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CHAPTER 1 INTRODUCTION

1.1 Background

An adequate water supply has always been an essential factor for
human life. In modern civilizations, the planning and management of
water supply systems has become increasingly important because of
resource limitations and the growth in demand for municipal,
industrial, and agricultural water supply.

As the demand for water increases along with competition for
alternative interests, there is rising pressure for more efficient
water management. Improved streamflow forecasting is one way that
the efficiency of water resource systems operations can be improved.
In the Western United States, runoff originates primarily from
snowmelt. During the spring and summer, much of this snowmelt occurs
in primitive and wilderness mountain areas. Therefore, streamflow
forecasting 1is primarily based on methods that estimate the
accumulation of snow during the previous winter season, as well as
the ablation, watershed routing, and channel routing processes which
govern the transformation of moisture stored in the snowpack to

streamflow.

1.2 Application of Streamflow Forecasting

Federal agencies, such as the U.S. Bureau of Reclamation and the
U.S. Army Corps of engineers, rely on meteorological data and runoff
forecasting for the operation of reservoirs in the Western U.S.
These reservoirs are managed for municipal, industrial and
agricultureal water supply, flood control, and hydropower generation,
among other purposes. The conflicting demands of reservoir
regulation require careful planning to maximize the benefits. Among
the areas that can benefit most from improved streamflow forecasting
are water supply management for hydroelectric power generation,

irrigation, and municipal and industrial water supply. Hydropower
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systems can benefit from more efficient allocation of reservoir
storage and the reduced risk of water shortages. Irrigation systems
can benefit from advance information regarding water availability for
crop selection, and for planning the allocation of water to various
crops. For reservoirs with both flood control and water supply
purposes, improved forecasts can reduce flood damage, and can avoid
the necessity of maintaining flood freeboard to the detriment of

water supply storage in low flow years.

1.2.1 Hydroeletric Power Generation

Because of the large amount of water needed for power generation
and the economic value of energy production, hydropower generation is
among the most valuable water uses. In addition, it is potentially
the largest beneficiary of improved streamflow forecasts in terms of
the amount of energy produced due to improved streamflow forecasts.
In addition to the value of streamflow forecasts in negotiating
contracﬁs for excess power production in high flow periods and or
years, accurate short-term runoff forecasts can result in improved

hydropower scheduling.

1.2.2 Irrigation

Although irrigation is second to hydropower as the largest
beneficial use of water in the western U.S., it is by far the largest
consumptive use. Improved streamflow forecasts can lead both to crop
selection and water allocation, thereby reducing the production costs
and improving crop yield. Secondary benefits in terms of reduced
erosion and use of herbicides and pesticides that accompany better

crop management are also likely.

1.2.3 Municipal and Industrial Water Supply

With the growth of population and the development of industry,
water demands have grown substantially in the last 40 years.
Municipal and industrial water supply is a highly valued water use

compared to irrigation water; the provision of minimum water supply
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for human use is considered essential by most water purveyors, and

most industrial uses are highly valued as well. Streamflow forecasts

} improve water supply operation, especially in drought periods where
they «can reduce the risk of incorrect decissions regarding

} implementation of drought response measures. (see, for example,

Lettenmaier, et al., 1990)

1.2.4 Other Uses

' Other uses of streamflow forecasting include planning reservoir
| releases to enhance fish migration: streamflow forecasts are used in
the Columbia River Basin of the Pacific Northwest to mitigate poor
migration conditions for salmon and steelhead fingerling (Buettner,
1988). In low runoff years, hatchery smolts may be released early in
order to take advantage of higher streamflow which reduces downstream
travel time and hence susceptibility to predation. In addition, fish
traps are set to catch smolts and transport them around some dams on

| the Snake River, expediting their migration to the ocean.
1.3 The Value of Streamflow Forecasts

Some publications have shown that runoff forecasts are critical to
the economy of the western U.S. and that runoff forecasts are vital
for efficient management of water supply, especially for agriculture
and hydropower production (Shafer and Huddleson, 1984). It has been
estimated by Elliott (1977) that the value of streamflow forecasts to
irrigated agriculture alone is $43.3 million annually (1975 dollars).
Castruccio, et al. (1981), pointed out that approximately 23 million
acres of irrigated land in the West can benefit from streamflow
forecasts. They estimate the annual value (1979 dollars) of snowmelt
runoff to hydropower generation at $4.86 billion and irrigated

agriculture at $1.74 billion in the western 11 states.

Because of the value of water for hydroelectric power generation
and agricultural uses, even small improvements in forecast accuracy

I can produce large profits. A one percent improvement in average
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forecast accuracy for the Columbia River at the Dalles, Oregon,
represents a combined benefit of $6.2 million annually to hydropower
and agriculture (Ramon, 1972). A six percent relative accuracy
improvement in seasonal snowmelt forecasts in the Western U.S. would
be worth $28.1 million per year for irrigated agriculture, and $10.1
million per year (both in 1979 dollars) for hydropower (Castruccio,
et al., 1981).

These estimates demonstrate that accurate forecasts are extremely
valuable. Because of the economic impact of erroneous forecasts, it
is essential to understand as much as possible about streamflow
forecasting methods, error sources, the relative magnitude of errors,

and the prospects for better forecasts.



CHAPTER 2 LITERATURE REVIEW

2.1 Rainfall-runoff Processs

The hydrologic cycle can be divided into three subsystems: the
atmospheric system which includes precipitation, evaporation,
interception, and transpiration; the land surface system which
includes overland flow, surface runoff, subsurface and groundwater
outflow, and runoff to streams and the ocean; and the subsurface
system which includes infiltration, groundwater, recharge, subsurface
flow and groundwater flow. The cycle is continuous, however, the
time scales vary greatly; cycling times in the atmosphere range from
hours to days, in the surface system from hours to weeks, and in the
subsurface system from days to years or longer.

The rainfall-runoff process is part of the hydrologic cycle. In
the long-term, and in the absence of mnet groundwater inflow or
outflow, precipitation falling on a catchment will either evaporate
or transpire or will leave the catchment as runoff.

Rainfall-runoff models can be used to characterize the hydrologic
cycle in such a way that runoff can be predicted, given knowledge of
the temporal and spatial distribution of rainfall inputs. The models
generally require knowledge of some of the physical properties of the
watershed. These physical properties may include catchment area,
channel configuration, surface slopes, soil types, and other surface
characteristics. Initial conditions including runoff, soil moisture
and groundwater level, and storage in natural and artificial
impoundments must also be known for hydrologic prediction. Even -
though the rainfall-runoff process is well understood conceptually,
the measurement of many of its components (especially the spatial
distribution of precipitation and soil moisture) are difficult.

Deterministic rainfall runoff models predict runoff, given

precipitation and initial conditions, by characterizing the physical
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processes governing the rainfall-runoff process. Among the physical
processes that must be characterized are:

(a) the relationship of infiltration to initial soil moisture and
rainfall;

(b) the hydrologic routing of overland flow to the channel system;

(c) the conveyance mechanism by which water passes through the
unsaturated zone to the water table and the response of the water
table to precipitation;

(d) the interaction of groundwater storage with channel runoff,
including the role of bank storage; and

(e) evaporation from the soil surface and the vegetation cover

(Lettenmaier, 1988b).
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Figure 2.1 Elements of Hydrologic Cycle for A Hillslope
(taken from Chow, 1976)

Fig.2-1 is an idealized conceptualization of the physical
transformation of rainfall to runoff taken from Chow (1976, Chapter

1). Precipitation may be intercepted by a vegetation canopy. That
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portion not intercepted may either infiltrate into the ground or, if
the rainfall rate exceeds the infiltration capacity or the water
table is at the land surface, it may contribute to channel runoff or
may be ponded. Ponded water may either reinfiltrate or it may
discharge to the stream as surface runoff, and eventually contribute
to runoff. Subsurface water may also contribute to streamflow,
although the stream response is usually delayed.

During flood periods, the soil moisture near the channel system may
become saturated, and precipitation will contribute to direct runoff
as soon as it falls on the ground. Hydrograph separation methods
(see Fig. 2.2) can be used to interpret the proportion of direct
runoff and baseflow in flood periods. These methods only estimate
direct runoff roughly because the criteria for separation are

empirical, rather than physically based.
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Figure 2.2 Typical Storm Hydrograph
(taken from Lettenmaier, 1988)

Prediction of the hydrologic processes is complicated because the

rainfall-runoff transformation is nonlinear in the input-output
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sense, and because the spatial variability of precipitation, soil
properties, surface slopes and vegetation cover, as well as the
I channel configuration, are difficult to characterize. For these
reasons, a number of approaches ranging from stochastic transfer

l function models to detailed physically based deterministic models

have been developed for hydrologic prediction.
2.2 Hydrologic Model Classification

Hydrologic models may be divided into two categories: physical and

mathematical. Physical models include scale models, such as

| hydraulic models which represent the system on a reduced scale; and

analogue models, which exploit the behavior of another physical

I system which has properties similar to those of the prototype.

Mathematical models attempt +to characterize the system through

| equations that describe the interaction of the major fluxes and

storages, which in turn link the input and the output variables. The

] input and output variables may be functions of space and time, and

they may also be probabilistic or random variables which are replaced

by probability distribution. In the latter case the model is termed
l stochastic.

Although physical models have been widely used for hydraulic
prediction, and some experiments have been conducted in the
laboratory to identify subsurface transport mechanisms, physical
models of catchment runoff are not practical because of the multiple,
conflicting mechanisms that would govern scaling from the model to
the prototype. Therefore, hydrologic prediction is, for practical
purposes, exclusively the province of mathematical models.

A mathematical model can be
(a) either deterministic or stochastic, depending on whether or not
the variability in inputs, subsurface structure, model parameters,
and model structure is explicitly considered;
(b) linear or nonlinear, depending on whether or not the model is

linear in the inputs;
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(c) empirical or conceptual, depending on whether or not the input-
output transformation parameters are determined by theoretical
consideration or are data-based; and
(d) lumped or distributed in time and space, depending on whether the
principal driving variables and catchment descriptors are aggregated
or distributed (Clarke, 1973).

According to Loague and Freeze (1985), and Chow (1976), five
techniques are used in practice: the rational method (RM), the
instantaneous unit hydrograph (IUH), input-output methods, continuous
conceptual simulation models (CSM), and event conceptual simulation
models (event model). Three of these techniques (input-output models,
and continuous and event conceptual simulation models) are of
particular interest for runoff forecasting in mountainous regions,

and are described in more detail.

2.2.1 Input-Output Methods

Input-output methods are based on time series analysis transfer
function theories (e.g., Box and Jenkins, 1976) which are sometimes
also broadly termed the system analysis approach. The distinguishing
feature of input-output methods is that relationships inferred from
the data, rather than physical knowledge of the system, are used to
infer the input-output relationship. The best known of these models
is the autoregressive moving average (ARMA), or more generally,
autoregressive moving average with external input (ARMAX) models. In
such models, the input is precipitation and the output is runoff.

A general formulation of an input-output model for prediction of

runoff at multiple stream gauges is:

R ? ;. P
= o _ “+
0t 121 k=0 ik Lht—k
> Ig Bir B qZ(:) R > (2.1)
2 R. . + ont* vt — 1+ Yol “€pTe s s ot
21 ¥20 jk tht—k =1 0k 0t —k =0 0k “t-k




10

where the input P, is precipitation at gauge i at time t, and Rjt is

upstream tributary flow at gauge j at time t. Ry is predicted runoff
at time t. The order (number of) of the autoregressive terms (ij
moving average terms (q;), and external input (r) as well as a; and
ﬁjk are estimated from the data. In practice, the rainfall-runoff
process is highly nonlinear and this type of linear model should not
be expected to forecast adequately over a wide range of conditions.
However, input- output models can be quite useful over limited ranges
of conditions, e.g, forecasting of flood when runoff is governed
primarily by channel routing and direct runoff from largely saturated
areas, or for lengthy time steps such as monthly where nonlinearities
are less important. In addition, sophisticated adaptive estimation
methods exist that allow the model parameters to change depending on
previous prediction error, which can compensate to some extent for
nonlinearities in the input-output relationships.

Input-output methods are stochastic, partially lumped in space and

distributed in time, linear, and empirical.

2.2.2 Conceptual Simulation Models — Continuous

CSM’s use long records of precipitation and/or snowmelt as input,
and predict runoff continuously by accounting for the movement of
water accumulation and depletion of soil moisture storage. Some of
the best known models in this family are the National Weather Service
River Forecast System (Burnash, et al., 1973; Anderson, 1973) and
HSPF (Hydrologic Simulation Program -- Fortran, Johanson et al.;
1980), which is an outgrowth of the Stanford Watershed Model
(Crawford and Linsley, 1966).

Implementation of a CSM requires estimation of a number of site-
specific model parameters, as well as the initial model states, which
are usually soil moisture storages and different conceptual zones.
This is commonly done by a trial-and-error procedure, although
automated procedures have also been used (e.g., Sorooshian et al.,
1983). In practice, it is necessary to specify a feasible range of

parameters to constrain the parameter search. In addition, CSM’s
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must be run for an initial period long enough to allow the effects of
the initial conditions to abate. For example, when applied in
regions with strongly seasonal climates, one year is usually enough
to eliminate the effects of +the initial conditions. Accepted
practice is to ignore the first year of simulation for parameter
estimation purposes. During model implementation, the historic
record is usually split into independent calibration and verification
periods. Because CSM’s may contain a large number of parameters to
be estimated, it is important to assure that the model is not overfit
(that is, artificially good agreement obtained between observed and
predicted runoff in calibration which can not be maintained in an
independent verification period). CSM’s are classified as
deterministic, lumped in space and distributed in time, nonlinear and

conceptual.

2.2.3 Conceptual Simulation Models — Event

Event models are usually used for prediction of storm runoff,
and do not account explicitly for runoff between storms. Compared
with CSM’s, event models are distinguished by the following:
1) Event models use shorter time steps than CSM’s, sometimes as short
as minutes for very small catchments;
2) Event models are often distributed in space, usually by dividing a
catchment into subcatchments, and specifying a different parameter
set for each subcatchment;
3) Event models wusually use surface and subsurface hydraulic
properties for prediction of overland flow; and
4) Event models are often used on smaller catchments and may be
considered to be more physically realistic than CSM’s are.

Event models are classified as deterministic (generally),

distributed in space and time, nonlinear, and conceptual.

2.3 BHydrologic Forecasting

Rainfall-runoff forecasting problems can be divided into two
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categories: short-term and long-term. Short-term forecasts can be
defined to have lead times of hours to days; the most common
application is flood forecasting. Long-term forecasts, which are
mostly applicable to water management, have lead times of weeks to
months; the most common applications are to water supply or
hydropower operations of reservoir systems.

According to Lettenmaier et al.,(1990), rainfall-runoff forecasting

methods can be divided into three general classes: index variable,
' storage accounting, and conceptual simulation. Index variable
methods are the simplest and the oldest methods of forecasting
long-term runoff. They treat runoff as the dependent variable in a
relationship, usually 1linear, with a set of explanatory index
variables, such as previous precipitation or snowpack, which are
likely to affect future runoff. Storage accounting models attempt to
estimate the amount of water stored in a catchment (either as

surface, subsurface, or snowpack storage) that is available to

contribute to future runoff; the forecast is some (linear) function
' of the storage estimate. The conceptual simulation approach makes
use of a CSM run up the time of forecast using observed precipitation
and temperature, and throughout the forecast period using an estimate
' of future precipitation. Each of these forecast model types is

discussed below.

2.3.1 Index Variable Methods

Early index methods generally used graphical techniques (for
example, Linsley et al., 1958). Later, statistical techniques such
as multiple regression, principle components, and pattern search were
introduced (Marsden and Davis, 1968; Zuzel et al., 1975).
Statistical and stochastic models are now the most commonly used
approaches in this class. Stochastic or time-series methods have
been used to forecast streamflow, usually using only streamflow in
previous time period(s) as the dependent variable(s). These methods
fall into the <class of stationary autoregressive moving average

models, and can be expressed as
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p q
Ro= > 0 By s 4 3 B € i C oeereenenneaeneneeneaaenn (2.2)
t R t—1 = j t—3

where the ¢; are uncorrelated (white) noise terms, and a; and ﬁj are
estimated from data directly, as are the p and q. Eq.2.2 is a
special case of the input-output method (Eq 2.1) for which there is
only one gauge used and no external input. In the case where there

is an external input,

R % P IgﬁR qEO: R z:r C
= o by e + ‘R, p+2 0 "Ry o+ 2, 7€t
7 &Mk Ttk TPl Pk T 2 Ok Mk T 2 Ttk
f) R f)b P i C (2.3)
= ay ‘R, 1 + P, .4 Cro€ 1+C. i .
PR = N A I =

It is assumed that the present state depends on the previous states
(Rt-j) and external input (Pt—j) as well as having some noise terms
(%—j)' Time series models usually perform best when little or no
rainfall occurs and the basin acts like a linear reservoir.

Index methods have the major advantage of being simple and easily
implemented. Virtually all statistical packages available for small
computers have multiple regression and other applicable routines for
implementing index variable forecasts. Moreover, index methods are
well adapted to risk analysis, since most stochastic and statistical
methods predict the forecast error distribution as well as the "best”
forecast. In practice, the forecast error distribution is often more
important than the ” best ” forecast (ﬁirsch, 1981).

The primary drawback to index methods is that the relationship
between the dependent and explanatory variable must be linear;
therefore, while acceptable forecasts may result in average years,
the method can break down in extreme years, in which the forecasts
are most important. For example, one problem encountered in snowmelt
runoff forecasting is that regression methods can yield negative

runoff forecasts in very dry years.
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2.3.2 Storage Accounting

Storage accounting models are based on the concept that runoff in
a future forecast period is determined by the amount of water
presently in storage in a catchment and forecast period
precipitation. This idea was introduced by Tangborn and Rasmussen
(1976) for forecasting>of snowmelt runoff. They suggested that basin
storage (S;) should be estimated as a linear function of precipitation
less runoff (R;)) : S, = a +bP, —R;, where P, is the total
precipitation (up to the forecast date) at one or more precipitation
gage, and R, is the total runoff in the same period. Later, Tangborn
(1977) suggested that the coefficients a and b be estimated by
regression.

The model can be thought of as a special case of the index variable
methods with regression estimates. Tangborn (1977) also suggested
that improved forecast accuracy could be obtained by using an
observed runoff period, prior to the forecast date, to correct
forecast errors. The basin moisture storage (S;) is estimated from
the observed streamflow on the forecast date, and the simulated water
storage (S,) is obtained from the soil moisture accounting model; the
observed cumulative runoff (Q;) is the total runoff from a beginning
date (Tp) to the forecast date (T;), and the predicted cumulative
runoff (Q,) is the accumulation of the predicted runoff in the same
period. To adjust the soil moisture storage to update the runoff
prediction, the regression equation AS:Sl—S2=a*(Ql-—Q2)+b can be
used to determine how much adjustment of the water storage is needed.
A more efficient approach was developed by Stedinger (1989). He
showed that a modified storage accounting model which used smnowpack
and precipitation for basin water storage estimation performed better

than a storage accounting model using precipitation only.

2.3.3 Conceptual Models
Extended Streamflow Prediction (ESP), as termed by National Weather

Service, is an application of CSM’s to long-term forecasting. In
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ESP, a CSM is run with recorded meteorological data up to the time of
forecast. During the forecast period, the model input is one of the
following: (1) all sequences of the historical data during the
forecasting period; (2) a range of high, medium and low historic
precipitation; or (3) synthetically generated realizations of
possible future meteorology, which can be weighted according to their
prior probabilities.

The inputs usually have a time scale of one day or less, and the
model is run with observed inputs to the forecast date. Because soil
moisture storage is estimated by CSM’s given precipitation, ESP
should give an accurate forecast of runoff if the forecast period
precipitation actually occurring is similar to that used in making
the forecasts. Because forecast period runoff is dominated by
antecedent soil moisture storage during years or seasons when little
precipitation occurs in the forecast period, ESP forecasts can be
quite accurate in these conditions. In particular, ESP forecasts
should perform well under drought conditions. This hypothesis is
evaluated in Chapter 5.

The advantage of ESP is that it incorporates a physical
understanding of +the processes contributing to runoff so that
forecasters can evaluate not only the ”best” forecast, but can
evaluate alternative scenarios as well. This can be especially
useful during droughts, when evaluation of “worst case” scenarios méy
be needed. The disadvantage of ESP is that data requirements are
much greater than for the simple models, since the time scale of the
model is much shorter. Further, the quality of forecasts depends on
the calibration procedure (Lettenmaier, 1984). In addition, the
performance of ESP method is dependent on the particular CSM used.
Model selection <can be +time consuming; most commonly it is
accomplished based on evaluation criteria other than direct
comparison, which is often unproductive due to differences in model

data requirements and other model restrictions (WMO, 1975; 1986).

2.4 Forecasting Errors
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There are three sources of long-term forecasting errors: climate
variability, model error, and data error (Schaake and Peck, 1985).
Climatic variability is usually the largest source of forecast error.
It results from the inability to obtain meteorological forecasts much
better than climatic averages for forecast lead times exceeding
several days. Therefore, for practical purposes, accurate long-term
runoff forecasts are possible only in situations where the variables
affecting future runoff (through variations in soil or snow water
storage) can be measured at the time of forecast. Model error
results from lack of perfect knowledge of the physical processes
governing snowmelt and the rainfall to runoff transformation, as well
as spatial variability in catchment properties which must be
idealized to some extent, especially in spatially lumped models.
Even with pgrfect knowledge of the present states of the hydrologic
process and future inputs, most models still cannot fully describe
the evolution of the underlying processes. Data error is the result
of errors in representation of spatially distributed inputs by a
small number of point (station) measurements, in addition to
measurement error due +to sensor inaccuracies, data transmission

problems, and human factors.
2.5 Summary

Streamflow forecasts are based on the present or previous states of
the hydrologic processes, in particular snow and soil moisture
storage, as well as future meteorological inputs. Hydrologic
forecasts can be classified as short-term and long-term. Short-term
forecasts are applicable to real time operation of water management
systems, and for <flood warning. Long-term forecasts are more
applicable to operation and management of water supply systems. 0t
major concern in the use of long-term forecasts is the issue of
forecast uncertainty. Forecast accuracy is an important determinant
of the accuracy with which a water resource system can be operated,

therefore there are important potential economic benefits associated
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with improvements in forecast accuracy.

Among possible approaches that could reduce forecasting errors are
the use of optimization schemes for updating future forecasts. The
lack of updating has been identified by several authors (e.g., Dawdy,
1984) as a major shortcoming in many current forecasting procedures.
As a result of model and input error, forecast models may not
properly track the true system state up to the forecast time. This
is especially of concern when CSM’s are used. Updating amounts to
adjustment of the model state, (usually using predicted soil moisture
and snow water storage) to best reflect knowledge of the current
system state. In chapter 5, a simple updating scheme is evaluated

for ESP forecasting.




CHAPTER 3 EXPERIMENTAL DESIGN I - HYDROLOGIC MODELS
l 3.1 Model Selection

Model selection is the first step in designing a streamflow
forecasting system. Many models have been used for streamflow
forecasting in mountainous regions; Howard and Associates (1989)
reviewed three models (CHARMS, HSPF, and NWSRFS) that might be
suitable for forecasting inflows to Chester Morse Reservoir in the
Cedar River Watershed, of which the Rex River (studied in detail in
this project) is a tributary. In this section, the criteria used for
the selection of the two models evaluated in this thesis are
reviewed.

The criteria for hydrologic model selection have been described by
James and Burges, 1978. They recommend four watershed simulation

model selection criteria: 1) the model must provide the kind of

information needed; 2) the watershed characteristics represented by
' the model parameters must in fact govern watershed response in the

intended applicaﬁion; 3) the equations used must be in agreement with

the state of +the art, available data, and available computer
l , facilities; and 4) the model must provide results within the required
time frame which are suitable for the interested usages, and are of
acceptable quality at a reasonable cost.

Howard and Associates (1989) further discuss model selection
criteria. They suggest the following: 1) the models must be
compatible with watershed hydrology, and with existing temporal and
spatial data; 2) the models must be able to provide output at the
desired time steps such as seasonal and short-term forecasts; 3) the
models must be able to provide estimates of forecast uncertainty, and
be accurate at low flows; and 4) the model source codes must be
available and the cost of model implementation must be considered.

From the above studies, the criteria for model selection used in
this study are: 1) the models must have the ability to provide not

only daily simulation but also seasonal forecasts; in this thesis
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forecast accuracy for time periods from one week to seasonal (months)
' are evaluated; 2) the model’s source code must be available and the
models must be consistent with the ESP structure, which is a major
focus of this work; 3) the models must be suitable for existing
| temporal and spatial data for the Rex River watershed; these data
include daily maximum and minimum temperature, precipitation and
l runoff; and 4) the models must have been proven in previous
applications that they can perform well under extreme conditionms.
l The two models selected for this study are the NWSRFS snow
accumulation and ablation model, coupled with the so-called Nanjing
l model and a time-series model. The NWSRFS has previously been used
in a number of studies in the Northwest including water supply
forecasting in the Cedar River basin (Lettenmaier et al., 1980) and
' assessment of the effects of Mt. St. Helens’ eruption on downstream

flooding (Lettenmaier and Burges, 1980).
3.2 Studied Watershed —Rex River Basin

The Rex River basin lies southeast of Cedar Falls, Washington, in

I ‘thevSnoqualmie National Forest. Its drainage area is 13.4 square
miles; the average discharge for the 40 year period 1945-1985 was

104.4 inches per year; with a range from 0.85 inches (August) to

' 19.17 inches (April). The monthly coefficient of variation range
from 0.014 (July) to 0.27 (April). The maximum elevation of the
l catchment is about 4450 ft.; the elevation at the USGS gauge is 1600

ft. Figure 3.1 gives the location of Rex River Basin and Figure 3.2
I shows the relationship between elevation and drainage area which is
computed from the USGS 90 meter digital elevation map of the

l catchment.
3.3 Experimental Design
Figure 3.3 shows the experimental design schematically. The

I implementation of the two hydrologic models is described in this

chapter; forecasting methods are described Chapter 4.
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3.4 Spowmelt Model

23

3.4.1 Model Introduction

The snowmelt model used was developed by Eric Anderson of the U.S.
National Weather Service Hydrologic Research Laboratory (Anderson,
1973). The model performs a balance of energy and mass

snowpack, using a simplified formulation of the energy budget where

the dominant terms are indexed to air temperature,

exchange in the snowpack.

PRECIPITATION,
AIR TEMPERATURE

RAIN
AND
NO
SNOW
ON
GROUND

'

Figure 3.4 Flowchart of Snow Accumulation and Ablation Model
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Figure 3.4 is a flowchart of the snow accumulation and ablation
model. This flowchart shows each of the physical components which
are represented in the model. They include water accumulation in the
snowpack, heat exchange at the air-snow interface, areal extent of
snow cover, heat storage within the snowpack, liquid-water retention
and transmission, and heat exchange at the soil-snow interface

(Anderson, 1973). A brief discussion of each of these components

follows.

l Air temperature is used as an index to determine whether the form
of precipitation is rain or snow. In this application the critical
temperature was set to 32°F. Heat exchange at the air-snow interface

‘ is the most critical factor controlling the ablation of a snowpack.
The model uses air temperature as the index for the heat exchange

l mechanisms which control heat flow into or out of the snowpack. Two

basic conditions for heat exchange are determined by the model,

l depending on whether or not the air is warm enough for snowmelt to
take place at the snow surface. The percent of the area covered by
' snow must be estimated to determine the area over which heat exchange

can take place, and to determine how much rain falls on bare ground.
Snowpack heat storage is continuously accumulated in the model.
i The heat storage of snowpack is assumed to be zero when the snowpack
is isothermal at 32°F, and becomes negative when heat is transferred
from snow to air.

The snowpack is assumed to retain and transmit liquid-water in the
same manner as a soil column. Liquid-water retention is a constant
(the percent of liquid-water holding capacity) multiplied by the
water equivalent of the solid portion of the snowpack. Liquid-water
transmission is computed from the amount of excess liquid-water

stored in the snowpack at the beginning of the period and the amount

of lagged inflow for the current period. Heat exchange at the soil-
snow interface is assumed to be small compared to the heat exchange
l at the snow-air interface. The model assumes that the rate of

snowmelt at the soil-snow interface is constant.
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3.4.2 The Model Input-output

The input data to the model are limited to daily precipitation and
maximum/minimum temperature, because other information on which the
snowpack energy budget must be based is not usually obtainable in
mountainous areas. Daily precipitation is interpolated to six-hour
increments. Six-hour temperatures are estimated from daily
maximum/minimum temperatures, using equations given by Anderson
(1973).

The model output is simulated effective precipitation (rain plus
snowmelt) which is determined by a set of equations that describe the
energy exchange in the storage of snowpack and by using a critical
temperature T (32°F) to decide whether or not snowmelt occurs. The
conditions influencing whether or not the snowmelt occurs are

summarized in Table 3.1.

Table 3.1 National Weather Service River Forecast System Snowmelt

Model Summary

No Precipitation Precipitation
T>T, Type 1 Type I & Type 11
T<T, Type III Type III

Type I: Air temperature is greater than Tys snowmelt will occur if the
ground is not bare.
Type II: Bare ground, no snowmelt computation.
Type I1I: Temperature is not high enough to have snow melt.
In short, snowmelt computation is only performed under Type 1

conditions.

3.4.3 Model Calibration and Verification Introduction
Calibration of +the snow accumulation and ablation model is
accomplished by a combination of +trial-and-error and automatic

parameter optimization. Usually, both the snowmelt model and the
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soil moisture model are run together and the objective function is
some measure of the difference between observed and simulated
streamflow while simulated snow water equivalent.from the snowpack
can be compared with observations, the observations often represent
areal average conditions poorly so the calibration usually relies
primarily on runoff errors. The procedure is implemented as follows:
1) select the initial parameter values for both the snowmelt model
and the runoff model, 2) simulate the entire calibration data period
by running the two models, 3) check the performance of simulated
streamflows , and 4) repeat from step 2 on until the simulations are

reasonable.
3.5 Rainfall-runoff Model

3.5.1 Model Theory

The so-called Nanjing model was developed at the Water Resources
Institute in Nanjing, China. D.P. Lettenmaier and E.F. Wood
(unpublished) have experimented with this model for simulation of
summer flows for the Cedar River above USGS gage 12-1150; the results
suggest that the model is adaptable to Northwest conditions and lead
to the research reported herein. The model is described in more
detailed by Wood et al., (1990); the presentation here is intended to
give only a general overview of the model dynamics.

The input data are precipitation, measured streamflow, and
estimated evaporation. For application to mountainous watersheds,
pseudo-precipitation (rain plus melt) obtained from a snowmelt model
is used instead of raw precipitation.

The Nanjing model is a simplified conceptual model, which links the
spatial distribution of soil moisture to storm runoff response. The

model is described by the following equations.
Infiltration capacity (ij):

ig=in(1-(1- Wo/wp)'/B] (3.1)
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where W is so0il moisture storage w is total soil moisture
0 g€, m

capacity, and i, is maximum infiltration capacity.
Evaporation (e):
1/B
&= 1-[1-Wy/Wy)1/Pe (3.2)
where e is the potential evaporation, and B, 1is evaporation

coefficient.

Baseflow (Rp):

where Kb is recession ratio of soil moisture.

Direct runoff (R;):
Rd=P—'(Wm—W0) . if io+p>im (3.4a)
Ry=p—(Wp-Wy)+W *[1—£I1]1+B if ig+p<i (3.4b)
d=P m 0 m i 0tPS1m .

where p is precipitation, and B is a function of time step.

Total runoff (R):

If there is no rainfall, runoff is equal to baseflow; if there is
rainfall, streamflow is the sum of baseflow and direct runoff where
the latter is a function of antecedent soil moisture distribution

(see section 3.5.2) and precipitation.

3.5.2 Model Approach

The motivation for the Nanjing model is that infiltration can be
related to precipitation and the spatial distribution of antecedent
soil moisture, as shown in Figure 3.5, which represents soil moisture

as a function of fractional basin area of the form as in eq. 3.6

A= 1 -(1 — 1B (3.6)

g
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where i 1is infiltration capacity (in practice calculated from
antecedent soil moisture), and i, is the maximum infiltration
capacity (see Figure 3.5).

The maximum moisture storage capacity in the basin is Wy which is
integrated from eq. 3.6 as follows:

i in -
Wm:im—JA di-‘—‘im—J.[ 1 "(1 - il ) ] di
0 0 n

i
PR fml— i_\By;
=1n 1m+0( im) 1

_ip _ i \B+1, _ ip
s+ i) L, =B¥1 (3.7)

infiltration, i

0 Area Fraction of Basin 1

Figure 3.5 Saturated Fraction of Basin
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The moisture storage at time t is W, integrated from eq.3.6 as

follows:
ig ig . B
Wa=1n- Adi =if~ 1 —(1 - 2 di
0=1p % 0 g[ ( i )" ]
i . Bli:i
___ip _ i \B+
==+ O30,

=g [1-C1 "‘"il,?T)BH]
=Wm£1-<1—§—°>3+11 (3.8)

from eq. 3.8

ig=in *[1-(1-——371‘[’1_)1/(3”)] (3.9)
1- ggl =(1___%?1__)B+1 (3.10)

If we now define the effective precipitation P, to be equal to the.
direct runoff, then at time t, the effective precipitation is

integrated from eq. 3.6 as

iO+P iO+P

i
Rj=Pe=] Adi = [ [1-(1 - _igl—)B ] di
1o 1o
_ im . _19+P gyq im . 1p \B+1
=P+ g 0-—1 )~y )
substituting eq.(3.10),
_ 1gtPBy1 in Wy
Bg=P+Wp(1-— =P - (1 - 1)
10+P Byq
=P+ Wp(1 LB (w, —wy)
Im
=P— (Wy-Wg)+Wy(1-w)B+! (8.11)
in+P
where W = ‘1) , 0SW<1; if W>1 then Ry=p— (Wy—Wp)-
m
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In practice, observed precipitation must be scaled to obtain basin

precipitation as
P=P, *Fp (3.12)

Likewise, estimated potential evaporation usually must be adjusted by
a calibration parameter as

1/B

Wy
e:ep*Fe*[l-(l——W;—) e] (3.13)

Baseflow is calculated using a linear recession:

Total runoff is then the sum of base flow and direct runoff:

Q=R,+R, (3.15)

The water balance equation is computed by updating the soil moisture
from the previous time step by adding infiltration and subtracting

baseflow and evaporation:

Wy, which represents the soil moisture storage at the end of the
previous time step, is used for WO in the above eqs.; and W0+is the
updated soil moisture storage.

In the above equations, the following notation is used:

ep= potential evaporation

B, = evaporation equation parameter

Fe =adjusted factor of evaporation

p =precipitation

Fp =precipitation adjustment factor.

W, =Maximum capacity for infiltration and evaporation

B =point infiltration/area ratio
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In this study, the model was applied at the daily time scale so the
output was predicted daily streamflow, soil moisture storage, and
infiltration.

Table 3.2 summarizes the model equations and parameters:

Table 3.2 Nanjing Model Summary

Flux Parameters
Infiltration W (t)
. . t)1
$(6)=ige[1-(1 - —0y 1/ (1B) B, Wy
m
Runoff

Ry(t) =p(t) —i(%)
Ry(t) =KW (t)

Q(t) =Ry (t) +Ry(t) Ky

Evaporation

e(t) = e *F *[1—(1n—EKQSEZ)I/B6] F B
p*le W er Pe

Precipitation

p(t) = Pobs(t)*Fp Fp

Soil Moisture

Wo(t+1) =Wy (t)+ig(t) — Ry(t) —e(t)

3.6 Snowmelt Model Implementation

As with the soil moisture model, the snowmelt model is implemented
in two steps. The first is calibration, for which an initial set of
parameters is used, and through a manual trial-and-error search
procedure the final model parameters are estimated. The second step
is model verification, which is used to confirm that the model
performs adequately during a period of record which is separate from
the period used to estimate the parameters. There are thirteen
parameters calibrated in the snowmwlt model, but most of them are
either fixed physical constants, or can only vary in a relatively

small range. The definitions of the snowmwlt model parameters and
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their values are given in Appendix A.

The snowmelt model input data are daily precipitation and
maximum/minimum temperatures from two meteorological stations, Cedar
Lake and Stampede pass. The snowmelt model was implemented for three
elevation bands; temperatures for each elevation band were
interpolated, using data from the Stampede Pass and Cedar Lake
stations. Table 3.3 gives the directions and locations of the
streamflow gage, and the two hydrometeorological stations. The
elevation of the three elevation bands, and the fraction of the basin

represented, are given in Table 3.4.

Table 3.3 Hydrometeorological Stations Used in Snowmelt Model

Station Elevation(ft) Latitude Longitude Variables
Rex River 1600 47 21 121 39 streamflow
Stampede Pass 3958 47 17 121 20 pP,T¢
Cedar Lake 1560 47 25 121 94 pP,T¢

% P:precipitation, T:temperature

Table 3.4 Characteristics of Elevation Bands

Median Reference Meteorological Stations
Zone Elevation(m) Precipitation Temperature® Fraction of Basin
1 670 Cedar Lake Stampede Pass, Cedar Lake 0.228
2 975 Stampede Pass Stampede Pass, Cedar Lake 0.445
3 1219 Stampede Pass Stampede Pass, Cedar Lake 0.327
% interpolated

Two approaches to estimating elevation band temperatures were
considered. The most commonly used approach is to use a single
station with a fixed lapse rate. The other, which was used in this
study, interpolates the temperature from high. and low elevation

stations to compute an ”actual” lapse rate. Consideration was given
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to partitioning the elevation bands by aspect. However, the
temperature based energy and mass balance computations in the model

I do not make use of aspect information directly, so this was not
pursued.

I In this study, the primary purpose of running the snowmelt model

was to simulate effective precipitation (rain plus melt) which is the
I input to the soil moisture (runoff) model. The snowmelt model runs
on six-hour time steps, with the results were aggregated to daily and
' summed over the three elevation bands. Snowmelt model parameters
previously estimated for the Rex River basin were used (CDD Howard

and Associates, 1989).
3.7 Rainfall-runoff Model Implementation

3.7.1 Input Data

I The Nanjing model requires time series of three variables for model
calibration: streamflow, effective precipitation, and potential
l evaporation. For this study, the model was run at a daily time step.

The origin of the daily streamflow, effective precipitation, and

evaporation are described briefly as follows:

Daily observed streamflow data were +taken from U.S. Geological Survey
[ records. The 1983 U.S. Geological Water Resource Data for Washington
rates the Rex River record as excellent, which means that more than
l 95 percent of the reported daily values are expected to be within 5
percent of the true streamflow. The period of record for the Rex
I ~ River station (USGS gage 12-1155) is 1945 to the present; our

analysis was based on water years 1948 to 1987.

! Daily effective precipitation data is rainfall plus snowmelt, which is the
output from the NWSRFS snow accumulation and ablation model as
! described above. These data were taken from National Climatic Data

Center magnetic tapes.
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Daily evaporation date were not available directly. Instead, long-term
climatological estimates were used, based on the same method employed
by the NWSRFS soil moisture accounting model. It computes daily
evaporation by interpolating linearly between the sixteenth day of
each month. For example, if the daily mean evaporation of June is
0.15 inch and for July it is 0.19 inch; the evaporation of Jun.16 is
then set to equal to 0.15 inch and that of July 16 is set to equal to
0.19 inch. The amount of evaporation for each day between June 16
and July 16 is

0.15 + i#(0.19-0.15)/80, i=1,2,...,30,

where i means the number of days past June 16. Climatological average
daily evaporation (interpolated from monthly +to daily values)
adjusted from the Puyallup Experiment Station by CDD Howard and

Associates (1989) was used.
3.7.2 Model Calibration and Verification

Calibration:

The Nanjing model has six calibration parameters:

Wna: the maximum capacity of moisture storage
B: point infiltration/area ratio

Be : evaporation equation parameter

K;: baseflow parameter (recession ratio)

Fo: evaporation scaling factor

Fp: precipitation scaling factor

Calibration was based on the 12-year (1969-1980) period of record.
Calibration was performed using the same optimization algorithm
(Nelder-Mead method) employed by the National Weather Service River
Forecast Model (Gan, 1988), but the initial values and upper and
lower bounds in the parameter searches were determined manually. The

optimization algorithm allows three types of objective functions:
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1. 2:(Qobs—'qpred)z;
2. ¥ (Log(Q,pg) - Log(Qyrcq))?
3. T ((Ugps - Ypred)/Gops)?s where

Ubs is observed streamflow; and Qpred is predicted streamflow.

Using the same initial values and constraints for the parameter set
in different objective functions leads to different parameter
estimates. The final decision as to objective function was based on
the magnitude of the mean monthly and annual errors, and on
consideration of the physical realism of the parameter values
identified (for instance, the parameter estimate values generally not
at the bounds). Other considerations include how close the inferred
annual evaporation is to the climatological average, and a review of
the simulated and observed hydrographics. Table 3.5 shows the

optimized values of the parameters.

Table 3.5 Optimized Parameter Values and Ranges

Parameter Name Value Lower Limit Upper Limit Unit
Wh 150.010 1.00 200.01 mm
B 0.432 0.01 3.50 --
B, 0.857 0.01 1.00 --
K, 0.050 0.01 1.00 1/day
Fe 1.162 0.50 2.00 --
Fp 1.238 0.90 2.00 -~

Verification

The general approach to model verification is to use an independent
period of data to confirm that the model still performs properly
under conditions which are different from those which were present
during the period used for calibration.

Two verification approaches were used in this study. The first was
to compare the simulated runoff from the Nanjing model with that of

three other rainfall-runoff models applied to the Rex River in a
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previous study (Howard & Associates, 1989): CHARMS (Charles Howard
and Associates Runoff Modeling System) model, the HSPF (Hydrologic
Simulation Program --Fortran) model, and the NWSRFS (National Weather
Service River Forecast System) soil moisturev model. Table 3.6
summarizes the comparison of these three rainfall-runoff models for
the Rex River Basin. The results show that the simulated runoff from
the Nanjing model was quite close to that of the NWSRFS soil moisture
accounting model. The other method of verification was to simulate
runoff for the entire 40-year data sequence to determine how the
model performs. Table 3.7 gives the average monthly and annual error
statistics.

In Table 3.6, the poor performance years for the Nanjing model are
the same as for the NWSRFS model. This might be due to snowmelt or
data errors, because these two models both used the psuedo-
precipitation data generated from the NWSRFS snow accumulation and
ablation model with the same input data (CHARMS and HSPF wuse
different snowmelt models). The model replication of the observed
streamflow ranges from good to poor, with the widest variation most
commonly noted during the extreme years and/or when there are some
problems in the model itself. For example, Figure 3.6 shows how the
simulated runoff fits the observed runoff in water year 1963. Figure
3.7 shows the worst result from the Nanjing model, 1954. Simular
results for all other years in the 1969-80 verification period are

given in Appendix B.

3.7.3 Forecast Analysis

Although. model verification was carried out as described above, an
accuracy analysis <can be made also. Cp, the coefficient of
prediction, is used as the measure of forecast accuracy (Tangborn,

1977). It is defined as:

Var(Qpre——Qobs)

Ch=1-
p Var(Qobs)

where Var(.) is the statistical variance, Qpre 1is the predicted
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streamflow, and qobs is the observed streamflow. If simulated
streamflows are used for qpre’ Cp is an indication of the limiting

forecast accuracy, that is, the forecast accuracy that would be
achieved if future meteorological conditions were known perfectly.
Cp normally ranges between 0.0 and 1.0, where a value of 0.0
corresponds to forecasts that are always exactly the historical mean
flow, and 1.0 corresponds to perfect forecasts. Ideally, if there
were no data or model error, a Cp of 1.0 would be achievable if
simulated flows were used for Qpre- Figure 3.8 shows that this is
not the case. The predictions in May, especially, have poor Cp’s
because the mean daily temperature and precipitation in May have
greater variance than in any other month. May also has large, and

highly variable, streamflows.

3.7.4 Model Application

Once the model has been calibrated, it can be implemented with
real-time hydrometeorologic data to forecast streamflow. The model
can also be used to simulate long-term sequences of runoff for record
extension. In this project, the purpose of the model was to be
incorporated into an extended streamflow prediction algorithm.
Implementation of the model for this purpose is described in the next

chapter.
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Table 3.6 Comparison of Simulation Results for The Rex River
Basin for Four Snowmelt-rainfll-runoff Models:
Average Annual Flows (in inches) for Water Year 1969-80

CHARMS model HSPF model
(from Howard & Associates, 1989) (from Howard & Associates, 1989)

Abs. Abs.
Year Observed Modeled Error Observed Modeled Error
1969 100 94 6 100 93 7
1970 85 87 2 85 88 3
1971 124 122 2 124 125 1
1972 145 126 19 145 130 15
1973 73 82 9 73 83 10
1974 145 133 12 145 137 8
1975 104 112 8 104 109 5
1976 131 125 6 131 131 0
1977 64 77 13 64 73 9
1978 98 102 4 98 106 8
1979 82 81 1 82 82 0
1980 81 91 10 81 89 8
Average 102.7 102.8 7.7 102.7 103.8 6.2
NWSRFS model Nan jing model
(from Howard & Associates, 1989)

Abs. Abs.
Year Observed Modeled Error Observed Modeled Error
1969 100 111 11 100 91 9
1970 85 80 5 85 92 6
1971 124 113 11 124 143 15
1972 145 141 4 145 156 7
1973 73 70 3 73 79 8
1974 145 129 16 145 169 16
1975 104 110 6 104 102 2
1976 131 138 7 131 129 2
1977 64 72 8 64 54 16
1978 98 104 6 98 95 3
1979 82 76 6 82 88 7
1980 81 79 2 81 82 1
Average 102.8 101.9 7.1 102.8 101.7 7.7
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Table 3.7 Mean Absolute Monthly and Annual Errors (in percent)
for Nanjing Model Simulation

YEAR OBSERVED MODELED  ANNUAL ERROR MEAN MONTHLY ERROR

(inches) (inches) (percent) (percent)
1948 119.16 133.54 12.07 16.08
1949 100.87 113.00 12.03 42.13
1950 124.27 128.25 3.20 24.54
1951 109.32 116.62 6.68 37.12
1952 79.55 73.93 7.06 25.79
1953 88.86 85.73 3.53 43.34
1954 119.10 109.44 8.11 23.95
1955 101.06 99.31 1.73 24.73
1956 121.38 132.85 9.45 36.92
1957 103.01 109.91 6.70 18.42
1958 75.54 69.58 7.89 40.25
1959 143.95 154.98 7.66 14.63
1960 112.51 109.80 2.41 19.94
1961 113.81 117.18 2.96 40.68
1962 91.99 88.83 3.44 21.06
1963 85.69 87.79 2.45 16.66
1964 126.27 139.35 10.36 16.90
1965 101.96 112.07 9.92 36.47
1966 93.26 111.82 19.90 21.58
1967 108.98 117.69 8.00 34.52
1968 116.13 108.63 6.46 18.93
19699 101.60 91.23 10.20 22.27
19709 86.40 91.57 5.98 21.97
1971¢ 126.06 142.76 13.25 26.93
1972¢ 146.72 156.29 6.52 30.98
1973¢ 74.42 79.17 6.38 34.58
19749 147.67 169.40 14.72 31.70
1975% 105.67 102.31 3.18 20.59
1976% 133.82 128.99 3.61 20.64
19779 64.45 53.98 16.25 33.07
19789 99.48 95.01 4.49 31.19
1979 83.25 88.94 6.83 35.28
1980¢ 82.40 82.91 0.62 34.05
1981 91.75 87.56 4.57 32.12
1982 106.92 122.12 14.22 18.93
1983 90.31 101.84 12.77 16.47
1984 105.73 119.98 13.48 24.69
1985 88.37 103.44 17.05 30.33
1986 94.85 102.37 7.93 19.94
1987 83.36 87.77 5.29 22.99
Average 103.98 108.28 7.68 28.20

@ calibration year
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CHAPTER 4 EXPERIMENTAL DESIGN II - FORECASTING METHODS

4.1 Overview Of Forecasting Methods

The most widely used method of streamflow forecasting in the
western U.S. remains regression of seasonal runoff on previous
hydrometeorological variables (e.g., runoff, precipitation, soil
moisture and snow course observations). This approach has been used
by both the National Weather Service (NWS) and the Soil Conservation
Service (SCS) in the western U.S. for many years (Twedt, et al.,

1977; 1978). Regression methods use a combination of previous
precipitation, snow water equivalent, and past streamflow
measurements to predict streamflow volumes. Other statistical and
stochastic methods also have been adopted. Time series methods

exploit the persistence structure of historical time series of runoff
to predict streamflow conditional on previous streamflow
observations. Time series models work best during periods when
streamflow are highly correlated, e.g., during summer and fall when
baseflow dominates.

The U.S. National Weather Service (NWS) has developed the Extended
Streamflow Prediction (ESP) method, which can provide probabilistic
streamflow predictions for any user-designated time period. The ESP
procedure was apparently first used in California in the early 1970’s
by the 'NWS California-Nevada River Forecast Center (RFC) and the
State of California (Twedt, et al., 1978). The motivation for the
development of ESP was the need for an accurate and efficient
procedure for forecasting runoff from headwater basins that would be
capable of providing the full probability distribution of the
forecasted streamflows, from which occurrence probabilities could be
estimated.

For purposes of comparison, a more limited investigation of an
autoregressive moving average forecast model is made. The main
emphasis of this study is evaluation of an ESP implementation of the

Nanjing model to determine the validity of the ESP estimate of the
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forecast error distribution to determine the accuracy of the method,
and to determine the potential for improved forecast accuracy using
updating methods. In the next two sections, the models used are

described, along with the model implementation approach.
4.2 Extended Streamflow Prediction (ESP) Method

4.2.1 Introduction To The ESP Method

ESP is a framework within which alternative scenarios from a
hydrologic model (generally a continuous, conceptual model) are
combined to form forecasts. Future streamflows are simulated
starting with +the current snow and soil moisture as initial
conditions. Each year of historic meteorological data beginning with
the forecast date is assumed to be a possible representation of the
future and is used to simulate a streamflow sequence from the
forecast date through the end of the forecast period. From the
simulated streamflow sequences, the total runoff during the forecast
period can be estimated. Given n years of historical
hydrometeorological information, the probability distribution of the -
forecast period can then be estimated. The mean of the n scenarios
is usually considered the ”best” forecast. In addition, from the
empirical probability distribution formed from the n scenarios, the
p-percentile flow for arbitrary p can be estimated. If the
streamflows represent inflows to a reservoir system, a risk analysis
can be performed using derived distribution methods. Although the
ESP procedure was developed for water supply forecasting in snowmelt
areas, it can also be used to evaluate spring snowmelt flood
probabilities; for navigation forecasting, and for drought

management.

4.2.2 Model Implementation
ESP is effected by running the hydrologic model up to the forecast

date using observed meteorological data, and then sequentially using
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as input n years of historic observations. For each year of historic
data, one forecasting run is made. In this study, the evaluation of
ESP required nx*(n-1) runs, that is, for each year i and given
forecast beginning and ending times T; and Ty, n-1 simulations (for
each year of the historic record except the year being tested) were
made. Therefore, the total number of runs for any forecast period
was nx(n-1). These runs were made by building an internal loop in
the Nanjing model.

Three kinds of data need to be set up before a hydrologic model can
be structured in ESP mode. They are hydrologic model parameters,
initial conditions, and meteorological time series data. Hydrologic
model parameters are obtained by off-line model calibration
procedures, as explained in Chapter 3. The initial basin conditions

represent the current state of the catchment, and include soil

moisture storage and snow-water equivalent. A minimum of ten to
twenty years of climatological time series are required. In this
study, the 40-year period 1948-87 was used. While conceptual

simulation models can usually be calibrated using only a few years of
observations (especially if +the calibration period contains a
diversity of high and low flow years), a longer period is required to
estimate the probability distribution of the forecast period runoff
accurately.

After the ESP structure has been created, the prediction period
must be selected. Under ESP, the prediction period is flexible;
daily, weekly, monthly, or any other seasonal period can be
accommodated. The performance of ESP forecasts made using the
Nanjing model was evaluated for a number of forecast begin and end
days. In this study, beginning days T1::Uct.1, Nov.1, Dec.1, Jan.1,
Feb.1, Mar.1, Apr.1, May 1, and Jun.l were used, and T2::Tr+Ati,
where Akti::1 week, 2 weeks, 3 weeks, 4 weeks, 1 month, 2 months, 3

months, and 4 months were used.

4.3 Autoregressive Moving Average Forecasts
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4.3.1 Model Theory
Stochastic or time series methods have been used to forecast
streamflow, usually using only streamflow in a previous time period
! as the dependent variable. These methods treat runoff as the
dependent variable in a linear relationship. The form and parameters
of the functions are estimated directly from the data (for example,
Box and Jenkison, 1970; Loucks et al., 1980; and Salas et al., 1980).
These methods can be thought of as seasonally stationary. The
parameters of such models can be estimated using least squares
methods.
A general autoregressive moving average stochastic model

(ARMA(p,q)) is of the form

- p q
Zy= 3 0 Zy_ s Y B G i e eeieneieneteae i (4.1)
t=, t . -
1= 1 50 Jt—j
where a; , Bj are estimated from the data directly, and the aj’s are
uncorrelated normally distributed white noise. Zt represents the

residual of the observation from its mean, thzzt—;%.
A simpler form for the case q=0 is the autoregressive process of

order p, AR(p), which is defined as

Zy = ap +$1Z4 g + $9Z4_g A H9pZp_p e (4.2)

where the current state Zt is ”regressed” on past values Zt—l’ Zt—2’

.-, of the process, and ¢; are the autoregressive parameters.

A moving average model (MA(q)) is given by the case p=0:

Zy=ay — 1oy q — fgay_o9 — - — Ogap g
_ 2
=(1- §,B - 6B — ... — qu‘I) a
' = 0B)a; (4.3)

An alternative case is the autoregressive moving average model with

external input (ARMAX(p,q,r)) model, which is expressed in the form
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¢(B)Z;=0a;, — 1ap 1 — O98;_9 — -+ — Oga;_gtwp+&wy | +Eowy o+
cee+ Epwy
= (1-6;B—0,B%— ... ~0,BYa,+ (14§ B+£,B4+ - - - +6.B ) uy
=0(B)a;+E(B)w;  eeeeeeieeaneeiaae (4.4)

where w; is an external variable. When ARMAX models are used to model
runoff, w; can be precipitation; when they are used for snowmelt
forecasting, the external varidbles in the model may include snow-
water-equivalent measurements at selected snow courses, seasonal
precipitation, soil moisture measurement and cumulative runoff
measurements up to the time of the forecast.

The drawback of this approach is that the relationship between the
dependent and external variables must be linear. Therefore, while the
forecast results may be acceptable in average years, the method can
break down in extreme years, for which the forecasts are most

important.

4.3.2 Model Approach

The model used in this study was a special case of the general
seasonal autoregressive moving average forecasting method described
by Hirsch (1981), with a few changes (Lettenmaier, et al., 1990).
The specific model form was seasonal autoregressive, which means that
the forecast runoff in a future time period is assumed to be a linear
combination of the observed residuals (difference between observed
and recorded runoff) in several previous time periods. Since
negative forecasts can not occur, streamflow logarithms were used
instead of forecasting future streamflow directly.

The form of the model used to forecast runoff in period k as

described by Lettenmaier (1990) was:

p
1n(QyY) —pp = tg_;l Brg L1 (Qpep)= Hpg] weveerereennnnenn (4.5)

where Qk* = the forecasted runoff in period k
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Qk—t » t= 1 ...p are the observed runoff in period k-t if
available, and otherwise is the forecasted runoff for period k-t.

Brt » t= 1 ceep is coefficients to be estimated, and pp is the
mean of the streamflow logarithms in period k.

Box and Jenkins (1976) outline an approach for estimating the
coefficients ﬁkt’ and for determining the order of the model, that is
the number of lags, p. The recommended parameter estimation method
is maximum likelihood, which means that the estimated parameters have
the property that their posterior 1likelihood, or probability of
occurrence given the data, is maximum. Maximum likelihood parameter
estimates require that the form of the probability distribution
describing the data be assumed; the usual assumption is that the data
(or, in this case, the logarithms of the data) are normal. For
normally distributed data, Box and Jenkins show that the maximum
likelihood parameter estimates are obtained by minimizing the sum of
squares of residuals of conditional forecasts from the observations.
However, for an autoregressive model, +the maximum likelihood
parameter estimates are also nearly equivalent to the ordinary least
squares parameter estimates used in classical regression. The least

squares parameters are given by:

B, =@Tx)~1xTy)
where:
ﬁk : pX1l column vector of the coefficients; and
X : nxp matrix made up of the nx1 column vectors »of the

logarithmic residuals of the streamflows (xt—r,l"“Xt—r,j""xt—r,n)jx

where the second subscript indicates the year.of observation, and the

p column vectors correspond to 7=1,...p, respectively, and
Xt_r,0= 1n(Qt_T) — fr- Y is the nx1 column vector corresponding to
7=0. This representation of the Br’s 1is equivalent to a linear

regression of the (logarithms) of the streamflows in period t on the 7
preceding streamflows. Note that a separate regression is performed

for each period.
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The covariance matrix of the parameter estimates is:
_);:(XTX)_l 0'26, where 0‘2c is the estimated mean square of the
residuals, that 1is, prediction errors obtained by applying the
forecast model to the historic flow logarithms. The diagonal
elements of L are the variances of the estimated parameters, which
are asymptotically normally distributed.

Once the parameters B are estimated for each season (k),
streamflow forecasts can be made. The forecasted streamflow

logarithms were transformed to forecasted streamflows by:

Q%= exp(pp+Bry (In(Qp_y) =Hp_g) F2/2) cvvnernnnenennnannn. (4.6)

The probability distribution of Q*k could be estimated directly,
based on an assumption of normality of the streamflow logarithms.
However, it is known that the assumption that the logarithms of the
flows are mnormal is most questionable for the tails of the
probability distribution, which are of interest for risk estimation.

E Therefore, following Lettenmaier et al. (1990), the forecast error

probability distribution was estimated empirically using a variation
' of the procedure known in the statistical literature as bootstrapping
l (Efron, 1982). The bootstrap procedure applied the forecast model to

all n years of historic data sequences, with parameter estimates
l based on the (n-1) years of record not including the forecasted year.

Then a variable Rkazqkj/ﬂ*kj was formed, which is the ratio of the

I observed flow to the forecasted flow for season k in year j. The
quantiles of the forecast ratios were estimated from the n values of

! Rkj’ using the Weibull plotting position formula; that is, if R,kj
represents the ordered values of Rkj from smallest to largest, the jth
value is assumed to have probability E_%_T'

4.4 Implementation of ESP Procedure

The Nanjing model was calibrated off-line as described in Chapter
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3. The snowmelt model which produced the rain plus melt input to
the Nanjing model was implemented using parameters described in CDD
Howard and Associates, (1989).

All analyses were performed for the 40 water years 1948-87 (n=40).
Meteorological data files were constructed for each of the 3
elevation bands used by the snowmelt model, which produces three
rain-plus-melt files (one for each elevation band). As described in
Section 4.2.2, for each T; (forecast date) and year i, the model was
run up to the forecast date using observed meteorological data for
year ij; n runs of the model were then made from the forecast date
through the end of the water year using the meteorological data for
year j, j=1,...mn. For i=j, the run is simply a simulation using
observed data. Therefore, the results for i=j were retained for
comparison purposes, but were not used in generation of the ESP
forecasts. Eight different forecasting periods (Ati =Ty-Ty =1
week, 2 weeks, 3 weeks, 4 weeks, 1 month, 2 months, 3 months, and 4
months) are included in each of these forecasts. For each of the 40
years for which ESP forecasts were made, therefore, there were 39 (n-
1) sequences of forecasts for each (Tl,T2), and one simulation
sequence. FEach of these sequences were retained for implementation
of the updating procedures and for the forecast error analysis (see
Sections 5.3 and 5.4.2-3).

From the ESP scenarios, forecasted and observed streamflows and
simulated soil moisture storage were computed and stored. Several
summary statistics, described briefly below, were derived from these
results. _

For each forecast date and each year i, the total runoff from the
beginning of the forecast period (T;) through T, was taken from the
model. Figure 4.1 shows an example year (1977) for the ESP simulated
runoff in the forecast period (T; =March 1, Tyg=June 1). This figure
also illustrates implementation of the ESP procedure. From the
figure, the effect of the alternative scenarios on forecast period

runoff can be seen. This figure also clearly shows the need for
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model updating; specifically, the simulated runoff up to the forecast
date deviates significantly from the observed runoff, which is quite
likely due in part to the fact that the modeled snow storage 1is
incorrect. This error may well persist into the forecast period; in
section 5.3 an updating procedure is suggested to reduce this source
of forecast error.

For each forecast T, and Ty, the “best” (average) forecast and
forecast errors, as well as the forecasting error distributions, were
compared. Two kinds of forecasting errors are estimated; one is
based on the ”best” forecast for each year, the other is based on the
average of these ”“best” forecasts. In addition, probability
distributions of forecasting errors can be made. The Weibull
plotting position formula was used to estimate +the empirical
probability distribution of the forecast errors.

The performance of the simulated ESP forecasts was evaluated in
several ways. First, Cp values for the simulated streamflows were
computed using the method of Section 3.7.3 to evaluate rainfall-

runoff model performance. C, values were also computed for each

forecast period, with and withiut updating (see Section 5.1 and 5.3).
to determine the potential for the updating procedure.

To determine the accuracy of the estimated forecast error
distributions, graphical methods were performed for each of the above
probability distributions and the observed streamflow. The

statistics allow evaluation of the adequacy of estimates of the

forecast error distributions.
4.5 Time Series Model Implementation

The bootstrap procedures described in section 4.3 were performed
for each forecast period by running 40 years of historic data, and
performing the analysis for each forecast period separately.
Following Lettenmaier et al. (1990), p=2 was used for each forecast

period. This decision was made in lieu of using a different model
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order for each forecast period. Apparent changes in the model order
with season are to some extent an artifact of the natural variability
of the streamflow time series, and in this respect are undesirable.

The model described by Lettenmaier et al. (1990) was modified to
run at a monthly time step and to allow p (lags) and Ty to be any
combination of months within the water year. The reason for using
monthly simulations instead of daily, which are used in the ESP
model, is that the ARMA model produces forecasts that approach the
mean in only few time steps. The other reason for running the model
monthly is to compare the results from both the ESP model and the
ARMA model.

The AR(2) and ARMAX(2,0,1) model were used in this study. The
AR(2) model uses monthly streamflow data only. For year i, the
streamflow of month j is forecasted by multiplying the matrix of the
previous p=2 months’ streamflow by a px1 column vector of
coefficients, ﬁk, which is defined in section 4.3.2. The ARMAX(2,0,1)
model uses the previous month’s rain plus melt as the external
variable, along with the streamflow from the two previous months,
which are the autoregressive terms. The coefficient of prediction,

Cp, were computed for comparison purposes and given in Section 5.2.
4.6 Comparison 0f ESP and ARMA Model Implementation

Table 4.1 compares the implementation of the ESP and ARMAX models.
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Table 4.1 The Procedures For Running

ESP MODEL

The ESP Model And The ARMA Model

ARMA MODEL

Forecast Period
At;:the length of forecast period
Tl: the forecast date

Ty: the end of forecast period

1 week, 2 weeks, 3 weeks,

4 weeks, 1 month, 2 months,

3 months, and 4 months.

T1:Uct. 1, Jan. 1, Feb. 1, Mar. 1,
Apr. 1, May 1, and Jun. 1,

Ty=T1+ Aty

Data Availability
water years 1948-87.

T: forecast period

A1Hf:1 month, 2 months, 3 months
and 4 months.

T, =Dec.-Mar., Jan.-Apr., Feb.-

May, Mar.-Jun., Apr.-Jul.,
and May-Aug.

water years 1948-87.

Method of Streamflow Probability Distribution Simulation

Model simulates 39 streamflow
forecasts for each forecast
period and each year to form

the probability distribution.

A bootstrap procedure produces
39 predictions for each
forecast period to form the

probability distribution




CHAPTER 5 STATISTICAL ANALYSIS AND DISCUSSION

The performance of the ESP procedure using the Nanjing model was
evaluated in two ways. First, an analysis of the coefficients of
prediction (Cp) was used to evaluate forecast accuracy. Second, a
comparison of predicted and observed ESP forecast error distributions
was made using graphical methods. Third, a comparison between ESP
and ARMA/ARMAX model performances was made using Cp’s for different
forecast periods for the two models. In conjunction with these
evaluations, the value of updating the model soil moisture estimate
as a means of correcting persistent errors was also evaluated.
Finally, the performance of the ESP forecasts was evaluated in detail

for three extreme low flow years (1951, 1958, and 1977).
5.1 Evaluation of ESP forecasts

5.1.1 Coefficient of Prediction
The coefficient of prediction (Cp) is a measure of forecast

accuracy, as described in section 3.7.3:

C.=1— Var(qobs - Qpre)
p — Var(Q p¢)

where Var(:.) is the statistical variance, and { and Qpre are

obs
observed and forecasted runoff volume, respectively.

High values of Cp indicate highly accurate forecasts, a Cp of 1.0
corresponds to a perfect forecast; a value of 0.0 is achieved when
the forecast is always equal to the long-term mean. Table 5.1 gives
the Cp’s for the ESP ’best’ forecasts for the Rex River for different
lengths of forecast periods and various forecast dates.

Negative Cp’s indicate poor forecast performance, to the extent
that a better forecast could be achieved by using the long-term mean.
Negative Cp’s occurred mostly in the early part of the water year,

when precipitation and streamflow is highly variable and there is

little moisture accumulation in either the soil or snowpack that
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could influence future runoff. Table 5.1 shows that low Cp values
occur for long forecast periods for forecast dates prior to the time
of maximum snow accumulation (usually between March 1 and April 1).
Shorter forecasts tend to be more accurate than long-term forecasts

in the fall and winter. The reverse is generally true in the spring.
Table 5.1 Estimated Coefficient of Prediction of ESP Forecasts

Forecast Period Length

Forecast Date 1 wk 2 wks. 3 wks. 4 wks. 1 mo. 2mos. 3mos. 4mos.

Oct. 1 0.0676 -0.0068 -0.0262 -0.0413 -0.0458 -0.0550 -0.0507 -0.0431
Nov.1 0.1971 0.1109 0.0544 0.0344 0.0364 0.0273 -0.0043 -0.0053
Dec.1 0.0538 0.0556 0.0168 0.0268 0.0396 -0.0216 -0.0316 -0.0305
Jan. 1 -0.0447 -0.0915 -0.0782 -0.0695 -0.0817 -0.0761 -0.0928 -0.0749
Feb. 1 0.1914 0.1162 0.1074 0.0650 0.0606 0.0220 0.0236 0.2129
Ma.r. 1 0.2006 0.1992 0.1770 0.1720 0.1437 -0.0021  0.3207  0.4999
Apr. 1 0.2906 0.2207 0.2040 0.0597 -0.0166 0.0348 0.5282 0.6587
May 1 0.0567 0.2217 0.2017 0.1195 0.1564 0.5734 0.6961 0.7019
Jun. 1 0.3294 0.4108 0.4960 0.5988 0.6489 0.7435 0.7488 0.7488
Jul. 1 0.6800 0.6195 0.5531 0.5397 0.5389  0.5300 a a

a Forecast end date is past end of water year; no forecast made.

5.1.2 Evaluation of ESP Forecast Error Distribution

A comparison of predicted and observed ESP forecast error
distributions was made to determine whether the (retrospectively
estimated) probability distribution of the actual forecast errors is
consistent with the ESP forecast error distribution estimated when
the forecasts are made.

This issue was addressed by comparing the actual number of
occurrences of streamflows more severe than the upper or lower p-
percent exceedance level with np, the expected number of exceedances

in the n =40 year evaluation period. The comparisons were performed
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as Tfollows. For each forecast period in each year, the 39
alternative runoff volumes during the forecast period were ranked and
an empirical probability distribution was estimated using the Weibull
formula. The observed runoff was then compared to the p and 1-p
percentile of that distribution. The p-values of 2%, 5%, 10%, 20%,
30%, and 40% as well as 1-p values of 98%, 95%, 90%, 80%, 70%, and
60% were used, so that both lower tail and upper tail exceedances
were computed. This process was repeated for each of the 40 years.
The results are given in Figures 5.1 and 5.2. Tables of the complete
results for each forecast period are included in Appendix C.

Four figures for different forecast periods were chosen to evaluate
the forecast error distributions. Figure 5.1 summarizes results for
forecasts from one week, two week, one month, and three month periods
for the upper tail of the runoff forecast distributions. Figure 5.2
shows similar results for the lower tail of the distribution. The
results show that, especially for the upper tail of the distribution
and short forecast periods, the actual number of exceedances of the

p-percentile flows greatly exceeds the expected number. This

suggests that the actual forecast error distribution has considerably

heavier tails than the error distribution estimated by ESP. Figure
| 5.2 shows that the expected and actual exceedances are much more
consistent for +the lower tail of +the distribution. There 1is,
I however, an indication that +the extreme lower tail of the

distribution is not properly represented, especially for the longest

I forecasts.

5.2 Comparing ESP and ARMA/ARMAX Model Performances

5.2.1 Comparison by Coefficient of Prediction (Cp)

' The ABRMA and ARMAX model described in Section 4.3 was applied to
the Rex River for comparative purposes. Generally, it 1is not
l expected that the ARMA model, which 1incorporates mno direct

information about snow accumulation, should perform as well as the

l ESP approach.

e
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The coefficients of prediction (C similar to those used in the

)
previous section, were used to compaie the performance of the ESP and
ARMA forecasts. The ARMA model was implemented for a monthly time
increment, and the results of forecast periods from one month to four
months were compared with ESP results. Table 5.2 gives the
coefficients of prediction for ARMA(2,0) and ARMAX(2,0,1) models.
Comparison of Tables 5.1 and 5.2 shows +that ESP has Dbetter

performance than the autoregressive and ARMAX models not only in one

month forecasts but also in seasonal forecasts.

Table 5.2 Cp of Time Series (ARMA(2,0) and ARMAX(2,0,1)) Models

First Month of Forecast Forecast Periods
Ty Model 1 month 2 months 3 months 4 months
January ARMA(2,0) -0.1263 -0.0647 -0.0570 -0.2613
ARMAX(2,0,1) -0.4494 -0.3497 -0.3414 -1.3970
February ARMA(2,0) -0.0042 -0.0608 -0.0339 -0.1423
ARMAX(2,0,1) -0.1185 -0.1122 -0.2138 -1.8173
March ARMA(2,0) -0.0055 -0.0818 -0.0435 -0.0017
ARMAX(2,0,1) -0.0873 -0.2019 -0.3183 -1.7583
April ARMA(2,0) -0.0110 -0.0202 -0.0191 -0.1239
ARMAX(2,0,1) -0.0958 -0.2228 -0.2641 -2.0514
May ARMA(2,0) 0.3854 0.3109 0.2807 0.1999
ARMAX(2,0,1) -0.4766 -0.3673 -0.3261 -0.9670
June ARMA(2,0) 0.4067 0.3478 0.3214 0.2390
ARMAX(2,0,1) 0.3089 0.2518 0.2285 0.1826

Almost all of the Cp’s from the ARMA model are smaller than those
from ESP in every forecast period. However, in T,=June, the Cp’s are
considerably larger than in the other months. Generally, however,
forecasts made using the time series models would not be practically
useful. Investigation of the lag one, two and three correlation
coefficients of the observed streamflow time series shows why these

models are not able to make accurate predictions. The ARMA model
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uses observed monthly streamflows in the previous month to forecast
the streamflows, and the ARMAX model uses both observed streamflows
and precipitation (rain-plus-melt) as an external variable. The
lagged autocorrelation coefficients of streamflow for lags 1-3 as
well as the correlation coefficients between streamflow and rain-

plus-melt are listed in Table 5.3.

Table 5.3 Correlation Coefficients of Rex River Historical

Streamflow

lag  Oct. Nov. Dec. Jan. Feb. Mar. Api. May Jun. Jul. Aug. Sep.

0.238 0.418 0.179 -0.050 0.169 0.342 -0.041 0.046 0.666 0.805 0.607 0.298
0.128 0.294 0.098 -0.162 -0.136 0.069 -0.263 0.159 0.028 0.458 0.590 0.018
0.116 0.030 -0.038 -0.200 -0.109 -0.212 -0.331 -0.063 -0.018 -0.138 0.185 -0.005
0.872 0.903 0.938 0.943% 0.920 0.879 0.817 0.879 0.890 0.790 0.593 0.846
1 0.277 0.824 0.186 -0.085 0.086 0.238 0.031 0.027 0.626 0.801 0.612 0.416

%%NN

a

b

correlation coefficient of rain-plus-melt and streamflow
correlation coefficient of streamflow and rain-plus-melt of

previous time step
5.3 Updating Procedure

5.3.1 Storage Accounting And Regression

A simple scheme for updating streamflow forecasts to account for
persistent model errors is described in this section. It uses a
storage accounting method to correct the model-estimated soil
moisture storage on the forecast date. The general approach used is
to optimize the model water storage retrospectively on the forecast
date so that the error between ”forecasted” (actually simulated,
since the analysis is retrospective) and observed runoff during the
forecast period is minimized. Then, the resulting 40 values of soil

moisture adjustments are regressed on the difference in the observed

and simulated runoff from the start of the season (usually October 1)
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through the forecast date. From the regression, the resulting two
coefficients are used for water storage wupdating, since the

cumulative difference of simulated and observed flows is known on the
forecast date. Exploratory analyses showed that the relationships
are not strongly dependent on the length of the forecast period, but
that they do depend on the forecast date and the beginning of the
forecast season. Three different season starting dates were used:
October 1, November 1, and December 1 respectively.

The regression equation is of the form AS=(Ssim_Sopt) = AQxa+b
where AS is the difference between simulated moisture storage (Ssim)
and the optimized soil moisture storage (Sopt)’ and AQ is the
difference between observed and simulated cumulative streamflow, and
a and b are regression coefficients. The R% of the regression can be
used to determine whether the relationship between AS and AQ is

significant, and hence, whether or not the updating procedure should

be used.

Table 5.4 Regression Coefficients for Updating Relationship
(for forecast season begin date, October 1, November 1,

December 1, respectively).

Forecast date a b

January 1 » 0.0479/0.0455/0.0738 -16.341/-16.525/-16.282
February 1 -0.0345/-0.067/-0.071 -33.680/-41.386/-38.583
March 1 0.0074/0.0013/-0.022 -0.2946/-2.0586/-7.7941
April 1 0.0824/0.0916/0.0870 32.4916/35.5579/29.7248
May 1 -0.0207/-0.011/-0.013 18.7807/21.5761/21.6714
June 1 -0.0150/-0.027/-0.030 8.6825/ 5.8083/ 6.5455
July 1 0.0246/0.0247/0.0258 -7.9366/-7.8096/-8.8504

For a sample size 40 and significance 1level 0.10, R? is 0.05;
therefore if the R2 value was larger than 0.05, then the updating

procedure was used. Table 5.4 gives the regression coefficients for
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each forecast date with different forecast season start dates (TO).
Table 5.5 gives the corresponding R? values.

Generally, the relationship between cumulative streamflow and the
model water storage is not strong, and the R? values are small. This
is, in part, because other factors (especially forecast period rain
plus melt) than the initial soil moisture affect forecast period
runoff. However, the results do show that the updating relationship
is quite strong on April 1, which is approximately the time of

maximum snow accumulation.

Table 5.5 R? Values, for Updating Equation

Ty Ty, Jan.1 Feb.1 Mar.1 Apr.1 May 1 Jun.1 Jul.1
Oct.1 0.1375 0.1082 0.0374 0.4113 0.0980 0.0794 0.1908
Nov.1 0.1030 0.1836 0.0000 0.4192 0.0480 0.1319 0.1822
Dec.1 0.1145 0.1612 0.0922 0.3581 0.0510 0.1371 0.1780

5.3.2 Adjustment

Because the forecast accuracy varies depending upon the season, the
updating = procedures were implemented on T1=:Jan.1, Feb.1, Mar.1,
Apr.1, May 1, and Jun.1. For T1==0ct.1, the water storage was not
updated because the beginning of the forecast season is the same
date, and so there is no prior streamflow accumulation. Table 5.6
gives the magnitude of the adjustment for every forecast period. The
detailed soil moisture storage before and after updating for each

year is listed in Appendix D.

5.4 Evaluation of ESP Forecasts after Updating
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' Table 5.6 Updating Adjustments to Water Storage in ESP Model (in mm)

I Forecast Date
Year Jan.1 Feb.1 Mar.1 Apr.1 May 1 Jun.1
l 1948 -27.37 -44.32 0.00 16.21 -2.03 23.94
1949 -12.40 84.50 0.00 -22.20 -119.06 15.95
1950 18.10 51.36 0.00 0.83 -15.59 -42.70
l 1951 -10.31 -15.29 0.00 76.15 7.60 7.41
1952 -31.68 27.47 0.00 -9.86 -107.62 10.94
1953 -33.56 -37.27 0.00 3.61 -9.18 -6.30
l 1954 -13.79 53.46 0.00 -24.55 -64.70 -23.08
1955 21.71 38.55 0.00 7.98 -13.15 14.75
1956 -53.84 -12.02 0.00 -78.95 4.11 15.02
1957 -51.41 -2.54 0.00 10.71 -4.78 15.15
1958 34.96 -35.42 0.00 -35.25 -17.11 -22.44
1959 -17.98 -61.24 0.00 19.00 29.46 -33.30
1960 -53.53 14.27 0.00 0.63 8.50 -15.90
1961 71.75 -39.84 0.00 18.52 -7.11 -30.77
1962 -7.67 -131.40 0.00 -0.55 14.19 -12.23
1963 -23.94 55.35 0.00 2.79 7.88 -10.30
1964 4.53 -26.91 0.00 55.54 54.95 -139.14
1965 54.00 -65.99 0.00 61.86 -18.85 -20.12
1966 86.20 -37.37 0.00 -111.94 -16.08 71.68
1967 8.31 -49.85 0.00 -24.88 -10.85 -22.00
1968 -37.66 -82.07 0.00 -11.69 31.56 -35.00
1969 -0.95 -11.46 0.00 8.50 -112.11 22.79
1970 62.95 -76.56 0.00 -28.75 29.96 -21.61
l 1971 69.86 -50.21 0.00 27.18 -9.00 -7.24
1972 73.69 3.84 0.00 0.36 -92.75 -137.85
1973 6.37 -69.54 0.00 -2.26 16.74 13.55
1974 32.33 -41.85 0.00 2.27 37.43 -37.79
1975 -27.26 -66.14 0.00 -7.05 -14.65 2.19
1976 -2.14 -73.15 0.00 11.83 14.68 -9.23
1977 -35.39 -65.98 0.00 31.12 38.08 6.38
1978 -50.88 -52.81 0.00 -5.65 -11.45 -24.70
1979 -34.19 67.26 0.00 -30.84 22.38 -6.98
1980 -48.67 -35.12 0.00 -37.25 37.50 -8.05
1981 0.86 57.25 0.00 -7.25 26.24 -31.22
1982 64.95 -29.65 0.00 -43.80 -17.57 7.81
1983 -38.80 -72.39 0.00 22.91 6.59 3.94
1984 10.21 -62.52 0.00 1.83 6.89 -0.08
1985 -9.51 6.70 0.00 50.83 11.27 23.47
1986 -7.66 20.59 0.00 36.58 17.42 -19.62
1987 9.65 44 .99 0.00 -41.24 -2.76 11.81
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5.4.1 Coefficients of Prediction

Cp values were computed after updating (Table 5.7). Figure 5.3
shows the maximum values of Cp for different forecast dates.
Figure 5.4 compares the same values of Cp, all for the same forecast
period T2::Ju1y 1, for the ESP model before and after updating as
well as the Cp for the National Weather Service Model as applied to
the Cedar River (to which the Rex is tributary) by Lettenmaier
(1984).

Table 5.7 Estimated ESP Coefficient of Prediction for Rex River
Forecasts with Updating
Forecast Period

Forecast Date 1 wk 2 wks. 3 wks. 4 wks. 1 mo. 2mos. 3mos. 4mos.

Oct. 1 -0.0251 -0.0335 -0.0420 -0.0486 -0.0505 -0.0438 -0.0453 -0.0434
Jan. 1 -0.1556 -0.1550 -0.0209 0.0302 0.0252 0.0602 0.0343 0.0632
Feb. 1 0.2173  0.2044 0.1654 0.1657 0.1557 0.1215 0.0895 0.2790
Mar. 1 0.2006 0.1992 0.1770 0.1720 0.1437 -0.0021 0.3207  0.4999
Apr. 1 0.4807  0.3827 0.2251 0.0610 0.0174 0.1752 0.5897 0.7028
May 1 0.0506  0.2414 0.2468 0.2366 0.2831 0.6212 0.7113 0.7165
Jun. 1 0.6500 0.6782  0.7263 0.7607 0.7828 0.7907 0.7881 0.7881

Comparisons between the Cp’s in Table 5.1 and Table 5.7 demonstrate
that the forecasts after updating do not improve until T1::Apri1 1.
From Tables 5.5, 5.6, and Appendix D, the R2 values for all three
regressions (forecast season start dates) are highest on T;=April 1.
In most cases, the water storages on April 1 after updating are close
to the maximum soil moisture storage capacity of 150 mm. In addition
to 1indicating the importance of the initial soil moisture for
forecasts beginning at the time of maximum snow accumulation, the
high R? values for T;= April 1 also suggest that better results might
be achieved by adjusting the snowmelt model snow accumulation, rather

than the soil moisture storage.
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5.4.2 ESP Forecast Error Distribution Evaluation

The same comparison of expected and observed exceedances used in
Section 5.1.2 was used to determine whether the updating procedure
affected the forecast error distribution estimates. Figures 5.5 and
5.6 show that the results are quite similar to those shown in Figures
5.1 and 5.2 for the unupdated forecasts, specifically, the actual
number of exceedance for the upper tail of the distribution are much
greater than their expectances, especially for the short forecast
periods (e.g., 1 week and 2 weeks are better than 3 months). This is
not surprising since a major source of the error in the distribution
estimates is the failure to include model and parameter uncertainty

in the analysis, and this is unrelated to the use of updating.

5.5 Drought Period Forecasts Assessment

One of the claimed advantages of ESP is that it should perform
better than simpler methods, such as regression, in extremely dry
years. To examine this possibility, ESP forecasts for three extreme
low flow years were evaluated, which were selected based on both
their seasonal and annual flows, were water years 1951, 1958, and
1977.

All of the analyses were based on forecast periods beginning on
April 1. For each year, ESP produced 39 alternative forecasts, from
which the lowest and highest were selected to study their daily water
storage and daily streamflow. For each of the three years, the
lowest streamflow predictions corresponded to the 1967 water year
precipitation-temperature scenario and the highest streamflow
corresponded to the 1981 water year. Figures 5.7-5.9 c and d give
the daily observed streamflow, the daily ESP ’best’ forecast
streamflow and the highest/lowest predicted streamflow with and
without updating for years 1951, 1958, and 1977. Figures 5.7-5.9 a
and b show the water storage for comparison purposes. The water

storage adjustments are also given in Table 5.6. These figures show

that the adjustments only influence the first one to two weeks; for
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longer lead times the effects of updating are minimal.

Table 5.8 summarizes the forecast errors for the three low flow
years which include the average forecast error in 40 years and the
forecast errors made in drought years. Even though the forecast
error percentages do not have a significant trend, ESP generally
appears to make better weekly forecasts than long-term forecasts in
drought periods, and is slightly better than average for forecast
periods of around one to two months. For example, the 1977 water
year is the extreme dry year of records, in this year the ESP
forecast error percentage was much smaller than the average error
percentage of 40 years for each forecast period. The 1951 water year
ESP forecast error percentages were also much smaller than the

! average.

Table 5.8 ESP Forecast Error in Drought years 1951, 1958, and 1977

Forecast Period

Year 1wk. 2 wks. 3 wks. 4 wks. 1 mo. 2 mos. 3 mos. 4 mos.

1951
error(cfsd) -8.05 -11.46 12.24 29.52 51.91 184.26 297.91 347.83
error percent? 12.87 8.47 5.58 10.61 16.82 25.58 33.61 37.92
1958
error(cfsd) 10.63 9.27 -114.75-119.37-108.40 21.68 169.56 214.84
error percent® 37.88 11.77 44.36 36.45 31.20 3.83 27.00 32.79

T T T T T T T T —

1977
l error(cfsd) 2.70 -6.57 10.96 -31.59 -32.14 17.11 49.06 80.78
error percent? 4.44 5.01 6.20 11.14 10.24 3.24 7.68 12.03
absolute error

' percent 40.55 38.81 32.99 31.21 31.80 21.38 21.45 18.79

I ¢ absolute error percentages
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CHAPTER 6 SUMMARY AND CONCLUSIONS

6.1 Summary

This study evaluates the performance of Extended Streamflow
Prediction, a streamflow forecasting method that estimates the
probability distribution of future streamflow using deterministic-
conceptual precipitation-runoff models. The conceptual simulation
models used in this study are the National Weather Service snow
accumulation and ablation model and the so-called Nanjing model which
is a simple water balance model.

The simple water balance model used as the rainfall-runoff portion
of the hydrologic forecast model was initially evaluated by comparing
its performance with three other rainfall-runoff models that have
been previously applied to the Rex River, Washington, which lies
within the Seattle Water Department’s Cedar River watershed. The
results showed that the performance of the simple water balance model
was comparable to that of the National Weather Service Soil Moisture
Accounting model, which has been widely used elsewhere in the western
U.S. The simple water balance models’ performance was also
comparable to that of HSPF (Hydrologic Simulation Program --Fortran)
and CHARMS (Charles Howard and Associates Runoff Modeling System).

The Rex River study area has a drainage area of 13.4 mile square
and 40 year average annual runoff (1945-1985) of 104.4 inches.
Because it accounts for about 25 percent of the inflow to Chester
Morse Reservoir, accurate forecasts of the runoff from this tributary
of the Cedar River are important for water management.

For implementation of hydrologic models, precipitation and
temperature data are required as well as the observed streamflow
records. Since there are no meteorological data stations in Rex
River basin, temperature and precipitation data from Cedar Lake and
Stampede Pass were used as the high and the low elevation stations
for snowmelt model calibration and verification.

ESP forecasts were made for each of the 40 years in the period
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1948-87, the probability distribution of forecast period runoff was
estimated using meteorological sequences for each of the remaining 39
years in the study period. For comparison purposes, forecasts were
also made wusing autoregressive moving average ARMA(2,0) and

autoregressive moving average - external input ARMAX(2,0,1) models.
6.2 Conclusions

The major conclusions of the study are:

1). The major advantage of ESP is that it estimates the forecast
error distribution in addition to a ’best’ forecast. The forecast
error distribution is an essential element in risk-based water
management. ESP is more realistic than the (presently) commonly used
regression methods to the extent that it uses historical
meteorological data sequences to represent a range of future
conditions. As evaluation of the coefficients of prediction (Cp) of
ESP and two time series methods showed that ESP was considerably more
accurate than the time series methods, and that its accuracy was
comparable to a storage accounting method previously applied to the
Cedar River.

2). The ESP estimation of the forecast probability distribution
tended to underestimate the upper tails, especially for short-term
forecast periods. The effect of this is that the actual runoff
exceeds the estimated p-percentile forecast with probability
considerably larger than 1-p. The discrepancy was reduced as the
forecast period increased. This is in part related to the fact that
the mean absolute short-term forecast errors were mostly larger than
those for longer periods (one to three months). The lower tail of
the forecast distribution, which is of particular importance for
risk-based decision making, especially during droughts, was better
represented.

3). In the simple water balance model, the accuracy of the
estimated water storage affects the accuracy of forecasts. The

results of this study showed that the most accurate forecasts were
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obtained during the period of highest water storage which
approximately coincides with the time of maximum snow accumulation.
In an attempt to improve forecast accuracy, a water storage updating
procedure was developed. The calibrated value of maximum water
storage for the Rex River basin is quite small (150 mm), so the
updating procedure only affected soil moisture storage and streamflow
the first few days after the forecast date; generally the water
storage approached its unupdated state in a few time steps.
Nonetheless, some improvements in forecast accuracy, especially for
short-term forecasts, and long-term forecasts made after the time of
maximum snow accumulation, were demonstrated. Further improvements
may well be attainable by updating snow storage in addition to soil
moisture storage, since the maximum snow water storage considerably
exceeds the maximum soil water storage.

4). Detailed evaluation of the ESP forecast performance in three
drought years (1951,1958, and 1977) showed that the forécast errors
in dry years tended to be lower than the average forecast error of
all years analyzed, especially for short-term forecasts. Although
this was not demonstrated statistically, it 1is of potential
importance because accurate forecasts under drought conditions may
have greater worth than those in average years.

Although the value of the ESP method was demonstrated, there are
some problems which are not attributed to the forecast model. The
major one is that the input data to the simple water balance model
were the output of a snow accumulation and ablation model; therefore,
any biases in the snowmelt model were transfered to the ESP results.
Improved methods of calibrating the paired snow and water balance
models, and improvement of updating methods, appear to be two areas
of further research that would permit a more complete examination of

the utility of ESP forecast.
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SNOWMELT MODEL PARAMETERS
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&I Parameter | Definition | Value
DAYGM Average daily ground melt at the snow-soil
interface (mm) 0.4
EFC Fraction of Area over which

evapotranspiration occurs when there is

complete snow cover 0.9
MBASE Base temperature for melt computation during
non-rain period (°C) 0.0

MFMAX/MFMIN Maximum/minimum non-rain melt factors which

occur on Jun.21 and Dec.21 respectively

[inches/(6 hr.:°F)] 0.9/0.4
NMF Maximum negative melt factor [inches/(6 hr.-°F)] 0.12
PLWHC Percent Liquid;water holding capacity 0.07
PXTEMP Critical temperature to divide rain from snow(°C) 0.5
SCF Multiple factor to correct for precipitation

I gage catch deficiency during periods of snow-

fall 1.03
SI Mean areal water-equivalent above which there

is always complete areal snow cover (mm) 200
TALR Lapse rate (°C/100m) 0.5
TIPM Antecedent temperature index parameter 0.3

(0.0< TIPM < 1.0)
UDAJ Average six-héur wind function during rain on

snow periods [inches/(in. Hg-6hr.)] 0.1
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NANJING MODEL SIMULATIONS FOR THE 1969-80 WATER YEARS
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ESP FORECAST ERROR DISTRIBUTION RESULTS
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ESP FORECAST ERROR DISTRIBUTION, WITHOUT UPDATING

BEGIN DATE= 0CT 1

FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 M0 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 1 0 1 0 0 3 2 2
95 2 5 3 1 1 0 3 5 2
90 4 5 6 3 4 4 4 7 10
80 8 10 8 8 7 7 7 10 16
70 12 13 13 8 11 12 11 14 22
60 16 14 13 16 15 15 20 22 24
50 20 18 16 18 19 21 25 26 29
40 24 19 17 20 23 21 27 31 33
30 28 20 19 23 25 27 30 34 33
20 32 24 30 29 28 29 32 37 35
10 36 28 34 35 36 37 37 38 40
5 38 28 34 36 36 37 38 39 40
2 39 28 35 36 38 38 39 39 40
BEGIN DATE= JAN 1
FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 MO 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
a8 1 2 2 2 2 1 1 4 4
95 2 3 3 6 3 3 10 8 6
90 4 4 7 12 12 13 10 9 7
80 8 14 14 15 15 15 17 14 14
70 12 21 22 17 19 18 18 18 15
60 16 22 24 26 24 23 19 20 20
50 20 24 27 26 27 25 22 22 23
40 24 24 28 28 28 28 35 29 27
30 28 24 29 32 31 32 37 33 31
20 32 27 32 35 36 38 37 36 35
10 36 27 33 35 36 38 38 39 37
5 38 27 33 36 36 38 39 40 39
2 39 27 33 36 36 38 40 40 39
BEGIN DATE= FEB 1
FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 MO 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 3 1 4 6 6 3 2 1
95 2 9 6 4 7 7 4 3 2
90 4 11 15 4 7 7 5 4 3
80 8 14 16 17 10 10 11 9 10
70 12 18 18 21 22 21 14 10 12
60 16 18 19 21 24 24 21 17 15
50 20 22 23 23 25 25 25 21 17
40 24 26 25 26 27 29 28 25 19
30 28 28 29 29 30 30 32 26 22
20 32 28 32 32 34 33 34 30 23
10 36 31 33 34 36 35 35 37 25
5 38 31 35 34 37 38 38 37 34
2 39 31 36 37 38 38 39 39 38
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BEGIN DATE= MAR 1
FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 M0 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 4 2 2 1 1 1 0 2
95 2 4 3 2 2 2 1 0 3
90 4 6 5 3 4 3 3 1 3
80 8 11 8 10 8 8 5 5 5
70 12 14 14 14 13 14 9 5 9
60 16 16 15 18 17 17 15 6 10
50 20 17 17 20 18 19 15 12 12
40 24 20 20 21 18 20 15 15 13
30 28 22 24 22 26 23 23 16 16
20 32 27 25 24 26 27 26 19 24
10 36 28 27 28 30 31 36 25 26
5 38 28 30 30 35 36 37 26 29
2 39 28 31 34 38 38 37 35 34
BEGIN DATE= APR 1
FORECAST 1 WK 2 WKS 3 WKS 4 VWKS 1 MO 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 1 2 0 1 1 1 2 2
a5 2 6 2 3 3 1 3 5 6
90 4 7 7 4 4 3 3 5 6
80 8 10 11 10 7 7 5 7 7
70 12 12 13 13 8 8 6 8 9
60 16 14 16 14 9 11 6 8 10
50 20 15 17 17 12 13 9 12 13
40 24 17 19 20 18 16 10 14 17
30 28 18 21 24 23 24 12 15 20
20 32 23 24 27 28 28 20 16 20
10 36 26 29 32 31 33 23 21 27
5 38 29 32 35 36 37 27 24 30
2 39 35 35 36 38 38 32 25 32
BEGIN DATE= MAY 1
FORECAST 1 WK 2 WKS 3 WKS 4 VWKS 1 M0 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 0 0 1 2 1 3 5 3
95 2 1 1 2 2 3 3 5 5
90 4 2 2 3 3 4 3 5 [
80 8 4 4 4 5 6 10 11 10
70 12 7 6 4 5 7 10 13 12
60 16 11 7 8 9 8 10 14 13
50 20 17 12 9 11 11 11 17 15
40 24 18 14 11 12 12 13 18 17
30 28 22 20 i4 13 12 15 18 21
20 32 25 25 21 19 14 19 24 25
10 36 30 30 30 28 25 24 28 27
5 38 34 31 33 30 30 26 28 29
2 39 35 38 34 34 34 27 28 32
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BEGIN DATE= JUN 1
FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 MO 2 MOS 3 MOS 4 MOS
7% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 0 1 3 5 5 8 9 9
95 2 2 4 6 6 6 9 10 10
90 4 7 7 8 8 9 10 10 10
80 8 7 12 13 12 11 14 10 11
70 12 9 12 14 12 12 17 14 16
60 16 14 13 16 17 17 18 17 18
50 20 17 15 17 19 19 18 18 19
40 24 21 18 17 19 21 20 22 24
30 28 22 19 21 22 22 24 24 27
20 32 25 20 22 24 24 28 31 32
10 36 28 24 24 25 25 33 33 34
5 38 31 26 25 26 26 36 37 37
2 39 33 30 26 29 30 37 37 38

ESP FORECAST ERROR DISTRIBUTION, WITH UPDATING

BEGIN DATE= JAN 1

FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 MO 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 2 3 2 2 1 1 2 3
4 95 2 3 3 5 3 4 9 8 6
| 90 4 5 5 10 9 11 11 9 8
80 8 15 15 12 15 14 17 13 12
70 12 25 22 19 17 18 19 18 15
l 60 16 27 24 27 26 25 19 19 20
50 20 27 29 27 28 26 23 24 22
40 24 28 31 29 30 31 36 31 28
30 28 28 32 32 34 37 36 33 32
20 32 29 32 36 36 38 37 38 37
10 36 29 33 38 39 39 40 40 38
5 38 29 34 38 39 39 40 40 39
l 2 39 29 34 38 39 39 40 40 39
BEGIN DATE= FEB 1
l FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 MO 2 MOS 3 MOS 4 MOS
7% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 7 1 5 6 6 3 2 1
95 2 8 6 5 6 6 5 2 2
90 4 16 18 5 6 6 5 4 3
80 8 24 23 20 13 12 11 9 11
70 12 30 28 27 21 21 18 11 13
60 16 31 29 29 30 31 25 21 16
50 20 31 32 30 33 34 29 26 19
40 24 31 33 30 35 36 31 30 21
30 28 34 33 34 36 36 32 30 23
20 32 35 35 35 38 37 36 30 24
10 36 35 37 37 38 38 39 37 25
5 38 35 37 38 38 38 39 39 35

2 39 35 37 39 40 40 40 39 38
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BEGIN DATE= APR 1
FORECAST 1 WK 2 WKS 3 WKS 4 WKS 1 M0 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. 0bs. Obs. Obs.
98 1 1 1 1 1 1 1 2 2
95 2 5 4 3 4 1 2 3 5
90 4 7 9 5 5 5 3 4 5
80 8 12 11 9 7 7 3 6 5
70 12 13 14 14 9 7 5 8 8
60 16 15 16 16 12 12 6 8 9
50 20 17 17 18 13 12 7 10 10
40 24 20 20 22 18 21 9 12 11
30 28 21 22 23 22 24 13 13 15
20 32 22 26 27 25 26 19 14 15
10 36 27 29 30 30 29 25 20 26
5 38 29 34 33 34 35 29 23 30
2 39 33 34 36 36 35 34 24 32

BEGIN DATE= MAY 1
FORECAST 1 WK 2 WKS 3 WKS 4 VWKS 1 MO 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.

98 1 2 0 1 2 3 3 3 3
95 2 2 2 3 3 3 3 6 4
90 4 4 3 3 5 4 3 6 6
80 8 6 4 4 5 5 6 7 8
70 12 8 6 4 5 6 8 8 9
60 16 9 8 5 6 6 10 11 10
50 20 11 13 8 9 10 12 13 13
40 24 14 17 12 11 11 13 15 14
30 28 16 20 16 14 12 15 17 17
20 32 24 21 22 19 17 16 18 20
10 36 29 25 26 26 24 19 26 24
5 38 30 29 30 28 26 22 27 27
2 39 34 34 30 29 28 25 27 30
BEGIN DATE= JUN 1
FORECAST 1 WK 2 WKS 3 WKS 4 VWKS 1 MD 2 MOS 3 MOS 4 MOS
% Exp.No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs.
98 1 1 0 2 3 3 8 7 8
95 2 3 3 3 3 4 8 10 10
90 4 7 8 6 7 8 9 10 12
80 8 9 13 10 10 11 12 12 12
70 12 13 13 13 11 13 16 13 13
60 16 15 14 16 17 16 17 14 16
50 20 17 15 19 18 18 19 18 19
40 24 18 18 20 21 20 20 19 19
30 28 21 20 20 21 21 21 20 21
20 32 27 24 25 23 25 25 29 29
10 36 32 28 26 26 26 30 32 32
5 38 34 29 28 29 29 35 37 37
2 39 35 32 30 30 31 37 37 37
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Estimated soil water storage Wy on forecast date after

updating (mm)

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

Jan.1

85
22

126.
114.
17.
12.
102.
132.
34.
53.
129.
124.
20.
128.
122,
93.
100.
115.
129.
120.

81

- 54.
129.
127.

121

125.
124.

66.
126.

71

16.
25.
40.
133.
126.
15.
54.
34.
16.
84.

.29
.99
63
62
87
53
39
85
39
16
14
54
73
32
51
82
85
87
66
57
.04
02
56
73
.72
67
80
11
69
.12
30
21
21
31
56
38
80
88
42
46

Feb.1

10

99

105

108

71
79

71
0

92

3

35

10

9

88

57

.31
102.

90

.56
47.
98.

19
54

.31
99.

31

.69
44 .
27.

75
85

.70
56.

17

.94
.33
.38
95.
49.
74.
25.
74.
17.
32.
19.

42
41
81
31
60
21
47
64

.07
85.

51

.90
85.

68

.28
56.
.38

5.
100.

14

46
75

.25
113.
.54
10.

74

67

.33

35.
103.
106.

90
10
00

98

Mar.1

92.
73.
93.
69.
56.
70.
105.

51

35.
89.
116.
90.
62.
117.
64.
127.
67.
112.
53.
86.

121
27

89.
92.
135.
74.
73.
91.
72.
98.

61
81

114.
108.
100.
88.
67.
66.
135.

58

91
19
02
95
66
71
06
.75
56
04
36
86
51
15
05
12
91
28
34
89
.38
.81
29
90
31
97
13
24
75
80
.93
.62
23
14
25
29
72
40
26
.67

Apr.1

87
64
84

149.
82.
89.

41

60.
6.
95.
53.
143.
116.
116.
94.
93.
150.
130.
8.

51

103.
113.

63.
115.

111

64.
106.
60.
80.
117.
116.
58.
58.
83.

31

140.
103.
129.
150.

53

.23
.71
.26
99
88
84
T7
93
54
22
61
76
43
53
89
99
00
26
52
.87
99
11
96
73
.07
04
60
97
91
81
55
85
59
57
.86
70
45
56
00
.58

May 1

93.
18.
96.
132.
22.

121

131

135.

96.
167.
134.
118.
128.
109.
147.
118.

98.

68.
150.

20.
123.
108.
.73
100.
159.

80.
155.
.94
112,
.22
161.
164.

99.
106.

94.
136.
119.
130.

11

144

161

36
38
97
27
15

.15
17.
69.
.54

27
71

35
97
86
66
95
95
74
08
11
25
24
26
27
74
75

34
89
74
15

29

40
18
24
42
05
00
20
40

Jun.1

149.
133.
94.
103.
117.
97.
115.
149.
148.
102.
60.
79.
112.
94.
86.
47,
.00
105.
146.
97.
90.
.88

161

105.
118.
.00
83.
93.
136.
96.
.33

81

76.
86.
69.
.07
.83

41
128

49.
114.
146.

72.
.88

101

93
92
06
32
64
53
41
27
47
19
73
48
62
06
21
00

62
32
56
31

52
36

84
05
55
60

40
58
99

00
40
59
90
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Estimated soil water storage W; on forecast date before
updating (mm)

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

Jan.1

112
35

124

49.
46.
116.
111.
88.
104.
94.

142

56

61

112

66

48

61
54

44

.66
.39
108.

53

.93
55

09
18
14
23
57
18

.52
74.

26

.57
130.
117.

96.

18
76
32

.87
43.

46

.26
118.
54.

70
97

.61
57.

87

.03
119.
92.
93.
128.
106.
67.
59.
88.
132.

30
47
37
83
51
18
40
88
45

.61
.18
44.

59

.39
24.
74.

08
81

Feb.1

54

18.
48.
62.

71
142

45.
70.
56.
30.
107.
117.
65.

111
131

40.

76

140.

62

124.
99.

43

96.

142
81

73.
127.

101

129.
76.
58.
33.
44 .
56.

118.
83.

119.
29.
82.

61

.63
40
20
48
.07
.58
85
14
77
39
12
41
67
.17
.78
07
.32
80
.68
45
28
.93
20
.28
.67
44
53
.42
29
36
27
49
37
49
19
06
85
20
51
.01

Mar.1 Apr.1 May 1 Jun.1

92.91 71.02 95.39 125.99
73.19 86.91 137.44 117.97
93.02 83.43 112.56 136.76
69.95 73.84 124.67 95.91
56.66 92.74 129.77 106.70
70.71 86.23 130.33 103.83
105.06 66.32 81.97 138.49
51.75 52.95 82.86 134.52
35.56 85.49 127.43 133.45
89.04 84.51 140.13 87.04
116.36 88.86 114.08 83.17
90.86 124.76 138.40 112.78
62.51 115.80 126.16 128.52
117.15 98.01 126.06 124.83
64.05 95.44 114.76 98.44
127.12 91.20 101.86 57.30
67.91 94.46 92.13 139.14
112.28 68.40 136.96 125.74
53.34 120.46 114.33 74.64
86.89 76.75 79.09 119.56
121.38 115.68 118.70 125.31
27.81 104.61 132.38 139.09
89.29 92.71 93.78 127.13
92.90 88.55 117.75 125.60
135.31 110.71 104.48 137.85
74.97 66.30 83.60 70.29
73.13 104.33 122.46 130.84
91.24 68.02 95.39 134.36
72.75 69.08 140.47 105.83
98.80 86.69 106.86 74.95
61.93 122.20 123.74 101.10
81.62 89.69 138.84 93.56
114.23 95.84 123.90 78.04
108.14 90.82 137.94 72.29
100.25 75.66 116.81 121.02
88.29 117.79 99.83 45.06
67.72 101.62 87.16 114.48
66.40 78.73 124.73 123.12
135.26’ 113.42 101.78  92.52
58.67' 94.82 133.16  90.07




