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ABSTRACT

A methodology is presented for regionalization of the parameters of a
macroscale land surface hydrologic model (the two-layer variable infiltration
capacity model, VIC-2L) for the Arkansas-Red River basin using station
hydrological and meteorological data and distributed land surface characteristics
from digital elevation data and the SCS STATSGO soil data base. The approach
is developed using a search procedure to provide catchment estimates of the
parameters of the VIC-2L model foi a set of catchments of intermediate size
(drainage areas 100 to 10,000 km“) within the Arkansas-Red River basin.
Regional equations are developed to relate the VIC-2L model parameters to
measurable physical quantities. The optimum parameters of the VIC-2L model
for 34 catchments in the Arkansas-Red River basin are the dependent variables
in the regional regression equations. The independent variables are catchment
characteristics derivable for digital elevation, soils, climatalogical, and land cover
data. The approach is validated by comparing observed and simulated runoff
records from 6 catchments not in the 34 calibration catchments. The model
performance was generally quite good, especially for humid and sub-humid
catchments. :

Three applications of a grid-based version of the VIC-2L model to the
Arkansas-Red River basin at the one degree spatial scale are described, using
variations of the regionally estimated parameters. In the first application, the
water balance components for the basin were estimated using a simple spatial
interpolation scheme applied to the parameters from the 40 calibration
catchments. In the second application, the regional parameter estimation
equations were used to compute the water balance components. In the third
application, the VIC-2L model was run in a full energy and water balance mode,
and was tested for its ability to simulate large-scale sensible and latent heat
fluxes using the regional parameter estimation scheme. Simulated monthly
hydrographs for the Arkansas-Red River basin using the regional parameters are
in reasonably good agreement with the observed hydrographs. The average
absolute relative error in the simulated annual runoff for ten gaging stations is
about 10 percent in the case of the regional parameters and about 20 percent in
the case of the interpolated parameters. The magnitude of the bias is less for the
humid eastern part of the basin than the arid west.

Spatially averaged evaporative fluxes predicted by the VIC-2L model are
in good agreement with those estimated using an atmospheric water budget for
the Arkansas-Red River basin. The budgets are relatively insensitive to the two
forms of regional parameter estimates that were tested. However, significant
differences in the temporal means of the water balance components for individual
grid cells are observed. The largest relative differences in the runoff ratios occur
in the most arid part of the region, while the largest differences in the
evaporation ratios occur in the humid area. The results indicate that the
surface hydrological cycle in the Arkansas-Red River basin is mainly water
rather than energy limited, especially at the annual scale.
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CHAPTER 1 INTRODUCTION

1.1 Background

Global atmospheric general circulation models (GCMs) have been
developed to simulate the present climate and to predict future climate change.
The limited predictive capability of existing GCMs, and the complexity of land-
ocean-atmosphere interactions prevent reliable assessments of hydrologic cycle
modifications, such as those resulting from possible global warming. The
importance of these issues have been documented by Mahfouf et al. (1987),
Avissar and Pielke (1989), and Wood (1991). Furthermore, at the scale of
watersheds or river basins, the resolution of GCMs does not permit detailed
assessments of changes in the water balance that must accompany climate
change (Wood, 1991). In addition, modeling experiments have revealed the
magnitude and persistence of the influence of land-atmosphere interactions upon
regional climatology (Delworth and Manabe 1989, Shuttleworth 1991, Wood
1991). This finding was especially far-reaching for surface hydrology as it lead to
the general acknowledgement of the importance of multiscale dependence
between large-scale and regional climate, and regional climate and fiéld-scale
hydrology. Questions about the global water balance (the spatial and temporal
characteristics of water in all compartments of the global system: atmosphere,
oceans, and continents) have therefore become more important in modern

hydrologic science (Eagleson, 1986).

The problem of how to represent land surface processes in GCMs has
drawn the interest of climate modelers, and increasingly, hydrologists and
systems ecologists. Early generation GCMs did not include representations of
land surface hydrology, instead they used fixed boundary conditions, prescribed
surface wetness and temperature (Manabe et al., 1969), and thus could not
account for the feedbacks between the land surface and atmosphere. Subsequent

numerical experiments (Charney et al. 1977, Mintz 1984, and Rowntree 1988)



demonstrated the sensitivity of modeled climate to the land surface moisture
state and brought concerted effort to incorporate more realistic hydrology

algorithms within the very real constraints of computation time (Eagleson, 1986)

In view of the limitations of GCMs in predicting regional climatic
conditions, climate modelers have devised limited-area-meteorological (LAM)
models, whereby fine-mesh models are imbedded in a coarse-resolution GCM
over an area of interest (Giorgi and Mearns, 1991). The GCM provides initial
and boundary conditions for the LAM, which in turn, produces high-resolution
hydroclimatic predictions. Hydrologists have used nesting approaches whereby
GCM outputs, such as average temperature and precipitation over the area of
interest are used to drive numerical models of the regional hydrologic cycle
(Lettenmaier and Sheer, 1991).

Predicting variations in the earth’s climate system has been recognized by
the international scientific community to require improved understanding of
interactions between the atmosphere, land surface, and oceans. Since 1979, the
World Climate Research Programme (WCRP) science committees have fostered
efforts aimed at quantitative understanding of climate and predictions of global
and regional climate changes on all time scales. The recognition that water and
energy budgets were inadequately understood on regional and global scales led to
establishment of the Global Energy and Water Cycle Experiment (GEWEX) in
1987. The GEWEX Continental-Scale International Project (GCIP) initiative is
the first major project under GEWEX. GCIP is designed to improve
understanding and the ability to model for climate prediction purposes the
coupling between the atmosphere and the land surface on a continental scale.
The GCIP program is focused on the Mississippi River Basin to take maximum

advantage of the existing meteorological and hydrological networks.

A primary objective of GCIP is to determine the space-time variability of
water and energy fluxes at continental scales. The GCIP Science Plan (1992)
recommends that the research program be organized along a multi-scale

framework which includes small scale areas (SSA) with dimensions ranging from



I

100 to 102 km2; intermediate scale areas (ISA) with dimensions ranging from 102
to 10% km2; and large scale areas (LSA) with dimensions ranging from 10° to 106
2

km®. The initial focus of the GCIP program is the Southwest Large Scale Area

(LSA-SW) which essentially comprises the Arkansas-Red River basins.

An important scientific objective of GCIP is the development and testing
of macroscale hydrological models appropriate for modeling the water and energy
budgets at the LSA scales. The GCIP science plan identifies an implementation
strategy consisting of model development and testing at the SSA and ISA scales,
and up-scaling to the LSA scale. It is expected that land surface hydrologic
model-based estimates of the space-time variability of water and energy fluxes at
the LSA scale will be compared to similar water budget estimates from
atmospheric analysis. For this modeling strategy to be successful and to provide
reliable estimates of the LSA water and energy fluxes, the macroscale hydrologic

model must be calibrated using data from smaller regions within the LSA.

Recent field experiments such as the First International Satellite Land
Surface Climatology Project (ISLSCP) Field Experiment (FIFE) (Sellers, et al.,
1989) have led to a better understanding of the physical relationships which
govern land surface-atmosphere interactions (Betts et al., 1993). This
understanding, along with the highly detailed data provided by field experiments
has, in turn, led to the development and improvement of hydrologic models used

to simulate these interactions.

1.2 Effects of hydrological processes on climate

Hydrological processes at the land surface play an importént role in
understanding global climate change. From the point view of atmospheric
models, the role of surface hydrological processes is to partition the radiative
energy reaching the land surface, essentially into latent and sensible heat, which
are controlled by the temperature and wetness of the surface. Reasonable
representations of hydrologic processes are required at scales similar to those of
GCMs (currently hundreds of km). Global data appropriate for specifying

hydrologic parameters of GCM surface hydrology schemes are at present



virtually nonexistent. Furthermore, measurement of individual processes in
medium to large river basins using site instrumentation posés practical
difficulties. Use of large hydrologic data bases (e.g. Wallis, et al., 1991; Slack et
al., 1992) offers one possibility for implementation of regional parameter
estimation methods. However this implies application of parameter estimation
schemes for a large number (i.e., hundreds to thousands) of catchments, which
necessitates the use of computationally efficient parameter estimation

algorithms.

Soil moisture has been shown to have an important role in atmospheric
circulation (Ookouchi et al. 1984, Mahfouf et al. 1987). The ratio of sensible to
latent heat, the Bowen Ratio, depends directly upon the availability of water at
the land surface (Mintz 1984, Sud et al. 1989). Surface properties, such as
topography, geology, and vegetation, affect the partitioning of incoming solar
energy and hence moisture fluxes. Soil properties can vary widely over scales
much smaller than the resolution of atmospheric models (Dooge, 1986). The
scientific issue is, therefore, how to describe hydrologic processes at large scales,

when much of the knowledge is from smaller scales.

Among the components of the global hydrologic cycle, groundwater is one
of the most difficult to quantify. The reasons are obvious: monitoring of ground
water fluxes is difficult and expensive to implement (Zektser and Loaiciga, 1989).
Many of the early studies of the global water cycle excluded the analysis of
ground water. The quantification of baseflow, which is closely related to
groundwater for large river basins and at a global scale is nonetheless an
important issue. Baseflow is related to the state of soil moisture which affects the
energy and momentum fluxes. It participates in the hydrologic cycle as the
subsurface component of river runoff, or baseflow, and as direct ground-water
flow from land to large lakes, seas, and oceans. Modeling baseflow and evaluating
related parameters (for example, the maximum soil moisture and maximum
baseflow) is necessary to model the processes of transpiration, soil evaporation,
runoff, and heat transport within the soil. Each of these processes affects the heat

exchange between the atmosphere and land surface.



The role of the river runoff in the global hydrologic cycle is clearly a
significant one and it is important that the runoff process are adequately
represented.  Knowledge of the spatial location of discharge within river
catchments is essential for many hydrological applications such as the assessment
of the sensitivity of water resources to climate change. Furthermore, in climate
studies, there is a need for reliable global estimates of surface runoff on a regular
grid to test the outputs of GCMs. Runoff information at large scale in
conjunction with climatological data would lead to better understanding of the

physical basis of climate models.

Various approaches have been used for the computation of grid estimates
of hydrological variables. Among these methods are isoline interpolation,
Thiessen polygons, weighted averaging and Kriging. But these methods are
applicable only when a dense network of observations 1s available or when the
spatial variation in the parameters of interest is modest. Clearly, what is
needed is an approach which takes into account as much ancillary information as

possible, in addition to the limited number of direct observations.

One alternative to the simple approaches referred to in the previous
paragraph is to use a water balance model such as the two-layer variable
infiltration capacity model (VIC-2L) to extend the observational information.
Such models can be applied to grid cells in such a way as to obtain estimates for

the water balance components.

1.3 Hydrological land-surface models and their regional transferability

Hydrological land-surface process models can be classified into two groups.
The first group includes simple conceptual models (lumped or semi-distributed).
Among these models are Arno model (Francini and Pacciani, 1991) and VIC
model (Wood et al., 1992). These models have been successfully applied for
different purposes over a range of spatial scales. However, the state of their
parameterization, and accordingly their regional transferability, is limited, since

the parameters are usually estimated on the basis of existing streamflow records.



The second group includes detailed distributed, grid based and physically-based
models. Examples on these models are the System Hydrologique Europeen (SHE)
(Abbott et al., 1986) and the Institute of Hydrology Distributed Model (IHDM)
(Beven et al., 1987). They are fully parameterized and accordingly, at least in
principle, are regionally transferable. Becker and Pfuetzner (1990) argue that
such models should be applicable to ungaged basins. However, especially for
large-scale applications, intensive computations are required, and assembling the
necessary input data for the elementary units of the chosen grid (meteorological,
physiographic, soil, vegetation data) requires enormous effort and time. At
smaller scales, detailed hydrological models are required, while at larger scales
simple models have often proved to be quite adequate. In this context, land
surface schemes such as the bucket model (Manabe et al., 1965) and the variable
infiltration capacity (VIC) model (Wood et al., 1992) can be classified as
belonging to the first group. Our intent is to study the transferability of such a

model using regionalization schemes applicable to large scale catchments.

Bucket algorithms were used to represent land-surface hydrology in many
first generation GCMs (e.g. Manabe et al., 1965). These parameterization ignored
the role of vegetation algorithm, using instead a so-called beta function to relate
actual evapotranspiration to bulk aerodynamic potential evapotranspiration and
soil moisture. Recently, bucket models have been replaced by soil-vegetation
schemes (SVATS). Of these, SiB (Simple Biosphere model) (Sellers et al., 1986)
and BATS (Biosphere-Atmosphere Transfer Scheme) (Dickinson et al., 1986) are
the best known. These models, which represent the role of vegetation explicitly,
require specification of a large number of parameters. Wood et al (1992)
developed the . variable infiltration capacity (VIC) model which requires
estimation of three parameters: an infiltration parameter, an evaporation
parameter, and a base flow parameter. Liang et al: (1994) generalized the VIC
model to include multiple soil layers and spatially varying vegetation and

evapotranspiration with a corresponding increase in the number of parameters.

In most cases, the parameters of SVATS schemes, such’ as SiB, BATS,



and VIC-2L, have been estimated using data from small scale meteorological
studies (Sellers et al., 1989), and there are questions as to whether the use of
point or small-scale parameters are valid at the GCM grid scale (Wood et al.,
1992). Avissar and Pielke (1989), Entekhabi and Eagleson (1989), and
Famiglietti and Wood (1991) have attempted to develop simpler land surface
models that still incorporate important features of the governing hydrological

processes.

In previous large scale applications of the VIC or (Arno) model, (e.g. Stamm et
al, 1994; Rowntree and Lean, 1994) parameters have been selected subjectively,
e.g., from ranges suggested by Dumenil and Todini (1992) based on streamflow
calibration for a few catchments. Obviously, for application in GCMs, global
parameter estimation using streamflow data is infeasible. In this study, we will
focus on regionalization of the VIC-2L model parameters in order to improve our
understanding of the hydrological cycle at large scales. This implies application

of parameter estimation methods for a large number of catchments.

Hydrological regionalization is mainly concerned with transfer of information,
typically from gaged to ungaged catchments (e.g. Riggs, 1972; Mosley, 1981).
Regionalization of the parameters of rainfall-runoff models for prediction at
ungaged catchments is not an easy task. A few attempts have been made,
including studies by Jarboe and Haan (1974), Magette et al. (1976), Weeks and
Ashkenasa (1985), and Weeks and Boughton (1987). Most of these approaches
are similar to the extent that regression relationships are developed between the
optimized parameters and catchment characteristics for a set of gaged
catchments. These regionalization studies have varying limitations. There are
two main reasons for the limited success in the regionalization of the rainfall-
runoff models. The first is that, at the catchment level, the parameters may be
poorly determined (e.g. Kuczera (1983)), which makes the task of developing
useful regionalization relationships more difficult. The second reason is that some

parameters may not be well estimated by regional relationships.



1.4 Research objectives

The goal of this research is to develop a methodology for regionalization of
the parameters of a deterministic soil-vegetation-atmosphere transfer scheme
(SVAT) based on hydrologic principles. This is to be achieved by first
identifying efficient estimation procedures for hydrological parameter estimation
at gaged sites and then extending these estimates using multivariate techniques
to develop relationships between the site specific parameters, and climate and
land surface characteristics. Initially, the approach will be developed by
estimating the parameters of the VIC-2L model as a case study. A relatively
simple methodology (regression-based regionalization) will be explored that
makes use of land surface characteristics that are readily obtainable from maps,
tables, and an archival data base that do not require field surveys. Once the
methodology is developed, the ultimate intent is to use it in parameterization of
a land surface scheme appropriate for GCMs used in numerical weather

prediction and climate simulation.

The specific objectives of this research are:

1) To explore two alternative approaches for estimation of the parameters of the
VIC-2L model. The first method, complete optimization, estimates all model
parameters simultaneously using a search procedure. The second method uses
spatially distributed soils data directly to determine selected parameters of the
VIC-2L model with the remaining parameters determined using a search

procedure;

2) To develop regional relationships for parameterization of the VIC-2L land
surface scheme in GCMs. This objective will be achieved through development of
regional equations using multiple linear regression based on the assumption that

all the catchments are from the same hydrologically homogeneous group;

3) To investigate different possibilities for applying the regionalized VIC-2L



model for large river basins. Three applications will be investigated: i) the VIC-
2L model parameters estimated via a search procedure will be used in
conjunction with a distributed soil database linearly interpolated and overlaid on
a spatial grid to evaluate the water balance of the Arkansas-Red River basin; ii)
regional equations of the VIC-2L model will be used to evaluate the water
‘balance of the Arkansas-Red River basin; and iii) large scale surface energy
fluxes in the Arkansas-Red River basin will be estimated using the regionalized
VIC-2L model. Chapters 2, 3, 4, 5 of this dissertation provide a thorough
account of the descriptive, analytical, and quantitative components of the work

completed to the fulfill these objectives.

1.5 Thesis Structure

The study area, as well as station hydrologic and meteorological data
bases, land surface characteristics estimated from digital elevation data, the
distributed soils (SCS STATSGO) data base, and vegetation data bases are
described in Chapter 2. The VIC-2L model, and adaptations for grid-based
implementation as well as parameter estimation strategy are presented in
Chapter 3. Chapter 4 introduces the parameter regionalization methodology for
the VIC-2L model. Generally, the structure of the thesis is that chapters or
groups of chapters represent stand alone contributions that either will be or have

been submitted for journal publication.

Chapter 5 describes three applications of the VIC-2L grid-based model for
the Arkansas-Red River basin. Section 5.2 is essentially identical to a paper
that will abpear in the Journal of Geophysical Research (Abdulla et al., 1995); it
describes an application of VIC-2L parameters for 44 catchments in the
Arkansas-Red River basin which were linearly interpolated, and overlaid on a
one degree grid. The model-dervied evapotranspiration spatially integrated over
the entire Arkansas-Red basin is also compared to evapotranspiration estimated
independently from an atmospheric moisture budget. Section 5.3, along with
part of Chapter 4, constitutes the major portion of a second manuscript. This

section describes the application of the regionalized VIC-2L parameters for large
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scale grids. Finally, Section 5.4 composes a paper presented at the European
Geophysical Society 1995 meeting (Abdulla et al., 1995b) in which the VIC-2L
model is tested for its ability to simulate large scale sensible and latent heat
fluxes in the Arkansas-Red River basin. Conclusions and recommendations of

future work are given in Chapter 6.



CHAPTER 2 STUDY AREA AND DATA SELECTION

In this chapter, the study area and data used in this study are described.

2.0 Overview of the adopted approach

Figure 2.1 illustrates schematically the methodology that will be followed
in regionalization and application of macroscale hydrological model for both the
intermediate scale areas (ISA) with dimensions ranging from 102 to 10% km? and
. the large scale areas (LSA) with dimensions ranging from 109 to 106 km2. The
first step in the methodology is to identify a number of ISA catchments for
which long records of climatological and streamflow data are available. In this
study the LSA represents the entire Arkansas-Red River basin, while ISA

represents a number of catchments within the Arkansas-Red River basin.

The second step is to calibrate the hydrologic model (described in Chapter
3) to these catchments to determine the locally optimized hydrological
parameters. Since the purpose of this study is to regionalize the parameters of a
hydrologic model, physical characteristics of the catchments must be known. At
this point, we do not know which of the catchment attributes should be
considered. From a hydrological standpoint, surface runoff and baseflow are
affected by climatological, morphological, geological, and hydrogeological factors.
Unfortunately, only a few characteristics are available for some of the
catchments in published sources, such as USGS reports. Therefore, a detailed
study was conducted to select catchment attributes that are most useful for

predicting hydrologic response.

Once the optimum parameters of the hydrological model and the
explanatory variables for the ISA calibration catchments are known, the regional
relationships may be developed using a multiple linear regression. Then, these
regional relationships may be applied either to ungauged ISA catchments to

simulate streamflows or to the LSA to evaluate the water and energy budgets.
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In the following sections a description of the LSA and ISA calibration
catchments is presented. This is followed by a description of the physical

characteristics used in the parameter estimation strategy.

2.1 Study area

The study area is the Arkansas-Red River basin of the U.S. Southern
Great Plains (Figure 2.2). The Arkansas-Red River basin is the first large scale
study area of the GEWEX (Global Energy and Water Exchange) GCIP
(GEWEX Continental-Scale International Project) which seeks to quantify the
water and energy budget of the Mississippi River basin. For the purposes of
identifying ISAs (intermediate scale areas with dimension ranging from 102 to
104 km2), we also included the White River, because it is hydrologically similar
to the Arkansas and Red Rivers, and is included with the Arkansas and Red in
the US Water Resources Council Hydrological Region 11. This region includes
all of Oklahoma, and parts of Arkansas, Colorado, Kansas, Louisiana, Missouri,
- New Mexico, and Texas. The total area of this region is 637,000 km2. For
application of VIC-2L at the LSA scale, we subdivided the Arkansas and Red
basins into 61 1°x1° grid cells, 45 of which lie in the Arkansas River basin, and
16 cells in the Red River basin (for this purpose, the White River was excluded).
-Figure 2.3 shows the one degree by one degree schematization of the basin, and
the flow directions as represented in the model, along with locations at which

naturalized flows (reservoir effects removed) were available.

2.2 Selected catchments

Forty catchments were selected for the preliminary study (see Figure 2.4).
Table 2.1 lists the watersheds used in the study. These catchments are divided
into two groups. The first group contains thirty-four catchments to be used in
the development of the regional equations. The second group is comprised of six
catchments to be used to test the regionalization methodology. The area of these
catchments ranges from 285 to 5278 kmz, and the stream gage clevations range

from 53 to 2344 m above mean sea level. These catchments are taken from three
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different sources i) A subset of the list of continental U.S. stations with long-
term unregulated streamflow records assembled by Wallis et al., (1991; hereafter
referred to as WLW); ii) The USGS Hydroclimatological Data Network (HCDN;
Slack et al., 1992); iii) regulated catchments for which naturalized streamflows
(regulation effects removed) have been estimated by the Tulsa District of the
Department of the Army Corps of Engineers (see Figure 2.3 for the location of
the naturalized streamflow gages). Combination of these three data sources
allows representation of a wider range of catchment areas than the WLW
catchments, which are mostly relatively small. The third source includes several
large catchments that are of size comparable to the grid cells in the one degree

representation (about 9000 km2).

2.3. Estimation and selection of the catchments physical characteristics

It is necessary to decide from a hydrological standpoint which
hydrological, hydrogeological and climatological variables should form the basis
for development of the regional parameter estimation methodology. Many factors
that affect the hydrologic response such as baseflow are mentioned in the
literature. The most important variables can be classified into three groups: I)
Climatological factors; II) Morphological factors; III) Geological and
hydrogeological factors. These characteristics, which are not directly available
for most of the catchments, can be calculated from ancillary data such as the
closest rainfall stations (for mean annual precipitation and intensity), digital
elevation files (for elevation, total stream length, slope) and soil reports and

data bases.

2.3.1 Climatological factors

Climatological factors govern the potential for recharge of ground water
and the importance of direct runoff relative to infiltration and baseflow. The
principal meteorological influence on baseflow is precipitation (Riggs, 1972).
Another important factor is evapotranspiration, which depends on temperature,

wind, humidity, available water, and the nature of vegetation cover.
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Daily precipitation, minimum, and maximum temperatures were taken
from National Climatic Data Center cooperator stations, available from two
sources (see Figure 2.5). An initial data set was assembled consisting of all of
the WLW stations (originally screened by Karl et al. (1990) as part of the
Hydroclimatological Data Network (HCN) of Oak Ridge National Laboratories).
For the grid based model of the entire Arkansas-Red basin, we tried to have at
least one precipitation station for each grid cell, and preferably two. This was
accomplished by supplementing the WLW stations using additional NCDC
cooperator station data available from commercial CD-ROMs. The
supplemental stations were selected based on the length of records, record
completeness, station locations, and, for the headwaters grid cells, giving
preference to higher elevation locations which are otherwise poorly represented.
The supplemental stations were processed for estimation of missing data using
methods similar to those employed by WLW. In the case of the smaller
calibration catchments, a single precipitation station, located as close as possible

to the catchment centroid, was used.

One hundred and twenty precipitation stations were selected for the
analysis from the sources noted above. These stations are located over the entire
study area. Thirty years of daily rainfall during the period 1948 to 1977 were
analyzed for the 120 stations. Preliminary analysis of ten of these stations
suggested that three seasons are sufficient for representing the rainfall
characteristics. These seasons are: Season 1, from November to May, Season 2,
from June to August; and Season 3, from September to October. Different
statistical properties of rainfall are considered: mean seasonal interarrival times
defined as the mean of the time between the rainfall events: seasonal daily mean
rainfall amounts, mean annual rainfall amount, annual number of events, and
mean annual intensity of rainfall define as the annual precipitation divided by
the total number of events. An event is defined as the occurrence of a day with a
total rainfall amount exceeding a specified threshold (0.25 mm). Figure 2.6
shows histograms of the mean annual rainfall, mean annual intensity, and mean
annual number of events. Figures 2.7 and 2.8 show the ranges of the seasonal

mean and coefficient of variation of storm depth and interarrival time.
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2.3.2 Morphological factors

In this study, all the catchments were delineated using GRASS (the
Geographic Analysis Support System) which is a geographic information system
(GIS) developed by the U.S. Army Construction Engineering Research
Laboratory, Champigan, IL, (USACERL). Two different resolutions were used: 3
arc seconds (about 90 m N-S) for the smaller catchments, and 30 arc seconds
(about 1 km N-S) for the larger catchments. Digital elevation data were also
used to determine the elevation bands in headwater catchments needed to run
the snow accumulation and melt algorithm, which was the temperature index
model of the National Weather Service River Forecast System, developed by
Anderson (1973). |

2.3.3 Geological and hydrological factors

The third group of characteristics includes geological and hydrogeological
factors. Among these are soil hydraulic characteristicé, and the thicknesses and
composition of the rocks overlying the aquifers. Riggs (1972) noted that the most
important factors influencing low flow are the aquifer hydraulic conductivity and
hydraulic gradient. The underlying basin formation is also an important
determinant of base flow. According to McMahon and Diaz (1982), basins that
have more impervious formations will have lower baseflow during drought
periods. Many investigators report that streamflow characteristics are associated
with geological variations between catchments (Lull and Sopper 1965, Grant
1971, and Riggs 1973, 1972).

The soil data used in this study were extracted from the U. S. Soil
Conservation Service (SCS) STATSGO (State Soil Geographic data base). The
soil data extracted from STATSGO are the average available water capacity, the
average permeability, the areal coverage of soil hydrologic group index (which
refers to the soils grouped according to their runoff-producing characteristics).
In the following Section more details information about STATSGO and the

derived soil data.
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2.3.4 Derived soil attributes from STATSGO data base

The USDA-Soil Conservation Service is in the process of developing soil
geographic data bases to improve access to soils information. At the regional
level, a State Soil Geographic Database (STATSGO) has been developed for
river basin, multi-state, state, and multi-county resources planning. STATSGO
is a GIS-compatable data base that confirms information from SCS soil surveys
using the USGS 1:250,000-scale topographic quadrangles as base maps. The
widespread availability of a soil geographic data base is a recent development,
data bases such as, STATSGO have not, as yet, been widely used in
parameterization of hydrologic models. The STATSGO data base is utilized in
this thesis as one of the key elements in a regionalization scheme for the VIC-2L
model. Soil information from STATSGO were extracted for each of the eight
states lying within the Arkansas-Red River basins (Colorado, New Mexico,
Texas, Kansas, Oklahoma, Arkansas, Missouri, and Louisiana). In the case of

the VIC-2L model, the extracted soil information were used for:

i) determining three of the VIC-2L model parameters (the saturated
hydraulic conductivity, the residual moisture content, and the pore
size distribution index) directly using the method of Rawls and

s Brakensiek (1985) and the Kozeny-Carman equation (Ahuja et al.,
1989); and

ii)providing candidate attributes for use in regional equations to
determine the remaining VIC-2L drainage and infiltration

parameters (sece Chapter 4).

Techniques were adapted to use GRASS to manage and interpret the
multi-component attributes associated with STATSGO. These interpretation
techniques focus on forms of aggregation that generalize the more detailed
component attribute values to either avsingle value or probability values that are

then mapped using GIS according to the composition of individual STATSGO
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map units (Lytle et al., 1994).
The STATSGO/GRASS  Interface developed by  USDA-SCS

(Minzenmayer, 1992) was used to prepare multiple probability maps for a given
interpretation rating (one map per class of interpretation criteria) which consider
the rating of each STATSGO component. The methodology used for extracting
the soil data from STATSGO is illustrated in an example in Appendix A.

The procedure described in Appendix A was used to extract the map unit

averages for the following soil properties:

. bulk density,
. available water capacity (Awc),
. percent clay (PC),
. percent passing sieve number 4,
. percent passing sieve number 10,
. percent passing sieve number 200,
. permeability (Pr),
. soil hydrologic groups (Hgb, Hgc, and Hgd)

Some of the soil characteristics so estimated are described briefly below.

A) average available water capacity

STATSGO gives the capacity of soils to hold water available for
consumption by plants. It is commonly defined as the difference between the
amount of soil water at field capacity and the wilting point. It is commonly
expressed as inches of water per inch of soil. Results for the available water

capacity are shown in Figure 2.9.

b) Hydrologic group indez

Soils are assigned to one of four groups according to their runoff-producing

characteristics. Group A soils are considered to have a high infiltration rate.
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They are mainly deep, well drained, and sandy or gravelly. Group D soils have
very low infiltration rates. Soils in hydrologic groups B and C are intermediate.
Jarboe and Haan (1974) assigned an integer value for each hydrologic group as
follows: 4 for soils in group A, 3 for soils in group B, 2 for soils in group C, and 1
for soils in group D. An average group index was calculated for each catchment
similar to the above soil characteristics. For this application the percent areal
coverage of each of the soil groups was calculated. Figure 2.10 shows the areal

coverage of soil groups B and D.

The following derived soil properties were calculated for each catchment
and grid cell using the information extracted from STATSGO:
1) percent sand (PS) (defined as percent passing sieve no. 10 — percent
passing sieve no. 200),
2) percent silt (percent passing sieve no. 200 — percent clay),
3) soil porosity (TP) (total volume occupied by pores per unit volume

of soil)

4) saturated hydraulic conductivity (Kg),

6) Brooks-Corey residual water content (h,), and

)
5) Brooks-Corey pore size distribution index (Bp), :
)
7) field capacity (FC).

Results for percent sand are shown in Figure 2.11.

The factors to be considered in this study are listed in Table 2.3. The following
procedure was used to determine the average value of the soil characteristics for

each catchment:

1) the map units that are related to each catchment were identified;

2) the fraction of the catchment covered by cach map unit was
determined; '

3) the mean of each soil characteristics was determined for each map
unit as described in Appendix A;

4) the soil data for each catchment were determined using the map
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unit means weighted according to their fractional area in that
catchment.
The same approach is used to determine the average soil attributes for each grid

cell shown in Figure 2.3.

2.4 Vegetation

Six vegetation classes were generated for the Arkansas-Red River basin
from the data sets developed by Olson et al. (1983). Figure 2.12 shows the areal
coverage of each vegetation class. These data are at one-half degree resolution, so
that there can be at most four vegetation classes for each grid cell. A fractional
coverage of the grid box, as well as some prescribed canopy characteristics, is

associated with each of these vegetation types.

NOAA monthly 10 minute Normalized Difference Vegetation Index
(NDVI) data for the period April 1985 to December 1988 (taken from
EPA/NOAA/NGDC (1991)) were used to calculate the monthly average NDVI
for each 1 degree by 1 degree grid cell. For details information about how this
index is estimated, the reader is referred to Kidwell (1990). Figure 2.13 shows
the average NDVIs for both January and June. The monthly average Leaf Area
Index (LAl[n,m]) (where n=1, 2,......, 6 is the land cover class, and m=1, 2,.....,
12 is the month index) were derived from the average normalized difference

vegetation index (NDVIs) as follows:

(LAImax(n] - LAimin[n])

LAI[n,m] = LAI . [n]+ (NDVIpax[m] - NDVI

(NDVI[m]-NDVI__. [m])
min[m]) min
where LAImin’and LAImax are the minmum and maximum values of the leaf
area index for each vegetation cover, and NDVI . ~and NDVIpay are the
minimum and maximum values for each month over the entire region. The
LALhin
(SiB) by Sellers et al. (1989).

and LAlp,x were the values suggested for the Simple Biosphere Model
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Table 2.1 Calibration and validation catchments
Catchment Catchment Calibration Area Lat Long.
Numbexr Name Period sq.km degree
Calbiraton catchments
1 7057500 NORTH FORK R, MO 1948-53 1452 36.62 92.25
2 7069500 SPRING R, AR 1948-53 3063 36.20 91.17
3 7071500 ELEVEN POINT R, MO 1948-53 2053 36.65 91.20
4 7095000 GRAPE CREEK,  CO 1948-53 828 38.19 105.48
5 7152000 CHIKASKIA R, OK 1971-76 4814 36.81 97.28
6 7153000 BLACK BEAR CR, OK 1971-76 1491 36.34 96.80
7 7167500 OTTER CREEK, KS 1971-76 334 37.71 96.22
8 7172000 CANEY R, KS 1948-53 1152 37.00 96.31
9 7180500 CEDAR CREEK, OK 1948-53 284 38.20 96.82
10 7186000 SPRING RIVER, MO 1948-53 3014 37.25 94.56
11 7187000 SHOAL CREEK, MO 1970-75 1105 37.02 94 .52
12 7189000 ELK RIVER, MO 1948-53 2258 36.63 94 .59
13 7196500 ILLINOIS R, OK 1948-53 2483 35.92 94 .92
14 7199000 CANADIAN R,NM 1970-75 593 36.79 104 .46
15 7208500 RAYADO CK, NM 1970-75 168 36.37 104.97
16 7243500 DEEP FORK, OK 1971-76 5226 35.67 96.06
17 7250000 LEE CREEK , AR 1948 53 1103 35.49 94 .45
18 7252000 MULBERRY R, AR 1971-76 966 35.58 94 .02
19 © 7263000 SO FOURCHE R, AR 1948-53 543 34.91 93.06
20 7335000 CLEAR BOGGY, OK 1948-53 1864 34 .25 96 .20
21 7346070 LIT CYPRESS, TX 1948-53 1748 32.71 94.35
22 7147070 WHITEWATER R, KS 1970-75 1103 37.80 97.01
23 7147800 WALNUT R, KS 1970-75 4869 37.22 96.99
24 7195000 OSAGE CREEK, AR 1955-60 336 36.22 94 .29
25 7221000 MORA RIVER, NM 1970-75 2859 35.80 104.78
26 7229300 WALNUT CREEK, OK 1975-80 523 35.00 97.37
27 7243000 DRY CREEK, OK 1970-75 178 35.78 96.85
28 7301410 SWEETWATER CK, TX 1970-75 743 35.47 100.12
29 7304500 ELK CREEK, OK 1970-75 1421 34.91 99.11
30 7311500 DEEP RED, OK 1955-60 1598 34.22 98.45
31 7311700 NORTH WICHITA R,TX 15975-80 2426 33.82 99.79
32 7332500 BLUE RIVER, OK 1970-75 1232 34.00 96.24
33 7342500 S. SULPHUR R, TX 1970-75 1364 33.36 95.59
34 7343000 N. SULPHUR R, TX 1980-85 714 33.47 95.59
Validation Catchments
35 7068000 CURRENT R, MO 1948-53 5278 36.62 90.85
36 7191000 BRIG CABIN CK,OK 1948-53 1165 36.57 95.15
37 7207500 PONIL CREEK, NM 1948-53 442 36.57 104.95
38 7218000 COYOTE CREEK, 1970-75 556 35.92 105.16
39 7340000 LITTLE RIVER, AR 1948-53 6894 33.92 94 .39
40 7343500 WHITE OAK CREEK, TX 1970-75 1279 33.32 95.09
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Fig. 2.1 Schematic diagram of research approach
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Fig. 2.9 Available water capacity of the surface layer for the Arkansas-Red River basin.
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Fig. 2.11 Sand content of the surface layer for the Arkansas-Red River basin.



|98
S

: I -
1i Lo {EENENRRE Jm
Lo HNARENRENE Al sl dis sl
kit 11T NANEARENEEEEERNER
! (1} I PY L L LT i P PR i
T EEEENNNNEEEN NN
g ESEEEEEENEENEENN N
e | ENSEERENENNENERRNNE ‘
T 0 O O OO O N R O O O O O I
NESEERNEEENEENERNE NN
HNNEENEEENNEENEEREREN
] AENENENEEREEENEEREER
AREENEE HEREENREENER
HEEN EEREEENEN
EREEEEEN EERENN ==
“HEEEN EEREEE

-y - * e o

Short Grass i hﬂ Alpine ﬁ

Woodland

Tall Grass and Shrub

4 \
Evergreen Forest E\\\\ Deciduous Forest

Fig. 2.12 Vegetation classes in the Arkansas-Red River basin



January
40 ° N
31 ° N
June
40 ° N
-
31 ° N

107 ° W 90 ° W

50 100 150 200
NDVI

Fig. 2.13 Average monthly NDVI value for the Arkansas-Red River basin.




34



CHAPTER 3 MODEL DESCRIPTION AND PARAMETER
ESTIMATION

This chapter describes the functional elements of the chain of models used
for simulating the components of the water and energy budgets in a multi-scale
framework (i.e. intermediate scale areas (ISA) with area ranging from 102 to 104
km? and large scale areas (LSA) with area ranging from 109 to 106 km2) as well
as alternative approaches for estimation of the parameters of a macroscale

hydrologic model.

3.1 Introduction

This chapter describes a modeling strategy that will allow validating of
macroscale energy-water balance models appropriate for modeling the water and
energy budgets at the LSA scale (see Chapter 2 for description of terms). For
this modeling strategy to be successful and to provide reliable estimates of the
LSA water and energy fluxes, the macroscale hydrologic model must be
calibrated using data at smaller scales within the LSA. This will also permit the
development and testing of the regional equations for the VIC-2L model
parameters, which is the primary goal of this thesis. For this purpose,
alternative approaches for direct estimation of the hydrologic parameters of the
- VIC-2L model using station hydrologic and meteorologic data for a set of

intermediate scale areas (ISA) is described.

This study involves two different scales: the intermediate or catchment
scale and large or continental scale. Certain processes which do not play an
important role at the catchment scale nced to be explicitly represented at the
larger scale.  Therefore, it is necessary to construct two frameworks based on
simple conceptual models that are sufficient to maintain a realistic description
across a variety of physiographic and climate settings, and that account for the

spatial scale differences between the ISA and LSA as well.



The first framework is the application of the VIC-2L model to a set of
ISA calibration catchments within the LSA. In this application, the VIC-2L
model is calibrated using station hydrologic, meteorological and distributed soil

data for a number of ISA catchments.

The second framework is the application of the grid-based VIC-2L model
to the LSA. In this application, a series of models are needed which calculate
the snow melt and the runoff, and route the flow through stream channels and
reservoirs. Three models were selected and combined to form an overall
modeling strategy for the LSA application. These models are the National
Weather Service River Forecast System (NWSRFS) snowmelt model (Anderson,
1973), the macro-scale land surface hydrology model (VIC-2L) (Liang et al.,
1994), and the routing model of Wetzel (1994). The approach we followed can
be summarized as follows: i) the snow accumulation and ablation model is run
for each grid cell; ii) the VIC-2L model is run for each grid cell, using the snow
model output as input; iii) the runoff from each grid cell is then routed from grid
cell to grid cell through the LSA channel network using simple travel time

assumptions.

In the following sections a brief description of these models is given.
This is followed by description of the parameter estimation strategy for ISA
catchments. The strategy used for estimation of the parameters for the LSA

application is deferred to Chapter 5.

3.2 Review of hydrologic models

The relationship between rainfall and runoff is highly complex, and is
dependent upon many geomorphological and climatic factors that are only
imperfectly known and understood. There are a wide range of rainfall-runoff
models in existence (see for example, STANFORD WATERSHED model,
Crawford and Linsley, 1966; SACRAMENTO model, Burnash et al. 1973; TANK
model, Sugawara et al. 1983; XINANJIANG model, Zhao 1977; and ARNO
model, Francini and Todini 1991). Although many rainfall-runoff models have

been reported in the hydrological literature, their implementation in GCMs has



been limited by the lack of data for calibration and initialization at large scale
(Dumenil and Todini, 1992). In addition, the hydrologic process included in
these models have focused traditionally on the water balance and moisture fluxes
at the catchment scale which is much smaller than the scale of atmospheric
phenomena. This has led to somewhat different representation of the land surface
hydrology in atmospheric models than those to which hydrologists are

accustomed.

The first attempts to parameterize the land hydrology in atmospheri¢c models are
attributed to Manabe et al. (1965). They used the so-called ’bucket’ model.
Bucket algorithms were used to represent land-surface hydrology in many of the
first generation of GCMs (e.g. Manabe et al., 1965). The bucket model assumes
that all the precipitation is infiltrated until the saturation capacity is exceeded.
After that overflow contributes to runoff. . Evaporation occurs at the potential
rate when soil moisture is near saturation, and below some critical value, it is
proportional to the potential evaporation, with a proportionality factor equal to
the ratio of current soil moisture to saturation soil moisture. These
parameterizations ignored the role of vegetation algorithm, using instead a so-
called beta function to relate actual evapotranspiration to bulk aerodynamic
potential evapotranspiration and soil moisture. The bucket model is clearly
simplistic with respect to infiltration and runoff production, in addition to

evaporation, and ignores vegetation effects on evapotranspiration.

Most current land surface parameterizations (LSPs) belong to the class of
soil-vegtation schemes (SVATS). Of these, SiB (Simple Biosphere model)
(Sellers et al., 1986) and BATS (Biosphere-Atmosphere Transfer Scheme)
(Dickinson et al., 1986, Dickinson et al., 1993)) are best known. SVATS are
recent alternatives to the previously dominant highly simplified representations
of the land surface in GCMs. These models require specification of a large
number of parameters. A distinguishing feature of SVATS, which is evident in
both BATS and SiB, is that they have a high level of vertical resolution and
structure, but a low level of horizontal resolution (Wood 1991). For example,

the parameters for the soil and vegetation properties are assumed constant
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within a GCM grid by which the spatial heterogeneity is ignored. Furthermore,
most SVATS use a flat surface representation of the land surface which neglects

the effects of topography on runoff production and soil moisture dynamics.

One of the few operational hydrologic models that has found use in
coupled land-atmosphere applications is the Xinanjiang model (Zhao, 1977),
variations of which have also have been termed Arno model by Francini (1991)
and Pacciani, and the variable infiltration capacity model, or VIC, by Wood et
al. (1992). Francini and Pacciani (1991) describe a variation of Xinanjiang
model which incorporates a simple scheme for describing the spatial variability of
infiltration and runoff production, and nonlinear base flow recessions. Wood et
al. (1992) describe a single layer version of the VIC model, while Liang et al.
(1994) generalized the VIC model to include multiple soil layers and spatially
varyiﬁg vegetation and evapotranspiration. Recently, Rowntree and Lean (1994)
tested the Arno model using a one-dimensional version of the UK Meteorological
Office GCM. They reported a runoff deficiency in summer, which they related
to the difficulty in representing ground water storage. Variations of this model,
which is sometimes termed the Arno model, have been implemented in GCMs by
Dumenil and Todini (1992) in the Max Planck Institute model, and by Stamm et
~al. (1994) in the GFDL model.

In most previous large scale applications, the VIC or (Arno) model
parameters have been selected subjectively, e.g., from ranges suggested by
Dumenil and Todini (1992) based on streamflow calibration for a few
catchments. Obviously, for application in GCMs, global parameter estimation
using streamflow data is infeasible. In this study, we will focus on regionalization
of the VIC-2L model parameters in order to improve our understanding of the
hydrological cycle at large scales. This implies application of parameter

estimation methods for a large number of catchments.

3.3 Snowmelt model

The snowmelt model used in this research is the temperature index model

of Anderson (1973). It is an approximate energy balance method, in which the



form and temperature of precipitation and the components of the snowpack
energy budget are indexed to surface air temperature. The model uses a 6-hourly
computational time step to represent the daily cycle. The only data
requirements are precipitation, surface air temperature, and elevation data. The
model continuously accounts for the snowpack heat content, surface layer
temperature, melt in the surface layer, and liquid water content. The rain-plus-
melt output becomes the input to the soil moisture accounting model (VIC-2L

model).

3.4 VIC-2L model
The VIC-2L model described by Liang et al. (1994) accounts for the

spatial variability of soil moisture, evaporation, and infiltration within an area.
In the VIC-2L model, the surface is described by N+1 land cover types, where n
= 1,.., N represents N different vegetation, and n = N+1 represents bare soil.
Associated with each land cover types is a single canopy layer, soil layer 1 (upper
zone) and soil layer 2 (lower zone). The vertical and horizontal characterizations
are shown schematically in Figure'3.1. The land cover types are specified by
their leaf area index (LAI), canopy resistance, and relative fraction of roots in
each of the soil layers. The evapotranspiration from each vegetation type is
characterized by potential evapotranspiration together with canopy resistance,
aerodynamic resistance to the transfer of water, and architectural resistance. In
the following subsection the hydrologic part of the VIC-2L model, which

includes the parameters to be regionalized, is described.

3.4.1 Surface and subsurface runoff

The model assumes that the infiltration capacity of the soil is not
uniform, and therefore runoff generation and evapotranspiration vary within an
arca due to variations in topography, soil, and vegetation. The infiltration

capacity varies within an area an can be expressed as

i=im(l-(1-A )l/bi ] (3.1a)
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A:i_( _ Ay (3.1b)

where i and iy, are the infiltration capacity and maximum infiltration capacity
respectively, A (0 < A <1) represents the fraction of the grid cell (or catchments)
for which the infiltration capacity is less than i, and bi is the infiltration
parameter.

If the relationship between the maximum soil moisture averaged over the area
(expressed as a depth) and iy can be derived by calculating the shaded area in

Figure 3.2 as follows:

im im .
Wep=im=- [ Adi =i _/[1_(1_i_r1;) i) 4
0 0
__im
b, + 1 | (3.2)

The VIC model assumes that runoff is generated by those areas for which
precipitation, when added to soil moisture storage at the end of the previous
time step, exceeds the storage capacity of the soil. The direct runoff Qd from

these areas is given by

i0+P

Im

1+b,

Qd:P-—\VCl +W_1+WC1[1—

] 1p+P <ip (3.3)
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Where W™, is the soil moisture content in layer 1 at beginning of the time step

and 1y represents the infiltration capacity of the saturated area.

For bare soil the water balance in layer 1 is
WH =W, +P-Qy-Qo-E (3.4)

where W+1 is the soil moisture content in layer 1 at the end of each time step,
Q19 is the drainage from layer 1 to layer 2. Assuming that the drainage is driven
by gravity, the Brooks and Corey (1964) formulation gives

p | (3.5)

where Kg is the saturated hydraulic conductivity, 6, is the residual moisture

content and By, is the pore size distribution index.

The formulation of subsurface runoff (baseflow) follows the Arno model
conceptualization (Fig. 3.3) (Francini and Pacciani 1991), which is applied only
to the lower soil layer. The baseflow Qb is given by:

DD

s D Dy Wio-WsW 5 o
Q) = i Wy + (1) Drm W, —wow,,
for Wy > WiV _, (3.6b)

where Dy, Ds , Wy and W o are the drainage parameters and W75 is the soil
moisture content at the beginning of the time step in layer 2. Table 3.1 lists the

hydrologic parameters of the VIC-2L model which need to be regionalized.



Evapotranspiration can be estimated using a representation similar to that
employed by Wood et al. (1992) and Liang et al (1994). In the case of Wood et
al. (1992), the evaporation is represented by:

E=E, {1_(1_(%2))1/%} (3.7)

where Ep is the potential evapotranspiration, and Be is an evapotranspiration
parameter. On the other hand, Liang et al. (1994) used the representation
suggested by Francini and Pacciani (1991) which reduced the number of
parameters by one. In this representation, it is assumed that when the soil is
saturated it evaporates at a rate equal to the potential, Ep. When it is

unsaturated, it evaporates at rate E computed using the equation

. Ag 1 .
E=Ep x [ | dA + 0 aa ) (3.8)
| AJ i [1-(1-4) 71

The first integral represents the part of evaporation from the saturated area,
which evaporates at the potential rate. Since there is no analytical expression for
the second integral in Eq. 3.11 Liang et al. (1994) approximated the above
equation via a power series expansion:
i b, :
E:Epx{AS+E(1—AS)[v1+m(1—AS) 1+

1

3/b,

b. o b
775 (LmAs) T+ gy (- A)

1 1

+e]) (3.9)

In this brief description of VIC-2L, we have only described the formulations in
which the hydrologic parameters to be regionalized appear. For a complete

description of the model, the reader is referred to Liang et al. (1994).
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3.5 Runoff routing model

A unit hydrograph approach is used to account for advection and
dispersion of the VIC-2L model output in the channel network. The approach
was implemented in a grid network by Wetzel (1994) to account for the lateral
transport of water through surface and subsurface storage reservoirs and to
connect each of the modeled 1x1 grid cells via a flow network. It has been used
for simulation of the Missouri, Colorado, and Columbia Rivers by Wetzel
(1994), Mas et al. (1994), and Nijssen et al. (1994) respectively. The model
consists of two components. The first accounts for the transport of water within
a 1x1 grid cell and is referred to as within-grid routing, while the second
simulates water transport along the flow network, between grid cells and is

referred to as grid-to-grid routing.

The within-grid routing component accounts for the time required for
runoff produced within a grid cell to reach an arbitrary outlet. The runoff
generated by the VIC-2L for each grid cell, is convolved with a unit hydrograph

according to the discrete convolution given by:

J

A

1
R, =

1

“

Qj Hi-j-l . (3.10)

1=1

Where R is the internally routed runoff at the grid cell outlet, Q is the runoff
output of the VIC-2L model, H contains the unit hydrograph ordinates, i refers
to the time step of the unit hydrograph, j refers to the time step of runoff time

series, and J is the total number of time steps in the runoff time series.

The internally routed runoff R, is transported downstream through the
flow network shown in Figure 2.3. For routing across a grid cell, an effective
velocity of 1 m/sec was assumed, which is the lower value in the velocity range
suggested by Sausen (1994). For purpose of computing the lag time, the channel
lengths are computed based on the straight line distance from the center of one

block to that of the next dependent on the configuration of the flow network
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defined in Figure 2.3. It should be noted that the flow velocities do not represent
actual channel velocities (which tend to be lower), because the actual channel
lengths are much longer (by a multiple of the average sinuosity (>1)) than the

straight line distances.

3.6 Parameter estimation

In most previous large scale applications, the hydrological parameters of
the land surface scheme, such as the VIC-2L model and Arno model, has been
either fixed globally at “reasonable values”, or selected subjectively from
"literature values” for appropriate land cover. Examples on these applications
can be found in Wood et al. (1992), Dumenil and Todini (1992), Stamm et al.
(1994), and Rowntree and Lean (1994). Previous experience in the development
and abplication of conceptual streamflow simulation models for forecasting, can
provide a useful mean with respect to model parameter parsimony, for the
application of land surface parameterizations for coupled land-atmosphere
models. Better methods of estimating parameters of macroscale are obviously

needed.

In this section we explore two alternative approaches for estir.nation of the
parameters of the VIC-2L model. Table 3.1 lists the hydrologic parameters of
the VIC-2L model that need to be determined. The first method, complete
optimization, estimates all model parameters simultaneously using a search
procedure. The second method uses spatially distributed soil data directly to
determine selected parameters of the VIC-2L model with the remaining
parameters determined using a search procedure. For this purpose a number of
ISA catchments within the Arkansas-Red River basin (LSA) were selected for
calibrating the VIC-2L model using the available hydrologic, meteorologic, and

distributed soil data for these catchments.

3.6.1 Objective function

The idea behind the model calibration is to select parameter values to

minimize the differences between the simulated and recorded streamflows. In
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this study, parameter values are optimized to minimize the difference between
the monthly simulated and recoded streamflow volumes given by the following

objective function:

n
: 2
OBJ ='2:1 (Qsim; - Qobs;) (3.11)
1=
where Qsim; and Qobs; are the simulated and observed streamflows for month i
and n is the number of time periods simulated. This objective function is the
commonly used sum of squares of the differences between simulated and recorded
streamflows. The model time step is daily and the daily values are aggregated to

monthly values.

3.6.2 Optimization procedure

The first step in the application of a conceptual model to a basin is model
calibration. The objective is to determine the model parameters such that an
acceptable match is obtained between the observed and simulated streamflows.
Basically two approaches can be used for the calibration of conceptual models:
manual parameter fitting using trial and error and automatic fitting using an
optimization algorithm. James and Burges (1982) give a comprehensive

discussion of various aspects of the calibration of conceptual models.

A number of methods have been used for estimation of rainfall-runoff
model parameters. Among these are the Simplex method (Nelder and Mead,
1965), the Newton-Raphson method (Gupta and sorooshian, 1985), the pattern
search method of Hooke and Jeeves (1961), the simulated annealing method
(Kirkpatrick et al. 1983), and the genetic method (Wang, 1991). A general
experience with all these methods is the. difficulty of find globally optimal
parameter estimates, due to the existence of multiple optima, non-smooth
objective functions in the multi-parameter space, and structural problems in
rainfall-runoff models such as a high degree of interaction between some of the

parameters.

Recently Duan et al. (1992) developed a global optimization scheme called
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the Shuffled Complex Evolution (SCE) method which attempts to address these
problems. They show that the SCE algorithm is a relatively consistent, effective
and efficient optimization method capable of locating the global optimum during

calibration of the Sacramento soil moisture accounting model (SAC-SMA) of the
National Weather Services River Forecast System (NWSRFS).

In this study three parameter optimization methods were tested: Simplex
(S), Simulated Annealing combined with Simplex (SAS), and Shuffled Complex
Evolution (SCE). Sensitivity of each method to the starting point and the
bounds of the parameters space was explored. The SCE method was found to be

the most robust of the three methods, and was therefore selected.

3.6.3 Evaluation of conceptual model performance

The model calibration process consists of calibration, verification, and
prediction. In the calibration period, model parameters are estimated on the
basis of available rainfall-runoff records. During the verification period, the
calibrated model is applied to the available rainfall records and computed runoff
values are compared with the observed records in order to assess the predictive
efficiency of the model. If the efficiency is adequate, the model can then be used
for runoff prediction in the prediction period. James and Burges (1982) list three
criteria to evaluate calibration of a model: subjective judgment of adequacy;
statistics selected to measure of goodness of fit, and user-defined objective
functions. Methods of evaluating hydrologic model performance have been
suggested by Aitken (1973), James and Burges (1982), and Green et al. (1986).
They generally recommend the use of statistical measures of differences between
observed and simulated streamflow as a quantitative measure of calibration
adequacy. The statistical performance criteria used are (Aitken, 1973; Gan and
Burges, 1990):

1) Comparison between mean monthly simulated Q and observed Qobs flows:

sim

Qsim zrlT Z Qsim (3.12)
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2) Comparison between the standard deviation of monthly simulated and

observed flow

> Qi = i)’

Tsim = \ S (3.13)
3) Root mean square error

| > Qi — Q)2

RMSE = sim.__ “obs” 100 (3.14)

Qobs

4) Yearly relative error

v = sim =~ Yobs 1990 (3.15)

Qobs

5) Coefficient of determination R? between the observed and simulated monthly

runoff

R
R? = g((?;_bs _%0?: ))2 (3.16)

However, different opinions are reported as to which statistical indices are most

useful. James and Burges (1982) recommended graphical comparisons. Gan and
Burges (1990) reported that there is no single numeric is suitable for describing
how well a particular model performs. For example, James and Burges (1982)
found for average daily flow volumes that a coefficient of efficiency (a measure
equivalent to R2) greater than about 0.97 was associated well model

performance. Other experience (World Meteorological Organization, (WMO)
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1975) for snowmelt runoff models yielded a maximum efficiency during
calibration periods of 0.93. Recently, Chiew et al. (‘1993) and Chiew and
McMahon (1994) define an "acceptable simulation” for which the coefficient of
efficiency is greater than 0.6 and the mean simulated flow within 15% of mean
recorded flow. In this study we use both statistical and graphical comparisons.
These statistical performance criteria will be used to evaluate the calibration of
the VIC-2L model in this Chapter as well as to evaluate the performance of the
regionalized VIC-2L model in Chapter 4. A "good” calibration result is defined
as one for which the R% was higher than 0.7, and the difference in volume

between the observed and simulated flows is within 10%.

3.6.4 Model calibration

Data from the 40 ISA calibration catchments described in Chapter 2 were
used to estimate the parameters of the VIC-2L model. These catchments are-
shown in Figure 2.4 and listed in Table 2.1. The parameters were estimated
using the Shuffled Complex Evolution (SCE) search method of Duan et al.
(1992), where the objective function was the sum of squared differences between
the simulated and observed streamflow. The model was run at a daily time step
and the output was aggregated to monthly values. The parameter estimation
procedure requires daily time series of the input variables (precipitation,
potential evaporation (PET), and, for catchments where precipitation occurs as
snow, temperature), as well as an observed output series of daily streamflow
to compute the objective function. Since the data required to compute PET
using an energy-based formulation such as Penman-Monteith were not available
for the calibration catchments, we used Hamon’s method (Hamon et al, 1954;
Hamon, 1961) which requires only daily air temperature and latitude. The

Hamon equation can be written as:

-

ET =C; D, 2 P, (3.17)

where ET represents the average potential evapotranspiration in inches per day;

Dh is the possible hours of sunshine in units of 12 hr; P, is the saturated water
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vapour density (absolute humidity) at the daily mean temperature in grams per

cubic meters; times 10'2; Ch =0.55.

Liang et al. (1994) compared the daily Ep computed using Hamon
equation with daily Ep obtained using the Penmam-Monteith equation for the
FIFE site in Kansas. These authors found that the Hamon formula gave smaller
Ep estimates. Because both methods proved to be roughly proportional, Ep
predictions by the Hamon method were adjusted by a scale factor fe; the scaling

factor fe is added to the list of parameters to be estimated (see Table 3.1).

For fitting and validation of the VIC-2L model, the data record was
divided into two periods. The first period (6 years) listed in Table 2.1 is used for
parameter estimation; while the rest of the record is used for model validation.
For both peribds, the first year of record was used to initialize the soil moisture

‘storage.

3.6.4.1 Complete- and sub- optimization methods

Two alternative parameter estimation methods were investigated. The
first method, complete optimization, estimates all model parameters
simultaneously using the SCE algorithm (Table 3.1 shows these parameters).
The second method, sub-optimization, involves a two stage optimization
strategy. In the first stage, we use STATSGO data directly to determine three
of the parameters of the VIC-2L model (saturated hydraulic conductivity, pore
size distribution index, and residual soil moisture; see Section 2.3). Figures 3.4
and 3.5 show the spatially distributed saturated hydraulic conductivity and pore
size distribution index parameters respectively. In the second stage, the

remaining seven parameters are determined using the search procedure.

3.6.4.2 Comparison between the complete and sub optimization methods

To compare the two methods, three aspects of the estimation procedure
are considered: the number of iterations, the value of the objective function, and
the goodness of fit. As expected, the number of iterations used in the second

method is reduced considerably (by more than 60 percent) due to the smaller
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dimension of the parameter space. Figure 3.6 shows the value of the objective
function for each catchment using the two methods. In the sub-optimization
method the objective function is higher because only seven parameters were
optimized instead of ten, however the relative difference between the two
methods is small.  Objective function values for the 40 catchments range from 7
to 53,000 in the case of complete optimization, while they ranges from 8 to
63,600 in the case of sub-optimization. The average ratio of the objective

function in the sub-optimization to that of the complete optimization is 1.19.

Observed and simulated streamflow based on parameters obtained using
the two methods are shown in Figure 3.7 for all the catchments listed in Table
2.1. The simulated hydrographs using STATSGO parameters in conjunction with
the optimization method compared favorably with the hydrographs based on
compléte optimization. Generally, the monthly simulated hydrographs for the
large catchments and the humid ones are more acceptable than those of the
small catchments and the arid ones. For example, the model performs badly for
the Rayado Creek, NM ( see Figure 3.7). This catchment is the smallest of all
the listed catchments in Table 2.1, it has an area of 168 km? and at elevation of
2050 m with channel slope of about 40m/km. Both optimization methods tend
to produce similar hydrographs which underestimate the spring and the summer
flow. Even including the Anderson snowmelt model (1973) to account for the
snow accumulation and melting for this catchment no obvious improving in the
model performance is achieved. This poor performance of the model may be due
to inability of the recorded precipitation to represent this particular catchment,
possibly due to orgraphic effects, such as rain shadowing (the precipitation gage

is at 1995 m elevation, which is lower than the streamflow gage at 2050 m).

Clearly, the performance of the model varies among the catchments.
Figures 3.8 to 3.12 summarize the goodness-of-fit statistics obtained for all the
catchments. The performance criteria selected are the monthly root mean
square error (RMSE); the monthly coefficient of variation (CV) of the observed
and simulated runoff; the mean annual observed and simulated runoff; the yearly

relative error (V); and the coefficient of determination (R2). The catchments



listed in Table 2.1 are ranked according to the lowest RMSE obtained using the

complete optimization method.

Figure 3.8 shows the monthly RMSE for all the catchments listed in
Table 2.1. The RMSE ranges from 21 to 96 percent with an average of 54
percent in the case of the complete optimization, while in the case of sub-
optimization it ranges from 23 to 124 percent with an average of 59 percent.
Generally, the RMSE for the two methods are very close in most of the
catchments. The largest differences are for catchments 5 and 29 which are semi-

arid.

Figure 3.9 shows the observed and simulated monthly CV using both
optimization methods. The dry catchments tend to have high CVs compared to
the other catchments. In general, the CVs from the two methods compare well
with the observed, with the exception of some dry catchments, such as

catchment 37 which has mean annual runoff of only 11.2 mm.

Figure 3.10 shows the observed and simulated mean annual runoff. As
shown in this Figure eleven catchments have mean annual runoff less than 100
mm and can be considered semi-arid or arid. Figure 3.11 shows yearly relative
errors, which range from 0.3 to 48 percent with a mean of 6.6 percent in the case
of complete optimization. In the case of sub-optimization the relative error
ranges from 0.1 to 44 percent with a mean of 7.2 percent. In both cases 31
catchments out of the 40 catchments have a relative error less than five percent.
Three of the catchments have relative error greater than 20 percent; these

catchments are numbers 15 , 26, and 29, all of which are arid or semi-arid.

The coefficient of determination R% between the observed and simulated
flow ranges from 0.41 to 0.98 with an average of 0.77 for the case of complete
optimization (Figure 3.12). In the case of sub-optimization, R2 ranges from 0.41
to 0.97 with an average of 0.74. Seventy percent of the catchments have R2
greater than 0.7 in the case of the complete optimization, while in the case of
sub-optimization only sixty percent of the catchments have an R2 greater than

0.7.



3.7 Summary

The modeling framework for simulating the water and energy budgets at
both the ISA and LSA scales have been presented. Three linked models form the
overall modeling strategy. These models are the snowmelt model, a macroscale

land surface hydrology model (VIC-2L), and a simple runoff routing model.

A methodology for estimating the hydrologic parameters of the VIC-2L
land surface model is presented. This methodology comsists of two alternative
estimation methods. The first, complete optimization, estimates all the
hydrologic parameters of the VIC-2L model simultaneously using the SCE
algorithm. The second method, sub-optimization, uses distributed soil data to
estimate three of the model parameters, the remanning seven parameters are
then determined using the search procedure. The simulated hydrographs as well
as performance criteria of the two methods for the model compared reasonably
well.  Therefore, the estimated parameters using the sub-optimzation method
(STATSGO in conjunction with search procedure) will be adopted in the
regional methodology described in the next chapter. This means that only seven
of the VIC-2L model parameters needed to be investigated for a possible regional
equation and the remaining three can be obtained directly from the available
distributed soil data.



Table 3.1 Hydrologic parameters of the VIC-2L land surface model

Parameter Description

bi Infiltration parameter

W Maximum soil moisture of layer 1

We.o Maximum soil moisture of layer 2

Dm Maximum baseflow parameter

Dy Fraction of the maximum baseflow

Wy Fraction of the maximum soil moisture
Fe Evaporation factor

Bp Pore size distribution index

Kg Saturated hydraulic conductivity

Residual moisture content
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Fig. 3.1 Schematic representation of the VIC-2L model.
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for the Arkansas-Red River basin derived from STATSGO data
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Fig. 3.5 Calculated spatial distribution of pore size distribution index (B
for the Arkansas-Red River basin derived from STATSGO data
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3.7 Observed and predicted (using complete optimization) as well as

predicted (using sub-optimization) mean monthly streamflow for

selected calibration catchments (for the six-year calibration period).
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3.7 (contd.) Observed and predicted (using complete optimization) as

well as predicted (using sub-optimization) mean monthly streamflow for

selected calibration catchments (for the six-year calibration period).
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well as predicted (using sub-optimization) mean monthly streamflow for

selected calibration catchments (for the six-year calibration period).
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well as predicted (using sub-optimization) mean monthly streamflow for

selected calibration catchments (for the six-year calibration period).
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monthly streamflow for all calibration catchments
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CHAPTER 4 DEVELOPMENT of REGIONAL EQUATIONS for a
HYDROLOGICAL MODEL

In Chapter 3, the modeling framework was described, and the
hydrological parameters of the VIC-2L model were estimated for 40 ISA
catchments. In this chapter, we present a regression-based regionalization
methodology for estimating the parameters of a macroscale land surface
hydrology model (VIC-2L). '

4.1 Introduction

Global change problems place a new set of demands on hydrologic models.
Estimation of parameters for macroscale land surface schemes applicable at the
scale of general circulation models used for numerical weather prediction models
and climate simulation poses formidable challenges. In large scale applications,
the hydrological parameters of land surface schemes, such as the Variable
Infiltration Capacity two-layer (VIC-2L) model, have been either fixed globally
at "reasonable” values, or they have used "literature values” for the appropriate
land cover. Better methods of estimating parameters of macroscale models are
obviously needed. The use of regionalization methods, "trained” using local
parameters estimates and distributed land surface characteristics data bases,

offers one possibility. -

In this chapter, we present a methodology for regionalization of the
parameters of the VIC-2L land surface hydrologic model for the GCIP Southwest
Large Scale Area (LSA-SW) which essentially comprises the Arkansas-Red River
basin. The approach is based on direct estimation of the hydrologic parameters of
the VIC-2L model using station hydrologic and meteorological data for a set of
catchments. The approach has been developed using the SCS State Soil
Geographic (STATSGO) data base directly to determine three of the parameters
of the VIC-2L model (saturated hydraulic conductivity, pore size distribution
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index, and residual moisture content for 40 catchments within the Arkansas-Red
River basin, and the remaining seven parameters are determined using the search
procedure as discussed in Chapter 3. Regional equations are developed in this
chapter to relate the VIC-2L model parameters to measurable physical quantities
of the catchments included in distributed data bases such as digital elevation
data, and the U. S. Soil Conservation Service STATSGO soils data base.

The approach is tested by application of the regionally estimated
parameters to catchments not in the training data set. In Chapter 5, the regional
parameter estimates are tested by applying the VIC model to the Arkansas-Red

River basin at a one degree spatial scale.

4.2 Review of hydrologic regionalization

Hydrological regionalization is mainly concerned with extending records in
space. It has been used for a number of years as a standard tool in hydrology to
facilitate the extrapolation of data from sites at which records have been
collected to others at which data are unavailable (e.g. Riggs, 1972; Mosley, 1981).
Many investigations have attempted to develop regional hydrologic models for
the purpose of estimating low-flow statistics at ungaged sites from readily
available geomorphic, geologic, climatic and topographic parameters. Examples
for low flow regionalization can be found in Tasker (1972), Vogel and Kroll
(1990, 1992), and Nathan and McMahon (1990). A study area can be divided
into homogeneous regions that are considered to behave in a similar fashion.
Records within these regions may be extrapolated with more precision, and
therefore regression equations based upon the physical attributes of the
catchments may be used to predict hydrologic variables. By identifying such
hydrologic regions we may explain or account for part of the variability caused

by hydrologic information available in the data set.

On the other hand, regionalization of rainfall-runoff models for prediction
at ungaged catchments is more difficult. The approach is typically similar in the

way it attempts to develop regression relationships between the optimized
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parameters of a conceptual rainfall-runoff model and catchment characteristics.
A few regionalization studies have been conducted along this line. An example
is the study of Jarboe and Haan (1974) who calibrated a four parameter water
yield model for 17 catchments in Kentucky. They obtained errors between
observed and predicted streamflow volumes of 6.5 percent for six independent
catchments (the error of prediction, in percent, was defined as 100 times the
average annual deviation divided by the annual observed runoff). Magette et al.
(1976) calibrated the Kentucky Watershed Model on 16 catchments and reported
errors between one and 860 percent for six independent catchments. The
Sacramento model (Burnash et al., 1973) was also studied, and its parameters
were fitted to data from eight subcatchments. The resultant regional parameters
were tested and found to result in an error between observed and predicted
streamflow volumes ranging from zero to 100 percent (Weeks and Ashkenasy,
1985). Weeks and Boughton (1987) developed prediction equations for a simple 3
parameter Auto-Regressive Moving Average (ARMA) model wusing 13
catchments; they obtained errors between observed and predicted streamflow

volume of around 13 to 30 percent on four independent catchments.

These regionalization studies have various limitations. For example
Jarboe and Haan (1974) state that their regionalization is limited by the
catchment size (less than 40 mi2) and by the average soil depth (less than 85
inches). Furthermore, the number of catchments used to develop the regional
relationships was relatively small, e.g., 21 catchments in Magette et al. (1976),
23 catchments in Jarboe and Haan and eight catchments in the Weeks and

Ashkenasy (1985) studies.

In general, regionalization approaches have been primarily useful for
interpolation of parameters. There are two main reasons for the limited success
in the regionalization of the rainfall-runoff models. The first is that at the
catchment level, the parameters may be poorly determined (e.g. Kuczera, 1983),
which makes the task of developing useful regionalization relationships more
difficult. The second reason is that some parameters may not be well estimated

by regional relationships.
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Improving the precision of the estimated parameters must be a priority in
order to increase the chance of the success of the regionalization methodology. -
Furthermore, Weeks and Ashkanasy (1985) indicate that sufficient data should
be available to allow confidence in both model parameter estimates, and the
regression pararheters, although how many data are required for this is not
defined.  The following section gives background on the regionalization
methodologies used to fulfill the second objective of this study (see Section 1.4).
Subsequent sections describe the methodology that has been used in developing
the regional relationships, and evaluation of the regional relationships for both

the calibrated and independent catchments.

4.3 Development of regional parameter equations

Regionalization of the VIC-2L model parameters is the fundamental
objective of this study. Attempts to develop regionalization relationships for
rainfall-runoff models as a function of physical catchment attributes have met
with limited success in the past due to poor determination of parameters at the
individual catchment level. The global optimization scheme described in
Chapter 3 has been shown to provide good estimates of the parameters of the
VIC-2L model for a number of ISA catchments. However, there are no such
well defined criteria to judge weather the estimated parameters are good or not.
Because the parameters may have been estimated well but the model

performance may be poor.

4.3.1 General approach

Multiple regression is the most widely used method of regional parameter
estimation in hydrological applications, especially for transferring streamflow -
characteristics estimated at gaged sites to ungaged sites. A general linear model

for multiple regression is:
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where Y is a dependent variable (VIC-2L parameters), Xy, Xo,....... Xp are
independent variables (catchments attributes) and B1» By-....Bp are unknown
parameters.  Alternative forms of nonlinear regression model will also be
investigated by using different transformations of the dependent and independent
variables. The availability of diagnostic software for model building and the ease
of variable transformations, make the use of multiple regression an attractive and

flexible option.

The unknown coefficients can be determined using the method of least squares
(see, for example, Draper and Smith, 1981). This method is well known and

need not be described in detail, though the form of the estimates are:

p=XTx)ylxTy

Our assumption in developing the regional equations is that both the estimated
VIC-2L model parameters and the physical characteristics of the catchments are
considered error free. Stepwise regression procedures will be used to determine
the optimum number of independent variables in the equations. As described in
Sections 2.3 and 2.4, different physical catchment characteristics are available for
each of the ISAs. The selection of the candidate physical catchment variables
was based on the review of the literature related to low flow and rainfall-runoff
model regoinalization studies. The variables available for developing the regional
equations in this study are listed in Table 4.1. A statistical summary for these

variables is shown in Table 4.2.

One of the most difficult problems in regression analysis is the selection of the
regression model. This is because in most cases the independent variables are not
statistically independent but are correlated. Therefore, one of the first steps that
should be done in regression aﬁalysis is to compute the correlation matrix of the

independent variables. Then the multicolinearity can be checked by comparing
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each pair of the independent variables. If the correlation between two
independent variables equal to unity, one of these variables must be omitted
from the regression model or else the XTX cannot be inverted. If the correlation
is close to unity then the variance of 3 may very large. In this work, when pairs
of variables were identified with a correlation coefficient over 0.7, the least useful

of the two was removed.

Different regression models were investigated using backward elimination for the
VIC-2L model parameters to select the optimum number of independent
variables to be used. The criteria used to select the appropriate regression model
is a high value of R2 (multiple coefficient of determination) and a maximum
number of independent variables of 12 (Hann (1977) suggests that the number of
coefficients estimated should not exceed 35 percent of the number of
observations). The multiple coefficient of determination (R2) (in percent)

defined as:

R?=100(1-23E)

wn

where SSE is the error sum of squares, SST is the total sum of squares.

Hann (1977) criteria for the maximum number of independent variables that
allowed to enter the regression equation seems unreasonable. Therefore, a
maximum of six variables was permitted to be added to each equation to
preserve some degree of freedom within the equation. In addition, only the
regression coefficients that were significantly different from zero at the five
pércent level of significance were included.

Five regression models were investigated:

LIN-Linear model

SQT1-Square root model (both dependent and independent variables are
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transformed)
W=ﬂ0+ﬁ1\|il +ﬂ2ﬁ2+- .-

SQT2-Square root model (independent variables transformed only)

Y =B+ 83Xy + Ko - - -

LOGI1-Logarithmic (base 10) model (both dependent and independent variables

are transformed)

log(Y) =By +h8; log(Xy) +8ylog(Xs) ...

LOG2-Logarithmic model (independent variables transformed only)

Y= 8, + B1log(X;) + Bylog(Xg). . .

As indicated by Draper and Smith (1981) stepwise procedures do not necessarily
select the best model, but they usually select an acceptable one. However, in
this study an alternative combined procedure was used in an attempt to improve
the model selection. This procedure consists of two stages. In the first stage the
stepwise regression procedure is run with a given level of acceptance and
rejection. When the selection procedure stops, the number of variables in the
final selected model (say q) can be determined. In the second stage, all possible

“subset regressions were performed.

The IMSL routine RBEST also provides the "best K” subsets with one
predictor variable, the "best K” subsets with two predictor variables, and so on
up to the single equation with all the predictor variables. The best set with q

independent variables was selected from the "best q” subsets.
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4.3.2 Regional equations

The general approach outlined in Section 4.3.1 was followed for
regionalization of the VIC-2L model. Rather than developing regional regressions
for all of the parameters, three of the VIC-2L model parameters (the saturated
hydraulic conductivity Kg, the pore size distribution index By, and the residual
soil moisture 6;) were estimated directly using STATSGO attributes as described
in Chapter 3. The remaining 7 parameters (infiltration parameter bi’ three
baseflow related parameters, and the maximum soil moisture contents in layers 1
and 2) are determined via the regional relationships. The optimum values for
these seven parameters of the VIC-2L model determined in Section 3.6 became
the dependent variables and the watershed characteristics described in Sections
2.3 and 2.4 became the independent variables in a stepwise regression analysis.
The régional equation for each parameter was selected from the best
combinations of the independent variables. Five different regression models were
tested for each parameter. The final regional regression equations relating the
VIC-2L parameters and watershed characteristics (see Table 4.1 for independent

variable definitions) are:

Infiltration parameter (b:)

\b; =-3.1014 +6.4409 \TP -2.72485 {FC -0.02367 {K; - 0.02512 {Hgc
+0.2736 YAT

Maximum soil moisture of layer 1 (W ;)

log(W,,) = 22.74485 + 1.82587 log(EP) - 0.38307 log(Pr) - 0.36114 log(Hgb)
—0.15719 log(Hgd) — 3.33881 log(Ta) + 1.44203 log(SP1)

Maximum soil moisture of layer 2 (W o)

log(W .9) = 25.96178 +-0.34052 log(Pr) - 0.35108 log(Ks) — 5.36303 log(Ta)
+2.29213 log(P1) +0.68959 log(ST3) — 1.00362 log(SP)
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Maximum baseflow parameter(Dyy)

Dy = 2.99669 +0.17131 PS - 0.06789 Hgc —0.08231 Hgd
~0.09115 Ta +8.21053 T3

Fraction of maximum baseflow (Dsg)

log(Ds) = 10.33434 + 0.45269 log(Pr) - 0.46446 log(Ks) — 3.58841 log(NE)
+3.18517 log(AI) - 3.09429 log(P2)

Fraction of maximum soil moisture (W)

log(Ws) = 2.30705 — 1.3819 log(PS) — 5.56545 log(TP) — 0.50963 log(Hgb)
—1.4128 log(T1) — 1.88042 log(ST2) +2.14062 log(ST3)

Evaporation factor (Fe)

Log(Fe) = —20.4207 — 0.36497 log(EP) + 0.75752 log(awc) + 0.25466 log(Hgb)
+3.60517 log(Ta) +2.57499 log(T1) — 1.45934 log(ST2)

4.3.3 Analysis of the regional equations

The coefficient of determination Rz, the F-test values of the regression
equations, the standard errors of estimate, and the coefficient of variation of the
estimates (the standard deviation of the residuals divided by the mean of the
dependent variable determined from the regression equation) are given in Table
43. R2 ranges from 45 to 76 percent. For example, forty five percent of the
variation in the maximum baseflow parameter (D) is explained by the
regression equation, and 76 percent of the variation in the scaling factor of the

evaporation (fe) is explained by the regression equation.

The hypothesis that the regression does not explain a significant amount
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- of the variation in VIC-2L model parameters was rejected for all the regression
models at probabilities ranging from 0.0001 to 0.0038. All of the estimated
regression coefficients were significantly different from zero at the five percent

level of significance.

Table 4.4 lists the independent variables (catchment attributes) used in
the development of the prediction equations for the VIC-2L parameters as well
as the type of regression model. Ten out of the 11 soil attributes are used in the
development of the regional equations. The saturated hydraulic conductivity
(kg), the average permeability (Pr), and the hydrologic group B soil (Hgb) were
the most important soil attributes. They appear in three equations. Percent
sand (PS), total porosity (TP), effective porosity (EP), hydrologic group C soil
(Hgc) and hydrologic group D soil (Hgd) are soil attributes of secondary
important; each of them appears in two equations. The field capacity (FC) and
the available water capacity (Awc) appear in one equation. We believe that the
reason why FC and Awc are not among the important soil attributes is that they
were taken as ratio of the water depth to the total depth of the soil which in turn
resulted in an absence of clear discrimination between catchments. The absence
of information about the actual soil depth in the STATSGO data base resulted
in making these two attributes (FC and Awc) secondary variables in the
regression equations. Percent sand does not appear in any of the equations,

apparently because it is correlated with most of the derived soil attributes.

Twelve of the storm characteristics and temperature are utilized in the
regional equations. The statistics of the interarrival time seems to be an
important explanatory variables in the regional equations. Another important
variable is the mean annual temperature, which appeared in three of the
equations. The annual intensity (annual rainfall amounts divided by the total
number of events (mm/day)) appeared in two of the equations, and it is the
most important variable in prediction of the infiltration parameter (b;). The
storm depths in Season 1 and Season 2 appear in one equation, as does the storm

depth standard deviation of Season 1 and Season 3.

The seven regional relationships described in Table 4.4 were used to
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calculate the parameters for the 34 calibration watersheds. Figure 4.1 compares
the estimated (using the regional relationships) and the calibrated (locally
optimized) parameters of the VIC-2L model. Generally, there is good agreement
between the calculated parameters from the two methods. R2 ranges from 45
percent for the maximum baseflow parameter Dy, to 76 percent for the

evaporation scaling factor (fe ) (see Table 4.3).

4.4 Calibration catchment predictions

- Useful information about the adequacy of the prediction equations and
the ability of the model to simulate runoff using regional parameters can be
obtained by testing the equations on the calibration catchments. In previous
regionalization studies ( Jarboe and Haan, 1974; Magette et al., 1976; Weeks and
Ashkenasy, 1985; and Weeks and Boughton, 1987) the main criteria used as a
measure for the goodness-of-fit of the regional relationships is the percentage
error between the observed and simulated streamflow volume. Comparisons of
observed and simulated hydrographs based on regional parameters are almost
totally absent in the literature. Therefore, the measure of performance reported

in Section 3.6.3 will be used here.

The parameters of VIC-2L calculated from the prediction equations were
used to simulate runoff for the 34 calibrated catchments. The average annual
observed runoff and the average annual simulated runoff were calculated, and the
difference between these two quantities (average annual deviation) was
computed. The error of prediction (in percent) was defined as 100 times the
average annual deviation divided by the annual observed runoff. =~ The RMSE
was used to rank the 34 catchments (Figure 4.2). The monthly root mean square
error ranges from 27 to 145 percent with an average of 75 percent, which
compared quite well with the RMSE obtained using locally sub-optimized
parameters. The coefficients of variation of the monthly streamflow also
compared well to those of the observed and locally sub-optimized flows (Figure
4.3). Figure 4.4 shows the annual observed and simulated runoff using the

regional parameters as well as using the locally optimized parameters. A
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comparison was made of the error produced in the simulated average annual -
runoff on the calibrated catchments using the optimum model parameters and
the error produced using the calculated parameters (Figure 4.5). The annual
relative error ranges from 1 to 48 percent using the regional parameters, while it
ranges from 0.1 to 44 percent using the locally optimized parameters. Eighteen of
the calibrated catchments have a relative error less than 5 percent, and only five

of them have a relative error greater than 20 percent.

An average of the percentage errors was computed by adding the absolute
percentage error for each watershed and dividing by the number of watersheds.
The average error of prediction obtained using the optimum parameters on the
calibrated catchments was 7.3 percent, and using the calculated parameters was
15.9 percent. The coefficient of determination (RZ) between the observed and
simulated flow using the regional relationships ranged from 16 to 90 percent with
an average of 68 percent (Figure 4.6). Figure 4.7 shows the observed monthly
mean and simulated mean using the regional relationships as well as those using

the optimization method.

The model performance using the regional equations on the calibrated
catchments was generally quite good. The exceptions are catchments No. 15
(Rayado Creek, NM); No. 16 (Deep Fork, OK); and No. 17 (North Wichita
Creek, TX). These catchments have the lowest coefficients of determination
among all the 34 catchments in the optimization procedure (R2 less than 50
percent). This is reflected the poor performance of the regional equations as well.
Both Rayado Creek and North Wichita Creek are arid catchments with mean
annual runoff of 49 and 16 mm, respectively. Deep Fork is a semi-humid
catchment with mean annual runoff of 203 mm; it has a relative error of -12
percent. The model simulations for this catchment tend to be biased upward in
winter and downward in the spring and the summer. Grape Creek, CO, an alpine
catchment, also had poor model performance using both the locally optimized
parameter and the regional parameters. Both sets of parameters tended to

underestimate the observed streamflows by 15 and 39 percent, respectively.
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4.5 Test catchment predictions

The relationships developed in the previous section were tested using
the six independent (i.e. not used for parameter estimation) catchments given in
Table 2.1. The VIC-2L model parameters for the six catchments were computed
using the regional characteristics in conjunction with regional equations.
Streamflow was then simulated for the same calibration period, and the resulting
simulated streamflows were compared with observations as well as the simulated
flow using the locally estimated parameters for these catchments (see Table 4.5).
The model performance was generally best for the humid test catchments and
worst for the driest ones. For the Current River, MO; Little River, AR; and
White Oak, TX (all which had observed runoff greater than 400 mm), the
regional and lbcally estimated parameters performed almost the same. The
regional parameters performed poorly for the arid catchments, Coyote Creek,
NM; and Ponil Creek, NM. The mean annual runoff for Coyote Creek is 17.3
mm and for Ponil Creek is 11.2 mm, and both have mean elevation greater than
9500 m. The RMSE and R? obtained using the regional equations is very close
to those obtained by using the locally estimated parameters as shown in Table

4.5 with exception of these two arid catchments.

Figure 4.8 and Table 4.5 show the long-term mean historical streamflow
for all the six test catchments as well as the mean simulated streamflow for the
same period based on locally optimized parameters, and simulated streamflow for
the same period using parameters based on the regional equations. In the case of
the humid catchments, the hydrographs estimated using the regional parameters
compared reasonably well with those estimated using the optimized parameters.
The regional equations performed much worse than locally optimized parameters

for the arid catchments.

4.6 Summary

This chapter sumimarizes preliminary results of a regionalization
methodology developed for estimation of the parameters of the VIC-2L

macroscale land surface hydrology model. The approach uses distributed land
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surface characteristics from climate data and the SCS STATSGO soils data base.
A key component of the methodology is extraction from the STATSGO data
base of soil attributes used to explain, via regional regression, parameters
estimated locally for 34 gaged catchments within the Arkansas-Red river basin.
Regional relationships have been developed for the VIC-2L model using multiple
linear regression. The optimum parameters of the VIC-2 model for 34
catchments in the Arkansas-Red River basin were used as dependent variables in
regression equations; candidate independent variables include 28 summary
measures derived from the soils, and climate data. The parameters calculated
from the regional equations were used to simulate runoff for the 34 calibrated
catchments. The model performance using the regional equations on the
calibrated catchments was generally quite good. These relationships were tested
by comparing observed and simulated runoff records from 6 watersheds that are
not included in the 34 watersheds used for calibration. The results show that the
regional relationships can be satisfactorily applied to other independent

catchments.

In the next chapter, the VIC-2L model is applied to the Arkansas-Red
River basin at the one degree spatial scale. This implementation uses the
regional equations together with STATSGO-based saturated hydraulic

conductivity, pore size distribution index, and residual soil moisture.
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Table 4.1 Description of catchment variables

Variable Description Units

' Soil variables

1 PS  Percentsand e

2 PC  Percent clay ----

3 TP .Total Porosity m/m

4 EP  Effective Porosity m/m

5 FC  Field capacity m/m

6 K,  Saturated hydraulic conductivity mm/day

7  Hgb Hydrologic group B %

8 Hge Hydrologic group C %

9 Hgd Hydrologic group D %

10 awc Available water capacity m/m

11 ~ Pr  Average permeability cm/hr
Precipilation and Temperature variables

12 Ta  Average temperature F

13 Tm Mean maximum temperature F

14 P Mean annual precipitation mm

15 Al Mean annual intensity mm/day

16 NE  Mean annual number of event days

17 P1 Season 1 mean storm depth mm

18 P2  Scason 2 mean storm depth mm

19 P3 Season 3 mean storm depth mm

20 SP1 Season 1 standard deviation of storm depth mm

21 SP2 Season 2 standard deviation of storm depth mm

22 SP3 Season 3 standard deviation of storm depth mm

23 TI1 Season 1 interarrival time days

24 T2  Season 2 interarrival time days

256 T3 season 3 interarrival time days

26 ST1 Season 1 standard deviation of interarrival time days

27 ST2 Season 2 standard deviation of interarrival time days

28 ST3 Season 3 standard deviation of interarrival time days
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Table 4.2 Summary statistics for all catchment variables

Variables Minimum Maximum Mean St. dev
1 PS 9.42 34.06 21.15 1.18
2 PC 5.25 61.76 23.26 2.38
3 TP 0.45 0.52 0.48 0.00
4 EP 0.08 0.28 0.19 0.01
5 FC 0.18 0.40 0.29 0.01
6 Ky 4.86 - 1137.0 116.0 34.6
7 Hgb 4.53 74.6 34.3 3.38
8 Hgce 0.17 63.56 30.89 3.09
9 Hgd 1.31 88.00 27.12 3.94
10 awc 8.13 20.20 14.05 0.60
11 Pr 6.77 218.7 72.6 10.05
12 Ta 93.5 113.7 107.5 0.82
13 Tm 76.0 96.0 90.8 0.86
14 P 312 1267 907 47.0
15 Al 2.54 12.7 10.01 0.43
16 NE 56.0 101.0 81.3 2.31
17 Pl 4.44 13.97 10.52 0.42
18 P2 5.33 16.71 12.25 0.46
19 P3 3.66 13.94 9.47 0.51
20 SP1 6.78 17.04 13.82 0.46
21 SP2 6.88 23.72 16.76 0.65
22 SP3 4.09 18.26 12.71 0.71
23 Ti 3.28 7.23 4.36 0.18
24 T2 3.75 6.48 4.62 0.12
25 T3 3.85 12.41 6.24 0.40
26 STI1 3.53 9.58 5.07 0.27
27 ST2 4.20 9.55 5.79 0.22
28 ST3 4.28 14.0 7.43 0.49
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Table 4.3 Significance of the regional relationships

Parameter R2 F Standard Error C.V.
b, 57 7.3 0.13 32.0
W4 63 7.6 0.25 4.8
We.o 71 10.8 0.24 4.0
Dm 45 4.5 1.23 55.0
Dg 54 6.6 0.54 9.2
Wy 74 14.2 0.27 48.0
fe 76 12.7 0.18 115.7

R2 (percent of the variation in the VIC-2L parameters which is explained by the regression

equation)

F (F-test valuess of the regression equations)

C.V. (cocfficient of variation of the estimated parameters)
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Table 4.5 Regionalization results for 6 independent catchments, showing mean
annual runoff (Q); error of prediction (V%); coefficient of

determination (Rz); and monthly root mean square error (RMSE).

Catchment Run Q V% R? RMSE
(mm)
1 Current R, MO Observed 569.3
Optimized 565.7 0.6 69 0.35
Regional 556.6 22 67 0.37
2 Big Cabin Ck, Ok Observed 216.4
Optimized 249.6 -15.3 58 0.67
Regional 191.5 11.5 55 0.75
3 Ponil Creek, NM Observed 11.2
Optimized 11.9 -2.9 76 0.60
Regional 21.7 -92.0 25
4 Coyote Creek, Observed 17.3
Optimized 16.5 5.5 90 0.60
Regional 17.3 0.0 5 0.82
5 Little River, AR Observed 624.6 ,
Optimized 528.8 15.9 5 0.56
Regional  490.7 21.9 75 0.62
6 White Oak Ck, TX Observed 428.7
Optimized 414.2 3.7 83 0.55

Regional  393.1 8.5 81 0.59
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CHAPTER 5 APPLICATIONS of GRID BASED VIC-2L. MODEL

In Chapter 3 modelling and parameter estimation strategies were
described for a land surface hydrological model (VIC-2L) applicable to predict
moisture and energy balances for large continental rivers. In Chapter 4 a
regional parameter estimation method for the VIC-2L model was developed. In
this chapter, three applications of the grid-based VIC-2L model for the Arkansas-

Red River basin are described.

5.1 Introduction

Determining the space-time variability of hydrological processes and
energy fluxes over a continental scale area is a challenging task. The fluxes of
heat and moistire across the land/atmosphere interface may vary over a range of
spatial scales due to the inhomogeneity of land surface (WMO, 1992). Land
surface inhomogeneities include differences in soil type, vegetation cover,
topography, water content, depth of the water depth, precipitation, and land use.
In general the heterogeneity of the land surface increases with the horizontal
scale of the simulation domain. Typically, one grid cell of mesoscale model

represent a domain of 10-100 km?

, while one GCMs grid square usually
represents a domain of around 250,000 km? (Avissar and Verstraete, 1990).
Accordingly, developing and testing macroscale hydrological models appropriate
for modeling the water and energy fluxes at the scale of large continental rivers
(for example, the GCIP southwest Large Scale Area (LSA) which essentially
comprises the Arkansas-Red River basin) are needed. For reliable estimates of
these fluxes for the GCIP LSAs, the information gained from the application of
the macroscale hydrological model at intermediate scale area (ISA) catchments
must be incorporated at the LSA application. An example of such information is
the spatial variability of the parameters of macroscale hydrologic models, such as

VIC-2L, within the LSA. The regional relationships that relate the hydrological
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parameters of the VIC-2L model to land surface attributes are described in
Chapter 4. They provide a means for estimating the spatial variability of the
VIC-2L parameters within the LSA.

In this chapter we describe three applications of a grid network version of
the two-layer Variable Infiltration Capacity (VIC-2L) model applied at one
degree resolution. These applications are illustrated for the GCIP southwest
LSA. In the first application (Abdulla et al., 1995a) the grid network model is
run off-line at a daily time step, forced by precipitation and potential
evapotranspiration which is computed using a temperature-based algorithm. By
off-line implementation we mean that no attempt was made to account for
feedbacks from the land surface to the atmosphere, e.g. by incorporation of the
VIC-2L as a land surface scheme in a GCM. The gridded hydrologic parameters
of the VIC-2L model are estimated using two methods. The first is the
STATSGO Dbased approach described in Chapter 3. The second is linear
interpolation of locally optimized parameters for the 40 calibrated ISA.
catchments (see Chapter 3).

In the second application, the model is also run at a daily time step, but
in this case the gridded hydrological parameters are estimated using both the
STATSGO based approach and the regional equations developed in Chapter 4.
The purpose of this application is to test the performance and the ability of the
VIC-2L model to simulate the large scale water balance components using

regional parameters (Abdulla and Lettenmaier, 1995).
In the third application (Abdulla et al., 1995b) the VIC-2L model is

tested for its ability to simulate large scale sensible and latent heat fluxes in the
Arkansas-Red River basin. In this application the full energy balance version of
the model is used. The model is run off-line at a three hour time step, forced by
gridded station data from NCDC Surface Airways data (including wind speed,
relative humidity, temperature, surface pressure and total sky cover) as well as
incoming longwave and shortwave radiation estimated using empirical methods.
The hydrological parameters are obtained using the regional equations developed

in Chapter 4.
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5.2 Case Study I: Water balance estimation using interpolated parameters

In this section we describe the application of an approach for gridded
parameter estimation of the two-layer Variable Infiltration Capacity (VIC-2L)
model of Liang et al. (1994) for the GCIP LSA-SW region (Arkansas-Red River
basins). The approach is based on the results of the parameter estimation
strategy described in Chapter 3. Seven of the gridded hydrological parameters of
the VIC-2L. model are linearly interpolated from the locally optimized
parameters for the 40 ISA calibration catchments, as described in Section 3.4.
The remaining three are estimated directly at the one degree scale using the
U.S. Soil Conservation Service State Soil Geographic Data Base (STATSGO).
The gridded hydrological parameters (i.e. the interpolated parameters as well as
those obtained from STATSGO) are then used in an off-line grid
implementation of VIC-2L at a one degree scale for the entire Arkansas-Red

River basin.

" The three models described in Chapter 3 are linked as shown in Figure
5.1. The approach can be summarized as follows (Figure 5.1): i) the snow
accumulation and ablation model is run for each of the four elevation bands in
cach grid cell. Inputs to the snow model include daily time series of
precipitation and temperature as well as the digital elevation data and snow
model parameters, the outputs are time series of snow pack outflow and rainfall;
ii) the VIC-2L model is run for each grid cell, using the elevation band-averaged
snow model output as input as well as the daily potential evapotranspiration and
hydrological and vegetation parameters. Outputs of the VIC-2L model are total
runoff, evapotranspiration, and soil moisture time series; ii1) the runoff from each
grid box is then routed from grid cell to grid cell through the entire channel

network based on simple distance and travel time assumptions.

The approach is tested by comparison of monthly streamflow predicted by
the gridded VIC-2L model routed from box-to-box throughout the entire channel

network using a simple uniform velocity (no channel dispersion) routing scheme.
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The model predicts streamflow at selected locations where naturalized
streamflow (regulation effects removed) for a 38 year period (1948-1986) have
been estimated by the Tulsa District of the Department of the Army Corps of
Engineers. In addition, the model-generated catchment-total evapotranspiration
for the 14 year period October 1972 - November, 1986 is compared with total
evapotranspiration derived from an atmospheric moisture budget analysis of the

Arkansas-Red basin (Bradley et al., 1995).

5.2.1 Grid parameter estimation

The VIC-2L model was developed for application over large areas, such as
the domain of mesoscale numerical weather prediction models. For this purpose,
the Arkansas-Red River basin was divided into 61 cells of size one degree latitude
by one degree longitude (see Figure 2.3). For each grid cell, two kinds of
parameters are needed. The first type, which are related to vegetation and its
interaction with the atmosphere, include minimum canopy resistance, leaf area
index LAI[n,m] (n=1, 2,........ , N; m=1, 2,....., 12) for each surface cover class,
the zero plane displacement height, roughness length, and the relative fraction of
roots in each of the two soil layers. Figure 2.6 shows the distribution of the six
major vegetation classes for the Arkansas-Red River basin. Each of the
vegetation covers is associated with a set of these parameters (see Table 5.1).
The leaf area index is calculated for each month and each vegetation class as
described in Section 2.5; the other vegetation parameters are determined using
literature for each of the vegetation cover class. For example, the zero plane
displacement height (d(j) and the roughness length (z) are important parameters
in calculation of the aerodynamic resistance ry. They are estimated based on

canopy height (h) as follows (Calder, 1993):
dy=0.63h (5.1)
79=0.1 h (5.2)

The relative fraction of roots in each of the two soil layers are taken from
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literature values for each vegetation cover. Minimum canopy resistance r¢ is
taken as 100 s/m as used by Liang et al. (1994).  Table 5.1 lists these
parameters for each of the vegetation classes. For more details as to the specific

function of each of these parameters, the reader is referred to Liang et al. (1994).

The second type of the VIC-2L model parameters are hydrological,
including the saturated hydraulic conductivity, the‘pore size distribution index,
the infiltration shape parameter, the three baseflow related parameters, and the
maximum soil moisture contents in layer 1 and 2 (see Table 3.1). As shown in
Section 3.3.4 and Figure 3.7, the simulated hydrographs using STATSGO
parameters in conjunction with the optimization method compare favorably with
the hydrographs based on complete optimization. This result was encouraging,
and motivated us to use the STATSGO-based approach because it avoids the
problem of transferring parameters from the ISAs to the LSA for some of the
parameters. Accordingly, two of the hydrological parameters (see Figures 3.4
and 3.5) can be determined directly using STATSGO data such as (the saturated
hydraulic conductivity and pore size distribution index). From the three
STATSGO based parameters, only the saturated hydraulic conductivity and the
pore size distribution index were used directly in the model. The Brooks-Corey
residual water content, which is given as a fraction of water volume to soil
volume, was not directly used in the model, because the information about the
actual soil thickness is not available in STATSGO. Instead it was taken as a

fraction (in this case 0.3) of the maximum soil moisture for each layer.

To determine the remaining hydrological parameters for each grid box,
the estimated hydrological parameters from the ISAs, estimated as described in
Section 3.3.4 for the 40 calibration catchments, were interpolated spatially. We
found that in some cases, in particular near the edge of the LSA where the ISA
estimates had to be extrapolated, rather than interpolated, unrealistic values
resulted which were reset to the average value estimated from the closest
catchments. Figures 5.2a-d shows the spatial distributions of four of the
interpolated parameters: maximum soil moisture of layer 1 and layer 2,

maximum base flow, and the infiltration parameter. For more details as to the



108

specific function of each of these parameters, the reader is referred to Liang et al.

(1994).

5.2.2 Implementation of grid-based VIC-2L model

Using parameters estimated for each grid cell as described in the previous
section, the VIC-2L model was implemented off-line (see Figure 5.1). In its
usual configuration, VIC-2L performs the complete surface energy and water
balances, in which case the model is driven by downward solar and longwave
radiation, in addition to surface meteorological variables. In the off-line version,
the surface energy balance is not performed, and the driving variables are
precipitation, temperature, and potential evapotranspiration. When it is applied
in fully coupled (water and energy balance) mode, VIC-2L uses the energy-based
snow accumulation and ablation model of Wigmosta et al. (1994). However, in
the off-line version, absent the driving variables required for the energy-based
model, we instead used the temperature index snow accumulation and ablation
model of Anderson (1973), which is a part of the National Weather Service River
Forecast system. The only data requirements of Anderson’s model are

precipitation, surface air temperature, and elevation.

To account for orographic effects on precipitation, and elevation
dependence of temperature, each grid cell was divided into four elevation bands,
using 30 arc second digital elevation data. Daily time series of precipitation, and
maximum and minimum temperature from the climatological stations in each
grid cell (usually two) were used. The precipitation time series for each station
were normalized by their annual means, and grid cell averages of the normalized
precipitation series were constructed. The average normalized time series were
then rescaled by the mean annual areal precipitation for the grid cell (in this
study it is taken as the annual mean of the two precipitation stations). The
temperature for each station was lapsed to the mean elevation of the grid cell,
using a lapse rate of 6 °C/km, which is approximately the psuedo-adiabatic lapse
rate at the mean elevation of LSA-SW . The form of precipitation is
determined based on the mean temperature of each elevation band. Where there

were two stations in the grid cell, the temperatures, lapsed to the grid cell mean
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elevation, were averaged. The grid cell average temperature, corrected for

elevation, was then lapsed to the elevation of each of the four bands.

Since the data required to compute PET wusing an energy-based
formulation such as Penman-Monteith were not available for each grid, we used
Hamon’s method (Hamon et al, 1954; Hamon, 1961) which requires only daily air
temperature and latitude (Eq. 3.17). The potential evaporation predicted by
Hamon’s method were adjusted by a scaling factor. This scaling factor was
based on comparison of the annual Ep, estimated by the Hamon’s equation with
the annual Ep estimated by four other empirical methods. These methods are:
Blaney-Criddle as modified by the FAO (Doorenbos and Pruitt, 1977),
Hargreaves (Hargreaves et al., 1985), radiation (Doorenbos and Pruitt,‘ 1977),
and Penman as modified by the FAO (Doorenbos and Pruitt, 1977). Four
Surface Airways stations where climatological data required by the four methods
are collected, were selected to represent the different climates within the
Arkansas-Red River basin. The scaling factor for each station was taken as the
ratio of the average annual Ep estimated from each method to the annual Ep
estimated using Hamon equation. Then the scaling factor for each station was
taken as the average of the scaling factor from the four methods. The factors

ranged from 1.25 for the humid area to 2.0 for the arid area.

The output of the snow accumulation and ablation model is rain plus melt
(precipitation on bare ground plus snowmelt) for each elevation band at 6 hour
time steps. The rain plus melt series were aggregated to a daily time step and
averaged over the four elevation bands to provide the input to the VIC-2L

model.

The unit hydrograph approach of Wetzel (1994) and Mas (1995) was used
to account for lagging and dispersion of the VIC-2L model output in the channel
network. The method applies one unit hydrograph to VIC-2L output for a grid
cell, and another to streamflow entering the grid cell from adjacent cells. For
simplicity, a triangular unit hydrograph was used for flow originating within the
grid cell, and a simple lag (based on effective channel velocity and channel

length) was used for flow crossing a cell.
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5.2.3 Results

5.2.3.1 Streamflow evaluation
The grid-based model for LSA-SW was run for the period October, 1948

to September, 1987 using the estimated parameters as described in Section 5.2.1.
The unit hydrograph values used are given in Table 5.2. These values are the
same as those used in the Missouri River simulations performed by Wetzel
(1994). For routing flow across a grid cell, we assumed an effective velocity of 1
m/sec (assumed to be constant in space and time), which is the lower value in
the velocity range suggested by Sausen (1994). For purposes of computing the
lag time, the channel lengths were computed based on the straight line distance
from the center of one block to that of the next dependent on the configuration
of the flow network defined in Figure 2.3. The flow velocities do not represent
actual channel velocities (which tend to be lower), because the actual channel
lengths are longer than the straight line distances, typically by a factor equal to
the average sinuosity (> 1).

The streamflow volumes resulting from the routing model were
accumulated to monthly totals. Although the naturalized streamflow data used
for validation purposes are available at a daily time step, the data at this time
step are problematic due to inherent assumptions about travel times that must
be made in the streamflow naturalization process. Monthly averaging reduces
many of these problems. It also has the effect that errors in the VIC-2L
simulations due to assumptions about channel distances and travel times are
minimized.

Figures 5.3 and 5.4 show the observed and the simulated mean monthly
streamflow, the monthly streamflow time series, and the coefficient of variation
of the monthly streamflows for the furthest downstream locations in the
Arkansas and Red River basins, respectively. Table 5.3 provides similar
information for the other locations shown in Figure 2.3. Given the relatively
unsophisticated method used to obtain the hydrologic model parameters, the
model performs well. A general characteristic of the simulated hydrographs is

that they tend to underestimate the peak seasonal flow. Also, the model
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underestimate the mean monthly flow for February through May, and
overestimate it for August through November. Although the peak is slightly
underpredicted, mean annual volume is well simulated as shown in Table 2.3 for
10 gauging stations (6 of them for Arkansas River and the remaining for the Red
Rivér). Generally, the simulated annual flow is greater than the observed annual
flow for 8 of these stations. At the mouth of the Arkansas River (Little Rock)
the relative error is 7.3 percent and the mouth of the Red River (Shreveport) the

relative error 1s -12 percent.

5.2.3.2 Regional evapotranspiration cvaluation

Figure 5.5 shows the spatial distribution of the mean of 38 years of
evaporation and runoff for the Winter (October to March) and the Summer
(April to September) for LSA-SW using the grid-based model (VIC-2L). In both
seasons the runoff and evaporation increases from West to East, following the
mean precipitation gradient. As shown in Table 5.4, at the scale of the
Arkansas-Red River basins, the evaporation for the summer is approximately
twice that for the winter, while the runoff for the two seasons is approximately

the same.

Figure 5.6 shows the associated spatial distribution of the evaporation and
runoff ratios for both seasons. The runoff ratio (runoff/precipitation) increases in
the West-to-East direction for both seasons. The evaporation ratio
(evaporation/precipitation) for the winter is lowest in the Eastern part of the
region, while the summer is highest in Eastern part of the region. The average
evaporation ratio for the Arkansas-Red basin is approximately 0.70 in the winter
and just under 1.0 for the summer. Typically this ratio tends to be about four

times the winter runoff ratio and eight times the summer runoff ratio.

Figure 5.7 shows the annual mean geographic distribution of the processes
involved in the water balance analysis using the VIC-2L model. Precipitation
: (upI')er panel) is characterized by an increasing west to cast gradient. The driest
region is the western part where the annual precipitation is less than 1 mm/day.
Modeled evaporation (middle panel) is fairly consistent with the precipitation;

about 85 percent of the annual precipitation is evaporated. —Modeled annual
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runoff (lower panel) is also affected by large east-west gradients of the
precipitation and the evaporation. Most of the generated runoff is from the

eastern region. The largest amount occurs in the western part of the region.

Figure 5.8 shows the annual runoff and annual evaporation ratios. The
runoff ratio increases in general from west to east. On the other hand the
evaporation ratio is highest in the western part and lowest in the eastern part of

the region.

Figure 5.9 shows the monthly hydrologic cycle budget for the Arkansas-
Red River basin. The upper panel shows the mean monthly value for each of the
water balance components. The dominant component in the water balance is
precipitation, which is slightly larger during the summer than the winter. The
highest values are in May (104 mm) followed by June (86 mm). The lowest three
months are December (34 mm), January (26 mm), and February (35 mm). The
evaporation is highest during the summer, and slightly exceeds precipitation in
June and July. This is possible because of the moisture that was stored in the
plant root zone of the soil during the preceding months of the year. Runoff is
the smallest component of the water cycle. The highest values are for May (13
mm), April (12.6 mm), March (11.2 mm), and June (11 mm). The lowest runoff
is in August (4 mm). The lower panel of Figure 5.9 shows the coefficient of
variation of the monthly water balance components. The runoff tends to be more
variable than precipitation and the evapotranspiration (ET); the variability of

ET in turn is less than that of precipitation.

The VIC-2L model-generated catchment-total ET from October 1972,
‘through September 1986, was compared with total ET derived from an
atmospheric moisture budget of the Arkansas-Red basin by J. A. Smith
(Princeton University). The atmospheric water budget was estimated (see

Abdulla et al., 1995) using the following equations:

%\TN—{-V.Q:E—P (5.3)
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_ [Ps dp :
Q= J 300mb 1V & (5.4)

where W is precipitable water (liquid equivalent of water vapor in the
afmospheric column), V-Q is the water vapor flux divergence, E is
evapotranspiration, V is the horizontal wind velocity, ps is the surface
atmospheric pressure, g is the gravitational acceleration, and P is precipitation.
Radiosonde data were analyzed by J.A. Smith and his colleagues to compute the
storage change within the atmospheric column and water vapor convergence
terms. Figure 5.10 shows the location of the atmospheric sounding stations and
the footprint of the atmospheric column used in the analysis. The point
radiosonde data were interpolated onto 1 degree grids within the atmospheric
column, and used to compute the storage change within the atmospheric column
and water vapor convergence terms on a daily time step. These were then
aggregated to the monthly time step for the monthly water budget. Details of
the method used in the water budget computations are provided in Bradley et al.
(1995).

Monthly precipitation for the basin was obtained by accumulating the
daily precipitation (see Section 5.2.2) used in the hydrological model simulations.
Monthly evapotranspiration was then computed as a residual in the atmospheric
water budget. Figure 5.11 shows the monthly average vapor convergence term
from the 16 years of analysis. There appears to be a well defined seasonal cycle,
except for April which is much smaller than either March or May. April tended
to have daily values with rather high convergence or divergence and a small net
convergence as shown in the figure. The storage change terms are typically an
order of magnitude smaller than the convergence terms. There is, however, a
systematic seasonal progression in the storage. change terms that if neglected

leads to minor biases in the seasonal cycle of the water budget.

Figure 5.12a shows the monthly times series for the ET estimates for the
hydrologic model and the atmospheric budget. Generally, the January ET
values from the atmospheric budget tend to be lower than those of the VIC-2L

model, and sometimes the atmospheric budget ET values are negative. In the
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case of the VIC-2L model the ET is always greater than zero. Figure 5.12b
shows the mean monthly ET, spatially integrated over the entire Arkansas-Red
basin. The mean monthly estimates agree quite closely from late winter to mid-
summer. However, the VIC-2L model estimates less evaporation in the Fall and
more in mid-winter, than the atmospheric budget. Figure 5.12c shows the
coefficient of variation of the monthly ET. The VIC-2L model estimates of the
coefficient of variation are lower than those derived from the atmospheric

budget, especially in winter.

Table 5.4 also summarizes the statistics of the seasonal and annual
spatially averaged ET and runoff for the atmospheric budget along with the
hydrological model. The mean seasonal estimates agree very closely; to within 5
percent in the winter and less than 1 percent for summer. However, the
atmospheric model estimates of the coefficient of variation are greater than those
of the VIC-2L model for both seasons. On an annual basis, the results from
both models are extremely close; the estimated total annual ET from the
atmospheric model is 619 mm and for the VIC-2L model it is 614 mm. These
results indicate that at the scale of the Arkansas-Red River basin, the
atmospheric budget and land surface hydrologic models provide comparable

estimates of regional ET.

5.3 Case Study II: Water balance estimation using regional parameters

In this section, the regional parameter relationships developed in Chapter
4 are used in the validation of the VIC-2L model as well as to test its ability to
simulate the water balance components. The only difference between this
section and Section 5.2 is that the model is driven by the regional parameters
determined by using the explanatory variables for each grid box and the regional
relationships developed in Chapter 4, while in Section 5.2 we used the
interpolated parameters. Nothing else was changed in the modelling strategy,

" including the vegetation parameters, which are the ones given in Table 5.1.
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5.3.1 Grid cell regional parameters

The regional parameter estimation methodology developed in Chapter 4
for ISAs was used to determine the spatial distribution of the VIC-2L model
parameters for each grid box in the Arkansas-Red River basin (Figure 2.3). For
this purpose the soil attributes were aggregated using the procedure described in
Section 2.3. Climatological data (i.e. storm characteristics) were estimated from
the climatological stations in the grid cell. Figures 5.13a-d shows the spatial
distribution for some selected parameters of the VIC-2L model. Figures 5.13a
and 5.13b show the spatial distribution of the maximum soil moisture of layer 1
(W,
mean value of 185 mm. On the other hand W o ranges from 155 to 897 mm with

1) and layer 2 (W o), respectively. W, ranges from 85 to 385 mm with a

a mean value of 412 mm. Figure 5.13c shows the spatial distribution of the
maximum baseflow parameter (Dp,), which ranges from 0.2 to 10 mm/day. The
highest values are in the western region at high elevations, while the lower values
are associated with flatter areas in the eastern part of the region. Figure 5.13d
shows the spatial distribution of the infiltration parameter (b;). This parameter
is affected by the climatological gradient; it generally increases from west to east
similar to the distribution of the precipitation (about 40 percent of the variation
in this parameter is explained by the annual rainfall intensity). Similar to
Section 5.2, two of the hydrological parameters (see Figures 3.4 and 3.5) were
determined directly using STATSGO data (the saturated hydraulic conductivity

and pore size distribution index).

5.3.2 Results
The grid-based VIC-2L was run for the period October, 1948 to

September, 1987 using the regional parameters estimated in Section 5.3.1. The
modelling strategy and the parameters for the snow melt model as well as the
routing model are identical to those used in Section 5.2.  Because the
hydrological parameters of the VIC-2L model form the only difference between
the application presented in this section and that presented in Section 5.2, the
results using the regional parameters will be presented as a direct comparison to

those obtained using the interpolated parameters (Section 5.2). In the following
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subsections, the simulated hydrograph, the annual and the seasonal water

balance components are presented.

5.3.2.1 Simulated hydrograph

Figures 5.14 and 5.15 show the observed and the simulated mean monthly
streamflow time series, and the coefficient of variation of the monthly
streamflows for the furthest downstream locations in the Arkansas and Red
River basins, respectively. The model performed reasonably well using the
regional parameters, in particular, the performance was considerably better than
that shown in Figures 5.3 and 54.  Although the peak 1is slightly
underpredicted, the mean annual volume was well simulated. Table 5.5 lists the
observed and the simulated annual runoff based on the regional parameters and
the interpolated parameters (Section 5.2) for ten gaging stations shown in Figure
2.3. In general there was considerable improvement in the simulated annual
runoff for all the gauging stations by using the regional parameters. For
example, at the outlet of the Arkansas River (Little Rock) the relative error in
the runoff volume is -1.3 percent in the case of the regional parameters compared
to 7.3 percent in the case of the interpolated parameters. At the outlet of the
Red River (Shreveport) the relative error is 1.7 percent in the case of the
regional parameters compared to -12 percent in the case of interpolated
parameters. The average absolute relative error in the simulated annual runoff
for the ten gauging stations is 10 percent in the case of the regional parameters

and 20 percent in the case of the interpolated parameters.

5.3.2.2 Annual water balance components

The patterns of the annual mean geographic distribution of the processes
involved in the water balance analysis obtained using the regional parameters are
similar to those obtained using the interpolated parameters (Figure 5.7). No
significant difference exists in the spatially integrated means of the annual runoff
and evaporation using both sets of parameters (see Table 5.4 and Table 5.6). On
the other hand, there is a significant difference in the means of these processes on

the basis of individual grid cells. To evaluate this difference, the 61 grid cells
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shown in Figure 2.3 are divided into four climate conditions according to their
mean annual precipitation (see Figure 5.16):

i) Arid (Annual Precipitation (P < 280 mm)

ii) Semi-arid (280 < P < 600 mm)

iii) Sub-humid (600 < P < 1000 mm)

iv) Humid (P > 1000 mm)
The climate classification here is selected subjectively based only on the annual
precipitation, similar classification are considered by Kuhl and Miller (1992) in
their study of the seasonal runoff for the world’s largest rivers.
Figures 5.17a and 5.17b show the annual percent differences in the runoff ratio

and the evaporation ratio, respectively. The percent difference of the annual

runoff ratio (PDRR) is defined as:

ARR; - ARR, '
ARR—) * 100 (5.5)

PDRR = (

where ARR; is the estimated annual runoff ratio using the regional parameters,
and ARR; is the estimated annual runoff ratio using the interpolated parameters.
As can be seen in Figure 5.17, the percent differences in the runoff ratio (range
from 0 to 100 percent) are much larger than those of the evaporation ratios
(range from zero to 10 percent). The largest percent difference in the runoff
ratio occurs in the most arid part of the region which is the north-west corner.
In the case of the evaporation ratio, the largest difference occurs in the humid

area (the eastern part of the region).

Figures 5.18a and 5.18b show the histograms of the percent difference in
the runoff and the evaporation ratios, respectively, between the two approaches
(i.e. the interpolation and the regional) for all the 61 grid cells shown in Figure
5.16.  Eight of the grid cells have greater than 50 percent difference in the
annual runoff ratio, seven of them are arid or semi-arid grid cells.  All the
humid grid cells have less than 40 percent difference in the annual runoff ratio.
On the other hand, most of the grid cells have differences less than 5 percent in
the annual evaporation ratio. Only 9 of the grid cells (all of them are humid

and sub-humid) have five to ten percent difference in the evaporation ratio.
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Figures 5.19 a and b show the simulated annual runoff ratios using the
regional and interpolated parameters, respectively. Although the generated
histogram of the runoff ratio are slightly different, the lower and the upper limit
for each climate condition are very similar. For example, the annual runoff ratio
for the humid grid cells ranges from .15 to .3 in both histograms. The arid and
semi-arid grid cells have modeled annual runoff ratio ranging from 0.001 to .15.
The distributions of the sub-humid grid cells in both histograms are slightly
different. In the case of the regional parameters the runoff ratio for the sub-
humid cells ranges from .1 to .25, while in the case of the interpolated
parameters the runoff ratio ranges from .05 to .2. Figures 5.19¢ and d show the
annual evaporation ratio histograms using the regional and the interpolated
parameters, respectively. In both runs, the evaporation ratio for the humid grid
cells ranges from .7 to .85 and for the arid and semi-arid it ranges from .85 to
1.0.

A question may arise from these results: why is the percent difference in
the annual evaporation ratio between the two runs relatively small compared to
those of the runoff ratio? As shown in Figure 5.18 most of the grid cells have
an evaporation ratio ranging from 0.85 to 1.0, and most of the grid cells have a
runoff ratio less than 0.2. These results indicate that the hydrological processes in
the Arkansas-Red River basin are mainly water rather than energy limited,
especially at the annual scale. This explains why the percent differences in the
evaporation ratios are mostly less than 10 percent. In other words, the annual
model estimated ET, is only slightly affected by the differences between the
hydrological parameters in the two runs. On the other hand, the percent
differences in the annual runoff ratio between the two runs are generally larger,
mainly due to the differences between the hydrological parameters used in both
runs. To some extent these results are consistent with the sensitivity analysis of
the VIC-2L model parameters conducted by Liang (1994). She found that the
leaf area index, the minimum stomatal resistance, and the soil porosity have the
greatest influence on the model output of total annual runoff and annual
evaporation. Since in this study the vegetation parameters in the two runs are

held constant, the soil porosity may play an important role in the simulated
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runoff difference between the two runs. The soil porosity is not directly used in
this study, but it is related to the maximum soil moisture in layers 1 and 2 as

follows:
maximum soil moisture = porosity x soil depth (5.6)

Liang (1994) also found that the drainage parameters (D and W5) had minimal
effects on the monthly and annual evaporation and annual runoff. The monthly
runoff distribution varies significantly with these parameters. Since in our case
the two parameter sets are completely different for all grid cells, it 1s difficult to
know which parameters are most responsible for differences in simulated runoff.
However, from these results (see Figure 5.18), it is clear that the runoff is
strongly affected by the hydrological parameters. One reason is that all the
hydrological parameters (listed in Table 3.1) are involved in the runoff
formulation, while only some of them are used in the evaporation formulation.
This may increase the chance of having large differences between the two runs in
the case of runoff. For example, three of the drainage parameters (Dg, Dy, and
Wy (see Table 3.1)) are used only in the runoff formulation. These parameters

appear in the baseflow formulation as follows:

_(DsDm -
Q= () W (5.7)
Testing the combination of these parameters (k :—DiDﬂ- for eight of the
8 1= W,W 8

grid cells in which the percent difference in the runoff rifio between the two
runs was greater than 40 percent, showed that ratio of k; ranged from 1:4 to
1:30 in these cells. Seven of these grid cells are exterior cells and most of them
are semi-arid. For such grid cells, the hydrological parameters are mainly
extrapolated which may cause a higher possibility for the parameters to be
different. For the other grid cells where the difference in the runoff ratio was
less than 40%, the k; values in the two runs were quite close. Generally, it is
found that for the arid and semi-arid area the simulated runoff difference
between the two runs are more sensitive to the difference in the two sets of the

parameters than that for humid and sub-humid area. This also evident from the
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poor performance of the regional equation in semi-arid and arid catchments as
shown in Chapter 4. The higher sensitivity of the runoff ratio in the western
part of LSA-SW results from the greater sensitivity of ruonff in arid and semi-

arid catchments to the infiltration parameterization.

5.3.2.3 Seasonal water balance

Figure 5.20 shows the seasonal spatial distribution of the percent
difference in the generated runoff and evaporation ratios between the two runs.
In general the largest percent difference in the evaporation ratio is in the eastern
part of the area (humid and sub-humid), and it is greater in the winter than in
the summer. On the other hand the distribution of the percent difference in the
runoff ratio in the winter and the summer are very similar. Figure 5.21 shows
the histograms of the percent difference in the runoff and the evaporation ratios
between the two runs for both winter and summer. The percent difference in the
evaporation ratio ranges from 0 to 16 percent in the winter and it is highest in
the humid and sub-humid cells. In the summer, the percent difference in the
evaporation ratio ranges from 0 to 11 percent. The percent difference in the
runoff ratio ranges from 0 to 100 percent for both winter and summer, but only

13 grid cells have differences greater than 40 percent.

Figure 5.22 compares the histograms of the evaporation ratio for both
winter and summer using the two sets of parameters. The summer evaporation
ratio from the two runs has a narrower range than that in winter. It ranges
from 0.85 to 1.1 in the summer and from .4 to 1.05 in winter. Similarly the
range in runoff ratio in the summer is narrower than that in winter (Figure 5.23).
The runoff ratio ranges from 0.01 to 0.4 in' winter and from 0.01 to .25 in

suminer.

Table 5.6 also summarizes the statistics of the seasonal and annual
spatially averaged evaporation and runoff for the atmospheric budget along with
the VIC-2L model. The results reported in Table 5.7 (using the regional
parameters) are close to the results reported in Table 5.4 (using the interpolated

parameters). The evaporation in the winter is about 2 mm lower than that in
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Table 5.4. The statistics for the summer runoff are the same in both Tables.
The spatially averaged winter runoff using the regional parameters is 57.3 mm,

while it i1s 54.6 mm using the interpolated parameters.

On an annual and seasonal basis the evaporation results of the VIC-2L
model using both the interpolated and the regional parameters are close to those
obtained using the atmospheric budget. Although the results discussed above
show that there are some differences in the simulated runoff and evaporation
using the two sets of parameters, there is no difference in spatially averaged
seasonal and annual evaporation between the two runs at the scale of the
Arkansas-Red River basin. The results reported in Tables 5.4 and 5.7 indicate
that atmospheric budget and the VIC-2L model (using the two sets .of
parameters) provide comparable estimates of the regional evaporatranspiration.
These results imply that at the scale of the Arkansas-Red River and for the
climatological conditions (semi-arid to sub-humid climate), the output of any of
these models will be controlled by the available soil water, and the hydrological

processes for these climate conditions are mainly water limited.

5.4 Case Study III: Water and cnergy balance estimation

In this application the VIC-2L model was tested for its ability to simulate
the full land surface energy balance of the Arkansas-Red River Basin. As in
Sections 5.2 and 5.3, the basin was partitioned into sixty-one grid cells (one
degree resolution). Station precipitation and temperature were used to construct
input precipitation and snowmelt time series. As described in Section 5.4.1.2
clear sky incoming shortwave radiation was predicted using an empirical
equation, then the clear sky radiation was reduced according to cloud cover
gridded from NCDC Surface Airways data. Downward longwave radiation was
computed using the empirical equation of the Tennessce Valley Authority (TVA)
(1972) based on humidity, temperature, and cloud cover gridded from NCDC
data. Soil and vegetation parameters were the same as in Sections 5.2 and 5.3.
The model generated catchment-total latent heat fluxes are tested by comparison

with total evaporation derived from an atmospheric moisture budget of the
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Arkansas-Red River basin. The grid network model was run off-line at a three

hour time step and driven by the gridded station data described above.

The differences between this application and the previous applications
described in sections 5.2 and 5.3 are: i) the time step is 3 hour in this case while
in the previous cases it was daily; and ii) the VIC-2L performs the complete
surface energy and water balances, driven by downward solar and longwave
radiation, in addition to surface meteorological variables, while in the previous
applications (Sections 5.2 and 5.3) only water balance computations were

performed.
5.4.1 Model Input data

5.4.1.1 Surface airways data:

Observed hourly meteorological data were used for a 4-year period (1984-
1987) for 26 NCDC Surface Airways stations distributed across the Arkansas-Red
River basin to force the grid-based VIC-2L model. Table 5.7 lists these stations
and Figure 5.24 shows their locations. The meteorological data include

o

1) Surface temperature (C)
2) Wind speed (m/sec)
3) Relative humidity (%)
4) Surface pressure (mb)
)

5) Total sky cover (%)

For each station the data were regrouped from an hourly to a 3 hour time
step by taking the arithmetic average. Missing data were estimated using either
the data from the same station or the closest station depending on the length of
the missing period. In the case of one missing value, the value was estimated by
linear interpolation of the value before and after the missing time step. When
more than one consecutive value was missing, values from the closest station
were used to replace the missing value. The value from the closest station was
adjusted by the ratio or the difference between the long term means of the two

stations.
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Corrected station data were interpolated to the 1 degree grid mesh using
an inverse squared distance scheme, which is a simple version of the spherical
adaptation of Shepared’s (1968, 1984) numerical approximation method
(Willmott et al., 1985). The gridded meteorological data were used in two ways
in the VIC-2L model:

i) some of these data are used only to calculate the shortwave and longwave

radiation based on sky cloud cover

ii) other data such as the wind speed and surface pressure are needed in the

Penman-Monteith evapotranspiration algorithm.

5.4.1.2 Shortwave radiation

The principal source of heat for evapotranspiration is solar radiation, RS.
RS, when measured at the earth’s surface, includes both direct and diffuse
shortwave radiation and is termed ”global radiation”. Many techniques have
been developed to estimate the incident solar radiation. The general approach of
most of these methods is to first find the clear sky solar radiation by using the
top of atmosphere downward radiative flux and reducing this amount based on
the climatological clear sky atmospheric transmittance. Then, for cloudy
conditions, an empirical relationship is employed which relates the percent cloud

cover to an attenuation in the incident solar radiation.

The following empirical approach is used here, in which the hourly (or
any length period) extraterrestrial radiation can be estimated according to Duffie

and Beckman (1980) as:
Rp= [12(60) /7] Ggc dy [cos(g)cos(8)[sin(wy) —sin(w;)] + (wy-w;)sin(4)sin(é)] (5.8)
where R.p is hourly extraterrestrial radiation in MJm'z; Ggc is the solar

constant, 0.08202 MJm Zmin! (1.959 cal cm™
distance of the earth from the sun as defined in Eq. 5.10; ¢ is the grid cell

min’l); and d; 1s the relative

Jatitude and 6 is the declination, in radians; w, is the solar time angle at the end
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of the hourly period, and w; is the solar time at the beginning of the hourly

period, calculated as:

wy =w=-7/24 (5.9a)
wy = w+m/24 (5.9Db)

where w is the solar time at the midpoint of the hourly period in radians
(noon = 0, afternoon is positive, morning is negative). The relative distance from

the earth to sun, given by
dp = 1+0.033 cos(2xJ/365) (5.10)

where J is the Julian day (1 <J <365 or 366).

The hourly values of clear-sky solar radiation, Rsoh’ can be estimated

using the procedure of Hottel (1976) where:

Ry = (rb—{-rd)Rah (5.11)
N is atmospheric transmittance of direct-beam shortwave radiation and T4 is
atmospheric transmittance of diffuse shortwave radiation. Different values can
be estimated for these transmittance dependent on the climate (i.e. Tropical,
Midlatitude summer, Midlatitude winter, and Subartic summer), grid elevation,
latitude, and the time of the year. For cloudy conditions, an empirical
relationship is employed which relates the percent cloud cover to attenuation in
the incident solar radiation (Bras, 1990):

Ry =(1-0.65 N%) 7R p (5.12)

where R4 is the direct radiation under cloudy conditions, (rd*Rah) direct

radiation under clear sky conditions and N is the fraction of cloud covered sky.

The approach was evaluated using hourly pyranometer measurements of
incoming solar radiation for the First ISLSCP Field Experiment (FIFE) site for a
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number of ("golden” and ”silver”) days selected from Intensive Field Campaigns
2, 3, and 4. Figure 5.25 compares pyranometer measurements of incoming solar
radiation at FIFE and empirically estimated radiation. The root mean squared
error between the estimated and the measured values is 120 W/m"2 or about
29% of the average observed value. When the skies are clear over the site
(golden day) the estimation procedure performed much better. The errors on
cloud days are due, in part to the accuracy of the cloud cover estimates, which
were taken from Topeka which is about 75 km from the FIFE site.

5.4.1.3 Longwave radiation

Downward longwave radiation is emitted by the atmosphere and depends
strongly on emissivity as well as air temperature and the water content in the
atmosphere. The presence of clouds also increases the longwave radiation due to
additional radiation emission from the base of the clouds. Longwave radiation
was calculated by using the equation suggested by Bras (1990) and taken from
TVA (1972), which takes into account the effect of clouds

R;= K¢ Ea o Ta 4 (5.13)
where K. an empirical cloud correction is applied (TVA, 1972; Bra's, 1990):

K _ (1+0.17N2) (5.14)
and

E, = 0.74+40.0049 e | (5.15)
where E, is the atmospheric emissivity, e is vapor pressure, Ta is the surface air
temperature, o is Stefan-Boltzman constant, and N is the fraction of the total

sky cloud cover. Similar approaches were used by Arola and Lettenmaier (1995)

and Zoin et al. (1995).
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5.4.2 Implementation

Using the regional hydrological parameters described in Section 5.3.1 and
the vegetation parameters described in Section 5.2.1, the grid-based VIC-2L
model was implemented off-line to perform complete surface energy and water
balances. In this case, the VIC-2L model was driven by gridded incoming
radiation, air temperature, wind, humidity, cloud cover, surface pressure, and
‘precipitation. The output was gridded fluxes of latent and sensible heat, surface

and subsurface runoff, and soil moisture (see Figure 5.26).

The first 9 months of the simulation period (January 1984 to September
1987) was taken as a warm up period. Because daily precipitation data were
available from the data set described in Section 2.3, precipitation was assumed to
be uniform over the daily reporting period, and 3-hour values were obtained by
dividing the daily totals by 8. Shortwave and longwave radiation were estimated
using temperature and cloud cover data as described in Sections 5.4.1.1 and
5.4.1.2. Other meteorological forcing data such as wind speed, surface pressure,
relative humidity, and surface temperature were interpolated from the Surface
Airways data as described in Section 5.4.1.1. The time of observation of all the
forcing data, taken from the Surface Airways data, are consistent. The first time
step of each day starts at midnight local time (i.e. the first time step is from

midnight to 3 a.m. local time).

Unlike the applications in Sections 5.2 and 5.3, the potential
evapotranspiration was calculated using an energy based formulation (Penman-
Monteith Equation) instead of a temperature-based formulation (Hamon
Equation). The energy-based snow routine was disabled, however, because only
a few grids have perennial snow accumulation, and those areas where is snow is
most important have minimal effects on the basin water balance, which is
controlled by the humid eastern part of the basin. The initial soil moisture for
layers 1 and 2 was taken as the soil moisture prediction for January 1, 1984 from
the run in Section 5.3 (which was for the period October 1948 to September,
1987). |
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The results in this section are for the period October 1984 to September
1987. In addition, the results are presented as direct comparisons between two
runs. The first run, which is termed the "Water balance run”, consists of the
last three years of the simulation reported in Section 5.3, in which the model was
driven by daily precipitation, and temperature. The potential evapotranspiration
was calculated using a temperature-based method. In the second, "full-energy
run”, the model was forced by a three-hour time step of meteorological and
climatological data described in the previous sub-sections. The potential
evapotranspiration was calculated using an energy based formulation (Penman-
Monteith Equation). The average precipitation of this period is 120 mm
greater than the average precipitation for the 38 years period presented in

Sections 2.2 and 2.3.

Figures 5.27 a and b shows the spatial distribution of percent differences
in the annual runoff and evaporation ratios between the two runs (water balance
and full-energy runs), respectively. Similarly, Figure 5.28 shows the histogram of
these differences for all the 61 grids. Although the two runs have the same
hydrologic and vegetation parameters, the percent differences in the runoff and
evaporation ratios are similar to the percent difference between the two runs
described in Sections 5.2 and 5.3 (see Figure 5.18). Although the two runs have
different time steps, types of forcing (input) data, and types of formulation used
in the model, the results compare well at the monthly and annual time scales.
The percent differences in the annual evaporation ratio ranged from 0 to 18
percent; about half of the grid cells show less than 5 percent difference in the
evaporation ratio. Only 14 grid cells (sub-humid to humid) have greater than 10
percent differences in the annual evaporation ratio. On the other hand, the
percent differences in the runoff ratio range from 0 to 100 percent. Most of the
grid cells are within 40 percent difference. The runoff component is of concern to
society; hence improvements in representing this would be beneficial. Figure
5.29 shows the histograms of the annual runoff and evaporation ratios using both
runs. The ranges of the histograms are similar in both runs, but the

distributions of the grid cells are slightly different in the two runs.
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Figure 5.30 shows the mean seasonal spatially distributed latent and
sensible heat fluxes. The seasonal distributions of these fluxes show a clear
dependence on soil moisture. For example, for both Winter and Summer, the
latent heat flux is larger in the western part (Humid) than eastern part (arid).
On a seasonal bases the latent heat in the Summer is much larger than the
Winter. On the other hand, sensible heat flux show more dependence on the soil
moisture. In this case, the sensible heat flux decrease in west-east direction.
The sensible heat flux in the summer is larger than that of the winter. The
distribution of both fluxes in the Arkansas-Red River basin are consistent and

capture most of the physical characteristics of this area.

5.4.3. Spatially integrated water and energy budgets

The model generated spatially integrated evapotranspiration from October
1985 through September 1987, was compared with total evaporation derived from
an atmospheric moisture budget of the Arkansas-Red River basin (Eqgs. 5.3 and
5.4). Figure 5.31 shows the three-year monthly ET, spatially integrated over the
entire Arkansas-Red River basin. In general the generated monthly ET from
the two runs (i.e. the water balance run and the full-energy run) are in a good

agreement with those derived from the atmospheric budget.

The largest difference in the evaporation estimates from the VIC model
and the atmospheric budget occurs in the summer of 1987 as shown in Figure
5.31 For the summer 1987 the total vapor net convergence was — 180 mm, while
for the summer of 1986 was + 25 mm, and for summer 1985 was —96 mm. The
best agreement between the two models is for year 1986 where the net
convergence is the lowest. The mean monthly estimates of the VIC-2L model for
Winter period (October to April) is slightly lower than the atmospheric budget.
During the Summer period (May, July, August and September) the VIC-2L
model estimates is lower than the atmospheric budget. The largest difference
between the two models is in July in which the VIC-2L model estimates is about

77 mm (in the two runs) while for the atmospheric budget is about 105 mm.

Table 5.8 compares the scasonal spatially averaged evaporation and runoff

for the VIC-2L model runs along with atmospheric budget. In the winter, the
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VIC-2L model runs (water balance run and the full-energy run) produce ET
estimates that are very close to the atmospheric budget estimates. The ET
ratios for winter are 0.61 (using the water balance run), and 0.59 (using the full
energy run), and 0.64 (from the atmospheric budget). In the summer, there is
significant difference in the ET estimates between the VIC-2L model and
atmospheric budget. For example the ET ratios for the summer are 0.99 (using
the water balance run), 0.96 (using the full-energy run), and 1.16 (using the
atmospheric budget). The spatially averaged runoff from the two runs are
comparable. The estimated winter runoff ratio is about 0.25 using the water
balance run and 0.26 using the full-energy run. The summer runoff ratio is 0.11

using the water balance run and 0.1 using the full energy run.

5.5 Summary

This chapter has summarized testing of the VIC-2L land surface scheme
through the application to the Arkansas-Red River basin using spatially
distributed parameters estimated via a regionalization scheme. The approach
uses distributed land surface characteristics from digital elevation data and the
SCS STATSGO soils data base, and vegetation cover from the EPA Global
Ecosystems Database. Key components of the methodology are extraction from
the STATSGO data base of soil attributes used to determine two of the model
parameters and a regionalization scheme from which the remaining parameters

were determined.

Three applications of the grid-based version of VIC-2L model to LSA-SW
at the one degree spatial scale were described in this chapter. The first two
applications are related to estimation of the water balance components using
both the interpolated and regional parameters. The third application is related
to estimation of the water and energy balances using the regional parameters.
The differences between the first two applications and the third one are the time

step, types of forcing data, and types of model formulation.

Simulated monthly mean hydrographs for the Arkansas River are in

reasonably good agreement with the observed hydrographs, although the seasonal
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peak flows (late spring) are underestimated, and the fall and winter low flows are
overestimated. The magnitude of the bias is less for the humid, eastern part of
the basin than the more arid west. The average absolute relative error in the
simulated annual runoff for ten gauging stations is 10 percent in the case of the

regional parameters and 20 percent in the case of the interpolated parameters.

There were no significant differences in the model-generated catchment-
total water balance components using both sets of parameters. However, there
were significant differences in the water balance components for individual grid
cells. The largest relative difference in the runoff ratio occurred in the most arid
grid cells, while the largest differences in the evaporation ratio occurred in the
humid cells. In general, the model estimated ET (most of the grid cells have
differences less than five percent) is only slightly affected by the differences

between the hydrological parameters in the two runs.

The evaporation predicted by the VIC-2L model compared well with that
derived from an atmospheric moisture budget of the Arkansas-Red River basin.
VIC-2L model is tested in this application for its ability to simulate large scale
energy and water fluxes in the Arkansas-Red River basin. VIC-2L shows
promising results for simulating large scale fluxes of latent and sensible heat,
being able to capture both magnitude and timing of these fluxes for the hydro-

climatic environmental of the Arkansas-Red Ri\_rer basin.
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Table 5.1 Vegetation parameters for the Arkansas-Red River basin

Parameter = Short Tall Woodland Deciduous Evergreen Alpine
Grass Grass Forest Forest
dj (m) 0.02 0.15 0.3 2.0 2.0 0.01
z( (m) 0.13 0.95 1.9 12.6 12.6 0.06
f; 1.0 0.8 0.6 0.5 0.5 1.0
fo 0.0 0.2 0.4 0.5 0.5 0.0
I i (s/m) 100 100 100 100 100 100
LAT1 1.9 2.1 2.8 1.9 3.4 0.4
LAI 2 2.2 2.3 2.9 2.1 . 34 0.3
LAI3 2.8 3.1 3.5 2.9 3.5 0.4
LAI 4 3.6 4.1 4.9 4.9 3.7 0.6
LAIS - 3.4 4.0 5.2 5.0 4.0 0.8
LAIG6 3.3 3.7 5.1 5.0 4.4 1.5
LAI7 3.4 3.7 4.8 4.6 4.4 1.6
LAI 8 3.2 3.2 44 4.3 4.3 1.5
LAI9 3.3 3.3 4.2 3.8 4.2 1.3
LAI 10 2.8 2.9 3.5 2.7 3.7 0.8
LAT 11 2.5 2.7 3.2 2.5 3.5 0.5

LAI 12 2.1 2.3 2.9 2.1 3.4 0.4
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Table 5.2° Unit hydrograph values used for the Arkansas-Red Basin

Time Step (day) 0 1 2 3 4 5 6 7

U.H.Value 0. .095 .19 .286 .214 .143 .072 .0




3

0°CtT- tELET ZTsoLT LBSTVPT 1x0doAdays je IS2ATY paY
9°0Z- T9€ST 6€LZT 682021 uojng e ¥ Umm
T°61T- 5186 ¥Z8 LSZLOT qrex =2d 3e d p=d
6" ¥T- 88LE 96¢C¢ L6VLS ewoxal 3e ¥ pad
€L 9899¢ YLL8T L6T60F 320y STIITT I8 Y SesSUeHIY
ST L 96¢€€ ZL9¢E TCCECT eIneInyg e ¥y uetpeue)
9°8- 8609 919§ SLVYS6T TI®¥seH 13 Y sesuedxay
L CE- 8TIZ¢E sZve ZTs021 MeYy 1B ¥ SeSUBRMIAY
1°1S BILT vTse 6870¢ eTOoUl 3 Y SsTIbTpasp
781 608% S68% (A NA uosqrIo 3104 3 ¥ OUSOSN
g (3e3) (3e31) [ANL |
JI0XId pPo3e[NUIS PSAISSQ B2IY uoT3leils butbnen

Iopow TZ-DIA @Yyl Jo sxojsuwexed pajerodisajur ayjl
putsn urseq ISATY paY-sesuedray syl I0J (I93I-3I0€ JO

spuesnoyl UuT) JJOUNI Tenuue UesWw pPa3RWIJISD pUB PIAISSJO €°§ 3Tq=lL



134

Table 5.4 Seasonal and annual comparison of the
atmospheric and the VIC-2L evaporation
estimates using interpolated parameters

Winter Summer Annual

Atmos. VIC Atmos. VIC Atmos. VIC

Mean evaporation (mm) 191 181 428 433 619 614

CV evaporation 0.33 0.16 0.16 0.12 0.148 0.108
Evaporation Ratio 0.68 0.65 0.96 0.97 0.864 0.855
Mean Runoff (mm) 54.6 51.4 106

CV Runoff 0.48 0.31 0.37

Runoff Ratio 0.20 0.12 0.14
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Table 5.5 Comparison of simulated mean annual runoff using
interpolated and regional parameters of the VIC-

2L model

Gauging Station Obs. Interpolated Regional
flow flow V% flow V%

Neosho R at Fort Gibson 5895 4809 18.4 5016 14.9
Verdigris R at Inola 3514 1718 51.1 2085 40.7
Arkansas R at Kaw 2425 3218 -32.7 3046 -25.6
Arkansas R at Haskell 5616 6098 -8.6 6168 -9.8
Canadian R at Eufaula 3672 3396 7.5 3681 -0.2

Arkansas R at Little Rock 28774 26686 7.3 29143 -1.3

Red R at Texoma 3296 3788 -14.9 3358 -1.9
Red R at De Kalb 8241 9815 -19.1 8417 -2.1
Red R at Fulton 12739 15361 -20.6 13274 -4.2

Red River at Shreveport 17612 19733 -12.0 17321 1.7




Table 5.6 Seasonal and
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annual

comparison of atmospheric

and the VIC-2L estimates of evaporation using
regional parameters

Winter Summer Annual

Atmos. VIC Atmos. VIC Atmos. VIC
Mean evaporation (mm) 191 179 428 433 619 612
CV evaporation 0.33 0.16 0.16 0.12 0.148 0.106
Evaporation Ratio 0.68 0.64 0.96 0.97 0.864 0.852
Mean Runoff (mm) 57.3 51.5 109
CV Runoff 0.54 0.32 0.41
Runoff Ratio 0.21 0.12 0.15
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Table 5.7 Surface Airways stations

Dallas-Hinsley Fld

Station State Lat. Long.
1 Abilene TX 32.42 -99.68
2 Amarillo, TX 35.23 -101.70
3 Dallas-Fort Worth TX 32.90 -97.03
4 Lubbock TX 33.65 -101.82
5 Midland TX 31.95 -102.18
6 Oklahoma City OK 35.40 -97.60
7 Roswell NM 33.30 -104.53
8 Longview TX 32.35 -94 .65
9 Tucumcari NM 35.18 -103.60
10 San Angelo Mathis TX 31.37 -100.50
11 Fort Smith AR 35.33 -94 .37
12 Dodge City KS 37.77 -99.97
13 E1l Paso TX 31.80 -106.40
14 Lufkin Angelina TX 31.23 -94.75
15 Alamosa Bergman CO 37.45 -105.87
16 Colorado Springs CO 38.82 -104.72
17 Pueblo- CO 38.28 -104 .52
18 Albuquerque NM 35.05 -106.62
19 Columbia MO 38.82 -92.22
20 Springfield MO 37.23 -93.38
21 Little Rock AR 34.73 -92.23
22 Shreveport LA 32.47 -93.82
23 Wichita KS 37.65 -97.43
24 Russel KS 38.87 -98.82
25 Tulsa OK 36.20 -95.90
26 TX 32.73 -96.97
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~ a) Maximum soil moisture parameter (Wc1)
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b) Maximum soil moisture parameter (Wc2)
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Fig. 5.2 Linearly interpolated maximum soil moisture parameters of

a) layer 1; b) layer 2
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c) Maximum baseflow parameter (Dm)
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d) Infiltration parameter (bi)
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Fig. 5.2 Linearly interpolated: ¢) maximum baseflow parameter;

d) infiltration parameter
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Fig. 5.3 Obscrved and simulated monthly streamflow for Arkansas River at

Little Rock using the interpolated parameters: (a) simulation period
(1948-1966); (b) residual (1984-1966); (c) simulation period (1967-1986);
(d) residual (1967-1986)
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(1948-1966)
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Fig. 5.4 Observed and simulated monthly strcamflow for the Red River at
Shreveport using the interpolated paramecters: (a) simulation period
(1948-1966); (b) residual (1984-1966); (¢) simulation period (1967-1986);
(d) residual (1967-1986) '
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Fig. 5.4 (contd) (¢) mean monthly streamflow for the period (1948-1986);

(f) cocfficient of variation of monthly strecamflow for the period

(1948-1966)
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Fig. 5.5 Distribution of the mean evaporation and runoff for winter

(October to March) and summer (April to September)
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Fig. 5.6 Distribution of the evaporation and runoff ratios for winter

(October to March) and summer (April to September)
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a) Annual Precipitation
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b) Annual Evaporation

800
600
400
200
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Fig. 5.7 Arkansas-Red River annual mean geographic distribution of
water balance components; precipitation (upper panel);.

evaporation (middle panel); and runoff (lower panel)
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Annual Runoff Ratio

Annual Evaporation Ratio

Fig. 5.8 Arkansas-Red River basin annual geographic distribution of runoff

ratio (upper panel) and evaporation ratio (lower panel)
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Fig. 5.10 Location of radiosonde sounding stations and domain used in the

atmospheric budget analysis
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Fig. 5.12 Monthly evaporation predicted by atmospheric budget analysis
aund the VIC-2L model:  a) Evaporation monthly time series;

b) Mean monthly evaporation; c) Coefficient of variation
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~a) Maximum soil moisture parameter (Wc1)
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b) Maximum soil moisture parameter (Wc2)

Fig. 5.13 Spatial distribution of the regional estimates of the maximum soil

moisture parameters of a) layer 1; b) layer 2
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c) Maximum baseflow parameter (Dm)

d) Infiltration parameter (bi)

Fig. 5.13 Spatial distribution of the regional estimates of ¢) the maximum

baseflow paramcter; d) the infiltration parameter



156

s 6000 — Observed (a)

o ) e Simulated

©» 4000 -

@

E 2000

o 0

2000 -

1948 1951 1954 1957 1960 1963 1966

9

§ 6000 (b)

é 4000

—= 2000 1

©

= /\]\ N\_AAA/\ .

= 0 Wy«wwwvvwv[\‘v A'VM,M J\M\n SN Ny

&’-2000'...,,.....,‘.,.....
1948 1951 1954 1957 1960 1963 1966

S 6000

& 4000 |

2 2000

E

o 0

-2000 ,

1967 1970 1973 1976 1979 1982 1985

g

» 6000 1 ' (d)

i)

< ]

E 4000

— 2000 1

]

= Ao Ay AA I

:09) 0 AR g "W VVAVAILWAUAVAW AVAVAWWAWAAWAVAVVA A

c“c’ -2000 V

1967 1 970 1973 1976 1979 1982 | 1985

Fig. 5.14 Obscrved and simulated monthly strcamflow for Arkansas River at
Little Rock using the regional parameters: (a) simulation period (1948-
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Fig. 5.14 (contd) (¢) mean monthly strcamflow for the period (1943-1986);

(f) coefficient of variation of monthly strecamtlow for the period

(1948-1966)
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Fig. 5.15 Observed and simulated monthly strecamflow for Red River using
the regional parameters: (a) simulation period (1948-1966); (b) residual
(1984-1966); (c) simulation period (1967-1986); (d) residual (1967-1986)
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Fig 5.16 Climate classification: i) A: Arid (Annual Precipitation (P) <280 mm);
i1) SA: Semi-arid (280 mm < P <600 mm); ii) SH: Sub-humid (600
mm < P <1000 mm); iv) H: humid (P > 1000 mm)
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a) Annual runoff ratio percent difference
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b) Annual gvaporation ratio percent difference 10

Fig 5.17 Spatial distribution of percent differences in a) annual runoff
ratio obtained using the interpolated and regional parameters;
b) annual evaporation ratio obtained using the interpolated

and regional parameters
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a) Annual runoff ratio percent difference
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Fig 5.18 Histogram of percent difference in a) anpual runoff ratio
obtained using the interpolated and the regional parameters;

b) annual evaporation ratio
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a) Evaporation ratio (Winter) ¢) Runoff ratio (Winter)

0 5‘ 10 15 020 60 100
b) Evaporation ratio (Summer) d) Runoff ratio (Summer)

Fig. 5.20 Spatial distribution of percent difference in: a) winter evaporation ratio;
b) summer evaporation ratio; ¢) winter runoff ratio; and d) summer

runoff ratio using regional and interpolated parameters
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a) Annual runoff ratio percent difference

Fig 5.27 Spatial distribution of percent difference between water balance and
full-energy balance runs: a) annual runoff ratio; and b) annual

evaporation ratio
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full-energy balance runs: a) annual runoff ratio; and b) annual
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Latent Heat Winter Sensible Heat Winter

Latent Heat Summer Sensible Heat Summer

Fig. 5.30 Distribution of mean winter and summer latent and sensible heat fluxes
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Fig. 5.31 Comparison VIC-2L and atmospheric budget cvaporation estimates for

Arkansas-Red River basin: a) mean monthly evaporation, b) monthly

time series
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK |

6.1 Summary

Large scale hydrology problems place a new set of demands on hydrologic
models. Estimation of parameters for macroscale land surface schemes
applicable at the scale of general circulation models used for numerical weather
prediction models and climate simulation poses formidable challenges. In large
scale applications, the hydrological parameters of land surface schemes, such as
the Variable Infiltration Capacity two-layer (VIC-2L) model, have been either
fixed globally at ”"reasonable” values, or they have used ”literature values” for
the appropriate land cover. Better methods of estimating parameters of
macroscale models are obviously needed. The use of regionalization methods,
using local parameters estimates and distributed land surface characteristics data

bases, offers one possibility.

In addition, determining the space-time variability of hydrological
processes and energy fluxes over a continental scale area is a challenging task
because the fluxes of heat and moisture across the land/atmosphere interface
may vary over a range of spatial scales due to the inhomogeneity of land surface.
Accordingly, developing and testing macroscale hydrological models appropriate
for modeling the water and energy fluxes at the scale of large continental rivers
(for example, the Arkansas-Red River basin) are needed. For reliable estimates
of these fluxes at the LSA, the information gained from the application of the
macroscale hydrological model at intermediate scale area (ISA) catchments must
be incorporated at the LSA application. An example of such information is the
spatial variability of the parameters of the macroscle hydrologic model within

the LSA.

A methodology has been presented for regionalization of the parameters of

the VIC-2L land surface hydrologic model for the GCIP Southwest Large Scale
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Area (LSA-SW) which essentially comprises the Arkansas-Red River basin. The
approach is based on direct estimation of the hydrologic parameters of the VIC-
2L, model using station hydrologic and meteorological data for a set of
catchments. Two alternative approaches for estimation of the parameters of the
VIC-2L model were investigated. The first method, complete optimization,
estimates all model parameters simultaneously using a search procedure. The
second method uses spatially distributed soil data directly to determine selected
parameters of the VIC-2L model with the remaining parameters determined
using a search procedure. Key components of the methodology are extraction
from the STATSGO data base of soil attributes used to determine two of the
model parameters. The simulated hydrographs as well as performance criteria of
the two methods for the model compared well. Therefore, the estimated
parameters using the sub-optimization method (STATSGO in conjunction with
search procedure) were used in the regional methodology described in the
Chapter 4. This means that only seven of the VIC-2L model parameters needed
to be investigated for a possible regional equation and the remaining three can be
obtained directly from the available distributed soil data. The two-stage
optimization worked reasonably well as indicated by different performance
measures. For example, the mean of the R2 between the observed and simulated
streamflow for 14 of the catchments was 0.75 for the complete optimization and
0.69 for the two-stage optimization. The mean absolute relative error for the two
methods was similar (3% and 9%, respectively), even though higher objective
function values resulted for the two-stage method, the two-stage procedure
yielded a substantial reduction in the number of iterations (by a factor of 5, on

average).

Regional equations were developed to relate the VIC-2L model parameters
to measurable physical quantities included in data bases such as digital
elevations, climatological data, and the U. S. Soil Conservation Service
STATSGO soils data base. The optimum parameters of the VIC-2L model for
34 catchments in the Arkansas-Red basin were used as dependent variables in
regression equations. The independent variables represent easily determinable

watershed characteristics. The relationships provide means by which the
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parameters of rainfall-runoff models can be estimated in the absence of local
hydrological data. The approach was tested by application of the regionally
estimated parameters to catchments not in the data set used to estimate regional

parameters.

In addition, three applications of a grid network version of the two-layer
Variable Infiltration Capacity (VIC-2L) model applied at one degree resolution
were presented. These applications were illustrated for the Arkansas-Red River
basin. In the first application the grid network model was run off-line at a daily
time step, forced by precipitation and potential evapotranspiration computed
using a temperature-based algorithm. The gridded hydrologic parameters of the
VIC-2L model were estimated using two approaches. The first is the STATSGO
based approach. The second is linear interpolation of locally optimized

parameters for the 40 calibrated ISA catchments.

In the second application, the model was also run at a daily time step,
but in this case the gridded hydrological parameters were estimated using both
the STATSGO based approach and the regional equations developed in Chapter
4. The purpose of this application is to test the performance and the ability of
the VIC-2L model (using the regional parameters) to simulate the large scale

water balance components.

In the third application the VIC-2L model was tested for its ability to
simulate large scale sensible and latent heat fluxes in the Arkansas-Red River
basin. In this application the full energy balance version of the model was used.
The model was run off-line at a three hour time step, forced by gridded station
data from surface airways data (including wind speed, relative humidity,
temperature, surface pressure and total sky cover) as well as incoming longwave

and shortwave radiation estimated using an empirical methods.
6.2. Conclusions

The major conclusions of this research are:

(1) A regression approach was used to predict the parameters of a coupled
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water and energy balance model applicable to continental rivers. For the
Arkansas-Red River basin, the regression equations explained about 45 to 76

percent of the variation in the parameters of the VIC-2L model.

(2) Of the ten soil attributes and twelve climatological characteristics
tested as candidate explanatory variables in the regional equations, the saturated
hydraulic conductivity (kg), the average permeability (Pr), and the hydrologic
group B soil (Hgb) were the most important soil attributes. Storm interarrival

time, and mean annual temperature were also important explanatory variables.

(3) the spatial distribution of several of the VIC-2L parameters (including
the infiltration parameter and the maximum baseflow parameter) are controlled
by the climatological and the topographic gradient in the Arkansas-Red River

basin.

(4) The model performance, tested by comparing observed and simulated
runoff records from 6 watersheds not included in the 34 calibration watersheds,
was generally quite good for humid and sub-humid catchments.. However
simulations of streamflow for the arid and most semi-arid catchments were

generally poor.

(5) Simulated monthly mean hydrographs for the Arkansas-Red River
basin using regional parameter estimates were in reasonably good agreement with
the observed hydrographs, although the seasonal peak flows (late spring) tended
to be underestimated, and the fall and winter low flows overestimated. The
magnitude of the bias is less for the humid, eastern part of the basin than the

more arid west.

(6) The evaporation predicted by the VIC-2L model compared well with
that derived from an atmospheric moisture budget of the Arkansas-Red River
basin; the evaporation budget was relatively insensitive to the two forms of
regional parameter estimates that were tested. However, there were significant
differences in the means of the water balance components for individual grid

cells. The largest relative differences in the runoff ratios occurred in the most
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arid part of the region, while the largest differences in the evaporation ratios
occurred in the humid area. These results indicate that the hydrological
processes in the Arkansas-Red River basin are mainly water rather than energy

limited, especially at the annual scale.

6.3. Recommendations for future work

The results of this study suggest a number of research topics related to
the current work that are worthy of future exploration. Six specific suggestions
for follow up work related to model validation and implementation of the results

of this work into GCMs simulations are described briefly.

6.3.1 Calibration

The catchments for which the VIC-2L model performance was worst were
either snow dominated or arid. The model needs to be tested for more

catchments with these characteristics, with the following considerations:

i) In the case where meteorological data are not available to calculate Ep via the
Penman-Monteith method, it is recommended to use the Hargreaves’s (1985)
equation instead of Hamon’s (1961) equation (both are temperature index
methods).  This should eliminate the use of the scaling factor for Ep.
Preliminary analysis of the Hargreaves equation indicates that it gives estimates

of Ep comparable with those obtained using the Penman equation.

ii) The difficulty in obtaining good calibration results in arid and semi-arid areas
may be related to the optimization criteria used which depend entirely on
minimizing the difference between the observed and simulated runoff. In these
areas where the annual runoff ratios are small (e.g. less than 0.15), calibration
using streamflow data alone may be insufficient. One solution may be to include
the estimated actual evaporation (where available) as another optimization

criteria.
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iii) It is preferable to use the reparameterized drainage parameters of the VIC-2L
model as suggested by Abdulla and Lettenmaier (1995b) in parameter search

procedures.

6.3.2 How sensitive would the VIC-2L be to the STATSGO attributes?

Another area that should be investigated is the sensitivity of the regional
parameters to the soil attributes used as explanatory variables. In other words,
if data for catchments or grids were obtained using different spatial sampling,
how would this affect the resulting parameters, and how sensitive would the
VIC-2L model performance be to the changed parameters? In addition, detailed
analyses are needed to assess the accuracy of the STATSGO derived soil
attributes. Two types of analyses may be possible: i) to study the effect of
different sampling resolution on the derived average values; and ii) to compare
the difference in the derived soil attributes from STATSGO to those obtained
from a high resolution data base. One possible data base that could be used is
the Soil Survey Geographic (SSURGO) data base which is available for some
parts of the Arkansas-Red River basin. The SSURGO data base provides the
most detailed level of information and was designed primarily for farm and

landowner, township, and county natural resources planning and management.

6.3.3 Spatial variability in the precipitation

This study did not deal with the issue of spatial variability in the
precipitation, and for simplicity, only the spatial average values were used. The
importance and effects of the spatial variability in precipitation on catchment
hydrologic response have been addressed by various authors including Entekhabi
and Eagleson (1989), Famiglietti and Wood (1990), and Henderson-Sellers and
Pitman (1992). Liang et al. (1995) have developed a closed form derived
distribution approach to account for the spatial variability of precipitation in the
VIC-2L model. It would be of interest to evaluate the effects of precipitation
spatial variability on the VIC-2L model predictions. One possibility 1s to use the
hourly precipitation data from NEXRAD (Next Generation Weather Radar)
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network of WSR-88D (Weather Surveillance Rada;‘ -1988 Doppler) radars which

are available for most of the Arkansas-Red river basin at 4 km x4 km resolution.

6.3.4. Validation of large scale surface fluxes

The regional parameter estimates for the VIC-2L model were only applied
to Arkansas-Red River basin. It would be desirable to test the procedure for
larger areas with different surface characteristics and climate conditions, such as
snowmelt dominated areas. In addition, observed data, where available over a
large area, should be used to validate the large scale fluxes such as those
presented in Section 5.4. Large scale field studies which have included aircraft
measurements of surface fluxes and soil moisture, research radars, and soundings
could provide a useful data for the validation of these fluxes obtained in Section
54. An example is the data from HAPEX-MOBILHY (Hydrological
Atmospheric Pilot Experiment) which were collected over an area on the order of
100 x 100 km.

6.3.5 Global transferability of VIC-2L model and implementation in GCMs

To test the global performance of the VIC-2L model, the effects of
feedbacks from GCMs should be investigated. Therefore, implementation of the
VIC-2L model into a GCM is a logical next step in the model’s evaluation.
Among the difficulties encountered during the implementation of a land surface
scheme within a meteorological model are the specification of surface parameters
over the entire simulation domain. The regional equations developed in this
study can be used to assist in the specification of model parameters, especially if

the training region is expanded.

6.3.6. Regional equations assuming two or morc homogencous regions

One of the difficulties in estimating regional parameters is parameter
heterogeneity, especially in the recession part of the hydrograph.  Clustering
techniques might be a useful alternative to regression-based methods in this

respect. For instance, catchments might be classified into, for example, three
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groups, such as Group 1 for catchments that tend to be dominated by linear
baseflow recession, Group 2 for catchments that tend to behave nonlinearly in
the recession part of the hydrograph, and a third group for catchments that are
dominated by both kind of recession sequences. Although this method has the

potential for superior results, it requires a relatively large sample size.
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APPENDIX A
EXAMPLE CALCULATION OF SOIL CLAY PERCENTAGE USING

STATSGO DATA

STATSGO data are provided in a probabilistic form, ie., the attributes are
assigned to probability intervals, rather than points. In the STATSGO data
base, each geographic unit (e.g., state) is broken down into a number of map
units. Map units contain a unique set of soil attributes, but need not be
spatially contiguous. Each map unit consists of a set of what are termed maps,
which in turn consist of a set of categories. In the following example we perform
our calculations for one map unit, which is assumed to consist of six maps and
seven categories. Each map contains one of the seven categories, which in the
case of this example is a percent areal coverage, but could also be the value of a
soil property, for instance, bulk density, in which case the categories would
correspond to bulk density intervals. For this example, we take the categories
(percent areal coverage) to be Category 0: 0, Category 1: >0 to 10, Category 2:
11 to 20, Category 3: 21 to 40, Category 4: 41 to 60, Category 5: 61 to 80,
Category 6: 81 to 100).

Now say that the maps are assigned to categories as follows:

Map Associated Category (areal coverage in %)
Map 1 (0 to 5%) Cat 0: (0 category not met)
Map 2 (5.1 to 10%) Cat 4 (41 to 60%)

(
Map 3 (10.1 to 20%) Cat 2 (11 to 20%)

Map 4 (20.1 to 30%) Cat 3 (21 to 40%)

Map 5 (30.1 to 40%)-  Cat 1 (0 to 10%)

Map 6 (>40%) Cat 0 (0 category not met)

What does the above table mean? For the selected map unit the percentage of
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clay ranges from 5.1 to 40% (because Map 6 is not used, i.e., there is no part of
the map unit with clay content in excess of 40 percent). 41 to 60 percent
(Category 4) of the map unit has clay content ranging from 5.1 to 10 percent
clay (Map 2). 11 to 20 percent (Category 2) of the map unit has 10.1 to 20
percent clay (Map 3), and so on.

We then compute the mid point for each of the above maps and their associated

categories:
Midpoint of the Map Midpoint of associated category
Map 1 (2.5%) CatMap 1 = 0%
Map 2 (7.5%) CatMap 2 = 50%
Map 3 (15%) CatMap 3 = 15%
Map 4 (25%) CatMap 4 = 30%
Map 5 (35%) CatMap 5 = 5%
Map 6 (>40%) CatMap 6 = 0%

Then we compute the average of the attribute of interest (percent clay) for the

map unit:
6
> Mapi CatMapi
Average percent clay = 1=1 5 =12.25%
Z CatMapi
1=1

In subsequent computations of derived quantities, such as the hydraulic
conductivity, we assign the average attribute computed as above to each pixel

falling within the given map unit.









