., surfaces with the corrugations aligned only in the
downslope direction, the characteristics of hydrographs
will be significantly affected. Therefore, errors will be
generated by using an assumed homogeneous plane.

On natural hillslopes, the variation patterns of
microtopography and of hydrograph response are more
complex. Hydrographs from different microtopographic
surfaces but having identical spatial saturated hydraulic
conductivities can be very different. Large errors in
predicted hydrographs can be generated by using a
representative homogeneous plane using the mean slopes in

place of the actual microtopography.
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4.5.2 Effects on the characteristics of flow fields

1. Spatial variability in Kg and K, on hillslopes
causes spatial variability in depth and velocity fields of
overland flow. As the variation of Kg (0gg) or Ky (Txo)
increases, the variability of depth and velocity fields
increases.

2. The effect of microtopography on the variability
of depth and velocity fields is stronger than that of
spatially variable Kg or K,. For given microtopographic
wave length, )\, the variability of a flow field increases
with the microtopographic amplitude, €. With fixed €, the
variability of the flow field increases as the value of A
becomes smaller. In the latter instance the results are
not definitive because of the smoothing errors introduced
by the numerical resolution of the model.

3. Conditions that favor increasing flow depth and
decreasing velocity, e.g., greater roughness or smaller
slopes, reduce the variability of depth and velocity
fields caused by spatial variability of K5 and K,. One
exception is for microtopography, where the variability of
depth becomes larger for smaller slopes.

4. Decreasing excess rainfall rate reduces the
variability of depth and velocity fields caused by spatial

variability of K, and microtopography. An exception is for
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spatially variable Kg, where the variability of depth
becomes larger for a smaller excess rainfall intensity.

In general, the simulation results show that on a
spatially variable hillslope the cross-slope mean depth
and velocity profiles along the downslope directions may
be accurately computed by using the KWE and an assumed
homogeneous plane. However, the spatial variability in the
flow fields can not be predicted using the assumed
homogeneous planes. The spatial variability in flow fields
is important to soil erosion. Without incorporating the
variability in flow fields when computing soil erosion,
significant errors may result. This is illustrated in the

next chapter.
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Chapter Five

EFFECTS OF SPATIALLY VARIABLE SHEET FLOW ON SOIL EROSION

5.1 Introduction

Horton (1945) proposed a theory of sheet flow,
sheetwash erosion, and rill formation to explain the
interrelationships between hillslope geomorphology and
overland flow. Where Horton overland flow is the dominant
runoff process, a thipn, irregular sheet of water flows
down hillsides and imposes a shear stress on the soil
surface. The boundary shear stress produced by the
overland flow is the main force for the generation of soil
erosion, and therefore is mostly responsible for sculpting
hillslope morphology in arid and semi-arid regions.
Accurate determination of the boundary shear stress is,
therefore, necessary for understanding the processes of
soil erosion and hillslope evolution, and is a necessary
first step for any physically based soil erosion modeling.

The distribution of the boundary shear stress, 7, at
any point on a hillslope is determined by the
characteristics of overland flow at the point. The
characteristics of overland flow, especially depth and
velocity, are strongly influenced by the spatial
variabilities of hillslope properties including surface
roughness, infiltration, and microtopography. These

spatial variations of hillslopes are sufficient to
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redistribute runoff water within the flow field and
concentrate the flow into topographically depressions.
These altered flow fields in depth and velocity can
significantly change the distribution of the boundary
shear stress. For example, at places where flow
concentrates the flow depth and velocity increase, the
resulting boundary shear stress will be large. This will
strongly influence the magnitude and spatial patterns of
soil erosion.

The effect of spatially varied overland flow due to
the spatial variation of hillslope properties on the
boundary shear stress has not been adequately incorporated
into soil erosion modeling. For the majority of the
current physically based erosion models (e.g., Foster and
Meyer, 1972; Foster, 1982; Simons et al., 1975; Morgan,
1980; Zhang, 1985) the boundary shear stress is computed
based on the spatially averaged depth and velocity
profiles of overland flow. Predictions of soil erosion and
sediment transport rates by physically based erosion and
transport models are extremely sensitive to local boundary
shear stress (Dunne and Aubry, 1986; Zhang, 1986).
Therefore, by ignoring the spatial variation of boundary
shear stress, large errors may be generated by existing
erosion models when significant spatial variation of

overland flow occurs. Some implications of the variability
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of flow fields on hillslope soil erosion are discussed

below.

5.2 Implications for Modeling Soil Erosion

A simple erosion model based on a Du Boys-typé
equation is used for the analysis. The model has the
following form:

a (1 -71,)P
dg = [ (73)

0 T <T
where gg is soil erosion rate, a is a parameter relating
soil susceptibility to erosion, b is a constant, 7 is the
boundary shear stress due to sheet flow and T, is the
critical boundary shear stress for initiation of soil

erosion. 7 and 7, are often expressed as-

T=79h Sy (74)

. = 7 hg Sg (75)

where 7 is the specific weight of water, h is the flow
depths, h, is the flow depth corresponding to 7., and S,
is the land surface local slope. Current erosion models
often use cross-slope mean depth and spatially averaged
slope of plots or even hillslopes in place of spatially
variable depth and local slope for prediction of soil
erosion. The question to be answered is: what is the

prediction bias due to such a simplification?
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For simplicity, the results from microtopographic
surface, plot KR-10, are used for the present discussion.
The results from this specific case should be relevant to
the cases where there is a spatial variability in overland
flow which may be caused by spatially variable

infiltration or surface roughness.

5.2.1 Computational Bias in Predicting the Excess Shear
Stress

Excess shear stress is defined as the part of shear
stress which exceeds the critical shear stress and
actually brings soil particles into motion. For a given
hillslope, the critical boundary shear stress, T, is
determined by hillslope soil conditions. Depending on the
nature of hillslope soils, the values of 7. may vary from
near zero for cohesionless soils to some large number for
soils with strong cohesion. It is assumed that the

critical shear stress, 7 on a hillslope remains

o’
spatially constant. Therefore, the effect of "armoring"
on the critical shear stress is also ignored. The excess
shear stress generated on the hillslope surface is thus
assumed to vary only with the spatially variable overland
flow. By assuming spatially uniform overland flow,

significant errors in the distribution of the computed

excess shear stress may result.
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Depending the values of 7., and the excess rate of
rainfall, the error in the computed excess shear stress
fields will be different. Figure 5.1 shows some of the
typical patterns of the excess shear stress fields
computed for plot KR-10 and from the assumed equivalent
homogeneous plane for critical shear stresses of 18, 14
and 8 dynes/cm2 and an excess rainfall rate of 5cm/hr. On
the variable microtopographic surface, there is a strong
spatial variability in excess shear stress. These spatial
distribution patterns of excess shear stress may result in
non-uniform soil erosion and deposition over thelplot.
With the assumed homogeneous plane, the excess shear
stress is uniform across the slope and increases
monotonically downslope. This distribution pattern results
in a uniform soil erosion at cross-slope sections. With
the monotonically increasing excess shear stress
downslope, there would be no depositioh anywhere on the
plot. This is inconsistent with field observations. Figure
5.1a also indicates that with spatially variable
microtopography, the model predicts some patches of excess
shear stress, thus, some soil erosion over the plot.
However, the model predicts no excess shear stress on the
assumed plane, and therefore no soil erosion occurring on
the plot.

For given hillslope conditions, the bias in

predicting the total area on which there is an excess
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shear stress due to using a homogeneous plane is strongly

affected by the critical shear stress, T and rainfall

cr
intensity. To examine the impact of 7., an excess rainfall
rate of 5cm/hr is chosen and the total area of excess
shear stress, A,, within the plot is computed for
different values of 7. The values of 7, for cohesionless
sediment materials have been summarized by Smith (1984),
and the values ranges from 6 dynes/cm2 for 0.1 mm diameter
sediment to about 40 dynes/cm2 for 4 mm diameter sediment.
For this simulation, the values of 7, have been assumed to
vary from 6 dynes/cm2 to 40 dynes/cmz. The results of the
simulation are shown in Figure 5.2. In Figure 5.2, A, is
the total area of plot KR-10 and Ag is the total area of
excess shear stress. The results indicate that the area of
excess shear stress from both the microtopography and the
assumed homogeneous plane decrease as the value of 7.
increases. For 7, < 10 dynes/cmz, the values of A,
computed from the homogeneous plane are slightly ( <10% )
greater than those from the variable surface. For 7. > 10
dynes/cmz, as the value of Te increases, the value of A,
from the homogeneous plane reduces much faster than that
from the variable microtopographic surface. As the value
of T, increases over 18 dynes/cmz, A, for the homogeneous
plane reduces to zero, while A, for variable surface is

still 32% of A, for 7, = 18 dynes/cmz, and 2.1% of A, even

for 7, = 40 dynes/cmz. The results indicate that
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approximating a microtopographic surface with a
homogeneous plane can result in a slight overestimation of
the total area of excess shear stress for small values of
Ter €9+, fine-textured, cohesionless soils, but a severe
underestimation of the total area of excess shear stress
for large 7.

To examine the impact of rainfall on these relations,
a critical shear stress of 15 dynes/cm2 was chosen and A
was computed for various values of excess rainfall rate.
The results are shown in Figure 5.3. For small excess
rainfall rate, e.g., Vo < 9 cm/hr, Ac computed from the
hoﬁogeneous plane is smaller than that from the variable
surface. For an excess rainfall rate less than 4 cm/hr, Al
computed from the ﬁomogeneous plane reduces to zero, while
A_ computed from the variable surface is 30% of the total
plot area. Even for an excess rainfall rate of 2cm/hr, Ag
computed from the variable surface is still 3% of the
total plot area. As the excess rate of rainfall increases
over 9 cm/hr, A, computed from the homogeneous plane
becomes larger than that from the variable surface.
Therefore, using an homogeneous surface in place of the
real microtopography can result in significant errors in
the computed total area of excess shear stress. For the
homogeneous plane, the total area of excess shear stress

was underestimated for storms with V, < 9 cm/hr, but was

overestimated for extremely large storms.
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5.2.2 Computational Bias in Predicting Sediment
Transport Rate

For a given hillslope, the soil erosion rate depends
not only on the total area of the excess shear stress, but
also the magnitude of the excess shear stress distributed
on the area. The simulations in this section are only for
soil erosion or detachment at local cross-slope sections
and under steady flow conditions; the mechanisms of
sediment transport and deposition are not considered.

The total sediment transport rate at a given cross-
slope section along a hillslope can be computed either
using a uniform cross-slope depth from a homogeneous plane

surface as
' = - b
Qs =Ba (7 Tc) (76)

or using variable cross-slope depth and local slope at

the cross-slope section as

B b

Qg = J a (717 -7.) dy (77)
0

where Q. ' and Qg are the computed total sediment transport

rates at the cross-slope section using the mean depth and

slope and variable depth and slope gradient, respectively,

and B is the length of the cross-slope section.
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The prediction bias resulting from using uniform
depth and mean slope in place of the variable depth and

local slope is expressed by the ratio of Qs'/Qg, L.e.,

Bias = (78)

By substituting equation (74) for 7, and replacing the
integral in equation (77) with finite summation of the
values at the regularly discretized grid points, equation

(78) takes the following form:

1
Bias = (79)
1l E[ hiSl- Te 1b.
n E§-7. 4

where n is the number of grid points at the cross-slope
section, and h; and S; are the flow depth and slope at
each grid point, respectively. Since the bias defined in
equation (79) is independent of the soil susceptibility
parameter a, the effect of this parameter will not be
discussed. The values of exponent b have been given in
several studies and typically ranged from 1 to 3 (Foster
et al., 1977; Kilinc and Richardson (1973); Abrahams et
al., 1988).

For examining the influence of critical shear stress
and excess rainfall, an erosion susceptibility b = 2 was

used. Figure 5.4 shows the bias in computed total sediment
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transport rates at various cross-slope sections along plot
KR-10 for an excess rainfall rate of 5 cm/hr and for
different values of To- The results reveal a severe
underestimation in sediment transport rate by assuming an
homogeneous plane for all values of 7. and at all cross-
slope sections, although the bias at different cross-slope
sections are different. Even the best one at x = 450 cm
and with Te = 6 dynes/cm2 is still only 58% of the total
sediment transport rate from the microtopographic surface.
For small values of 7., the bias is relatively small, and
as the values of 7, increase, the bias becomes very large.
Fof the values of 7. greater than 16 dynes/cmz, no cross-
slope sections on the assumed homogeneous plane experience
soil erosion. However, as indicated in Figure 5.2, at Te =
16 dynes/cmz, there is still about 45% of the plot area
where the boundary shear stress exceeds the critical shear
stress, and therefore, where sediment transport continues.
The influence of the rate of excess rainfall on the
bias of computed total sediment transport at cross-slopé
sections is illustrated in Figure 5.5. This result was
generated with Te = 15 dynes/cm2 and for various values of
the excess rainfall rate. Again, the results reveal a
severe underestimation of total sediment transport rate at
all cross-slope sections for all excess rainfall rates,

although as the excess rate of rainfall increases the

prediction bias becomes smaller.
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The effect of parameter b on the prediction bias due
to the assumption of an homogeneocus plane was investigated
over a range of 1 to 3. In the simulation, the excess
rainfall rate and the critical shear stress were assigned
the values of 8 cm/hr and 15 dynes/cmz, respectively. The
results of prediction bias at each cross-slope sections
along the plot are shown in Figure 5.6. The results again
show severe underestimations by using an homogeneous
plane. The magnitudes of the underestimation greatly
increase with parameter b. It is observed that the
prediction bias generally decreases in the downslope
direction. This presumably results from the increase of
flow depth, and thus the reduced spatial variability in

the flow.

5.3 Summary

The effects of spatial variability of overland flow
due to spatial variations of hillslope characteristics on
soil erosion have been examined. The analysis concentrated
on two aspects that are of interest to modeling hillslope
soil erosion: (1) the total area of excess shear stress,

A and its distribution on a spatially variable

cl
hillslope; and (2) sediment transport rate, Qg, at cross-
slope sections along the hillslope surface. The biases in
predicting A, and Q using an idealized h iogeneous plane

for a spatially variable hillslope surface are discussed.
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The results from the model simulations are summarized
below.

1. Variable flow fields produce spatially variable
excess shear stress fields, which result in non-uniform
soil erosion and deposition patterns on a hillslope
surface. These patterns in excess shear stress, and,
therefore, hillslope sediment transport and deposition can
not be predicted with an assumed homogeneous plane.

2. Approximating a spatially variable hillslope with
a representative homogeneous plane results in a slight
overestimation of A_ for small Tor i.e., for fine-
textured, cohesionless soils, but a severe underestimation
of A, for or coarse-textured or cohesive soils with large
Ta-

3. Using an homogeneous plane to represent a
spatially variable hillslope results in an underestimation
of A, under excess rainfall intensities < 9cm/hr, but an
overestimation in A, under rainfalls of extremely large
intensities.

4. Sediment transport rates can be severely
underestimated at cross-slope sections along a hillslope
for different values of 7, and under different rainfall
intensities, if a spatially variable hillslope is
approximated by an homogeneous plane. As the critical

shear stress increases and the excess rainfall rate
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decreases, the amount of underestimation in sediment
transport increases.

5. The amount of underestimation in sediment
transport due to using an homogeneous plane also increases
with the exponent parameter b, if one uses a Du-Boys type
equation for prediction of sediment transport.

6. From the results of the simulation and analysis,
it is concluded that sheet flow with strong cross-slope
variations generally results in more soil erosion than

that with no cross-slope variations.
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Chapter Six

. CONCLUSIONS AND RECOMMENDATIONS

Spatial variations in hillslope properties strongly
influence the characteristics of overland flow, and
therefore hillslope soil erosion and pollutant transport.
The objectives of the study have been: 1) to develop a
physically-based overland flow model that can predict and
simulate overland flow, including flow fields and
hydrographs, under spatially-variable hillslope
conditions; and 2) to use the model to examine the effects
of spatial variations of hillslope properties on the
characteristics of overland flow and on hillslope soil
erosion. Conclusions and recommandations for future work

follow.

6.1 Conclusions

A two-dimensional hydrodynamic and numerical model
for overland flow has been developed. The model can
explicitly incorporate hillslope variations in steady
infiltration, surface roughness, and microtopography. The
accuracy of the model has been tested by comparing the
model results with those computed with characteristic-
based methods for spatially uniform surfaces and with
‘experimental data for surfaces with spatially-variable
gradients. The results of these tests indicated that the

numerical solution of the model is accurate and has good
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stability and convergence properties. With the model, the
effects of spatially-variable hillslope properties on the
characteristics of overland flow, including flow fields,
can be simulated and examined on a realistic basis. Some
limitations of the model have also been pointed out. An
important limitation is that the model requires the
simulation domain to be

inundated.

The second objective was carried out in chapters four
and five. First, the model simulations of overland flow
were performed on spatially-variable hillslope surfaces.
Then, based on simulation results, the effects of
spatially-variable steady infiltration, surface roughness
and microtopography on the characteristics of overland
flow and on soil erosion were analyzed.

With respect to hydrographs, the simulation results
suggest that the spatial trending variation in steady
infiltration and surface roughness has a strong influence
on hydrographs. Depending on variation patterns, e.qg.,
downslope-increasing or downslope-decreasing, trending
variation in infiltration and surface roughness may have
differing effects on a hydrograph. The effect of
downslope-increasing variation in infiltration
or surface roughness is to shorten the hillslope
concentration time or time to equilibrium runoff. The

effect of downslope~decreasing variation in infiltration
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or surface roughness is the opposite. The effects of the
two trending variations on hydrographs become more
pronounced as the magnitude of the gradient of variation
increases. Smith and Hebbert (1979) arrived at similar
conclusions.

For the case of random variations in infiltration and
surface roughness, the characteristics of hydrographs are
influenced by the distribution means of the variables
only, and the standard deviations of the distributions
have no impacts on the hydrographs.

Therefore, for hydrograph predictions on hillslopes,
it is necessary to take into account hillslope trending
variations and hillslope random variations may be ignored.
With these simplifications, a simple one-dimensional
model, e.g., the KWE or a KWE-based cascade model, may be
used for hillslope hydrograph predictions. Noting the
assumptions of steady infiltration and the absence of

spatial correlations in the distributions of steady
| infiltration and surface roughness during model
simulations, the conclusion with regard to random
variations may not be true for cases where there exist
significant unsteady infiltration and strong spatial
correlations in infiltration and surface roughness.

The effects of microtopography on the characteristics
of hydrographs have been examined for both hypothetical

and real microtopographic surfaces. The hypothetical
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microtopography is represented by a surface with cosine-
wave corrugations aligned in one or two directions on a
plane. While the microtopography with the corrugations
aligned in both the downslope and cross-slope directions
has no influence on the characteristics of hydrographs,
the microtopography with the corrugations aligned only in
the downslope direction and the real microtopographic
surfaces have strong influences on hydrographs. Depending
on its geometric configurations, microtopography may have
differing effects on a hydrograph. If the geometric
copfiguration favors the convergence of the flow, the
effect of the microtopography is to reduce the apparent
flow resistance of the surface, and shorten hillslope
concentration time.

The corrugated microtopography and the two real
microtopography : . ed here may be but a few of many
microtopographic patterns of natural hillslopes. To
generalize the effects of microtopography on overland flow
hydrographs, quantitative descriptions and abstractions of
realistic microtopographic patterns for different
geomorphologic regions will be necessary.

With regard to overland flow fields, the model
simulations indicate that spatial variations of
infiltration, surface roughness, and microtopography all

have strong influences on the depth and velocity fields of
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overland flow, and that the influence of microtopography
is strongest.

For given hillslopes, the spatial variability of the
depth and velocity fields due to these spatial variations
generally decreases with an increase of flow depth and a
decrease of flow velocity, and thus with an increase of
surface roughness and a decrease of slope. Exceptions
exist for individual cases. The simulation results show
that while the profiles of the mean depth and velocity
computed from spatially-variable hillslopes may be well
approximated by using idealized homogeneous planes with
mean values of the hillslope variables, the significant
spatial variability of the depth and velocity can not be
predicted and simﬁlated using idealized homogeneous
planes.

Accurate characterization of overland flow fields has
been shown (chapter five) to be important for prediction
of hillslope sediment transport by overland flow. When
predicting soil erosion from spatially-variable hillslope
surfaces, significant errors may result by using an
idealized homogeneous plane. These errors may include: 1)
the production of unrealistic erosion and deposition
patterns; 2) the underestimation (most likely) or
overestimation (rarely) of the total surface area on which
the boundary shear stress generated by overland flow

exceeds the critical shear stress; and 3) the severe
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underestimation of sediment transport rates at cross-slope
sections along the hillslopes. It is, therefore, necessary
to take into account spatial variations in hillslope
physical characteristics when predicting and simulating
hillslope soil erosion and sediment transport.

The study of the effects of spatial variations in
hillslope physical characteristics on overland flow and
soil erosion suggest that the uncertainties in model
parameters and thus model predictions can be significantly
reduced if the spatial variations in hillslope properties

are incorporated into the model simulation.

6.2 Recommendations

This study has contributed to our understanding of
the processes of overland flow on spatially-variable
hillslopes. It is the first time that the effects of
spatial variations in infiltration, roughness and
microtopography on the characteristics of overland flow
have been simulated using a two-dimensional overland flow
model. The roles and relative importances of individual
hillslope spatial variables have been identified, but
their interaction has not been simulated. The results of
the study are useful for understanding the processes of
overland flow and hydrologic predictions on natural

hillslopes.
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Further study is needed in three areas: 1) to improve
the model so that the restriction of complete inundation
required by the model may be relaxed; 2) to simulate the
response of overland flow for more realistic spatial
variations of natural hillslopes so that the
characteristics of overland flow on natural hillslopes can
be generalized and incorporated into routine hydrologic
predictions; and 3) to develop a modeling approach so that
the model or the information about the characteristics of
overland flow obtained from the model simulation at small
scales can be incorporated into hydrologic predictions of
scales of practical interest. Detailed discussions of

these three areas follow.

1. Recommendations on model improvements

Further improvement of the model should emphasize the
elimination or relaxation of the model restriction of
complete inundation of hillslope surfaces.

The restriction on microtopography may be eliminated
with an ad -hoc approach. With this approach,
microtopographic heights are viewed as individual islands
defined with fixed boundaries. The highs of these islands
can be different depending on the distribution of the
microtopographic highs, and therefore, they may be
inundated or exposed at different times during transient

an overland flow. Although it only approximates reality,
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this modification would greatly enhance the utility of the
model for the cases where hillslope surfaces may be
partially inundated.

To eliminate the restriction on infiltration will be
difficult, if not impossible, because of the free
boundaries created by runoff and runon. Further research
and modeling efforts are needed to deal with the free

boundary problens.

2. Recommendations on further analysis of the effects of
spatially~vVariable hillslopes on overland flow

Future model simulations and analysis should focus on
more realistic spatial variations of hillslope properties.
Microtopographic patterns of natural hillslopes should be
studied and quantitatively generalized within different
geomorphologic regions. Only with the generalized, yet,
realistic microtopography, can the effects of
microtopography of natural hillslépes be simulated and
analyzed. These effects can then be incorporated in
routine predictions of overland flow and soil erosion on
natural hillslopes.

Future study should also address the combined effects
of spatial variations in infiltration, surface roughness
and microtopography. Field observations (Dunne et al.,
1987) indicated that there is a strong positive

correlation between infiltration capacity, surface
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roughness and microtopography due to vegetation. The
preliminary analysis of the data suggest that this
positive correlations in infiltration, surface roughness,
and microtopography would cause more spatial variability
in overland flow fields and have additional effects on
hydrographs. It is important to examine these effects in a

realistic two-dimensional framework.

3. Recommendations on the application of the model for
hillslope scales of practical interest

Numerical solutions by finite-difference models have
some inherently unstable features. As the number of the
computational grids increases beyond a certain limit, the
round-off errors will accumulate much faster, causing
instability in the numerical solutions. For overland flow
cases, the lack of control at the downslope boundary will
also give rise to numerical instability at and near the
boundary. This instability at and near the downslope
boundary grows as the number of grid nodes increases.
Therefore, there is a trade-off between large spatial
scales to be modeled and small hillslope features to be
resolved when using the model for prediction of hillslope
overland flow.

This work has been concerned with small portions of a
hillslope. For hydrologic predictions for an entire

hillslope, to maintain a stable solution, the model
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computation is required to use a large spatial step or
grid size. As a result, the grid size used may be so
large, in comparison with the spatial scales of hillslope
variabilities, that some important effects of the
hillslope spatial variabilities may be left out during
model computations. To resolve the hillslope spatial
variabilities that are important to overland flow and soil
erosion, it is necessary to use spatial steps that are
smaller than the spatial scales of the hillslope
variabilities during model computations. This may result
in a strong instability in the numerical solution.
Therefore, appropriate modeling strategies must be
developed to solve this spatial problem.

The model simulations and analysis described in this
study aré admittedly at a smaller scale than is of
practical interest to the predictions in overland flow and
soil erosion on natural hillslopes. The response of
overland flow to the spatial variabilities of hillslopes
of small scales, once understood, might be parameterized
at sub-grid scales, and then incorporated into large grid
scales during large scale predictions. This is one

possible approach for addressing the scale problems.



208

REFERENCES:

Abrahams, A. D., A. J. Parsons and S-H Luk, Resistance to
Overland Flow on Desert Hillslopes. J. of Hydreol. 88,
343-363, 1986.

Abrahams, A. D., A. J. Parsons and S-H Luk, Hydrologic and
Sediment Responses to Simulated Rainfall on Desert
Hillslopes in Southern Arizona. Catena 15, pp 103-
117, 1988.

Achouri, M. and G. F. Gifford, Spatial and Seasonal
Variability of Field Measured Infiltration Rates on A
Rangeland Site in Utah. J. of Range Management,
37(5), pp.451-455, 1984.

Anderson, D.A., J.C. Tannehill, R. H. Pletcher,
Computational Fluid Mechanics and Heat Transfer,
McGraw-Hill, New York, 1984.

Akan, A.0. and B.C. Yen, Mathematical Modeling of Shallow
Water Flow over Porous Media. J. of Hydraul. Div.
ASCE, 107(HY4), pp.479-494, 1981.

Aubry, B.F., Runoff, Sediment Transport, and Rill
Formation by Sheet Flow, M.S. Thesis Submitted to the
University of Washington, Seattle, WA., 1984.

Babalola, O., Spatial Variability of Soil Water Properties
in Tropical Soils of Nigeria, Soil sci. 21(2),
pp.269-279, 1978.

Borah, D.K., S.N. Prasad and C.V. Alonso, Kinematic Wave
Routing Incorporating Shock Fitting, Water Resour.
Res. 16(3), pp. 529-541, 1980.

Brutsaert, W., De Saint-Venant Equations Experimentally
Verified, J. Hydraul. Div. ASCE, 97 (HY9), pp. 1387-
1401, 1971.

Chen, C., Urban Storm Runoff Inlet Hydrograph Study, Vol.
2, Laboratory Studies of the Resistance Coefficient
for Sheet Flow over Natural Turf Surface. Final
Report No. PRWA106-2, Utah Water Research Laboratory,
College of Engineering, Utah State Univ., Logan,
Utah, p.56, 1975.

Chow, V.T. and A. Ben-2vi, Hydrodynamic Modeling of Two-
Dimensional Water Flow, J. Hydraul. Div. ASCE,
99 (HY1l), pp.2023-2040, 1973.



209

Codova, J.R., I. Rodriguez-Iturbe and P. Vaca, On the
Development of Drainage Networks. In Recent
Developments in the Explanation and Prediction of
Erosion and Sediment Yield, Proc. of the Exeter
Symp., IAHS Publ. no. 137, pp. 239-249, 1982.

Constantinides, C.A. and D. Stephenson, Two-Dimensional
Kinematic Overland Flow Modeling. In Urban Stormwater
Hydraulics and Hydrology, Proc. of 2nd Intl. Conf. on
Urban Storm Drainage, Edit by B-C Yen. pp.49-58,
1981.

Cundy, T. W., An Analysis of the Effects of Spatial
Variability of Point Infiltration Rates on the
Comparison of Small and Large Plot Rainfall-Runoff.
Ph.D Dissertation, Utah State University, 1982.

Cundy, T. W. and S. W. Tendo, Solution to the Kinematic
Wave Approach to Overland Flow Routing with Rainfall
Excess Given by Philip's Equation. Water Resour.
Res., 21(8), pp.1132-1140, 1985.

Dronkers, J.J. Tidal Computations in River and Coastal
Waters, North-Holland Publ. Amsterdam, pp.142-149,
1964.

Duffy, C., P. J. Wierenga and R. A. Kselik, Variations in
Infiltration Rate Based on Soil Survey Information
and Field Measurements. Ag. Exp. Sta. Bull. No. 600,
New Mex. State Univ., p.40, 1981.

Dunne, T., The Relation of Field Studies and Modeling in
the Prediction of Storm Runoff. J. of Hydrology, 65,
pPp.25-48, 1983,

Dunne, T. and B. F. Aubry, Evaluation of Horton's Theory
of Sheetwash and Rill Erosion on the Basis of Field
Experiments. In Hillslope Processes, A. D. Abrahams
(ed), Allen & Unwin, Boston, 31-53, 1986.

Dunne, T. and R. D. Black, An Experimental Investigation
of Runoff Production in Permeable Soils. Water
Resour. Res., 6, pp.478-490, 1970a.

bunne, T. and R. D. Black, Partial Area Contributions to
Storm Runoff in A Small New England Watershed. Water
Resour. Res., 6, pp. 1296-1311, 1970b.

Dunne, T and W.E. Dietrich, Experimental Investigation of
Horton Overland Flow on Tropical Hillslopes: 2)
Hydraulic Characteristics and Hillslope Hydrographs,



210

Zeitschrift fur Geomorphologie Supplemental Band 35,
pp. 60-80, 1980.

Dunne, T. and L. B. Leopold, Water in Environmental
Planning. W. H. Freeman Co., San Francisco, p.818,
1978.

Dunne, T., W-H, Zhang, T. C. Cundy, Systematic Variations
in Infiltration on Semi-Arid Hillslopes. IGU-IAHS
Workshop on Erosion, Transport, and Deposition
Processes, Jerusalem, Israel, 1987.

Emmett, W. W., The Hydraulics of Overland Flow on
Hillslopes, USGS Prof. Paper 662-A, P46, 1970.

Foster, G. R., Modeling the Erosion Process. In Hydrologic
Modeling of Small Watersheds, Amer. Soc. Agri. Engi.
Monograph No. 5, pp.297-380, 1982.

Foster, G. R. and L. D. Meyer, Transport of Soil Particles
by Shallow Flow. Trans. of ASAE, 15(1), pp. 99-
102, 1972.

Foster, G. R., L. D. Meyer and C. A. Onstad, An Erosion
Equation Derived from Basic Erosion Principles.
Trans. ASAE! 20: pp 678-682, 1977.

Freeze, R. A., A Stochastic-Conceptual Analysis of
Rainfall-Runoff Processes on A Hillslope. Water
Resour. Res., 16(2), pp.391-408, 1980.

Freeze, R. A. and J. A. Cherry, Groundwater. Prentice-
Hall, Inc., Englewood Cliffs, H.J., p.604, 1979.

Govindaraju, R. S., S. E. Jones, and M. L. Kavvas, On the
Diffusion Wave Model for Overland Flow: 1. Solution
for Steep Slopes. Water Resour. Res., 24(5), pp.734-
744, 1988.

Grah, 0. J., R. H. Hawkins, T. W. Cundy, Distribution of
Infiltration on A Small Watershed. Adv. Irrig.
Drain., pp 44-54. 1983

Green, W. H. and G. Ampt, Studies of Soil Physics, Part 1:
the Flow of Air and Water through Soils. J. of
Agricultural Sciences, 4, pp.1-24, 1911.

Henderson, F.M., Open Channel Flow, pp.27-29, Macmillan,
N.Y., 1966.



211

Henderson, F. M. and R. A. Wooding, Overland Flow and
Groundwater Flow from A Steady Rainfall of Finite
Duration, J. of Geophys. Res., 69(8), pp.1531-1540,
1964.

Horton, R. E., The Role of Infiltration in the
Hydrological Cycle. Trans. Amer. Geophys. Union, 14,
pPp.446-460, 1933.

Horton, R. E., Erosion Development of Streams and Their
Drainage Basins: Hydrophysical Approach to
Quantitative Morphology. Bull. of Geol. Soc. of
Armer., 56, pp. 275-370, 1945,

Horton, R. E. H. R. Leach and R. V. Vliet, Laminar Sheet
Flow. Trans. Amer. Geophys. Union, 15, 1934.

Hromadka II, T.V., R.H. McCuen and C.C. Yen, Comparison of
Overland Flow Hydrograph Models, ASCE J. Hydraul.
Engr., 113(HY1l), pp. 1422-1440, 1987.

Iwagaki, Y., Fundamental Studies on Runcff Analysis by
Characteristics, Bull. 10, pp.l=-25, Disaster Prev.
Res. Inst., Kyoto Univ., Kyoto, Japan, 1955.

Izzard, C. F., The Surface Profile of Overland Flow. Eos
Amer. Geophys. Union Trans., 25, pp.959-968, 1944.

Katapodes, N. and T. Strelkoff, Two-Dimensional Shallow
Water-Wave Model, J. Engin. Mech. Div., ASCE,
105(EM2), pp.317-334, 1979.

Kawahara, M. and T. Yokoyama, Finite Element Method for
Direct Runoff Flow, J. Hydraul. Div. ASCE, 106 (HY4),
pp.519-534, 1980.

Kibler, D.F. and D.A. Woolhiser, The Kinematic Cascade as
A Hydrologic Model, Hydrol. Paper 39, Colo. State
Univ., Fort Collins, 1970.

Kilinc, M. and E. V. Richardson, Mechanics of Soil Erosion
from Overland Flow Generated by Simulated Rainfall.
Hydrology Papers, Colorado State University, Fort
Collina, No. 63, 1973.

Kisisel, I. T., R. A. Rao and J. W. Delleur, Turbulent
Characteristics of Overland Flow - The Effects of
Rainfall and Boundary Roughness. Technical Report No.
28, Water Resources and Hydromechanics Laboratory,
Purdue Univ., Lafayette, Ind., p. 145, 1971.



212

Kouwen, N. and R. M. Li, Biomechanics of Vegetative
Channel Linings. J. of Hydraul. Div. ASCE, 106 (HY6)
pp.1085-1103, 1980.

Kramer, L. A. and L. D. Meyer, Small Amounts of Surface
Runoff Reduce Soil Erosion and Runoff Velocity.
Trans. of ASAE, 12, pp. 638-641 & 648, 1969.

Kuchment, L. S., A Two-Dimensional Rainfall-Runoff Model:
Identification of Parameters and Possible Use for
Hydrological Forecasts. In Hydrological Forecasting,
Proc. of Oxford Symp., IAHS-AISH Publ. no.129,
pPp-215-219, 1980.

Lai, C., Numerical Modeling of Unsteady Open-Channel Flow,
Advances in Hydroscience, 14, pp.161-333, 1986.

Li, R. M., D. B. Simons, and M. A. Stevens, Kinematic Wave
Approximation for Water Routing. Water Resour. Res.,
11(2), pp.245-252, 1975.

Liggett, J. A. and J. A. Cunge, Numerical Methods of
Solution of the Unsteady Flow Equations. In Unsteady
Flow in Open Channels, Water Resour. Publ., pp. 89-
182, 1975.

Liggett, J. A. and D. A. Woolhiser, Difference Solutions
of the Shallow-Water Equation, J. Eng. Mech. Div.
ASCE, 93(EM2), pp. 39-71, 1967.

Lighthill, M. J. and G. B. Whitham, On Kinematic Waves, 1.
Flood Movement in Long Rivers. Proc. of Royal Soc.,
Series A, 229, pp.281-316, 1955.

Linsley, R. K. and J. B. Franzini, Water Resources
Engineering. McGraw-Hill Book Co., 1979.

Loague, K. M., Impact of Rainfall and Soil Hydraulic
Property Information on Runoff Predictions as the
Hillslope Scale. Water Resour. Res., 24(9), pp.1501-
1510, 1988.

Lyatkher, V. M. and I. N. Gurin, Hydraulic Characteristics
of Flows over A Surface Covered with Herbaceous
Vegetation. Vodnye Resursy, No. 3, pp. 159-168, 1977.

MacCormack, R. W., The Effect of Viscosity in
Hypervelocity Impact Cratering, Pap. 69-354, Am.
Inst. Aeronaut. and Astronaut., New York, 1969.



213

MacCormack, R. W., Numerical Solution of the Interaction
of A Shock Wave with A Laminar Boundary Layer,
Lecture Notes in Physics, Vol. 8 pp.151-163,
Springer-verlag, 1971.

Matias, P. and F. N. Correia, Spatial Variability of
Saturated Hydraulic Conductivity and Its Impact on
Modeling the Infiltration and Runoff Processes.
IUGG/UGGI XIX General Assembly, HW2-Spatial
Variability and Representativeness of Hydrogeological
Parameters, Vancouver, B.C., Can., 1987.

McCuen, R. H., W. J. Rawls and D. L. Brakensiek,
Statistical Analysis of the Brooks-Corey and the
Green-Ampt Parameters across Soil Textures. Water
Resour. Res., 17(4), pp.1005-1013, 1981.

Miller, J. E., Basic Concepts of Kinematic-Wave Models.
USGS Prof. Paper 1302, p.29, 1984.

Morel-Seytoux, H.J., Derivation of Equations for Variable
Rainfall Infiltration. Water Resour. Res., 14(4), pPp-
561-568, 1978.

Morel-Seytoux, H.J., Anélytical Results for Prediction of
Variable Rainfall Infiltration. J. of Hydrol., 59,
pp. 209-230, 1982.

Morgan, R. P. C., Field Studies of Sediment Transport by
Overland Flow. Earth Surface Processes, 5, pp.307-
316, 1980.

Morris, E. M. and D. A. Woolhiser, Unsteady One-
Dimensional Flow over A Plane: Partial Equilibrium
and Recession Hydrographs. Water Resour. Res., 16(2),
pp.355-360, 1980.

Nielson, D.R., J.W. Biggar and K.T. Erh, Spatial
Variability of Field-Measured Soil-Water Properties,
Hilgardia 42(7), pp.214-259, 1973.

Petryk, S. and G. Bosmajian III, Analysis of Flow Through
Vegetation. J. of Hydraul. Div. ASCE, 101(HY7), pp.
871-884, 1975.

Philip, J. R., The Theory of Infiltration: 1. The
Infiltration Equation and Tis Solution. Soil
Sciences, pp.345-357, 1957.

Philip, J. R., The Theory of Infiltration: 2. The Profiles
at Infinity. Soil Sciences, pp.435-448, 1958.



214

Ponce, V. M., R. M. Li and D. B. Simons, Applicability of
Kinematic and Diffusion Models. J. of Hydraul. Div.
ASCE, 104, HY3, pp.353-360, 1978.

Reid, L. M. and T. Dunne, Sediment Production from Forest
Road Surfaces. Water Resour. Res. 20(1ll), pp.l1753-
1761, 1984.

Richards, L. A., Capillary Condition of Liquids through
Porous Mediums. Physics, 1, pp.318-333, 1931.

Rubin, J., Theory of Rainfall Uptake by Soils Initially
Drier Than Their Field Capacity and Its Applications.
Water Resour. Res. 2(4), pp.739-799, 1966.

Russo, D. and E. Bfesler, Soil Hydraulic Properties as
Stochastic Processes: 1. An Analysis of Field Spatial
Variability. Soil Sci. Soc. Amer. J. 45, pp.682-687,
1981.

Schumm, S. A., M. P., Mosley and W. E. Weaver,
Experimental Fluvial Geomorphology. A Wiley-Intersci.
Publ., John Wiley & Sons, p.413, 1987.

Shen, H.W. and R.M. Li, Rainfall Effect on Sheet Flow over
Smooth Surface, J. Hydraul. Div. ASCE, 99(HYS), pp.
771-792, 1973. :

Simons, D. B., R. M. Li and M. A. Stevens, Development of
Models for Predicting Water and Sediment Routing and
Yield from Storms on Small Watershed. USDA For. Ser.,
Rocky Mount. For. and Range Exp. Sta., 1975.

Smith, J. D., "Princeples of Sediemnt Transport by
Turbullent Flow." Lecture Notes, University of
Washington, 1984.

Smith, R. E. and R. H. B. Hebbert, A Monte Carlo Analysis
of the Hydrologic Effects of Spatial Variability of
Infiltration. Water Resour. Res., 15(2), pp.419-429,
1979.

Smith, R.E. and J.Y. Palange, A Parameter-Efficient
Hydrologic Infiltration Model. Water Resour. Res.,
14(3), pp. 533-538, 1978.

Sokolov, V.G., Hydrodynamic and Hydraulic Equations
Describing Rainwater Runoff from Slopes with



215

Allowance for Infiltration, Vodnyye Resursy (Water
Resources), No. 2, pp. 95-110, 1973.

Strahler, A.N., Physical Geography, 4th ed. Wiley, New
York, 1975.

Temple, D. M., Velocity Distribution Coefficients for
Grass-Lined Channels. J. of Hydraul. Eng. ASCE,
112(3), pp. 193-205, 198s6.

Vieira, S. R., D. R. Nielsen and J. W. Biggar, Spatial
Variability of Field-Measured Infiltration Rate. Soil
Soc. Amer. J. 45, pp.1040-1048, 1981.

Wagenet, D. W., Variability of Field Measured Infiltration
Rates. M.S. Thesis, Utah State Univ., Logan, UT,
p.106, 1981.

Woolhiser, D.A., Simulation of Unsteady Overland Flow. In
Unsteady Flow in Open Channels. Water Resour. Publ.,
pp. 485-508, 1975.

Woolhiser, D. A. and D. C. Goodrich, Effect of Storm
Rainfall Intensity Patterns on Surface Runoff. J. of
Hydrology, 102, pp335-352, 1988

Woolhiser, D. A., C. L. Hanson and A. R. Kuhlman, Overland
Flow on Rangeland Watersheds. J. of Hydrology (N2Z),
9, pp-336-356, 1970.

Woolhiser, D.A. and J. A. Liggett, Unsteady, One-
Dimensional Flow over A Plane - The Rising
Hydrograph, Water Resour. Res., 3(3), pp. 39-71,
1967.

Wu, Y-H, V. Yevjevich and D. A. Woolhiser, Effects of
Surface Roughness and Its Spatial Distribution on
Runoff Hydrographs. Hydrol. Paper 96, p.47, Colo.
State Univ., Fort Collins, 1978.

Yoon, Y.N. and H.G. Wenzel, Mechanics of Sheet Flow under
Simulated Rainfall. Proc. of ASCE, J. of Hydraul.
Div., 97(HY9), pp.1367-1386, 1971.

Zhang, W-H, Modeling of Overland Flow and Erosion on A
Forest Road Surface. M.S. Thesis, Univ. of
Washington, p.137, 1985.



216

APPENDIX A:

Derivation of the Two-Dimensional Overland Flow Equations

Two-Dimensional Continuity Equation
The two-dimensional continuity equation is obtained

by integrating equation 19 over the flow depth, i.e,

[E Jdu § av
— dz + — dz + wf - Wy = 0 (A.1)
Jﬂ ax n ay

Applying the Leibnitz rule, the first two integral terms

become
€ au a € € an
- dz = — u dz - ue——— +’un——— (A.2)
Jn ax ax In ax ax
€ av a ¢ € an
— dz = — v dz - Vf'_" + vn——— (A.3)
In oY 3y Jp ay ay

where the terms associated with up and Vi vanish because
of a non-slip boundary condition. Denoting g, and dy as
flow rate per unit width in x and y directions,

respectively, we have

r€

dy = u dz _ (A.4)
n
3

qy = v dz ' (A.5)
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Substitution of these terms into Eq. A.l1 and with
consideration of the boundary conditions (equations 27 and
28) yields the two-dimensional continuity equation

dh aq,, 8qy

+ + = r(xIYIt) = f(leIt) (A.6)
at ax ay

Two-Dimensional Momentum Equatijons

In the derivation of the two-dimensional equations,
the following assumptions were made: 1) for a shallow
water flow of long waves, the vertical acceleration of a
fluid particle, dw/dt, is small in comparison with the
acceleration of gravity, 2) again in the case of long
waves, the shear stresses due to the vertical velocity
component, Vzw, are also small, 3) the terms due to
horizontal shear on vertical surfaces, azu/axz, azu/ayz,
a2v/ax2 and azv/ay2 are small compared with the terms due
to vertical shear on horizontal surfaces, azu/az2 and

32v/az2. Omitting these terms from equation 22 yields

1 dp

o=-_

p adz

-g (A.7)

Integrating A.7 with respect to z and setting the
atmospheric pressure at the water surface, P¢ to a

constant yield
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P =pg+ pg (€ - 2) (A.8)

Integrating equation 20 over the flow depth, we have

[E du Jf duu Je dvu gf dwu
— dz + dz + dz + dz

JU at n ax n ay n dz
1 € ap 1 (€ ar

=--[-——dz+—J 2X 4z (A.9)
P Jn Ix P g 9z

Applying the Leibnitz rule to the four terms on the left

hand side of the equation, we have

€ gu a ¢ € an
— dz = —| u dz - g + U= (A.10)

Ip ot at |, at at
€ 3uu a € 3¢ an

dz = — Juu dz - ufz——— + unz——— (A.11)
Jn ax ax n Ix T 9x
€ gvu 3 F 3¢ an

dz = —/ | vu dz - veu,—/ + v _u,— (A.12)
Iy oy o Iy oy T MMy
§ gwu a € 3¢ an

dz = — | wu dz - wguep—/ + W, U,—— (A.13)
Iy 02 oz |, £ 2 Ty,

Again, the terms associated with Vi and up vanish, and

noting that

d f€ dq,
——-J u dz = (A.14)
n
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and

§
[ wu dz = wfuf (A.15)
In

From Eq. A.8, the pressure term in Eg. A.9 becomes

1 € ap a(E-n)  an
— dz = g(f-n)[ + ] (A.16)
pln iz ax ox

The integrals of shear stress terms in Eq. A.9 may be
discussed separately for laminar and turbulent flows. For
laminar flow, only the viscous shear stress term remains
in equation 24. Thus, the integral in the vertical

direction is

du
-u—

az

= (TEX - Tnx)

r 7 4o r 3%u du
"

dz =| u
az n 3z2 9z

n
(A.17)

where fo and T”x are the shear stresses for laminar flow.
Fof turbulent flow, the Reynolds stress term is
considered. Since there is no universally accepted way tb
relate Reynolds stress to average velocity profiles,
direct integration of the Reynolds stress over the flow
depth is difficult. Using an analogy to Newton's law of
friction for laminar flow, Boussinesq proposed an eddy

viscosity approach to replace the Reynolds stress, i.e.
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du
sz = - p<u'w'> = ¢e— (A.18)

dz
where ¢ is the eddy viscosity for turbulent flow. Unlike
the kinematic viscosity for laminar flow, the eddy
viscosity may vary with flow velocity. Although studies to
date have proposed several theories relating the eddy
viscosity with flow velocity, e.g., Prandtl's eddy
viscosity or mixing length theory, they all have many
shortcomings and introduce more empirical constants, thus,
are difficult to use (Dronkers, 1964). Therefore, the
assumption of constant € is usually made and is adopted in
this study. As for the laminar flow case, by integrating
the derivative term of the stress with respect to the flow
depth, we have
du

- €
§ dz

= (fo - TnX)

n

§ ar [€ 3%u du
Jn az

ZX dz =\ € dz = ¢
}n 3z? dz

(A.19)
where, Tex and T"x represent the shear stresses for
turbulent flow.

Substituting equations A.10 through A.18 (or A.19)
into equation A.9 and using the boundary conditions

(equations 27 and 28) yields

dq, a9 [¢ a ¢
+ uu dz + —| wvu dz - ufR
Jat ax n ay
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[ a(&-n) an

1
+ } el CAEENR L (A.20)
ax ax p

= =g (§{-n)

By introducing momentum correction factors, By and ﬁxy' we

make the following approximation

§

[ uu dz = g uu({-n) (A.21)
Jﬂ

§
J vu dz = Bxyvu(ﬁ-n) (A.22)

n

Substituting them into equation A.20, we obtain the two-

dimensional momentum equation for overland flow as

9q, d[Byuu(&-n) ] I[Byyvu(€-n) ]

+ + - UER
at ' ax ay
a(&-n) an 1
= - g(é-n) [ + ] + ——(fo - Tnx) (A.23)
ax ax P
Similarly, for the y direction
gy , SMByvv(E-m ] , BBgyuviE-my R
at dy ax ¢
a(§-n) an 1 ¢
= - g(é-n) [ + ] + —(7 y = Tny) (A.24)

ay ay p

Replacing the velocity terms, u and v, in equations A.23
and A.24 with the discharge terms, q, and Qy, we obtain

equations 30 and 31.
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APPENDIX B: List of the Cases for Model Simulation

The following tables give the values of all
parameters and variables used in the numerical experiments
reported. These parameters and variables are defined in

section 4.3.



Table B.1l: Cases of random variation in Kg

223

' CASE r S K m a cv
X o}
(cm/hr) (cm§gr) (cm?ﬁr) Ks
FOR1 15 0.05 512 5.0 1.0 0.2
FOR2 15 0.05 512 5.0 1.5 0.3
FOR3 15 0.05 512 5.0 2.0 0.4
FOR4 15 0.05 1000 5.0 1.0 0.2
FORS 15 0.05 1000 5.0 1.5 0.3
FOR6 15 0.05 1000 5.0 2.0 0.4
FOR21 15 0.10 512 5.0 1.0 0.2
FOR22 15 0.10 512 5.0 1.5 0.3
FOR23 15 0.10 512 5.0 2.0 0.4
FOR28 15 0.10 1000 5.0 1.0 0.2
FOR29 15 0.10 1000 5.0 1.5 0.3
FOR30 15 0.10 1000 5.0 2.0 0.4
FOR31 11 0.05 1000 5.0 1.0 0.2
FOR32 11 0.05 1000 5.0 1.5 0.3
FOR33 11 0.05 1000 5.0 2.0 0.4
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Table B.2: cases of trending variation in Kg

(a) downslope increase

U L

CASE r Sx Ko u§ﬁ K KS
(cm/hr) (cm/hr) (cm?hr) (cm/hr)

FI1 15 0.05 512 5.0 0.0 10.0
FI2 15 0.05 512 5.0 2.0 8.0
FI3 15 0.05 512 5.0 4.0 6.0
FI4 15 0.05 1000 5.0 0.0 10.0
FIS 15 0.05 1000 5.0 2.0 8.0
FIeé 15 0.05 1000 5.0 4.0 6.0
FI7 15 0.10 512 5.0 0.0 10.0
FI8 15 0.10 512 5.0 2.0 8.0
FI9 15 0.10 512 5.0 4.0 6.0
FIlo0 15 0.10 1000 5.0 0.0 10.0
FIll 15 0.10 1000 5.0 2.0 8.0
FIl2 15 0.10 1000 5.0 4.0 6.0
FI1l3 11 0.05 1000 5.0 0.0 10.0
FIl4 11 0.05 1000 5.0 2.0 8.0
FI1ls 11 0.05 1000 5.0 4.0 6.0
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(b) downslope decrease

L U

CASE r Sy Ko u§ﬁ Kq Kg
(cm/hr) (em/hr) (cm/hr) (cm/hr)

FD1 15 0.05 512 5.0 0.0 10.0
FD2 15 0.05 512 5.0 2.0 8.0
FD3 15 0.05 512 5.0 4.0 .0
FD4 15 0.05 1000 5.0 0.0 10.0
FD5 15 0.05 1000 5.0 2.0 8.0
FD6 15 0.05 1000 5.0 4.0 6.0
FD7 15 0.10 512 5.0 0.0 10.0
FDS8 15 0.10 512 5.0 2.0 8.0
FD9 15 0.10 512 5.0 4.0 6.0
FD10 15 0.10 1000 5.0 0.0 10.0
FD11 15 0.10 1000 5.0 2.0 8.0
FD12 15 0.10 1000 5.0 4.0 6.0
FD13 11 0.05 1000 5.0 0.0 10.0
FD14 11 0.05 1000 5.0 2.0 8.0
FD15 11 0.05 1000 5.0 4.0 6.0

Table B.3. Cases of trending variation in Kg with embedded

randomness

trending random

CASE r S K

X o
(cm/hr) k.Y KsL Krs Ogs
?cm/hr) (cm/hr¥
FTI1 15 0.1 1000 2.0 .0 0.0 0.5
FTI2 15 0.1 1000 2.0 8.0 0.0 1.0
FTD1 15 0.1 1000 8.0 2.0 0.0 0.5
FTD2 15 0.1 1000 8.0 2.0 0.0 1.0
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CASE r S K Kro OKo cv

(cm/hr) (cm/ﬁr) Ko
RUR71 15 0.05 5.0 512 51.2 0.1
RUR91 15 0.05 5.0 512 102.4 0.2
RURS1 15 0.05 5.0 512 153.6 0.3
RUR72 15 0.05 5.0 1000 100 0.1
RURS2 15 0.05 5.0 1000 200 0.2
RURS82 15 0.05 5.0 1000 300 0.3
RUR212 15 0.05 10.0 512 51.2 0.1
RUR232 15 0.05 10.0 512 102.4 0.2
RUR222 15 0.05 10.0 512 153.6 0.3
RUR112 15 0.05 10.0 1000 100 0.1
RUR132 15 0.05 10.0 1000 200 0.2
RUR122 15 0.05 10.0 1000 300 0.3
RUR11 15 0.10 5.0 512 51.2 0.1
RUR31 15 0.10 5.0 512 102.4 0.2
RUR21 15 0.10 5.0 512 153.6 0.3
RUR12 15 0.10 5.0 1000 100 0.1
RUR32 15 0.10 5.0 1000 200 0.2
RUR22 15 0.10 5.0 1000 300 0.3
RUR41 15 0.10 10.0 512 51.2 0.1
RUR61 15 0.10 10.0 512 102.4 0.2
RURS1 15 0.10 10.0 512 153.6 0.3
RUR42 15 0.10 10.0 1000 100 0.1
RUR62 15 0.10 10.0 1000 200 0.2
RURS2 15 0.10 10.0 1000 300 0.3
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Table B.5: Cases of trending variation in Ko

(a) downslope increase

CASE r S K " K U K L
(cm/hr) (cm?hr) Ko ° ©
RI1 15 0.05 5 512 200 824
RI2 15 0.05 5 512 300 724
RI3 15 0.05 5 512 400 624
RI4 15 0.10 5 512 200 824
RIS 15 0.10 5 512 300 724
RI6 15 0.10 5 512 400 624
RI7 11 0.05 5 512 200 824
RIS 11 0.05 5 512 300 724
RI9 11 0.05 5 512 400 624
RI1lO0 11 0.05 5 1000 100 1900
RI11 11 0.05 5 1000 500 1500
RI12 11 0.05 5 1000 900 1100
(b) downslope decrease

L 6]

CASE r S K M K K
X Ko o
(cm/hr) (cmyhr) °

RD1 15 0.05 5 512 200 824
RD2 15 0.05 5 512 300 724
RD3 15 0.05 5 512 400 624
"RD4 15 0.10 5 512 200 824
RD5 ‘15 0.10 5 512 300 724
RD6 15 0.10 5 512 400 624
RD7 11 0.05 5 512 200 824
RDS8 11 0.05 5 512 300 724
RD9 11 0.05 5 512 400 624
RD10 11 0.05 5 1000 100 1900
RD11 11 0.05 5 1000 500 1500
RD12 11 0.05 5 1000 900 1100
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Table B.6. Cases of trending variation in K, with embedded

randomness
trending random
CASE r S K
S U . L
(cm/hr) (cm/ﬁr) Ko Kq Exo 9%o
RTI1 15 0.05 5 300 724 0.0 51.2
RTI2 15 0.05 5 300 724 0.0 102.4

RTD1 15 0.05 5 724 300 0.0
RTD2 15 0.05 5 724 300 0.0 102.

>N
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Table B.7: Cases of two-dimensional corrugated

microtopography
CASE S K K A A O
r a a
X o X X

(cm/hr) (cm?hr) (cm) (c%) (cm) (éﬁ)
M321 15 .05 S5 512 .5 .5 283 283
M331 15 .05 5 512 .5 .5 424 424
M341 15 .05 5 512 .5 .5 566 566
M322 15 .05 5 512 1.0 1.0 283 283
M332 15 .05 5 512 1.0 1.0 424 424
M342 15 .05 5 512 1.0 1.0 566 566
M323 15 .05 5 512 1.5 1.5 283 283
M333 15 .05 5 512 1.5 1.5 424 424
M343 15 .05 5 512 1.5 1.5 566 566
M3e61 15 - .05 5 1000 .5 .5 283 283
M371 15 .05 5 1000 .5 .5 424 424
M381 15 .05 5 1000 .5 .5 566 566
M362 15 .05 5 1000 1.0 1.0 283 283
M372 15 .05 5 1000 1.0 1.0 424 424
M382 15 .05 5 1000 1.0 1.0 566 566
M363 15 .05 5 1000 1.5 1.5 283 283
M373 15 .05 5 1000 1.5 1.5 424 424
M383 15 .05 S 1000 1.5 1.5 566 566
M21 15 .10 5 512 .5 .5 283 283
M31 15 .10 5 512 .5 .5 424 424
M41l 15 .10 5 512 .5 .5 566 566
M22 15 .10 5 512 1.0 1.0 283 283
M32 15 .10 5 512 1.0 1.0 424 424
M42 15 .10 5 512 1.0 1.0 566 566
M23 15 .10 5 512 1.5 1.5 283 283
M33 15 .10 5 512 1.5 1.5 424 424
M43 15 .10 5 512 1.5 1.5 566 566
Mé61 15 .10 5 1000 .5 .5 283 283
M71 15 .10 5 1000 .5 .5 424 424
M81 15 .10 5 1000 .5 .5 566 566
M62 15 .10 5 1000 1.0 1.0 283 283
M72 15 .10 5 1000 1.0 1.0 424 424
M82 15 .10 5 1000 1.0 1.0 566 566
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Table B.7: continued.

Mé3 15 .10 5 1000 1.5 1.5 283 283
M73 15 .10 5 1000 1.5 1.5 424 424
M83 15 .10 5 1000 1.5 1.5 566 566
M101 15 .10 10 512 .5 .5 283 283
M1l1l1 15 .10 10 512 .5 .5 424 424
M1l21 15 .10 10 512 .5 .5 566 566
M102 15 .10 10 512 1.0 1.0 283 283
M11l2 15 .10 10 512 1.0 1.0 424 424
Ml22 15 .10 10 512 1.0 1.0 566 566
M103 15 .10 10 512 1.5 1.5 283 283
M11i3 15 .10 10 512 1.5 1.5 424 424
M123 15 .10 10 512 1.5 1.5 566 566
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