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ABSTRACT

In the fifty-two years since Robert Horton's 1945 pioneering quantitative description of
channel network planform (or plan view morphology), no conclusive findings have been presented
that permit inference of geomorphological processes from any measures of network planform. All
measures of network planform studied exhibit limited geographic variability across different
environments. Horton [1945], Langbein et al. [1947], Schumm [1956], Hack [1957], Melton
[1958], and Gray [1961] established various "laws" of network planform, that is, statistical
relationships between different variables which have limited variability. A wide variety of models
which have been proposed to simulate the growth of channel networks in time over a landsurface
are generally also in agreement with the above planform laws.

An explanation is proposed for the generality of channel network planform laws. Channel
networks must be space filling, that is, they must extend over the landscape to drain every hillslope,
leaving no large undrained areas, and with no crossing of channels, often achieving a roughly
uniform drainage density in a given environment. It is shown that the space-filling constraint can
reduce the sensitivity of planform variables to different network growth models, and it is proposed
that this constraint may determine the planform laws.

The "Q model" of network growth of Van Pelt and Verwer [1985] is used to generate
samples of networks. Sensitivity to the model parameter Q is markedly reduced when the networks
generated are required to be space filling. For a wide variety of Q values, the space-filling networks
are in approximate agreement with the various channel network planform laws. Additional
constraints, including of energy efficiency, were not studied but may further reduce the variability
of planform laws.

, Inference of model parameter Q from network topology is successful only in networks not
subject to spatial constraints. In space-filling networks, for a wide range of Q values, the maximal-
likelihood Q parameter value is generally in the vicinity of 1/2, which yields topological
randomness. it is proposed that space filling originates the appearance of randomness in channel
network topology, and may cause difficulties to geomorphological inference from network
planform.
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(a) Strahler streams of a fourth-order channel network that discharges
into a fifth-order tributary stream of Old Man Creek, Iowa. Streams of
orders 1 through 4 are drawn with increasing line thickness, as indicated
in the figure legend. The number of streams of each order w, N, are
N1=46, Na=11, N3=2, N4=1. The number of source streams, Ni, is
designated the magnitude of the network, . (b) Horton diagram of
stream numbers for the network in (a): log(N¢y) is plotted against ®. The
bifurcation ratio is Rg=3.74, obtained from the slope of the regression
Hne, (FLOZURB)) - tieeiiiariuiimiiiieiiir it e ittt s e e

Horton diagrams of stream numbers, lengths, and areas, for the streams
of Perth Amboy river basin, New Jersey (data of Schumm [1956]).
Stream numbers are represented by circles, stream lengths are given in
meters and represented by diamonds, and stream areas are given in
square meters and represented by triangles. The Horton ratios Rp, RL,
and Ry, are obtained from the slopes of the regression lines, equal to

(-log(RB)), log(RL), and I0G(RA)...cooueeiiireieiiiiiiiiiiii,

Definition of distance-weighted area, P. A basin’s drainage divide and
channel network are represented by bold lines. Thin lines define 13 sub-
areas, designated a; through aj3. Thin lines are drawn by starting at a
channel junction and moving upstream against contour lines (which are
not shown) to the drainage divide. The channel distance to the outlet of
sub-area ay is designated . The distance-weighted area, P, is defined as
the sum of the product ayli for all k (1 through 13) (1.4). The circle in
the figure indicates the location of the basin’s center of gravity. The
center of gravity is located at a channel distance L¢, from the basin
outlet, where L¢, is given by the ratio P/A. ...
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The five topologically distinct channel networks (TDCN) that can be
constructed having four channel sources (magnitude p=4). Each
network is represented by a binary rooted tree graph [Melion, 1959],
that is, a line graph drawn on a surface where no more that three
segments, or “links,” join at a point and that has a specified “root,” or
outlet location (here indicated by an arrowhead). “Nodes” are points of
link confluence. “Exterior links” represent source channels, and “interior
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Definition of CIS and TRANS interior links. CIS links are interior links
that are joined at their upper and lower nodes by exterior links joining it
from the same side (left or right). TRANS links are interior links that are
joined by exterior links from opposite sides.......ccmiairiiiiiiiniances

(a) Representation of a network’s topology by a binary string,
following Lukasiewicz’s convention: interior and exterior links are
represented by “0” and “1,” respectively, and are listed in sequence
starting with the root link and moving from left to right around the
network. (b) Example sequence of five growth steps yielding the
magnitude-six (L=6) network in (a). The link chosen for branching, and
the side (left or right) to which the new tributary link will be appended,
is indicated by an arrow-head. The digit representing the link chosen is
underlined in the binary string at the bottom, and the two new digits to
be inserted are indicated...........cccoooiiiiiiiiiiiiiiiii
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(created with Q=1/3); test sample 0 (Q=1/2); and test sample H (Q=2/3).
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Topologic-analog Horton ratios plotted against network magnitude, H,

for topologically-random network sample 0-mix: (a) Rp; (b) R'a;

(c) Rt. Curves are described by (2.4), (2.6), and (2.7) combined with

(2.9), respectively. The most frequent order, Qm(l), is given by (2.5).
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Rp distribution histograms for each test sample, using a bin size of 0.1.
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reference axis, there are no observed values. (a) magnitude-50 test
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Mean values of the topologic-analog Horton ratios in mixed-magnitude

test samples of type 2 and sample 0-mix, plotted against the respective Q

parameter value: Q=0 (sample E-mix), Q=1/6 (F-mix), Q=1/3 (G-mix),
Q=1/2 (0-mix), Q=2/3 (H-mix), and Q=5/6 (I-mix). For Q=1, only
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in [1, 500] used in our test samples, we have Rp=252, R1o=507, and
Rt =251. Curves were constructed by linear interpolation.................
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Diameter, d, plotted against number of links, 2u-1, for samples
(a) F-mix, (b) 0-mix, and (c¢) I-mix. Solid lines delineate zone of
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Diameter, d, plotted against number of links, 21-1, for samples of type-
1: (a) A-mix, (b) B-mix, (¢) C-mix, and (d) D-mix. The selection
variable used to create sample B-mix was d itself. Solid lines delineate
zone Of possible Values.....oiiiiiiiiiiiiiiiiiii

Total topologic path length, p, plotted against number of links, 2y-1, for
samples (a) F-mix, (b) 0-mix, and (¢) I-mix. Solid lines delineate zone
of possible values.....ccooooiiiiiiiiiiiiiii

Ratio of mean modified total topologic length to diameter, p’/d, plotted
against magnitude, W, for each network in samples (a) F-mix, (b) 0-
mix, and (¢) I-mix. Dashed line represents the mean f)*/d value...........

Two topologically identical networks with «=80°, and drainage pattern
(a) dendritic (8=d); (b) trellis (8=t). The network outlet is indicated by
an arrow head.............o ettt eetireetetnerarnrenrateneaastateinana
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Examples of a specified drainage area, -A, and outlet link location, 0. A
is square in all three examples, but may have any shape, provided it has
a single external boundary line. (a) A is a square of side measuring 10
length units, and O is described by (xo, y0)=(10, 5) and Bo=1 80°;
(b) A is a square of side measuring 50 length units, and O is described
by (g, y0)=(0, 0) and By=90°; (c) A is a square of side measuring 50
length units, and O is described by (xq, y0)=(0, 0) and Bo=45°. Sample
networks studied in this chapter are space filling of the area -4 and have
the outlet location O depicted in (C)eivrrmerieiririiininiiciiiiniiininnnnana.

Definition of distance between two links. The links of the network
depicted are labelled “A” through “X.” The distance between links F and
1, for example, denoted dgy, is equal to the length of the dashed line
shown connecting the two links. Links O and U cross each other,
therefore we have douU=0...ccciciiiiiiiiiiiiie,

A and O are those depicted in Figure 3.4c. Values dmin=0.2 and
dmax=3 are stipulated. (a) A network that is space filling of A given O,
under 8=d and a=70°. (b) A network that is not space filling of A
given O under 8=d and a=70°, because some links not joined at a
junction are at a distance smaller than dpjn, and because some points of
A are at a distance larger than dmax from the closest point on the
network. (¢) A network that is topologically identical to the one in (b),
but having geometric properties 8=d and a=50°. The network topology
in (b) and (c) is space-filling of A given O under 6=d and a=50°
(shown in (c)) but not under 8=d and a=70° (shown in (b))....cccececu.c.

A and O are those depicted in Figure 3.3b. Values dmin=0.1 and
dmax=3 are stipulated. The three topologically distinct networks are
space-filling of A given 0, under 8=d and a=40°. The network in (a)
has magnitude 41, and the networks in (b) and (c) have magnitude
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3.8

3.9
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3.11

Example sequence of 4 growth steps of the Qg model, yielding a
network of magnitude 5. The link chosen for branching is indicated by
an arrow head. The digit “1” representing the link chosen for branching
is underlined in the binary string representing the network. In the
computer code of the Qg model, this digit “1” is replaced by the
sequence “011” as indicated........ e ettaertreteranernasnasanerentsrneasanas

Example 1: (a) Network of magnitude 8. Exterior links are labelled A
through H, and nodes are numbered 1 through 7. (b) Branching of link
H will affect the partitions at nodes 1 and 7, encircled. {(c) Branching of
link D will affect the partitions at nodes 1, 2, 3, 4, and 6, encircled.......

Example 2: Generation of the 42 TDCN of magnitude 6 (numbered in
the upper left-hand corner of the corresponding box) from the 14 TDCN
of magnitude 5 (numbered in Roman numerals) by the Qg model in the
space-filling mode, using Q=1/2. Each matrix box represents the
outcome of branching of one external link of the magnitude-5 network in
the same row, first column. The expécted frequency of each branching
event is indicated in the lower right-hand corner the corresponding

Example 3: A network under geometric properties 6=d and o=90°, and

its outlet link positioned at O. This network is topologically identical to -

that in Figure 3.8. Exterior links are labelled A through H. Addition of
new tributary links (represented by dashed lines) to exterior links A, F,
and H will not result in violation of spatial constraints with, e.g.,
Admin=0.2 and dmax=2. ccceeeeeeiiiiiiiiiiiiiirie e

The TDCN numbered 42 in Figure 3.7, pictured with geometric
properties (a) 8=d and a=90°, and (b) 8=t and a=90°. In (a), the
requirement for a minimum distance between any two links not joined at
a junction is violated for any specified dmin>0. In (b), this requirement
is not violated for dpmin=1 or smaller.......ccoirmiimiiiiiiniiiniincinnnnee.
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3.12

3.13

3.14

3.15

Example 4: Generation of TDCN of magnitude 6 (numbered in the upper
left-hand corner of the corresponding box) from the 14 TDCN of
magnitude 5 (numbered in Roman numerals) by the Qg model in the
space-filling mode, using Q=1/2, under d=d and o=90°. TDCN #42 is
precluded by spatial constraints. Expected frequencies (in the lower
right-hand corner of each box) of TDCN #10, 24, 29, 33, 37, 38, 40,
and 41, on the same matrix rows as #42, are increased relatively to the
topologic mode (Figure 3.9) ...

Drainage area, A, is a square of side measuring 30 length units, and
outlet link location, O, is defined by (xg, yo)=(0, 0) and Bo=45°.
Variables dmin=0.2 and dmax=3 are specified. The network depicted has
5=d and a=30°, and was obtained with the Qg model using Q=5/6.
Even though no more links may be added without either violation of the
spatial constraint imposed by dmin, or crossing of the boundary line of
A, this network is not space-filling of AA because the constraint imposed
by dmax is violated in two sub-areas left undrained. The appearance of
such undrained sub-areas is rare for larger a and for lower Q
Y L S TP TP ORISR P

SM dendritic test sample networks created with the Qg model, using
Q=0, with various bifurcation angles, a.: (d, 30°, 0), (d, 50°, 0), (d,
70°, 0), and (d, 90°, 0). These networks have magnitude 2,179, 1,391,
1,111, and 1,045, and diameter 75, 79, 83, and 111, respectively
(Table 3.1 )i e

SM dendritic test sample networks created with the Qg model, using
Q=1/6, with various bifurcation angles, a: (d, 30°, 1/6), (d, 50°, 1/6),
(d, 70°, 1/6), and (d, 90°, 1/6). These networks have magnitude 2,176,
1,391, 1,108, and 1,031, and diameter 83, 105, 99, and 121,
respectively (Table 3.1)...ccoiiiiii e
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3.16

3.17

3.18

3.19

3.20

SM dendritic test sample networks created with the Qg model, using
Q=1/3, with various bifurcation angles, a: (d, 30°, 1/3), (d, 50°, 1/3),
(d, 70°, 1/3), and (d, 90°, 1/3). These networks have magnitude 2,175,
1,396, 1,099, and 1,036, and diameter 138, 89, 117, and 105,
respectively (Table 3.1)..ci

SM dendritic test sample networks created with the Qg model, using

Q=1/2, with various bifurcation angles, o: (d, 30°, 1/2), (d, 50°, 1/2),
(d, 70°, 1/2), and (d, 90°, 1/2). These networks have magnitude 2,177,
1,380, 1,108, and 1,042, and diameter 138, 184, 121, and 177,
respectively (Table 3.1)......... PR TRE

- SM dendritic test sample networks created with the Qg model, using

Q=2/3, with various bifurcation angles, a: (d, 30°, 2/3), (d, 50°, 2/3),
(d, 70°, 2/3), and (d, 90°, 2/3). These networks have magnitude 2,187,
1,389, 1,100, and 1,032, and diameter 195, 200, 231, and 232,
respectively (Table 3.1)...i.

SM dendritic test sample networks created with the Qg model, using
Q=5/6, with various bifurcation angles, a: (d, 30°, 5/6), (d, 50°, 5/6),
(d, 70°, 5/6), and (d, 90°, 5/6). These networks have magnitude 2,170,
1,386, 1,095, and 1,020, and diameter 223, 247, 184, and 238,
respectively (Table 3.1).ee

Four stages in the growth of test network (d, 70°, 0), depicted in Figure
3.14. The growing network is shown after 277, 555, 833, and 1,110
growth steps. The final network has magnitude 1,111. Growth with
Q=0 resembles a wave of dissection, in which network elongation and

elaboration occur concurrently........coooviiviiiiiiiiiiniiiin,
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3.21

3.22

323

3.24

4.1

Four stages in the growth of test network (d, 70°, 5/6), depicted in
Figure 3.19. The growing network is shown after 273, 547, 821, and
1,094 growth steps. The final network has magnitude 1,095. Growth
with Q=5/6 favors network extension, followed by elaboration once
spatial constraints prevent further eXtension.......c.cecoveimvecieseeecs

SM trellis test sample networks created with the Qg model, using Q=0,
with various bifurcation angles, a: (t, 30°, 0), (t, 50°, 0), (t, 70°,°0),
and (t, 90°, 0). These networks have magnitude 2,134, 1,207, 931, and
1,193, and diameter 82, 87, 85, and 98, respectively (Table 3.1).........

SM trellis test sample networks created with the Qg model with a=90°
(maze networks) using various Q values: (t, 90°, 0), (t, 90°, 1/6),
(t, 90°, 1/3), (t, 90°, 1/2), (t, 90°, 2/3), and (t, 90°, 5/6). All of these
networks have magnitude 1,193, and their diameters are 98, 110, 138,
156, 260, and 385, respectively (Table 3.1). The diameter paths for
(t, 90°, 0) and (t, 90°, 5/6) are depicted in Figure 3.24.............c.......
Diameter path of test sample networks (t, 90°, 0) and (t, 90°, 5/6),
depicted in Figure 3.23. Diameters are 98 and 385, respectively. Higher
Q values tend to originate convoluted flow paths and longer
1 SR 111 1) & SO O USSP N

Rp distribution histograms for TM and SM dendritic test sample
networks, using a bin size of 0.1. For each sample the vertical reference
axis extends from the minimum to maximum values observed, and the
width about the axis is proportional to frequency. Where there is no
thickness about the reference axis, there are no observed values. The
corresponding Q value is indicated at the bottom of each histogram.
Sensitivity to Q is marked in the TM sample networks, as shown in
Chapter 2, but slight in SM dendritic sample networks. The Rp mean
and standard deviation for each sample is given in Table 4.1......coo....
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4.3

4.4

4.5

4.6

4.7

Mean values of topologic-analog Horton ratios for the subnetworks of
TM test sample networks, plotted against Q. Rg, RiL and Rly are
markedly sensitive to Q in TM networks, as shown in Chapter 2. These
mean values and corresponding standard deviations are given in Table

Mean values of topologic-analog Horton ratios for the subnetworks of
SM dendritic test sample networks, plotted against Q. Sensitivity of Rg,
Ry and R4 to Q, if any, is markedly lesser than in TM networks (Figure
4.2). Sensitivity to a is greater than to Q. These mean values and
corresponding standard deviations are given in Table 4.1

Mean values of topologic-analog Horton ratios for the subnetworks of
SM trellis test sample networks, plotted against Q. Sensitivity of Rg, Ry
and R4 to Q is markedly different than in TM networks and also in SM
dendritic networks (Figures 4.2 and 4.3, respectively). These mean
values and corresponding standard deviations are given in Table 4.1.....

Log(Rp)/Log(RY.) for each subnetwork of TM test sample networks
created with various Q values, plotted against subnetwork magnitude, .
This ratio approaches a value between 1 and 2 for large 1 for higher Q
23 L L=Y SO OO PO PP PPRPPOPT PR S

Log(Rp)/Log(R'.) for each subnetwork of SM dendritic test sample
networks having 0=70°, created with various Q values, plotted against
subnetwork magnitude, 1. This ratio approaches a value between 1 and
2 for large W for all Q values sampled.......ccoooviiivininniiinnniinnnnnnn.

Log(Rp)/Log(Rt.) for each subnetwork of SM trellis test sample
networks having o=90°, created with various Q values, plotted against
subnetwork magnitude, y. This ratio approaches a value between 1 and
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Chapter 1

Introduction

1.1 Laws of Channel Network Planform

Landscape evolution by fluvial erosion is among the eérth science phenomena that
usually occur over time periods too long for observation, and study of the physical
processes involved relies strongly on inference from landscape form [Gilbert, 1877]. The
most striking morphologic feature of fluvially eroded landscapes is the land surface tiling
by valleys nested within larger valleys, their bottoms forming a connected network with
the appearance of a bifurcating arborization. Through the valley network extend the stream
channels that carry flow and sediment from the landscape. That valley connectivity and
continuity of slope show such “nice adjustment” that they appear designed to
accommodate the network of channels testifies that the valley is “the work of the stream
which flows in it” [Playfair, 1802, p. 102].

Early geomorphologists judged the configuration of channel networks as most
worthy of study, even as “the key to landscape” [Zernitz, 1932, p. 68], and searched for
patterns and regularities in such networks. Channel network morphdlogy may reflect
regional tectonics, local geologic structure, prevailing erosional mechanisms, and climate
(see Kirchner [1993, p. 591]); and in turn it affects hydrologic processes and fluxes (e.g.,
Taylor dnd Schwarz [1952], Surkan [1969], Kirkby [1976], Rodriguez-Iturbe and Valdés
[1979], and Troutman and Karlinger [1986]). With the current availability of digital
elevation maps and satellite imagery, from which approximate representations of channel

networks may be obtained, the ability to interpret network morphology could be useful for



inference of geophysical processes and geologic properties at the planetary scale.

Early descriptions of channel network morphology were mainly qualitative (e.g.,
Davis [1909], Zernitz [1932]). Quantitative analyses based on centrifugal branch-ordering
sjstems (that is, ordering of streams in the upstream direction, starting with the outlet
stream) [Gravelius, 1914, cited by Jarvis and Woldenberg, 1984], borrowed from the life
sciences, were unsuccessful at identifying regularities due to lack of correlation of
centrifugal order with channel size. Horton [1932] revived quantitative analysis with the
introduction of a centripetal branch-ordering system. Centripetal ordering, using rules by
Strahler [1952] (described below), remains in current use in fluvial geomorphology, and
has been adopted in studies of organic networks [Jarvis and Woldenberg, 1984, pp. 9-10
and 101]. For a detailed review of the history of branch-ordering systems, see
Woldenberg [1997].

The Strahler ordering system defines “streams” of different orders, according to
the following rules (Figure 1.1a). Source channels are streams of order 1. Where two
streams of the same order, ®, join, both streams terminate and the receiving stream has
order @+1. Where two streams of different orders join, the stream of lower order
terminates and the stream of higher order continues through the junction. In result of these
rules, the outlet stream of a basin has the highest order, €2, which is also the “basin
order.” Strahler streams and orders are entirely determined by the network’s topology,
defined a§ the particular arrangement in which the channel branches connect to one another
in the network (see Section 1.2, below). Strahler ordering is independent of metric
properties such as channel lengths and orientation.

Horton [1945] found that the decrease in number, Ng, and increase in mean
length, L,, of streams with centripetal order, ®, is approximately geometric. Horton
[1945] hypothesized that the increase in mean sub-basin area, Ag, with ® may also be

geometric, and this was confirmed by Schumm [1956]. These statistical relations are



known as “Horton’s laws” of stream numbers, lengths, and areas. Their respective series
ratios are designated the bifurcation, length and area ratios (Rp, RL, and Rp). Horton’s
laws are illustrated by semi-logarithmic plots of N, Lo, and Ay versus ®, known as

“Horton diagrams,” in Figures 1.1b and 1.2, and are represented by the following

expressions,
N = Rg® (1.1)
Le=LiR @ ! (1.2)
Agp=ARAC! ' (1.3)

where Lj and A1 are the mean length and area, respectively, of first-order streams (source
channels). |

" Horton [1945] interpreted the three Horton’s laws, (1.1), (1.2) and (1.3), as
reflecting a distinctive orderliness in the topological patterns of channel networks. In a
reference to Playfair’s [1802] well-known remark (cited on page 1, above) on the “nice
adjustment” of valley connectivity and continuity of slope, or “declivities,” Horton [1945,
p. 291] wrote that “the nice adjustment goes far beyond the matter of declivities.” Horton
[1945] noted that Rp and Ry, together with Q, L1, and the basin area, A, permit
estimation of the drainage density, D, and the stream frequency, Fs (concepts also
introduced by Horton [1932]), defined as the average length of channels and average
number of streams per unit terrain area, respectively.

Much effort was subsequently expended to find other geomorphologic laws
resulting from this perceived organization of channel network planform, and a number of
empirical statistical laws were established. The best documented major laws are
summarized below. Variable notation is summarized in Appendix A.

Langbein et al. [1947] studied the variation of a basin’s “distance-weighted area,”



P, with basin area, A. P is defined as the sum of sub-basin areas weighted (that is,
multiplied) by their channel distance to the basin outlet, and has dimension of length
cubed. Representing the kth individual portion of the basin area by ak, and its channel

distance to the basin outlet by Ik (Figure 1.3), P is given by:

P= Z Ik ak : (1.4)
k
Using data for 340 drainage basins in the Northeastern United States, Langbein et

al. [1947] found the following relation:

P=¢A? (1.5)

Exponent € and coefficient ¢ in (1.5) were estimated as 1.56 and 0.90, respectively, for P
expressed in cubic miles and A in square miles, for Langbein’s Northeastern study basins.

Hack [1957], Gray [1961], and Mueller [1973] established another scaling relation
between the length of the mainstream channel, L, and basin area, A:

L=xA (1.6)

Exponent 8 in (1.6) varies geographically, and generally takes values greater than

0.5. Mueller [1973] collected data for several thousand basins of all sizes in various parts
of the world, and found that 6 changed abruptly from 0.6 for basins of area smaller than
8,000 mi2 (20,720 km?2), to 0.5 for basins between 8,000 and 100,000 mi? (20,720 -
259,000 km?2), and to 0.466 for basins larger than 100,000 mi2.

The computed value of 8 is subject to uncertainty. Robert and Roy [1990] (see also

Beer [1991] and Robert and Roy [1991]) presented evidence of influence of cartographic
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scale on the estimated 0. Montgomery‘and Dietrich [1992] replaced stream lengths by
basin lengths, measured along the main valley axis to the drainage divide, obtaining
§=0.5. These authors suggested that 6 depends on the headward extent of the mainstream
depicted on maps of different scale, as well as on downstream variations in channel
sinuosity and drainage density. .
Melton [1958, pp. 36-37] analyzed data for 156 basins of differing area, climate,
relief, geology and vegetation, and found the ratio between stream frequency, Fg, and the
square of the drainage density, D2, (concepts defined on page 3, above) to be
approximately constant:
l;—;— = 0.694 | (1.7)
Gray [1961] found that the channel distance from the outlet to the center of gravity
of the network, defined as L.;=P/A (Figure 1.3), where P is given by (1.4) and A is basin

area, is approximately equal to half of the mainstream length, L:
I_zcaz 0.5 L V (1.8)

While violations of each of the above laws have been documented for individual
networks, they approximate the aggregate central tendency of published data [Abrahams,
1984]. These laws represent statistical tendencies in large populations rather than exact
relationships in individual cases [Shreve, 1975]. The above laws are included under the
network properties I through VII listed by Shreve [1975], and quoted in Section 1.2.1,

below.



1.2 The Random Topology Model

Shreve [1966] and subsequent researchers dispelled the notion that the
geomorphologic laws listed in Section 1.1, above, imply topologic orderliness or
distinctive characteristics. This had been suggested earlier by Leopold and Langbein
[1962], who demonstrated that networks generated by random walks on a square lattice
were in accord with Horton’s laws, leading Milton [1966] to dismiss these laws as
“irrelevant” to geomorphology. |

Shreve [1966] investigated Horton’s law of stream numbers (1.1) with the intent
of explaining the law’s generality and insensitivity to environmental factors (first noted by
Horton [1945, p. 303]). This law is purely topological, i.e., determined by the channel
connectivity pattern, and to study it Shreve [1966] introduced the concept of
- “topologically distinct channel nefworks” (TDCN) with a given number of channel
sources, or “network magnitude,” p (Figure 1.4). The number of TDCN that can be
constructed having p channel sources, N(l), is given by the formula by Cayley [1859]
(presented in Shreve [1966, Eqn. 13]):

oA
N = (5 (19)

N(u) increases rapidly with network magnitude. For magnitu_de 4, N(4) equals 5
(Figure 1.4). For magnitudes 7, 10, and 50, N(u) equals 132, 4,862, and about
2.52x1026, respectively.

Shreve found that Horton’s law of stream numbers holds approximately for all
TDCN that can be constructed with any given magnitude, hence is “inherent in the
deﬁnition of stream order” [Shreve, 1966, p. 30]. Shreve [1966] further showed that

most TDCN that can be constructed have Ry values in the range typically observed in



nature, with a modal value of about 4. The generality of Horton’s law of stream numbers
is explained in detail in Chapter 2, Section 2.4.1. ’

Having disproved that Horton’s law of stream numbers and typical Rp" values
require particular topologic patterns, Shreve then proposed the diametrically opposite
hypothesis: that “in the absence of geologic controls [such as geologic fractures, for
example] a natural population of channel networks will be topologically random,” i.e., “all
topologically distinct networks [TDCN] with given number of links are equally likely”
[Shreve, 1966, p. 27]. Shreve’s definition of network randomness concerns topology

alone and is descriptive rather than causative, i.e., it assumes nothing regarding the

processes of network formation.

1.2.1 Topologic analogs of channel network planform laws and the predictive

ability of the random topology model

All channel network planform laws other than Horton’s law of stream numbers
(1.1) involve metric quantities, that is, lengths measured along channels, and values of
basin or sub-basin area. The variability in these metric quantities has both topologic and
metric components. For example, variability in the length of the mainstream channel is due
partly to variability in the number of links (defined in Figure 1.4) comprising the
mainstream, and partly to variability in individual link lengths. The number of links in a

b (13

stream is designated the stream’s topolbgic length,” and is the “topologic component” or
“topologic analog” of stream length. Similarly, basin area is determined by the number of
links and by the size of areas contributing flow to individual links. The number of links in
a network is the topologic component of basin area, A. The number of links in any

network of magnitude [ is 2pu-1, the topologic analog of A.

An approximately linear relation may be expected between each metric variable and



its topologic component, especially for large numbers of links, provided that no
significant correlations- exist between link length or contributing area and topologic
variables, such as link magnitude and Strahler order [Shreve, 1974]. For example, if
mean link length increased with Strahler order, mainstream length would not vary linearly
with topologic length.

The distribution of link lengths has been found to vary with Strahler order and
other topologic variables in some river basins (e.g., Smart [1968], Shreve [1969], James
and Krumbein [1969], Smart [1969, 1972, 1978, 1981], Ghosh and Scheidegger [1970],
Krumbein and Shreve [1970], Mock [1971], Abrahams and Campbell [1976], and
Montgomery and Dietrich [1989]), but this variation is unlikely to affect significantly the
approximately linear relation between a metric variable and its topologic component for
large numbers of links [Kirchner, 1993, p. 593]. Link length and area distributions
(sampled by, e.g., Strahler [1954), Schumm [1956], and Maxwell [1960]) have only
slight influence on linearity [Shreve, 1974]. Using the hypothesis of linearity, Smart
[1968] obtained good correlations between observed stream lengths and topologic stream
lengths predicted by the random topology model.

Under the assumption of linearity, we obtain topologic analogs of channel network
planform laws by replacing each metric variable by its topologic component, or “analog”
[Shreve, 1967]. Stream length is replaced by topologic length (number of links in the
stream), and basin area is replaced by number of links in the channel network. Predictioﬁs
of the random topology model fdr the topologic-analog laws, which in some cases were
coupled with observed distributions of link lengths and areas, were shown to approximate

the respective geomorphologic law, as summarized by Shreve [1975, p. 527] (edited):

“Without any adjustable parameters and with no other input than the

observed distributions of link lengths and associated areas, [the random



topology model] has successfully predicted quantitatively the following
observed [properties]:

* [Property I]: the distributions and numerical values of Rp (Shreve,
1966), Ry (Smart, 1968; Shreve, 1967, 1969), and Ra (Shreve, 1969).

* [Property II]: the correlations between Rg and Ry and between stream
numbers and stream lengths (Smart, 1968)

* [Property III]: the statistical disfributions of second-order stream
lengths, Schumm lengths, and areas (Shreve, 1969)

* [Property IV]: Melton’s (1958) proportional relationship between
stream frequency and the square of the drainage density (Shreve, 1967)

* [Property V]: Hack’s (1957) variation of mainstream length with basin
area (e.g. Shreve, 1974) |
* [Property VI}: Langbein et al.’s (1947) relationship between distance-
weighted area and basin area (Werner and Smart, 1973)

* [Property VII]: Gray’s (1961) relationship between distance from outlet

to ‘centroid’ and mainstream length (Werner and Smart, 1973).”

Property I incorporates Horton’s laws given by (1.1), (1.2) and (1.3); properties
II and III are not well established laws but are based on a limited number of observations;
property IV is given by (1.7); property V is given by (1.6); property VI is given by (1.5);
and property VII is given by (1.8).

1.2.2 Search for an explanation

An explanation of why the random topology (RT) model approximately predicts

properties I-VII, above, remains far from established and subject to debate (e.g., Watson
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[1966, 1969], Thakur and Scheidegger [1968], Krumbein and Shreve [1970], Howard
[1972], Smart [1973], Shreve [1974, 1975], Schumm [1977], Jarvis and Sham [1981],
Abrahams [1984, 1987], Mesa and Gupta [1987], Kirchner [1993], and Rodriguez-Iturbe
and Rinaldo [1997]). What explains the RT model’s predictive ability?

Shreve [1975, p. 529] proposed two inferences or explanations: (i) the topologic
component of geomorphologic laws is dominant, and (ii) random factors dominate
network development. Inference (i) is almost certainly correct, as agreement between
metric and topologic-analog laws could hardly be coincidental (and supports the above
assumption of linearity). Is explanation (ii) valid?

This question is crucial for the direction of future research and for the best usage
of the RT model. If random factors dominate network development, then it is those
empirical properties of natural networks that disagree with RT model predictions which
may be geomorphically significant and merit our attention. The RT model may be useful in
isolating those properties. Also, why the physical processes involved in network
development might have dominantly random effects on network topology becomes a
fundamental research question in geomorphology [Kirkby, 1976, p. 197].

The question of validity of inference (ii) has provoked three different approaches.
One approach has been to .oppose (ii) on the argument that physical processes are
intrinsically deterministic (e.g., Watson [1966], Howard [1972}, and Schumm [1977]); or
to defend (ii) on the argument that physical processes are intrinsically random (e.g.,
Leopold and Langbein [1963], Langbein [1964), Krauskopf [1968], and Mann [1970]),
or that process complexity and sensitivity to initial and boundary conditions preclude
deterministic modeling (e.g., Thakur and Scheidegger [1968], Krumbein and Shreve
[1970], Smart [1973], and Shreve [1975]). Smart [1979] classified these arguments as
philosophical, for they cannot be tested by current scientific methods. These arguments

address the legitimacy of the RT model rather than the quality of its predictions [Shreve,



11

1979, p. 170]. We note that if simple deterministic processes of channel development
were influenced by physical factors not correlated with any topologic variables, such
processes would appear as-random in the topologic domain. Hence, topologic randomness
does not preclude deterministic processes, nor does it imply complexity.

A second approach provoked by the question of validity of (ii) has been to devise
progressively discriminating tests of the RT model, as argued for by Kirkby [1976]. The
RT model has been tested often against collected data, and has rarely been rejected. Direct
| testing of TDCN frequencies is feasible only for small networks, with 6 or fewer source
channels (e.g., Werﬁer and Smart [1973]), because the number of TDCN increases
rapidly with magnitude, as given by (1.9). For this reason, tests of the RT model have
used topologic variables which individually have limited informational content (e.g.,
Jarvis and Werrity [1975], Abrahams and Mark [1986), Uylings et al. [1989], and
Verwer et al. [1992]). However, the combined informational content of all topologic ‘
variables predicted by the RT model has not been evaluated. Abrahams and Mark [1986]
argued that the small significance level of 5% used in most of these tests for rejection of
the RT model has resulted in favorable bias for the model.

Despite their limitations, statistical tests have successfully identified systematic
deviations in nature from RT model predictions. These deviations were reviewed by
Abrahams [1984, 1987]. Abrahams [1987, p. 164] summarized evidence that each
systematic deviation from the RT model results from either steep or low terrain slope, or
from space-filling and geometric properties of channel networks. |

The space-filling property is that by which a channel network extends over the
land surface to drain every hillslope, leaving no undrained areas, énd with no crossing of
channels, and having an approximately uniform drainage density, defined as the mean
length of channels per unit area [Horton, 1932]. Where conditions of geology, climate,

climatic history, vegetation cover, etc, are approximately constant, hillslope size does not
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vary widely but is, to some approximation, constant, and the drainage density is
approximately uniform.

Space filling and geometric constraints affect in particular the arrangement of
tributaries along a mainstream. For example, the number of two consecutive tributaries
that join the mainstream from opposite sides (right and left) is found usually to be higher
than the number joining it from the same side (Figure 1.5), especially when one or both
tributaries have large basin areas [James and Krumbein, 1969; Flint, 1980; Abrahams,
1984]. Therefore, the number of TRANS links (defined in Figure 1.5) is usually higher
than the number of CIS links. The RT model predicts that these occurrences will be
equally frequent, and the number of CIS and TRANS links in a basin will be
approximately equal. Attempts at simulating and quantifying the topologic effects of space
filling by simulation include those of Karlinger and Troutman [1989], Goodchild and
Mark [1985], Goodchild [1988), and Goodchild and Klinkenberg [1993].

A third approach provoked by the question of validity of (ii) has been to question
the sensitivity of channel network planform laws to topologic variability. RT model
deviations due to space filling or other possible factors are not detected by any of the
above planform laws (included under properties I-VII), and Abrahams [1987, p. 156]
attributes this failure partly to insensitivity of these laws. One source of insensitivity is the
aggregation of topologic data from networks with diverse physical conditions, such as
slope and orientation, resulting in the “canceling out” of opposing properties (e.g,
Werritty [1972], Jarvis and Werritty [1975], Flint [1980], and Abrahams and Mark
[1986]). Kirchner [1993] raised the important question of insensitivity of the Horton

ratios to topologic variability, as reviewed in Section 1.3, below.



13

1.3 Sensitivity of Channel Network Planform Laws to Network
Topology |

Kirchner [1993] investigated the sensitivity of the Horton ratios for non-
topologically-random samples of networks, that is, network samples where the TDCN of
any given magnitude do not have equal probability of occurrence. Kirchner created non-
topologically-random samples by first generating an original topologically-random sample
of networks, and then selecting from that original sample those networks having specified
topologic chziracteristics. Kirchner selected networks having one given topologic variable
(the “selection variable™), such as the maximum topologic length, or “diameter,” larger
than, or smaller than, the median value of the original topologically-random sample. For
each selection variable, two sub-samples were created, one sub-sample containing
networks having a value of the selection variable greater than the median in the original
sample, the other sub-sample containing networks having a value of the selection variable
smaller than the median. Kirchner demonstrated that for such non-topologically-random
samples the distributions of the Horton ratios deviate little from those in the original
topologically-random sample.

Kirchner concluded that the RT model’s prediction of the typical values of the
Horton ratios does not constitute evidence in favor of the RT model, because similar
values are observed also in many non-topologically-random samples. Kirchner’s [1993]
results reinforce the perception of the Horton ratios, and hypothetically some channel]
network planform laws, as being inevitable to some degree.

A different method for creating non-topologically-random test samples is to
generate each network using a stochastic topologic model of network growth. In
geomorphology, examples include the convergent-growth (merging of channels formed

independently) model of Leopold and Langbein [1962], and the headward-growth
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(addition of tributaries to pre-existing channels) models of Howard [1971] and Dacey and
Krumbein [1976], among others.

The models of Dacey and Krumbein [1976], developed for channel networks,
were generalized into the variable-parameter “Q model” of Van Pelt and Verwer [1985] in
the field of neuroanatomy. The Q model assigns a variable probability to development of
tributaries in interior and exteriQr links, and will be described in detail in Chapter 2,
Section 2.2. The model starts with one original link, and adds a new tributary link at each
growth step. A network of magnitude W is obtained after -1 growth steps or “branching
. events.” Each new tributary link is appended to any one of the pre-existing links, chosen
by comparison of a random variable with link branching probabilities. The branching
probability of a link is p; if the link is interior (i.e., not a channel source), and pe if the link
is exterior (a channel source). The model parameter is defined by Q=pi/(pi+pe), and takes
values in the interval [0, 1].

Q parameter values greater than 172 (pi>pe) favor network growth by extension,
and tend to generate elongate networks, with high bifurcation ratio, Rg. Q values smaller
than 1/2 (pi<pe) increase the importance of development of side tributaries, and tend to
generate compact networks, with low Rp. With Q=1/2, all links (or “segments”) have
equal branching probability, and this model is designated “segmental growth.” This
results in all TDCN having equal probability of being generated, and segmental growth
yields topological randomness [Dacey and Krumbein, 1976)]. The Q model is entirely
topological, disregarding geometric properties of channel networks, such as link lengths,
junction angles, and space-filling constraints.

By testing against simulation results, Dacey and Krumbein [1976] rejected the
hypothesis that channel networks grow principally by tributary development on exterior
links (source channels), corresponding to Q=0. This growth mechanism however predicts

well the topologic properties of dendrites of non-pyramidal neurons [Van Pelt et al.,



15

1992]. Contrary to channel networks, the topologic properties of neuronal dendrites differ
widely from RT model predictions [Verwer and Van Pelt, 1983]. This is also the case for
various other organic networks. Growth models that predict the topologic properties of
particular organic networks include those of Harding [1971], Berry et al. [1975],
Hollingworth and Berry [1975], and Van Pelt and Verwer [1985, 1986). Van Pelt et al.
[1992] found that two types of neuronal dendrite have topologic properties well
represented by best-fit Q parameter values.

The above results demonstrate that topologic variables are sensitive to some types
of topologic distribution, as has been suggested by Troutman and Karlinger [1994], and
provoke the question of whether the channel network planform laws (included under
properties [-VIL, listed in Section 1.2.1) are sensitive to the TDCN frequencies produced
by these growth models. If these properties have limited sensitivity to the topologic
variability created by models of network development, this may explain the limited range
of variability observed in nature in the coefficients of properties I-VIL If this is the case,
the success of the RT model in predicting these properties may not be geomorphologically
meaningful. The question of sensitivity of properties I-VII to network development

models is addressed in this dissertation.
1.4. Objectives and Thesis Structure

The objective of this dissertation is to propose and investigate a novel hypothesis
for a common origin of the laws of channel network planform reviewed in Section 1.1.
The proposed hypothesis is that these laws may arise from the constraint that all channel
networks must be approximately space filling (Section 1.2).

To test the above hypothesis, I study the sensitivity of the topologic analogs of the

various channel network planform laws to the parameter of the “Q model” of network
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growth, used as a test example. The Q model, introduced in Section 1.3, above, is
described in detail in Chapter 2, Section 2.2. Network samples are generated using
different Q parameter values. The properties of samples of networks not subject to any
spatial constraints, and samples of networks that are constrained to be space filling, are
compared.

In Chapter 2, test samples of networks are created using different Q parameter
values. Only the topology of these networks is specified, and no consideration is given to
either geometric or space-filling network properties. A variety of topologic variables are
computed for the networks in the different test samples, and the coefficients of the
topologic analogs of properties I-VII (listed in Section 1.2.1) are determined.

It is shown that properties I-VI are sensitive to the Q parameter, which can
originate much wider variability in the laws’ coefficients than which is found in nature.
Only property VII exhibits limited sensitivity to Q. It is concluded that the limited
variability of these coefficients in nature may not be due to insensitivity of these laws to
topologic composition. Neither the origin of these laws nor the ability of the RT model in
predicting their coefficients has so far been explained.

In Chapter 3, samples of networks are created which are space filling and have
specified geometric properties. All networks are assigned a simple, idealized geometry.
All links are straight lines and have unit length, and all link junctions have the same angle.
The geometric properties considered (defined in Section 3.2.1) are (i) drainage pattern, &
(dendritic and trellis patterns are used); and (ii) junction angle, 0.

The Q model (described in Section 2.2) is not amenable to creation of growth of
networks embedded in space because it involves branching of both interior and exterior
links. Creation of space-filling networks with specified geometric properties, such as link
lengths, 8, and o, precludes branching of interior links, as explained in Section 3.3. In

Chapter 3, a new model, designated “Qg,” is developed which is topologically equivalent
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to the Q model and is amenable to simulation of growth of networks embedded in space.
The Q and Qg models are said to be topologically equivalent because, in the absence of the
space-filling constraint, that is, in a purely topologic mode of operation, any TDCN is
equally likely to be generated by either model, for any given Q value.

The Qg model is amenable to simuiation of network growth in space because it
involves addition of new tributary links exclusively to exterior links. This permits
specification of link lengths, drainage pattern and junction angles. The probability of
adding a tributary link to a given exterior link in the Qg model is computed from
expressions derived in Section 3.3.2. |

In Chapter 4, the coefficients of the topologic analogs of properties I-VII are
computed for the sample space-filling networks created by the Qg model, using different
Q parameter values. It is found that the variability of these coefficients is reduced to a
much narroWer range than for the case where space filling is not required. This range is
influenced by the choice of junction angle, o, and by drainage pattern, O, but in general it
is situated close to the RT model’s expectations. This is a possible and novel explanation
for the predictive success of the RT model. It is also a possible explanation for the
‘approximate agreement between the properties of all published simulation models of
network growth in space. The remaining variability in these coefficients may be largely
due to differences in junction angles and, to a lesser extent, in drainage pattern.

The space-filling constraint may have important influence on the inference of
growth processes from observed morphologic properties. To illustrate this influence, in
Section 4.4 it is attempted to infer the value of parameter Q from the morphology of space-
filling networks generated by the Qg model. Maximum-likelihood Q values (denoted “ML-
Q”) are computed and it is shown that the ML-Q of a space-filling network generally
differs from the true Q value used in the creation of that network. The ML-Q is generally

closer than the true Q to the value of 1/2, which yields topological randomness. The ML-Q
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is obtained by maximizing the log-likelihood of Q, denoted “Log-L(Q)”. It is shown that
errors in statistical testing may result, includiog errors of type I (rejection of the true Q
value) and of type II (failure to reject values distant from the true Q). It is concluded that
the failure to account for the space-filling constraint, junction angles, and drainage pattern,
is a serious impediment to model inference from network morphology, giving rise to

errors of type I and II in statistical testing.
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Figure 1.1. (a) Strahler streams of a fourth-order channel network that discharges into a
fifth-order tributary stream of Old Man Creek, Iowa. Streams of orders 1 through 4 are
drawn with increasing line thickness, as indicated in the figure legend. The number of
streams of each order ®, N, are Nj=46, No=11, N3=2, N4=1. The number of source
streams, N, is designated the magnitude of the network, p. (b) Horton diagram of
stream numbers for the network in (a): log(Ng) is plotted against . The bifurcation ratio
is Rg=3.74, obtained from the slope of the regression line, (-log(RB)).
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Figure 1.2. Horton diagrams of stream numbers, lengths, and areas, for the streams of
Perth Amboy river basin, New Jersey (data of Schumm [1956]). Stream numbers are
represented by circles, stream lengths are given in meters and represented by diamonds,
and stream areas are given in square meters and represented by triangles. The Horton
ratios Rp, R, and Ra, are obtained from the slopes of the regression lines, equal to

(-log(Rp)), log(RL), and log(Ra).
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Figure 1.3. Definition of distance-weighted area, P. A basin’s drainage divide and
channel network are represented by bold lines. Thin lines define 13 sub-areas, designated
aj through aj3. Thin lines are drawn by starting at a channel junction and moving
upstream against contour lines (which are not shown) to the drainage divide. The channel
distance to the outlet of sub-area ay is designated lx. The distance-weighted area, P, is
defined as the sum of the product ‘agli for all k (1 through 13) (1.4). The circle in the
figure indicates the location of the basin’s center of gravity. The center of gravity is
located at a channel distance L, from the basin outlet, where L, is given by the ratio P/A.



WY

Figure 1.4. The five topologically distinct channel networks (TDCN) that can be
constructed having four channel sources (magnitude jt=4). Each network is represented
by a binary rooted tree graph [Melton, 1959], that is, a line graph drawn on a surface
where no more that three segments, or “links,” join at a point and that has a specified
“root,” or outlet location (here indicated by an arrowhead). “Nodes” are points of link
confluence. “Exterior links” represent source channels, and “interior links” connect two
nodes.
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CIS link

TRANS link

Figure 1.5. Definition of CIS and TRANS interior links. CIS links are interior links that
are joined at their upper and lower nodes by exterior links joining it from the same side

(left or right). TRANS links are interior links that are joined by exterior links from
opposite sides. ' '



Chapter 2

Sensitivity of Channel Network Planform Laws
To Network Growth Processes

In The Absence of Spatial Constraints

2.1 Objective

The objective of this chapter is to test the sensitivity of the channel network planform
laws (properties I-VII in Section 1.2.1) to non-uniform TDCN distributions, in the
absence of spatial constraints. The networks considered in this chapter have no specified
geometric properties, such as link lengths, junction angles, or drainage pattern, and are
not required to be space filling. Only their topologic properties are considered. Networks
subject to spatial constraints are created in Chapter 3 and studied in Chapter 4. .

Non-topologically random test network samples are generated and the parameters of
the topologic-analogs of properties I-VII are computed for each sample. Two types of
sample are tested. A sample of “type 1” is obtained by selection of networks with
specified topologic properties from an original topologically-random sample. This is the
method introduced by Kirchner [1993]. A sample of “type 2” is obtained by generating
each network using a variable-parameter stochastic topologic model of network growth.
The “Q model,” referred in Chapter 1, is used as a test example.

The Q model is described in Section 2.2. .The methods used to generate each test
sample are described in Section 2.3. The coefficients of the topologic analogs of
properties I-VII (above) are computed for each test sample in Section 2.4, and conclusions

are presented in Section 2.5. The approximate size of a sub-sample required to distinguish
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statistically between topologically random and non-topologically-random test samples is
not computed. Distinguishing between samples relies instead on the visual representation
of the topologic-analogues of properties I-VII, and on the computed cdefﬁcients and
standard deviations. Sample sizes required to distinguish between samples based on any

of these properties will depend on the magnitudes of the networks sampled.
2.2 The Q Model of Network Growth

The Q model of network growth [Van Pelt and Verwer, 1985] was introduced in the
field of neuroanatomy to represent possible growth mechanisms of neuronal dendrites of
various types. The usefulness of such growth models for inference of natural growth
mechanisms was argued for by MacDonald [1984]. The Q model is used here as a test

example only.
2.2.1 Model description

The Q model represents network growth by sequential branching of links, i.e., by
appending one new tributary link to one pre-existing link at each growth step. A
magnitude-p network is obtained after u-1 growth steps. The choice of which link will
branch (i.e., develop a new tributary) at each growth step is made stochastically. The
probability of a given link branching is p; if the link is interior, and pe if the link is

exterior. Model parameter Q relates p; and pe, and takes values in [0, 1]:

__Di
Q= pitpe 1)

Because one branching event must occur at each growth step, the sum of branching
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probabilities of all links in the growing network must equal unity. A network with p

exterior links (a magnitude-y network) has -1 interior links, and we have:

1 pe + (1-1) pi =1 (2.2)

Combining (2.1) and (2.2) yields:

o) (2.33)
~1Q |
Pe =175 (2.3b)

For Q=1/2 (i.e., pi=pe), any link (or “segment”), be it interior or exterior, is equally
likely to branch at each growth step, and the process is called “segmental growth.” If
when an interior link branches the probability of appending the new tributary link to the
right or left-hand side of that link is the same, then segmental growth yields any TDCN of
given magnitude with the same probability, and is a causative model of topologic
randomness [Dacey and Krumbein, 1976, p. 157].

For Q=0 (i.e., p;=0), only exterior (or “terminal”) links branch, and the process is
called “terminal growth.” For Q=1 (i.e., pi=1), only interior links branch, and this
procéss yields exclusively order-two, i.e., “fishbone-shaped” networks. Any given
TDCN can be produced using any value of Q (except for Q=1), however its probability of
occurrence depends on Q Lower Q values are more likely than higher Q values to produce
high-order networks.

Models of either segmental or terminal growth have been used, e.g., by Howard
[1971], Smit et al. [1972], Berry et al. [1975], Berry and Bradley [1976], and Dacey and

Krumbein [1976]. The latter authors also used a growth model where pj=2pe, and the Q
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model is a generalization of their work to any pj/pe ratio.

The mean values of various topologic variables vary continuously with parameter Q
(e.g., Van Pelt and Verwer [1985, 1986]). Comparing expected topologic measures with
observed data, maximal-likelihood Q values can be determined, and some Q values may
be ruled out at some confidence level. For example, Van Pelt et al. [1992] found the best-
fit values Q=0.11 for Purkinje neuronal dendrites, and Q=0 for non-pyramidal dendrites.
Inference of most likely growth parameters from network topology for networks
embedded in space may, however, require consideration of spatial constraints, which have

so far been neglected in such inference methods.
2.2.2 Computer code

A computer code, designated “Q.f,” was written in Fortran to simulate network
growth by the Q model. Networks were represented as binary strings, following
Lukasiewicz’s convention [Berge, 1958] (Figure 2.1a). A

Growth of a network of magnitude W starts with one initial link and requires a
number p-1 of branching events, or growth steps. Choice of which link will branch at
each growth step is done by comparison of a random variable with the link branching
probabilities, pj (2.3a) for any interior link, and pe (2.3b) for any exterior link. Once a
link is chosen for branching, the new link is appended to the left or right-hand side of the
branching link with equal probability, as determined by a random variable.

Figure 2.1b shows an example of five growth steps, or branching events. A
branching event results in the addition of two new links: a new exterior link (appended to
either the left or right-hand side of the branching link), and a new interior link that results
from the partition of the branching link into two. Following each branching event, two

digits representing these new links are added to the binary string that represents the
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network. If the new link is appended to the left-hand side of the branching link (as in steps
1, 3, and 4 in Figure 2.1b), the digits “01” are added preceding the digit representing the
branching link. If the new link is appended to the right-hand side of the branching link (as
in step 2 and 5 in Figure 2.1b), the digit “0” is added preceding the digit representing the
branching link, and the digit “1” is added at the end of the sequence of digits (the “interval
sequence”) that represents the sub-network defined by the branching link. To find the end
of the interval sequence, we start at its first digit (the digit representing the branching link)
and move forward in the string counting the_ number of digits (links), n¢, and thé number
of “1” (exterior links), ne. Because a network with ne exterior links has a total of 2ne-1
links, the end of the interval sequence is found when ng and n satisfy the equality n=2ne-
1. If the branching link is exterior, the interval sequence is the single digit “1” (as in step 2
of Figure 2.1b). In step 5 of Figure 2.1b, the end of the interval sequence “01011” is

found when n=5 and ne=3.
2.3 Test Network Samples

Two sets of test network samples are used: ten samples of networks of magnitudeA
50, including a topologically-random sample designated 0 and nine non-topologically-
" random samples designated A through I; and ten samples of networks of mixed
magnitudes, including a topologically-random sample designated O-mix and nine non-
topologically-random samples designated A-mix through I-mix. Each sample contains

5,000 networks.
2.3.1 Samples of magnitude-50 networks

Sample 0 was constructed using the Q model computer code (Section 2.2), with
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Q=1/2, for which all magnitude-50 TDCN are equally likely to be created. This sample is
therefore drawn, with replacement, from a topologically-random population, and is here
said to be a “topologically-random sample.” A more efficient algorithm for drawing
networks from a topologically-random population is given in Shreve [1974, p. 1172].

- Non-topologically-random test samples are of type 1 (samples A through D) and
type 2 (samples E through I). Test samples of type 1 were obtained by selection of
networks having specified topologic properties, from an original topologically-random
.sample, a method introduced by Kirchner [1993]. Test samples 6f type 2 were obtained
using the Q model computer code. |

Test samples of type 1 are selected subsets of size 5,000 of an original topologically-
random sample of size 10,000, which was obtained in the same manner as sample 0. Each
of samples A through D contains all networks in the original random sample whose value
of one specified “selection variable” is greater, or smaller, than the median of the original
sample. To make up 5,000 networks it is necessary in some cases to include some of

those networks with values equal to the median.

Sample A contains 5,000 networks whose Rp is smaller than or equal to the median
value, Rp, in the original random sample. Samples B through D contain networks whose
diameter (d), topologic width (w), and number of TS links (nTS), respectively, are greater
than or equal to the median values of these variables in the original random sample.
Variables d, w, and nTS are defined next.

The diameter, d, is the maximal number of links positioned in linear sequence from
the outlet to a channel source (the longest topologic path). The topologic width, w, is the
maximal number of links having the same topologic distance (path length) to the network
outlet. nTS is the number of tributary-source (TS) links in the network, defined as source
links (i.e., exterior links) that are tributary to a link of magnitude 3 or higher.

Test samples of type 2 were constructed using the Q model computer code (Section
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2.2). Sarples E through I were constructed with Q values of 0, 1/6, 1/3, 2/3, and 5/6,
respectively. Samples Eithrough I and sample O have Q values at intervals of 1/6. For
Q<1/2, we have, from (2.1), pe>pi, i.é., tributary development on any one exterior link is
more likely than on any one interior link. For example, in sample G, we have Q=1/3 and,
from (2.1), pe=2p;. The resulting distribution of TDCN favors higher Strahler orders than
in a topologically-random sample (Figure 2.2). For Q>1/2, we have, from (2.1), pi>pe.
Sample H was constructed with Q=2/3, and from (2.1), we have pij=2pe. Values of Q

larger than 1/2 favor more elongate networks, of lower Strahler orders (Figure 2.2).
2.3.2 Samples of mixed-magnitude networks

Study of the topologic analogs of geomorphologic laws that involve basin area
requires a range of network magnitudes. Each mixed-magnitude test sample contains 10
networks of each magnitude in [1, 500]. These samples were created by methods
analogous to those for the magnitude-50 samples 0, and A through‘ I (above), and are
designated 0-mix, and A-mix through I-mix, respectively.

Table 2.1 summarizes the method by which each test sample was created.
2.4 Topologic Analogs of Channel Network Planform Laws

In this section, the parameters of the topologic-analog of each geomorphologic law
listed in Chapter 1 (properties I-VII) are computed for the test network samples described
in Section 2.3. See Appendix A for variable notation.

A computer code, designated “topovars.f,” was written in Fortran to compute the

topologic variables from the binary strings representing networks.
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2.4.1 Property I: Horton’s laws and ratios

Horton’s laws of stream numbers, leﬁgths, and areas, were given by expressions
(1.1), (1.2), and (1.3), respectively, in Chapter 1. Shreve showed that “no [TDCN] can
depart indefinitely far from Horton’s [law of stream numbers],” and in this sense this law
is “inherent in the definition of stream order” [Shreve, 1966, p. 30]. Hence, this law may
not be attributed “to either orderly evolution or random development” [Bowden and
Wallis, 1964, p. 769]. Most TDCN also comply approximately with the topologic-analogs
of Horton;s laws of stream lengths and areas [Shreve, 1969].

The generality of Horton’s laws among TDCN is most easily explained for the law
of stream numbers, as follows. The ﬁrsf and last points in a Horton diagram of stream
numbers (Figure 1.1b) are determined by network magnitude and order (Ni=p and
Ng=1), while the intermediate points (N, 1<0<Q) have variable positions. Shreve
showed that the domain of variation for these points is narrow, because “for every stream
of given order, except the first, there must be at least two streams of the next lower order”
[Shreve, 1966, p. 30]. This range is a narrow parallelogram whose diagonal represents a
geometric series with ratio Gp (the geometric-mean bifurcation ratio) determined by p and

Q (2.4a) [Shreve, 1969, p. 21]. R, obtained by regression, approximates Gg (2.4b).

Gg = pl/&D (2.4a)
Rp ~ Gp (2.4b)

Given any set of stream numbers, we can arrange those streams to form a finite
number of TDCN. Shreve [1966] demonstrated that those sets of stream numbers which
approximate a geometric series with ratio 4.0 allow the largest number of TDCN.

Therefore, in a topologically-random population of magnitude-it networks, the most
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frequent, or modal order, Qm(W), is that for which Gg is closest to 4.0 [Shreve, 1966].
From (2.4):

Qu) = Round(rl-gg—% +1) 2.5)

where “Round(-)” denotes the closest integer.

The tdpologic analogs of Horton’s laws of stream lengths and areas substitute the
number of links in a stream (the stream’s “topologic length”), and in a network (the
network’s topologic “Schumm length”), for stream length and basin area, respectively.
The topologic-analog length and area ratios are here indicated by Rip, and Rtp, and the
geometric-mean ratios are G, and G'a. For a network of order Q, Gta depends on the
total number of links, equal to 2u-1 (2.6a), and GL depends on the topologic length of the

highest order stream, L'q (2.7a). Ratios Ry and R'p approximate G, and Gia,

respectively (2.6b and 2.7b):
Gty = (2u-1)VED (2.62)
RtA = GA (2.6b)
Gl = Lig/“V (2.7a)
Ry =Gl (2.7b)

Smart [1968, Eqn. 13a] derived an expression for the average topologic length of
streams of order , 1}, as a function of the set of stream numbers, {N;j, 1<i<w}, under
the assumption of topological randomness:

@ Nj.p-1

i, =i£12—2-m (2.8)
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For the RT model, the ratio Nj.1/Nj tends to 4 at large i, and equation (2.8)
approximates Horton’s law of stream lengths with Rt =2 [Smart, 1968].

Approximating the set of stream numbers by a geometric series with the ratio given
by (2.4a), we obtain, using (2.8), the mean topologic length of the outlet stream of order-

~ Q networks, I, for the RT model:

Q | 1-@2AQ)

Lo =11
Q= o 2u @ D@D

(2.9)

Gt for topologically-random samples is approximated by substituting In in (2.9)
for Lo in (2.7a).

The quality of approximations (2.4b), (2.6b) and (2.7b) can be appreciated from
Figure 2.3. Deviations from (2.7b) are the most pronounced, especially for orders other
than Qm(W). Shreve [1969] showed that topologic stream lengths often deviate markedly
from a geometric series and, citing empirical studies, noted that natural networks also
often violate Horton’s law of stream lengths [Shreve, 1969, p. 407].

Holding network magnitude fixed in Figure 2.3, we obtain multimodal Rp, Rta, and
RY_ distributions. The Rp distribution for topologically-random magnitude-50 sample 0 is
shown in Figure 2.4a. This distribution has an upper, central, and lower mode,
corresponding to network orders 3, 4, and 5, respectively. Mode positions are at the value
7.07, and at the approximate values of 3.68, and 2.66, given by (2.4). The most frequent
Strahler order, from (2.5), is 4. Sample 0 contains 2.0%, 87.2%, and 10.8% of networks
of orders 3, 4, and 5, respectively, in close agreement with analytic predictions [Shreve,
1966, Table 2]. The minimum and maximum possible orders for magnitude 50 are 2 and
6, but no networks of these orders appear in sample 0; their probability of occurrence in a
topologically-random sample of size 5,000 is only 1.21x10*4 (computed from Shreve
[1966, Table 2]).
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The Rp distribution of sample A (Figure 2.4a) represents a truncated distribution of
a topoldgically-random sample, because the selection variable used in constructing this
type-1 sample is Ry itself. Type-1 samples B, C, and D, selected for variables d, w, and
nTS, respectively, have Rp distributions differing little from sample 0 (Figure 2.4a).
These results agree with those of Kirchner [1993], who studied test samples of type 1.

Some magnitude-50 test samples of type 2 have Rp distributions markedly different
from sample O (Figure 2.4a). The most frequent order is 5 for samples E and F, 4 for G
and H, and 3 for I. Order-5 networks are more frequent in samples E, F, and G (Q<1/2),
and less frequent in sample H (Q>1/2) than in sample 0. No order-5 networks appear in
sample I (highest Q value tested, Q=5/6). Order-3 networks are less frequent in sample G
(Q<1/2) and more frequent in samples H and I (Q>1/2) than in sample 0. No order-3
networks appear in samples E and F (lowest Q values tested, Q=0 and Q=1/6). Sample I
(Q=5/6) includes four networks of ordér 2 (having Rg=50, which is above the plot axis
range).

The positions of Rp, R4 and RY_ distribution modes depend on network magnitudé
((2.4), (2.6), (2.7) and (2.9)), hence mixed-magnitude distributions don’t have separated
modes (Figure 2.4b). Increasing Q values in type-2 samples, from Q=0 to Q=5/6 (E-mix
through I-mix), yield higher Rg, RA and Rl means and increased dispersion. This is
shown for Rp in Figure 2.4b.

Results for the Rty and Rt distributions (not shown) are qualitatively similar to
those for the Rp distributions shown in Figure 2.4. Rp, Rt and RY_ means and standard
deviations for the mixed-magnitude test samples are given in Table 2.2. Figure 2.5 shows
the Rp, Rt and R means for the type-2 mixed-magnitude test samples, plotted against
the Q paranieter. ’

Horsfield et al. [1987] derived (2.10a) for the mean ratio between stream numbers

of orders 1 and 2, Rg. ., as a function of Q. For large magnitude, Rg approaches RBl-z

1-2?
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(2.10b):
Rs,,=3+1h (2.10a)
Rp=Rp,, , Wlarge (2.10b)

From (2.1), the ratio Q/(1-Q) in (2.10a) equals pi/pe.

The most frequent network order, QM (K, Q), is given upon substitution of
log(RBI_z), obtained from (2.10a), for log(4) rin (2.5). Smaller Q values yield larger
QMm(U, Q) values. The position of the principal Rg distribution mode is estimated uSing
(2.4), by substituting Qpm(u, Q) for Q. The Rp value obtained from (2.4) oscillates above
and below the value given by (2.10). The amplitude of these oscillations decreases with L,
and is larger for larger Q (see Horsfield and Woldenberg [1986] for an extensive
discussion and related references). For the low range of magnitudes in our mixed-
magnitude test samples, (2.10b) is not a good approximation, especially for large Q.

For Q=1/2 (yielding topological randomness), the Rp value predicted by (2.10) is
4.0. For the maximum magnitude used, 500, the order which gives Rp closest to0 4.0 is,
from (2.5), QM(500)=5. The Rp modal value for order 5, using (2.4), is 4.729. The
principal modal value of Rp in a topologically-random population oscillates about the
value of 4.0.

The published observed values of the Horton ratios include networks of various
magninides and from different environments. Rp is usually in the range of 3 to 5, witha
modal value near 4; Ry is in the range of 1.5 to 3.5, With a modal value near 2; and Rjp is
in the range of 3 to 6, with a modal value near 4 [Chorley, 1957; Smart, 1972; Abrahams,
1984). Shreve remarked that for a topologically-random population of finite-magnitude
networks, the Rp principal modal value and main range of variation coincide with the

observed values [Shreve, 1966]; and that if all network links had the same length and
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drainage area, Ry and Ra would coincide with their topologic-analogs, Rl and Rla,
which for a uniform distribution of TDCN of finite magnitude exhibit a range of variétion
similar to observations [Shreve, 1967, p. 184]. Shreve interpreted these results as
supportive evidence for the RT model [Shreve, 1966, p. 36; Shreve, 1969, p. 414].
Kirchner [1993] showed that distributions of the Horton ratios in non-topologically-
" random samples of type 1 do not deviate much from those in a random sample, and
concluded that these ratios have little sensitivity to topological distribution, hence the RT
model prediction of their typical empirical values does not provide evidence in support of
the RT model. It has been shown here that the Horton ratios are sensitive to the Q
parameter in type-2 test samples. It is possible that they are sensitive also to other models

of network growth.

2.4.2 Property II: Correlations between Horton ratios, and between stream

numbers and stream lengths

The topologic-analog Horton ratios depend strongly on magnitude, W, and order, £2
((2.4), (2.6), (2.7) and (2.9)). When p is held fixed, the modal clusters corresponding to
Q (Figures 2.3 and 2.4a) are seen in plots of paired values of these ratios (Figures 2.6a
and 2.7a for sample 0). Correlation coefficients between (Rp, R'L), (RB, Rty), and
(R, Rtp) are determined largely by cluster positions, and are high in all test samples,
especially for (R, Rta) (Table 2.3, magnitude-50 samples). When both p and € are held
constant, i.e., within a cluster, (R, R!L) are uncorrelated, and the (RB, Rta) and
(RYL, Rtp) correlations drop considerably (see Table 2.3, (Rp, Rts) order-4 column,
magnitude-50 samples).

In mixed-magnitude samples, clusters overlap and plots of paired values of Rp, Rta

and R show stratification by Q, most marked in the case of (Rp, Rta) (Figure 2.7b).
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Correlation coefficients are high for all three pairs in all mixed-magnitude samples,
especially for (Rp, Rta) (Table 2.3). Due to stratification by Q, correlation coefficients are
higher for Q held fixed (see Table 2.3, order-4 columns, mixed-magnitude samples).

The mean ratios Rt /Rp, Rta/Rp and Rt /Rta are higher for sets of networks of
lower Q ((2.4), (2.6) and (2.7)). Ratio Rta/Rp for fixed Q is approximately equal to
21/(Q-1) ((2.4) and (2.6)), and tends to 1 for large Q (Figure 2.7b). Because higher Q
values tend to originate a larger proportion of networks of lower €2, ratios R'L/Rp, R'o/RB
and Rt /Rt increase with Q, i.e., from sample E to I, and from E-mix to I-mix (Table
2.3).

“Correlations between stream numbers and stream lengths,” included by Shreve
[1975] under Property II, refers to the prediction of the set of mean stream lengths,
{L &}, from the set of stream numbers, {Ng}, via (2.8) for networks from topologically-
random samples, under the assumption of linearity between measured and topologic
lengths (Chapter 1). Smart [1968] showed that It from (2.8) provides an approximation
to Ley/1j, where Ly, is the mean length of order- streams, and [ is the mean link length.
Correlation coefficients between predicted and observed Ly, ranged from 0.69 to 0.90 for
various ® in basins analyzed by Smart [1968].

Expression (2.8) was derived for the RT model and is not expected to provide
approximate I}, predictions for non-topologically-random samples. A corresponding
expression to (2.8) is not currently available for networks created by the Q model. To test
the sensitivity of the relation between {L},} and {N}, the values observed in each test
sample, Dwobs, are compared to RT model predictions obtained from {Ng) via (2.8),
Dmpred, (Table 2.4).

In type-1 samples, (2.8) provides good predictions, comparable to those forksample
0 (Table 2.4). In type-2 samples, the mean ratio between Dmogs and Dmmd varies with Q

and o, while correlation coefficients are high (0.737-0.916) for all test samples and all .
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Correlations increase with network magnitude (not shown). Figure 2.8 illustrates the high
correlation between Lip_, . and Ulpxed’ for samples 0-mix and E-mix. The correlation for
sample E-mix is even higher than for sample 0-mix, however the ratio i}zobs/i}zpmd is
greater than 1 for sample E-mix. This ratio is greater than 1 for Q<1/2 and less than 1 for
Q>1/2 for order 2; approximately equal to 1 for all Q for order 3; and less than 1 for
Q<1/2 and greater than 1 for Q>1/2 for higher orders (Table 2.4).

2.4.3 Property III: Statistical distributions of second-order stream lengths,

Schumm lengths, and areas

The topologic analog of stream length is the number of links in the stream, and the
analog of both Schumm length (total channel length in the basin) and drainage area is the
total number of links in the network. In sub-basins of order two, the total number of links
equals 2Lp+1, where L is the topologic length of the second-order stream.

Figure 2.9 shows the frequency distribution of LY for all second-order streams in
the networks of mixed-magnitude type-2 samples. Table 2.5 gives the mean and standard
deviation for each test sample. For an infinite topologically-random network, the
frequency distribution of topologic lengths of streams of any given order w is geometric
[Shreve, 1969, Eqn. 9b], and the expected topologic stream length for successive orders
is given by a geometric series of ratio 2 [Shreve, 1967, p. 184; Shreve, 1969, Eqn. Sc].

In type-1 samples, the Lty frequency distribution differs little from RT model
predictions (Table 2.5), the largest deviation being for sample D-mix, selected for nTS(W)
higher than the median. In type-2 samples, this distribution differs from RT model

predictions and is not geometric (Figure 2.9, Table 2.5).
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2.4.4 Property IV: Proportional relationship between stream frequency and

the square of drainage density

Stream frequency, Fs, and drainage density, D, are the average number of streams
and average length of streams, respectively, per unit area in a drainage basin. Melton
[1958, pp. 36-37] analyzed data for 156 basins of differing .arca, climate, relief, geology
and vegetation, and found the ratio F¢/D? to be approximately constant:

F '
Ls
5= 0.694 (2.11)

Shreve [1967, pp. 184-185] showed that the topologic analog of Fy/D?2 is the ratio
between the number of streams, Sg, and the number of links, 2p-1. The ratio Sg/(2j-1) is
the reciprocal of the average number of links, or topologic length, per stream.

For large 1, expected stream numbers approximate a geometric series with ratio Rp,
and the expected number of streams, Sg, is approximated by the sum of this series over

orders 1 through Q:

Q
o __1-Re®
Ss= XRp =2 (2.12)
=1

For large-p topologically-random networks, we have Rp=4, and substituting (2.5)
for Q in (2.12) yields Sg=4/3, and Sg/(2u-1)=2/3 [Shreve, 1967, p. 185]. This value
compares well with (2.11).

For large-p networks generated by the Q model, substituting log(Rp) for log(4) in
(2.5), we obtain from (2.12):

Ss _Rp
2u-1 " 2(Rp-1)

(2.13)
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Substituting (2.10) into (2.13) yields:

Ss 3-2Q
Table 2.6 gives the mean and standard deviation of S¢/(21-1) for each test sample.
Mean values for type-1 samples are close to those of sample 0. Mean values for type-2

samples are in approximate agreement with (2.14). For the purpose of illustration, the

S¢/(241-1) values in test samples 0-mix and E-mix are plotted against [l in Figure 2.10.
2.4.5 Property V: Variation of mainstream length with basin area

Hack [1957] found an exponential relation between mainstream length, L, and basin

area, A, (also given in (1.6)):
L=xA® (2.15)

Hack [1957] and Gray [1961] found the exponent 6 to vary with geographic
location, taking values larger than 0.5. Mueller [1973] collected data for several thousand
basins of all sizes in various parts of the world, and found that 6 changed abruptly from
0.6 for basins of area smaller than 8,000 mi2, to 0.5 for basins between 8,000 and
100,000 mi2, and to 0.466 for basins larger than 100,000 miZ2.

The computed value of 8 is subject to uncertainty. Robert and Roy [1990] (see also
Beer [1991] and Robert and Roy [1991]) presented evidence of influence of cartographic
scale on the estimated 6. Montgomery and Dietrich [1992] replaced stream lengths by
basin lengths, measured along the main valley axis to the basin divide, obtaining 6=0.5.

These authors suggested that © depends on the headward extent of the mainstream
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depicted on maps of different scale, as well as on downstream variations in channel
sinuosity and drainage density.

The topologic-analogs of L and A are network diameter, d, and total number of
links, 2p-1, respectively. However, when data from basins of different drainage densities
are lumped together, there is not a direct correspondence between L and A and their
topologic analogs. Despite this limitation, (2.15) has been used to test the RT model using
the topologic analogs. |

Mesa and Gupfa [1987, Eqn. 16] derived the approximate expression (2.16) for a

for the RT model, under the assumption of independent, identically distributed (i.i.d.)

exponential link lengths.
o) = LT+ (Ww)'2
0w =57 (1) | 2.16)

From (2.16), the RT model predicts that 6 decreases continuously from about 0.6
for small magnitudes, L, to the asymptotic value of 0.5 for large p. Similar results had
been obtained by Monte Carlo simulations by Shreve [1970] and Werner and Smart
[1973].

Shreve [1974, pp. 1175-1176] showed that the observed deviations of 8 from RT
model predictions for large basin areas may be accounted for by channel sinuosity (see
also Smart and Surkan [1967]). Mesa and Gupta [1987] remark that the abrupt changes of
® with basin size cannot be accounted for by the RT model. In our view, the above
uncertainties concerning the computation of 6 from observed data preclude any definite
conclusions regarding the validity of the RT model. Moreover, the above computed values
of © most certainly include basins subject to strong geologic controls.

Figure 2.11b shows a log-log plot of diameter, d, versus the number of links,

2u-1, for topologically-random sample 0-mix. The values of d in sample 0-mix lie within
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a narrow region inside the zone of possible values, and the variance does not decrease
with magnitude, as shown analytically by Mesa [1986], cited by Mesa and Gupta [1987,
Eqn. 27], so that d(it) does not tend to almost-sure values at large |t. Figures 2.11a and
2.11c illustrate the influence of Q on the d(i) distribution. The d(u) distributions of
samples F-mix and I-mix, pictured, do not overlap for y larger than about 70.

Figure 2.12 shows similar plots, for test samples of type 1. Deviation from the RT
mode] (Figure 2.11b) is small in all type-1 samples, excepting the sample obtained by
selection of d(ju) larger than the median, d"(u). The reasons for the small deviation are
addressed in Section 2.5.

The value of 6 varies with p in all samples. Table 2.7 gives the overall 6 and x
values. Both 0 and x vary markedly with Q; 6 varies from less than 0.3 for Q=0 (sample
E-mix) to 1.0 for Q=1 (order-2 networks, represented by the upper boundary of the zone

of possible values of d(i) in Figures 2.11 and 2.12).
2.4.6 Property VI: Variation of basin distance-weighted area with basin area

Langbein et al. [1947] studied the relation between basin area, A, and the basin’s

“distance-weighted area,” P, defined by

P:Z Ik ak (2.17)
k

where ag is a portion of the basin area (a “partial area”), and I is the channel distance
from the partial area to the outlet. P has dimension of length cubed. Using data for 340

drainage basins in the Northeastern U.S., Langbein et al. [1947] found the relation:

P=¢A® (2.18)
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where P and A are expressed in miles and square miles, respectively, and € and ¢ have the
respective values of 1.56 and 0.90.

The topologic path length of a link is the number of links composing the path that
connects the link of interest to the root link, including the link of interest itself. The total
topologic path length, p, of a network is the sum of topologic path lengths of all links
composing the network. If we choose the ak values in (2.17) to be the individual link
areas, and under the assumption that ak and Ik are uncorrelated, then p is the topologic
analog of P [Werner and Smart, 1973, p. 292). .

Werner and Smart [1973] found the following relation for a computer-generated
sample of 200 topologically-random networks with magnitudes, p, randomly selected

from the range [20-200]:
p=10Q@2u- 153 . (2.19)

Mesa and Gupta [1987, Eqn. 25] derived for the RT model, under the assumption of

i.i.d. exponentially distributed link lengths, the approximate expression for p at large ji:
p =24 pls , 1 large (220

Figure 2.13 shows log-log plots of p versus 2j-1, for sample 0-mix, and type-2
samples F-mix and I-mix. The p values in sample 0-mix (topoiogically random) lie within
a narrow plot region within the zone of possible values (Figure 2.13b). Table 2.8 gives
the overall exponent, ¢, and coefficient, €, in (2.19) for each test sample. Variation of ¢
and € is slight for type-1 samples, but marked for type-2 samples. Both ¢ and € vary with
Q, and ¢ decreases from 1.242 for Q=0 (sample E-mix) to 1.803 for Q=5/6 (sample I-

mix).



44

2.4.7 Property VII: Relation between distance from the basin outlet to

centroid and mainstream length

Gray [1961] studied the relation between the channel distance from the outlet to the
center of gravity (or “centroid”) of the network, Lca, and the mainstream length, L. L¢a is

given by:

Lea=P/A (2.21)
where P is defined by (2.17). Gray [1961] found the relation (also given in (1.8)):

Lea=05L (2.22)

The topologic analogs of L and L, are d and the mean topologic path length,
p=p/(2u-1), respectively. Werner and Smart [1973, Eqn. 34] obtained the following

regression relation for a computer-generated sample of 200 topologically-random

networks with magnitudes p randomly selected from the range [20-200]:
p=050d+13 (2.23)
Both p and d increase with , and for large y, (23) is approximated by p=0.5d, the
topologic equivalent of (22). Mesa and Gupta [1987, Eqn. 26] derived for the RT model,

at large W, assuming i.i.d. exponentially distributed link lengths:

$=050d , i large (2.24)
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Because there is uncertainty in both d and P for given j, it is not appropriate to
perform regression of P against d. Regression implicitly assumes there to be uncertainty
only in the dependent variable (e.g., Hirsch and Gilroy [1984]). Instead, the mean and
standard deviation of p/d was computed for each test sample (Table 2.9). Also given in
Table 2.9 are the mean and standard deviation of p*/d, where p~ denotes the mean value of
p’, the “total modified topologic length,” introduced here. The modified topologic length
is here defined as the number of links forming the path that connects the link of interest
and the root link, excluding the link of interest. The standard definition of topologic length

includes the link of interest. We have:

p =p-Qp-1) (2.25)
p*=p-1 (2.26)

The reason for using p” instead of p is that the ratio P /d shows dependency on p
only for very low p values. Figure 2.14 depicts p'/d plotted against y for test samples
F-mix, 0-mix, and I-mix. The mean §*/d increases with Q, as does the standard deviation
(Table 2.9). This increase is slight except for very low Q values.

For given d, variable p" is determined by the network’s shape. Networks having
more links at higher than lower topologic distances from the root, said to be “top heavy,”
have high p* values. “Bottom heavy” networks have more links at short topologic
distances from the root, and have low P~ values. Networks produced with low Q values
tend to be more compact, with lower bifurcation ratios. Because the maximum number of
links at a given topologic distance from the root increases with bdistancc, these compact
networks tend to have more links at topologic distances higher than half the network’s

diameter, and hence are top-heavy. Networks produced with high Q values do not have a
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tendency to be either top or bottom heavy. For Q=1, which produces exclusively second-

order networks, p */d tends to 0.5 for p large.
2.5 Conclusions

The sensitivity of channel network planform laws (properties I-VII) to non-uniform
TDCN frequencies was tested by computing the coefficients of each topologic-analog law
for non-topologically-random test samples. Two types of test sample were used (Section
2.3). Samples of type 1 were obtained by selection of networks from an original
topologicaliy-random sample, based on threshold values of a specific topologic variable,
located at the sample median. Samples of type 2 were obtained by constructing each
network using the Q model of stochastic topologic growth (Section 2.2), where the
probabilities of tributary development on an exterior link, and on an interior link, are
allowed to vary.

Sensitivity of the topologic-analog laws is different for type-1 and type-2 test
samples (Section 2.4). Sensitivity of all laws to type-1 samples (A through D and A-mix
through D-mix) is limited. This is because the cutoff value for each selection variable was
placed at the sample median. Given the sharply peaked distributions of the selection
variables, a cutoff value equal to the sample median will not succeed in sampling away
from the narrow distribution peak. The effects on topologic variables other than the
selection variable depend on the correlations between variables, and are small for cutoff
values placed at the sample median. Cutoff values corresponding to the upper or lower
third, fourth, fifth, or any decile, would require larger sample sizes than those used here.
Cutoff values located farther from the median would necessarily result in larger deviations
from RT model predictions.

Parameter values of the Q model are well reflected in departures from RT model
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predictions for all topologic-analog laws. Only Gray’s relation (property VII) shows very
limited sensitivity to Q, except for low Q values. It is possible that properties I-VI are
sensitive to other models of network growth as well.

Correlations between (Rg, R1), (Rp, Rta), and (R1, R tp) are largely determined
by network magnitude and order. When both these variables are held fixed, correlations
drop considerably, and are close to zero for (Rg, R'L). Given that observed correlations
among these ratios [Smart, 1968] have not been studied conditionally for 1 and Q, the
correlation values found do not establish well-defined geomorphologic laws. Conditional
analysis of observed correlations and comparison with RT model predictions may
constitute useful future work, especially since high correlations between Rp and R' in
natural channel networks may be a result of the space-filling requirements of these
networks. Tarboton et al. [1988], and La Barbera and Rosso [1989] have proposéd that
the ratio log(Rp)/1og(RY.) provides an estimate of a network’s fractal dimension, in the
vicinity of 2.

Given the sensitivity of channel network planform laws to at least one class of
network growth models, represented by the Q parameter, it is concluded that the
approximate agreement of these laws with the predictions of the RT model may be a
distinctive property of channel networks rather than an inescapable result. The
approximate agreement with the RT model remains unexplained. In attempting an
explanation, one must be cautioned that all models used here to create non-topologically-
random network samples are purely topological. Space-filling and geometric properties of
channel networks were ignored, and could lead to different results. Samples of networks
subject to space-filling and geometric constraints are created in Chapter 3. The sensitivity
of the topologic analogs of properties I-VII in sample networks subject to space-filling and

geometric constraints is the topic of Chapter 4.
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Table 2.1. Development of test samples. The median, for given network magnitude, ., of
each selection variable in the original topologically random sample of 10,000 networks is
indicated by a tilde. '

Threshold-selection criterion or

Sample O model parameter:

Topologically-random samples: _

0 and 0-mix Q=12
Type-1 samples:

A and A-mix Rp(p) < Rp(u)

B and B-mix d(u) = d@w)

C and C-mix w(l) = W)

D and D-mix nTS(U) 2 nTS(W)
Type-2 samples:

E and E-mix Q=0

F and F-mix Q=1/6

G and G-mix Q=173

H and H-mix Q=23

I and I-mix Q=5/6
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Table 2.2. Arithmetic means and standard deviations of Rp, Rt and R!{, for mixed-
magnitude test samples. -

Rp Rt R!
Sample mean  s.d. mean A 5. d. mean t s. d.
Topologically-random sample:
0-mix 3.767 0.605 4448 0.940 2.005 0.531
Type-1 samples:
A-mix® 3.448 0.356 4.029 0.549 1.792  0.357
B-mix 3.881 0.612 4.586 0.994 2.162  0.540
C-mix 3.614  0.488 4249  0.701 1.857  0.399
D-mix 3.796 0.614 4498  1.000 2.026 0.563
Type-2 samples:
E-mix 3.006 0.291 3.422 0.470 1.219  0.220
F-mix 3.181 0.344 3.650 0.554 1.396 0.284
G-mix 3.405  0.445 3.951  0.737 1.631 0.396
H-mix 4337  0.820 5.258 1.310 2.622  0.767
I-mix 5.704 1.647 7.289  2.643 4.043 1.623

) The selection variable used in constructing sample A-mix was Rp.
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Table 2.3. Correlations, 1(-, -), between topologic-analog Horton ratios in test samples,
and in subsets containing only those networks of order four; and mean ratios between

these variables.

Sample r(Rp, R'L) (R, R'A) 1R, Rta)  RY/Rp R'ARp Ri/Rp
all order4 all order4 all order4 mean mean _ mean

Magnitude-50 samples:

Topologically-random sample:

0 0.829 -0.073 0.990 0.661 0.801 -0.406 0.546 1.239 0.441

Type-1 samples: ' A

A® 0.803 0.032 0989 0.414 0.769 -0.261 0.547 1.169 0.484

B 0.850 -0.130 0.991 0.626 0.822 -0.493 0.579 1.243 0.467

C 0.706 -0.127 0.988 0.710 0.665 -0.392 0.521 1.233 0.423

D 0.844 -0.105 0.992 0.661 0.822 -0.398 0.542 1.248 0.435

Type-2 samples: '

E 0.894 -0.220 0.997 0.791 0.881 -0.386 0.432 1.199 0.360

F 0.881 -0.154 0996 0.762 0.863 -0.426 0.465 1.205 0.386

G 0.817 -0.087 0.992 0.718 0.786 -0.392 0.506 1.221 0.415

H 0.935 -0.057 0.997 0.560 0.924 -0.417 0.593 1.275 0.466

I 0.959 0.108 0990 0.420 0.952 -0.201 0.697 1.354 0.513

Mixed-magnitude samples:

Topologically-random sample:

0-mix 0.874 0.886 0936 0.993 0.872 0.857 0.527 1.177 0.449
Type-1 samples:
A-mix® 0.709 0.813 0.896 0.985 0.667 0.768 0.514 1.162 0.443
B-mix 0.879 0.865 0.940 0.988 0.898 0.836 0.558 1.176 0.476
C-mix 0.799 0.844 0951 0989 0.781 0.816 0.504 1.170 0.431
D-mix 0.888 0.854 0.943 0.990 0.876 0.820 0.528 1.178 0.449
" Type-2 samples:
E-mix 0.745 0.732 0.904 0.995 0.870 0.700 0.405 1.137 0.356
F-mix 0.778 0.796 0.908 0.992 0.858 0.762 0.437 1.145 0.382
G-mix 0.834 0.827 0922 0.994 0.871 0.797 0.476 1.157 0.412
H-mix 0.900 0.904 0.936 0.991 0.880 0.869 0.598 1.206 0.497
I-mix 0954 0912 0957 0.976 0.923 0.855 0.694 1.267 0.550

® The selection variable used in constructing samples A and A-mix was Rp.
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Table 2.4. Mean ratio of observed, L', ., to predicted, i}mpmd, mean topologic stream
lengths, and corresponding correlations, r(., -), for mixed-magnitude test samples. Ltmpred
is the value predicted by the RT model, using (2.8).

Ltmobs - -
Sample mean (Ltco ) I‘(Lt(")obs’ L[mpred)
pred
| =2 =3 w=4 =5 w=2 =3 =4 o=5
Topologically-random sample:
0-mix 1.000 0.998 1.021 1.060 0.862 0.840 0.845 0.833
Type-1 samples:
A-mix 1.012 1.010 1.016 1.083 0.853 0.815 0.850 0.810
B-mix 1.004 1.005 1.034 1.078 0.856 0.820 0.844 0.826
Cmix 0997 0992 0.996 0.989 0.849 0.823 0.837 0.822
D-mix 1.016 1.022 0.994 1.077 0.865 0.849 0.838 0.821
Type-2 samples:
E-mix 1.187 1.015 0.740 0.544 0.878 0.738 0.737 0.782
F-mix 1.144 1.012 0.805 0.642 0.885 0.773 0.762 0.787
G-mix 1.083 1.012 0.886 0.809 0.878 0.792 0.793 0.811

H-mix 0.873 0.979 1.241 1.484 0.841 0.828 0.881 0.814
I-mix 0.671 1.017 1.744 2.075 0.787 0.870 0916 0.818
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Table 2.5. Arithmetic mean and standard deviation of the length of second-order streams,

L', in the networks of mixed-magnitude test samples.

LY

Sample mean s. d.

Topologically-random sample:

0-mix 2.003 1.411

Type-1 samples:

A-mix 1.996 1.298

B-mix 1.999 1.430

C-mix 1.991 1.301

D-mix 2.139 1.427

Type-2 samples:

E-mix 1.792 0.999
" F-mix 1.838 1.087

G-mix 1.905 1.217

H-mix 2.177 1.790

I-mix 2.802 2.386
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Table 2.6. Mean and standard deviation of S¢/(2t-1) for mixed-magnitude test samples.

Sample . S¢/(2p-1)
mean s.d

Topologically-random sample:

0-mix 0.672 0.022
Type-1 samples:

A-mix 0.672 0.022

B-mix 0.670 0.022

C-mix 0.672 0.022

D-mix 0.667 0.020
Type-2 samples:

E-mix 0.751 0.020

F-mix 0.729 0.021

G-mix 0.703 0.022

H-mix 0.633 0.022

I-mix 0.582 0.022
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Table 2.7. Values of exponent, k, and coefficient, X, in d=lc(2u-1)9, for mixed-
‘magnitude test samples, obtained by least-square linear regression of log(d) over
log(2u-1); and values of the standard deviation about the regression line, in units of
log(d).

Sample 0 K s. d.
Topologically-random sample:
0-mix 0.560 1.538 0.207
Type-1 samples:
A-mix 0.556 1.487 0.195
B-mix(™ 0.581 1.560 0.138
~ C-mix 0.551 1.488 0.181
D-mix 0.557 1.599 0.206
Type-2 samples:
E-mix 0.272 3.227 0.110
F-mix 0.355 2.595 0.148
G-mix 0.451 2.016 0.183
H-mix 0.689 1.100 0.217
I-mix 0.832 0.772 0.191

®) The selection variable used in constructing sample B-mix was d itself.
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Table 2.8. Values of exponent, ¢, and coefficient, €, in p=e(2-1)9, for mixed-magnitude
test samples, obtained by least-square linear regression of log(p) over
log(2t-1); and values of the standard deviation about the regression line, in units of

log(p).

Sample ¢ £ s. d.
Topologically-random sample:
0-mix 1.521 1.038 0.207
Type-1 samples:
A-mix 1.515 1.021 0.201
B-mix 1.546 1.011 0.161
C-mix 1.510 1.023 0.192
- D-mix 1.520 1.063 0.212
Type-2 samples:
E-mix 1.242 2.255 0.072
F-mix - 1.316 1.842 0.128
G-mix 1.410 1.410 0.174
H-mix 1.652 0.721 0.226

I-mix 1.803 0.476 0.199
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Table 2.9. Mean and standard deviation of p/d and P/d, for mixed-magnitude test

samples.
Sample p/d p/d
mean s.d. ~ mean s.d.
Topologically-random sample:
0-mix 0.539 0.057 0.509 0.052
Type-1 samples: '
A-mix 0.539 0.058 0.509 0.053
B-mix 0.532 0.055 0.507 0.052
C-mix 0.543 0.059 0.512 0.055
D-mix 0.536 0.055 0.508 0.051
Type-2 samples:
E-mix 0.587 0.044 0.521 0.038
F-mix 0.566 0.051 0.514 0.045
G-mix 0.549 0.055 0.511 0.048
H-mix 0.529 0.054 0.508 0.050

I-mix 0.520 0.045 0.506 0.041
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Figure 2.1. (a) Representation of a network’s topology by a binary string, following
Lukasiewicz’s convention: interior and exterior links are represented by “0” and “1,”
respectively, and are listed in sequence starting with the root link and moving from left to
right around the network. (b) Example sequence of five growth steps yielding the
magnitude-six (1=6) network in (a). The link chosen for branching, and the side (left or
ﬁght) to which the new tributary link will be appended, is indicated by an arrow-head.
The digit representing the link chosen is underlined in the binary strmg at the bottom, and
the two new digits to be inserted are indicated.
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Figure 2.2. Five magnitude-50 networks drawn at random from test sample G (created
with Q=1/3); test sample 0 (Q=1/2); and test sample H (Q=2/3). Five networks from each
test sample suffice to illustrate network characteristics favored by different Q values.
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Figure 2.3. Topologic-analog Horton ratios plotted against network magnitude, K, for
topologically-random network sample O-mix: (a) Rp; (b) Rtp; (¢) Ry, Curves are
described by (2.4), (2.6), and (2.7) combined with (2.9), respectively. The most frequent
order, Qm(W), is given by (2.5).
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Figure 2.4. Rp distribution histograms for each test sample, using a bin size of 0.1. For
each sample, the vertical reference axis extends from the minimum to maximum values
observed, and the width about the axis is proportional to frequency. Where there is no
thickness about the reference axis, there are no observed values. (a) magnitude-50 test
samples; (b) mixed-magnitude test samples.
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Figure 2.5. Mean values of the topologic-analog Horton ratios in mixed-magnitude test
samples of type 2 and sample 0-mix, plotted against the respective Q parameter value: Q=0
(sample E-mix), Q=1/6 (F-mix), Q=1/3 (G-mix), Q=1/2 (0-mix), Q=2/3 (H-mix), and
Q=5/6 (I-mix). For Q=1, only order-2 networks are created and, for the uniform mixture
of magnitudes in [1, 500] used in our test samples, we have Rp=252, Rt4=507, and
Rt =251. Curves were constructed by linear interpolation.
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Figure 2.6. RY_ plotted against Rp for each network in topologically-random test samples
(@) 0 (1=50) and (b) 0-mix (1<p<500).
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Figure 2.7. R!4 plotted against Rp for each network in topologically-random test samples
(@) 0 (u=50) and (b) 0-mix (1<pu<500). There is marked stratification by order in sample
0-mix.
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Figure 2.8. Average topologic length of second-order streams, L‘zobs, plotted against RT
model prediction, I-‘tzpred’ obtained from the stream number set using (2.8), for each
network in samples (a) 0-mix and (b) E-mix.
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Figure 2.9. Frequency distribution of topologic length of second-order streams, I}, for
mixed-magnitude test samples of type 2.
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Figure 2.11. Diameter, d, plotted against number of links, 2j-1, for samples (a) F-mix,
(b) 0-mix, and (c) I-mix. Solid lines delineate zone of possible values.
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Figure 2.12. Diameter, d, plotted against number of links, 2ji-1, for samples of type-1:
(a) A-mix, (b) B-mix, (¢) C-mix, and (d) D-mix. The selection variable used to create
sample B-mix was d itself. Solid lines delineate zone of possible values.
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Figure 2.13. Total topologic path length, p, plotted against number of links, 2ju-1, for
samples (a) F-mix, (b) 0-mix, and (c) I-mix. Solid lines delineate zone of possible

values.
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Figure 2.14. Ratio of mean modified total topologic length to diameter, p'/d, plotted
against magnitude, W, for each network in samples (a) F-mix, (b) 0-mix, and (c) I-mix.

Dashed line represents the mean p'/d value.



Chapter 3

Space Filling Networks

3.1 Introduction

The sample networks studied in Chapter 2 had no specified geometric properﬁeg,
and were not required to be space filling. It was shown that, for such networks, the
topologic analogs of properties I-VII (listed in Section 1.2.1) are sensitive to the parameter
of the Q model of network growth. In this chapter, we create networks with specified
geometric properties of drainage pattern, link lengths, and junction angles, and which fill a
given drainage area, i.e., whose channels leave no undrained sub-areas, and maintain a
minimum distance between them. Precise definitions of these terms are given in Section
3.2. The impbsition of both geometric and space-filling requirements constrains network
topology, that is, it precludes some TDCN. The sample networks created in this chapter
will be used in Chapter 4 to investigate the sensitivity to the Q parameter of the topologic
analogs of properties I-VII, and some additional topologic properties, under spatial
constraints. |

The Q model, described in Section 2.2, is not amenable to simulation of network
growth under spatial constraints, as will be explained in Section 3.3. A topologically
equivalent model, designated Qg, is developed to generate networks under spatial
constraints (Section 3.3). The Qg model can operate in a topologic mode or in a space-
filling mode. The Q and Qg models are topologically equivalent because any TDCN is
equally likely to be generated by either model for any given Q parameter value, in the

absence of spatial constraints, i.e.; when the Qg model is operated in the topologic mode.
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The Qg model in the space-filling mode is used to create samples of spacc-‘filling
networks, for a range of values of parameter Q (Section 3.4). Coefficients for the
topologic analogs of properties I-VII will be cbrnputcd for these network samples in
Chapter 4. |

All definitions presented in this chapter are novel, unless a literature reference is
proVided. These include definitions of terms aﬂd variables with no prior use in the field,

as well as designations that are used here in a novel way.
3.2 Definitions

The geometric properties of the networks studied in this chapter are defined in
Section 3.2.1. The terms “space-filling networks,” “spatial constraints on network

topology” and “random samples of space-filling networks” are defined in Section 3.2.2.
3.2.1 Network Geometry

The networks created in this chapter are required to have a well defined, idealized
geometry. All links are straight lines and have unit length. The geometric properties of a
network are its junction angle, o, and its drainage pattern, 8, defined next.

At any jﬁnction, tWo tributary links discharge into a receiving link. In the networks
created in this chapter, the angle formed by the tributary links is the same at every
junction, and is designated the junction angle, o.. The drainage pattern, 9, is determined
by the orientation of the tributary links relatively to their receiving link. The direction of
the receiving link forms an angle o with the tributary link to the left of the junction, and
an angle oy with the tributary link to the right of the junction. The sum of angles aj and

o (designated the “semi-divide angles”) equals .
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If o1 and o are equal, i.e., if junctions are shaped as symmetric “Y,” the drainage
pattern is “dendritic,” and denoted by “3=d” (Figure 3.1a). In “wrellis” drainage patterns,
denoted by “d=t,” some junctions have o1=0, and others have a2=0 (Figure 3.1b).
According to the choice of a1=0 or ci2=0 at each junction, trellis patterns may have
different appearance. In the trellis patterns studied in this chapter, illustrated in Figure
3.1b, the following arbitrary rule is imposed. If the receiving link of the junction of
interest forms a straight line with its own receiving link, then we have a1=0 or 02=0 at
the junction of interest if we have ap=0 or ®1=0 in the junction immediately downstream,
respectively. If the receiving link of the junction of interest is at an angle with its own
receiving link, then o and o at the junction of interest will be the same as at the junction
immediately downstream.

The position and orientation of each link are described with reference to an
orthogonal coordinate system by three variables: the spatial coordinates of the lower node,
(x, y), and the orientation angle, B, formed by the directions of the link and the x axis,
measured counter-clockwise from the positive x axis (Figure 3.2). The spatial coordinates
of this link’s tributary links are those of the junction node, (x’, y’), and the orientation
angles are P for the tributary link to the left, and B2 for the tributary to the right of the
junction. Variables x’, y’, B1, and B2, are computed from o and o2, and from X, y, and

B, from geometric considerations, as indicated in Figure 3.2.

3.2.2 Space-Filling Networks

A network is said to be space filling of an area A when the maximum distance
between any point in -A and the closest point on the network is not larger than a specified
maximum, dmax, and when no two points on different network links are located at a

distance shorter than a specified minimum, dmin, €Xcept at channel junctions.
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Consider a specified drainage area, A, and outlet link position, O, defined by
(X0, Yo) and Bo, with (xg, yo) located on the boundary of A, as shown in Figure 3.3. A
network is said to be “space filling of A given O under 6 and o if, when all links are
converted to straight lines of unit length, the outlet link is placed at position O, and the
network is assigned geometric properties 8 and @, we have that: (i) every point in A is at
a distance smaller than or equal to the specified maximum, dmax, from the closest point on
the network; and (ii) the distance between each link and the link closest to it (excepting
links joining it at a junction) is not smaller than the specified minimum, dmin, and no link
intersects the boundary of A. The distance between two links, X and Y, denoted dxy, is
defined as the smallest distance between a point in X and a point in Y (Figure 3.4). Figure
3.5 shows example space-filling and non-space-filling networks of -A given O under
particular geometric properties dand o.

Space-filling requirements do not, on their own, preclude any network topologies.
Any TDCN can be made space filling of A given O, provided that its links are made
sufficiently short or long and are shaped conveniently, and that its junction angles are
chosen appropriately. When the space-filling requirement is combined with geometric
requirements, such as those described in Section 3.2.1, some TbCN are precluded. For
any given A, 0, 8 and o, only some TDCN are space filling. Other TDCN have links at
too short a distance (smaller than dmin), or links that cross over each other, or leave sub-
areas of A undrained (i.e., some points in A are at a distance larger than dmax from the
closest point on the network), and are not space filling. These TDCN are precluded by the
joint imposition of geometric and space-filling requirements, designated “spatial
constraints.” ‘ '

Given a planform area A and a network outlet link location O (Section 3.2.2),
there are in general multiple TDCN which, when their links are made to be straight lines of

unit length and they are assigned geometric properties d and o (Section 3.2.1), are space
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filling of AA. Figure 3.6 shows three different networks having 8=d and o=70° that are
space filling of the drainage area -A with the outlet link location O depicted in Figure 3.3b.

The set of all TDCN that are space-filling of AA given O under 6 and ., is denoted
S.2.0.6a- A population of elements of S,4,0,5, is said to be random if all elements of
S.4.0.5,c occur with the same frequency in the population. A sample of elements of
S,4,0,5,a is said to be random if the elements are drawn with replacement from a random

population of S,4,0,5,a-
3.3 The Qg Model: A Topological Equivalent of the Q Model

The Q model of network growth, described in Section 2.2, involves sequential
addition of tributary links to either exterior or interior links (Figure 2.1). Addition of
tributary links to interior links is not amenable to creation of space-filling networks with
pre-specified geometric properties, such as the networks illustrated in Figures 3.5a, 3.5c,
and 3.6. When a new tributary link is appended to an interior link, this interior link is
divide;d in two. If this interior link had length I, each of the two new interior links has a
length less than [. If it is desired that all links have unit length, then the number of
tributaries that a link will develop is established by the original length assigned to that link,
which is an arbitrary decision. The three links that meet at the new node cannot form a
symmetrical “Y” junction, because one of the tributary links will be aligned with the
receiving link, and dendritic networks cannot be generated in this way.

For generation of space-filling networks with specified geometric properties, such
as those described in Section 3.2.1, a model of network growth is needed which involves
addition of tributaries only to exterior links. It is desired that this growth model be
topologically equivalent to the Q model. Two growth models are said to be topologically
equivalent if any TDCN is generated by both models with the same probability in the
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absence of spatial constraints, i.e., in a purely topologic mode of operation. A network
growth model, designated QE, is introduced here which involves sequential branching of
exterior links and is topologically equivalent to the Q model. |

The Qg model is described in Section 3.3.1. The expressions for computation of
link branching probabilities are presented in Section 3.3.2. Sections 3.3.3 and 3.3.4 give
example computations of link branching probabilities using these expressions, for the Qe
model in the topologic and space-filling modes of operation (defined in Section 3.3.1),

respectively. The computer code of the Qg model is described in Section 3.3.5.
3.3.1 Model Description

In the Qg model, one exterior link branches at each growth step, becoming an
interior link with two (new) exterior tributary links (Figure 3.7). We start with the root
link and in the first growth step we add two tributary links to its upper node. The root link
is said to “branch,” and a network of magnitude 2 is produced. The root link thus
becomes an interior link, and no more tributary links can be appended to it. In the second
growth step, one of the two exterior links branches and a network of magnitude 3 is
produced. In the third growth step, one of the three exterior links branches and a network
of magnitude 4 is produced. A network of magnitude M is attained after pu-1 growth steps.

. At each growth step, the choice of which exterior link will branch is made
stochastically, by comparison of a random variable to the branching probability assigned
to each link. The branching probability of each link is determined by its topologic position
in the network, as described in Section 3.3.2, and is a function of parameter Q.

The Qg model has two “modes of operation:” a (purely) topologic mode, and a
space-filling mode. In the topologic mode, no geometric variables are specified and there

are no space-filling requirements. Link branching occurs without regard to network spatial
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layout and possible crossing of channels, or areas that remain undrained. This is the same
mode in which the Q model operates (Chapter 2). Branching probabilitiés in the Qg model
(Section 3.3.2) are such that, in the topologic mode, the probability of any TDCN being
generated by the Qg and Q models is the same for given Q, and the two models are
topologically equivalent.

In the space-filling mode, variables A, 0, dnin, dmax, O and o (defined in
Sections 3.2.1 and 3.2.2) are specified. Network growth starts with the root link,
positioned at O, and proceeds in the same manner as in the topologic mode, described
above, but with the following difference. If branching of a given link would result in one
or two new links that violate spatial constraints (Section 3.2.2), the given link is not
allowed to branch, and its branching probability is set to zero for all subsequent growth
steps. This is further explained next.

When a link is chosen for branching, the spatial variables of its new tributary links
are computed as indicated in Figure 3.2. These spatial variables are used to calculate the
distance between each of these new links and any other link in the network, excepting
each other and the branching link (Section 3.2.2), and to determine whether any of the
new links crosses the boundary of A. If the distance to the closest link is smaller than the
specified minimum, dmin, or if one or both new links would cross the boundary of A,
these tributary links are not added. The link chosen is not allowed to branch, and its
branching probability is permanently set to zero for all subsequent growth steps. Addition
of tributaries to other links proceeds until addition of new tributary links to any exterior
link would result in violation of spatial constraints. If no points in -A are at a distance

larger than dmax from the closest point on the network, then the network fills area A.
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3.3.2 Derivation of Link Branching Probabilities

Consider a network node, connecting a receiving link of magnitude p and two
tributary links, to the left and the right side of the node, having magnitudes a and b,
respectively, where a+b=.. The magnitude of the receiving link, L, is partitioned between
its tributaries into a and b. The “partition” at this node is the pair of integers (a, b).
Consider the partition at the node above a link of magnitude 6. This partition may be either
(1, 5), (2, 4), 3, 3), (4, 2), or (5, 1). Partition (3, 3) is said to be “symmetric,” while
partitions (1, 5) and (5, 1) are the most “asymmetric” [e.g., Van Pelt et al., 1992].

For fixed |, the probability of a particular partition (a, b) depends on the growth
model used to create the network. For the Q model, Van Pelt and Verwer [1985,
Equations (18), (24), and (30)] derived expressions for the probability of partition (a, b)

for given Q, denoted “p(a, b; Q).” These expressions can be combined as:

a+b-1 a-1

P b Q =11 llQno-Q) no (7 ){1 s (DD 1))
i=2
for 0<Q<1 (3.1a)
0: a#1 and b#1
p(a, b; 1) = {% a=1 or b=1 for Q=1 (3.1b)
For Q=0, (3.1a) simplifies to:
1
p@, b, 0) =57 (3.2)

For Q=0, (3.2) gives the same probability for all partitions (a, b) for fixed p

(u=a+b), equal to the inverse of the number of partitions, a+b-1, or H-1.
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Given that branching probabilities in the Q model (Section 2.2.1) are independent
of left or right tributary posifioning, the probability of a partition (a, b) is equal to that of

its left-right reverse, or mirror-image partition, (b, a), for any given Q:

p(a, b; Q) =p(b, 3, Q) (3.3)

Probabilities of symmetric partitions, i.e., where b=a (if |l is éven) or b=atl (if L
is odd), are higher for smaller Q values. Probabilities of strongly asymmetric partitions,
such as (1, p-1), are higher for larger Q values. For Q=1, from (3.1b), the only partitions
that can occur are (1, u-1) and (u-1, 1), and the network has Strahler order 2.

Consider the outlet (or root) link of a network and its two tributary sub-networks.
Let a and b be the magnitudes of the sub-ﬁetworks on the left and right-hand sides of the
outlet link, respectively. At each growth step of the Qg model, an exterior link branches,
and the magnitude of the network increases by one unit. If branching occurs somewhere
in the sub-network on the left-hand side of the node, an event denoted “L,” the original
partition (a, b) changes to (a+1, b). If the branching occurs somewhere in the sub-
network on the right-hand side, an event designated “R,” the original partition changes to
(a, b+1). The probabilities of events L and R, denoted p(Ll a, b; Q) and p(Rl a, b; Q),
respectively, are designated the “partition-change probabilities.” Either event L or R will

occur at each growth step, i.e., their probabilities add to unity:

p(Lia, b; Q) +p(Rla,b; Q) =1 (3.4)

Because branching probabilities in the Q model do not depend on left or right
tributary positioning, two mirror-image events, (LI a, b) and (Rl b, a), have equal

probability, for any given Q:
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pLia, b; Q) =pRIb, a; Q) - (3.5)
For any given Q (except Q=1), a partition (a, b) may have resulted from either
event (Ll a-1, b; Q) or (Rl a, b-1; Q). Therefore, the probability of a partition (a, b) of

magnitude W (i.e., a+b={1), may be written as a function of partition probabilities and

partition-change probabilities of magnitude p-1:
p(a, b; Q) =p(LI a-1, b; Q) p(a-1, b; Q) + p(Rl a, b-1; Q) p(a, b-1;Q  (3.6)

Appendix B presents the derivation of expressions (3.7), from (3.6), using (3.3),

(3.4), and (3.5).

o

:b>1

< b= for Q=1 (3.7a)

pLli1,b; 1) ={

N —
—

1

pLia,b; Q= for a=b, 0<Q<1 (3.7b)

]

Ib-al-1
] al -
p(Lia, b; Q) = m{ -1)*#1 2 p(m, m; Q) - Z(—l)‘ p(a+Aa, b+Ab; Q) }

i=1

for azb, 0<Q<1 (3.7¢)

where:
m= even(b-a)% + odd(b-a)aqiplz)i’-1 (3.7d)
Aa = even(i)s: + odd()' 5" | (3.7¢)
Ab = - even(iy - odd(i)y (3.76)

event) =5 = { g7 S 678
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odd(i) = 1-even(i) = 10:: Lodd (3.7h)

For Q=1, it follows from (3.7a) that the only partitions that can occur are
(1, b) and (a, 1), in agreement with (3.1b). Partition probabilities in (3.7c) are computed
from (3.1). |

In the Qg model, a branching event results in change of the partition at each node
located along the path from the branching link to the root link. At each of these nodes, the
branching event will represent either an L or an R event. Van Pelt and Verwer [1984]
showed that, in sequential growth models where branching probabilities do not depend on
the topologic distance to the root (the topologic path length), the partitions at the various
network nodes are independent. The Q and Qg models meet this criterion. Therefore, the
branching probability of a given link is given by the product of the probabilities of the
corresponding L and R events at each of the affected nodes. These probabilities are
computed from (3.7), combined with (3.4), (3.5) and (3.6).

An alternative and equivalent algorithm for the Qg model treats the network as a
decision tree. Starting at the junction at the upper node of the root link (the “first node”), a
choice is made between the sub-tree to the left and to the right of the node, according to
the partition change probabilities p(Ll a, b; Q) and p(Rl a, b; Q). We step to the first node
of the chosen sub-tree and repeat the process. When an exterior link is reachec}, that link is
chosen for branching. The probability of a given link being chosen for branching by this
process equals the product of the corresponding partition change probabilities at each of
the nodes visited, the same as in the algorithm presently described and that is used in this
chapter.

Computation of branching probabilities in the Qg model is illustrated below by

four examples. Section 3.3.3 gives two examples for the topologic mode, and Section
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3.3.4 gives two examples for the space-filling mode. All four examples use Q=1/2.

Similar computations apply for any value of Q.

3.3.3 Example Computations of Link Branching Probabilities: Topologic

- Mode

This section presents two examples of computations of link branching probabilities
for the Qg model, in its topologic mode of operation. Example 1 (Section 3.3.3.1)
presents detailed computations for a step in the growth of a network. Example 2 (Section
3.3.3.2) demonstrates how a topologically-random sample of TDCN is obtained by the
Qg model using Q=1/2.

3.3.3.1 Example 1

Consider the network of magnitude 8 depicted in Figure 3.8a. Its 8 exterior links
are labelled A through H, and its nodes are numbered 1 through 7. We are to compute the
branching probabilities for the Qg model, for each of links A through H. These
probabilities depend on Q, and are denoted p(A; Q) through p(H; Q). Choice of which of
the eight exterior links will branch at the next growth step, yielding a network of
magnitude 9, will be made by comparison of a random variable with the eight link
branching probabilities.

Consider the branching probability of link H, p(H; Q) (Figure 3.8b). If link H is
chosen for branching, the partitions of nodes 1 and 7, will be changed. The partition of ‘
node 1 will change from (6, 2) to (6, 3) (an R event), and the partition of node 7 will
change from (1, 1) to (1, 2) (also an R event). The value of p(H; Q) is given by the

product of the corresponding partition-change probabilities for nodes 1 and 7:
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pH; Q =pR!I6,2;QpRI1, 1;Q) (3.8)

Because (3.7) was written for L events, and for partitions (a, b) where a<b, to use

(3.7) we must first write (3.8) as a function of L events with a<b, using (3.5):

p(H; Q) =pL12,6,QplLi1,1Q (3.9)

We can now use (3.7) to compute the partition-change probabilities ink(3.9). For

Q=1/2:

p(H; 1/2) =p(LI 2, 6; 1/2) pLi 1, 1; 1/2)
= 0.7310 x 0.5000
= 0.3655 (3.10)

Consider now the branching probability of link D (Figure 3.8c). If link D
branches, five nodes, 1, 2, 3, 5, and 6, will experience a change in partition (Figure

3.8¢c), and we have:

pD; Q) =plL16,2,QpRI1,5QpRI2,3QplLi2,;Qpll1,1;,Q (.11)

To apply (3.7), the partition change probabilities in (3.11) must be written as
functions of (LI a, b) partition change probabilities, with a<b. First using (3.4) and (3.5),

then using (3.7), we obtain, for Q=1/2:

p(D; 1/2) =pLI 6, 2; 1/2) p(RI 1, 5; 1/2) p(RI 2, 3; 1/2) p(L! 2, 1; 1/2)
p(LI 1, 1; 1/2)
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=[1-pi2,6; /2] [1-pMI1,5 1/2)][1-pLi2,3; 1/2)]
[1-pL1,2; 1/2)] pLl 1, 15 1/2)

= 0.2690 x 0.8994 x 0.6667 x 0.8000 x 0.5000

= 0.0645 (3.12)

Similar computations yield the branching probabilities for all exterior links, A

through H, for Q=1/2:

p(A; 1/2) =0.0271 (3.13a)
p(B; 1/2) = 0.0403 (3.13b)
p(C; 1/2) = 0.0403  (3.13¢)
p(D; 1/2) = 0.0645 (3.13d)
p(E; 1/2) = 0.0645 . (3.13¢)
p(F; 1/2) = 0.0323 (3.13f)
p(G; 1/2) = 0.3655 (3.13g)
p(H; 1/2) = 0.3655 | (3.13h)

The sum of (3.13a through h) equals unity. With Q=1/2, the next branching event
is most likely to occur in link G or H, and least likely to occur in link A.

For Q=0, (3.2) indicates that all partitions of given W have equal probability. From
(3.7), this results in all exterior links having equal branching probability. For Q=0, each
exterior link of the network in Figure 3.8a has a branching probability of 1/8. This growth
model is designated “terminal growth” (Section 2.2). For Q=0, the Q and Qg models are

not just topologically equivalent, but are the same.
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3.3.3.2 Example 2

Consider growth of a network by the Qg model in its topologic mode, with Q=1/2.
The network starts with its outlet link, which branches at the first growth step. At the
second growth step, one of the two exterior links branches and a network of magnitude 3
is formed. At the third growth step, one of the three exterior links branches and a network
of magnitude 4 is formed. The process continues until the desired network magnitude is
attained. The branching probability of each exterior link at any time step is computed as
illustrated in example 1 (Section 3.3.3.1).

In the topologic mode of the Qg model, parameter value Q=1/2 draws networks
with replacement from a topologically-random population, and is a causative model of
topologic randomness (Section 2.2.1). As we generate an increasing number of networks
of given magnitude W, using Q=1/2, the frequency of each TDCN in the sample approches
1/N(p), where N(w) is the number of TDCN of magnitude L.

The present example illustrétes the generation of a topologically-random sample of
magnitude-6 networks from a topologically-random sample of magnitude-5 networks, by
the Qg model in its topologic mode. This example demonstrates that, if each TDCN of
magnitude S has an expected frequency of 1/N(5), or 1/14, then all TDCN of magnitude 6
grown with Q=1/2 have an expected frequency equal to 1/N(6), or 1/42.

Figure 3.9 depicts the 14 TDCN of magnitude 5, numbered i through xiv, in the
first matrix column. Any of the 5 exterior links of a magnitude-5 network may branch.
Branching of one exterior link or another will generate different TDCN of magnitude 6, so
that a magnitude-5 network can generate any of 5 magnitude-6 TDCN, depicted on the
corresponding matrix row in Figure 3.9. Each magnitude-5 TDCN in Figure 3.9 is the
“parent” of the five magnitude-6 TDCN in the same matrix row. For example, TDCN #i is

the parent of TDCN #1 through 57
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There are N(6)¥42 TDCN of magnitude 6, and the entries in Figure 3.9 are
numbered 1 through 42 (by order of entry) on the upper left-hand corner of the
corresponding matrix box. The total number of entries in Figure 39is 14x5=70, as some
of the 42 TDCN have multiple entries, i.e., they can be obtained from 2 or more
magnitude-5 TDCN. For example, TDCN #1 may result from branching of either TDCN
#i or xi. TDCN #37 may result from branching of either TDCN #ix, xi, or xii. The
expected frequency of each branching event is indicated on the lower right-hand box
corner. This frequency is obtained by multiplying the frequency of the parent TDCN of
magnitude 5, equal to 1/14, by the corrcspohding link branching probability. Consider,

- for example, the branching of TDCN #i that results in TDCN #1. The probability of this

branching event, denoted p(1! i; 1/2), is obtained from (3.7) as follows:

p(lli; 1/2) = p(Li 1, 4; 12)
R
15

= (3.14)
The product (1/15)x(1/14) yields a frequency 1/210 for this branching event.
Consider now the branching of TDCN #xi that results in the same TDCN #1. This

branching event has probability p(1i xi; 1/2), given by (using (3.4), (3.5) and (3.7)):

p(1i xi; 1/2) =p(R! 2, 3; 1/2) p(RI 1, 2; 1/2) p(RI 1, 1; 1/2)

=[1-pLi2,3; 1/2)] [1-p@l1,2; 1/2)] pLI 1, 1; 1/2)
4
15

(3.15)

The product (4/15)x(1/14) yields a frequency 2/105 for this branching event. The

frequency of TDCN #1 is given by the sum of the frequencies of events (11i) and (1Ixi),
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equal to (1/210)+(2/ 105), or 1/42. It may be éonﬁrmed that all 42 TDCN in Figure 3.9

have the same frequency, 1/42.

3.3.4 Example Computations of Link Branching Probabilities: Space-Filling
Mode

This section presents two examples of computations of link branching probabilities
for the Qg model, in its space-filling mode of operation. Example 3 (Section 3.3.4.1)
presents detailed computations for a step in thé growth of a network. Example 4 (Section
3.3.4.2) shows that Q=1/2 in the space-filling mode does not generate random samples of

space-filling networks, as defined in Section 3.2.2.
3.3.4.1 Example 3

In this example, the branching probabilities are computed for the Qg model, used
in the space-filling mode, for the magnitude-8 network depicted in Figure 3.10, given A,
0, & and a. In Section 3.3.3, these probabilities were computed for the topologic mode,
for a topologically identical network (Figure 3.8). The network in Figure 3.10 has
geometric properties 8=d and a=90° (defined in Section 3.2.1). Its outlet link is placed at
location O, and all links have unit length. Tributary links are to be added to an exterior link
of this network by the Qg model at the next growth step. Addition of tributaries to links B,
C, D, E or G is precluded, as they would result in violation of spatial constraints. These
links are said to be “blocked,” and are assigned zero branching probability. Addition of
tributaries to links A, F or H would not result in violation of spatial constraints.

Branching probabilitieé in the space-filling mode are denoted p*(A; Q) through
p*(H; Q). If no exterior links were blocked, branching probabilities p*(A; Q) through
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p*(H; Q) in the space-filling mode would be equal to their counterparts p(A; Q) through
p(H; Q) in the topologic mode. When one or more exterior link is blocked, the
corresponding starred probabilities equal zero, and the positive branching probabilities

must add to unity. In this example,' we have:
PAQ+pEQ+p H; Q=1 (3.16)

Space-filling mode (SM) branching probabilities are obtained by setting the ratio

between any two SM probabilites equal to their topologic-mode (TM) counterparts:

P (A; Q) _p(A; Q)

pEQ PEQ (3.172)
se9 g
S0 1
Combining (3.16) and (3.17), yields:

P4 Q) = 5T T O TP (3.182)
P Q=5 T O D) (3.185)
p'H; Q = p(H; Q) (3.18¢)

p(A; Q) + p(F; Q) + p(H; Q)

As in (3.18), all SM branching probabilities are obtained from their TM
counterparts by normalization. For Q=1/2, (3.18a, b, and ¢) are computed by substitution

of (3.13a, f, and h). The SM branching probabilities for Q=1/2 are:
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p*(A; Q) =0.0638 (3.19a)
p*(B; Q) =0. (3.19b)
p*(G; Q) =0.  (3.19)
p*(D; Q) =0. (3.19d)
p*(E; Q) =0. (3.19%)
p*(F; Q) = 0.0760 (3.19f)
p*(G; Q) =0. (3.19g)
p*(H; Q) = 0.8602 (3.19h)

The sum of (3.19a through h) equals unity. It is most likely that link H will branch
at the next time step. The SM probabilities in (3.19) differ greatly from the TM

probabilities in (3.13), computed for a topologically identical network.

3.3.4.2 Example 4

Consider growth of a network by the Qg model used in the space-filling mode,
with Q=1/2. The network’s geometric requirements are 3=d and «=90°, and all links have
unit length. With these geometric properties, all TDCN of magnitude 5 or smaller respect
the requirement that no two links (except links that join at a junction) be at a distance
smaller than dpin=1.

For magnitude 6, under 8=d and =90°, all TDCN except for one, numbered 42
in Figure 3.9, respect the minimum distance requirement for a small enough dmin>0.
Under 8=d and a=90°, and for any value of ¢ under d=d, TDCN #42 has two links (that
are not joined at a junction) that meet at a point (Figure 3.11a). Therefore, under d=d, this
TDCN does not meet the minimum distance requirement for any dmin>0. Regardless of

the specified A, 0, dpin and dmax, TDCN #42 always violates spatial constraints under
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8=d, and is precluded in the space-filling mode of the Qg model. However, under o=t,
"TDCN #42 does not violate the minimum distance requirement for small enough dmin>0.
For example, under 8=t and =90°, this TDCN does not violate this requirement with
dmin=1, as shown in Figure 3.11b.

Figure 3.12 represents all branching events leading from a magnitude-5 network to
a magnitude-6 network, and the corresponding expected event frequencies in the space-
filling mode of the Qg model, with 8=d and a=90°, assuming that only TDCN #42 is
precluded. However, depending on A, O, dmin and dmax, other TDCN may also violate
spatial constraints under =d and a=90°. The TDCN are depicted in the figure without
these geometric properties, for easier visualization and for comparison with Figure 3.9.
Frequencies given in Figure 3.12 were computed in the same manner illustrated in
example 3 (Section 3.3.4.1). These frequencies can be compared to those computed for
the topologic mode (Section 3.3.3.2), given in Figure 3.9. The only differences arise in
TOWS 1.2 (branching of TDCN #kxii) and 14 (branching of TDCN #xiv). In these rows, the
frequency of TDCN #42 is zero for the space-filling mode, as it violates spatial constraints
(Figure 3.11a). The frequencies of the remainder branching events on these rows are
higher than in the topologic mode (Figure 3.9). The sum of expected frequencies in each
row equals 1/14, the frequency of each magnitude-5 TDCN in a topologically-random
population.

In this example, there are 41 space-filling TDCN of magnitude 6, but they do not
all have equal expected frequency, 1/41. For example, TDCN #37 _has an expected
frequency equal to 19/525, or 0.0362 (given by the sum of 1/105 from row 11 and 2/175
from row 12), greater than 1/41, or 0.0244. Most TDCN have an expected frequency of
1/42, while the TDCN on rows 12 and 14 (such as TDCN #37, above), have an éxpccted

frequency in excess of 1/41.



91

P4

This example demonstrates that in the space-filling mode, Q=1/2 does not yield all
space-filling TDCN of magnitude 6 (and higher) with the same likelihood. Therefore,
Q=1/2 does not produce random samples of space-filling networks (defined in Section
3.2.2). Recall that, in the topologic mode, Q=1/2 yields topologically random samples of
TDCN, as illustrated in example 2 (Section 3.3.3.2).

3.3.5 Computer Code

A computer code was written in Fortran which simulates network growth by the
Qg model. Networks are represented as binary strings, following Lukasiewicz’s
convention (Figure 2.1a). Growth of a network of magnitude u starts with one initial link
and requires a number -1 of sequential branching events, or growth steps (Section 3.3.1,
Figure 3.7). Only exterior links may branch. At each growth step, a subroutine named
“PROBABILITIES” computes the branching probability of each exterior link in the network,
using (3.4), (3.5) and (3.7). Similar computations were presented in Sections 3.3.3 and
3.3.4 for the topologic and space-filling modes of operation, respectively. A subroutine
named “RANDOM” selects a random number in [0, 1], and a subroutine named “CHOOSE”
chooses which link will branch by comparison of this random number to the cummulative
distribution of ﬁhk branching probabilities.

In the topologic mode of operation, two new tributary links are appended to the
link chosen for branching. In the space-filling mode of operation, these tributary links are
added only if violation of spatial constraints does not result. A subroutine named
“TEST_DMIN” computes the distance between each new tributary link and each other link

in the network (excepting the branching link) and détermines whether the new link would
be at a distance smaller than dp, from another network link. If this spatial constraint is

violated, then the new links arenot added, and the branching probability of the chosen
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link is set to zero for all subsequent growth steps. The link is said to have been “bloékcd.”
If the above constraint is not violated, a subroutine named “TEST_BOUNDARIES”
- determines whether any of the new tributary links crosses the boundary line of drainage
area »A. In this case, the chosen linkv is not allowed to branch, and is blocked.

If neither of the two spatial constraints above is violated, then two new tributary
links are appended to the chosen link, according to geometric properties & and a. A
subroutine named “GEOMETRY” computes the spatial coordinates and orientation angle for
the new links, as described in Figure 3.2. A subroutine named “ADD_LINKS” updates the
binary string that defines the network, as described in Figure 3.7. The digit “1”
representing the branching link in the binary string is changed to “0,” because addition of
the two tributary links makes the branching link become interior. Following this digit “0,”
two digits *“1” are added to the binary string, representing the two new tributary links.

Network growth proceeds until all exterior links have been blocked. The final
network may then fill the entire drainage area, -A. In some cases, there will be sub-areas
which remain undrained. A subroutine named “TEST_DMAX” determines whether there are
any points within drainage area A which are located at a distance greater than dmax from
the closest point on the network. If this spatial constraint is not violated, the network is
space-filling. If this constraint is violated, the entire network is discarded and a new
program run is performed. An example of a non-space-filling network to which no more
links may be added iS given in Figure 3.13. Such networks occur rarely, except for low o

and high Q values.
3.4 Test Network Samples

Test samples of space-filling networks were generated with the Qg model using

various Q values, and for different & and o. All networks fill a square area, A, of side
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measuring 50 length units, and have outlet link location, O, defined by (xo, y0)=(0, 0) and
Bo=45°. A and O are represented in Figure 3.3c. Two examples of space-filling networks
for this A and O are depicted in Figure 3.5a and c.

Due to the number of computations involved, computer generation of each space-
filling network is time consuming. For smaller o, the network magnitude required to fill
A is larger, and computer runs take considerably longer. For this reason, each test sample
contains only one network. The influence of network magnitude on the various topologic
variables is studied by considering all sub-networks of the complete network. Each
network link is the outlet of a sub-network, and in a complete network of magnitude L,
sub-networks cover the range of magnitudes [1, p], with p-1 sub-networks having
magnitude 2 or higher.

Test samples are denoted “(3, , Q).” For example, a dendritic network with
junction angles 50° that was generated using Q=2/3 is denoted “(d, 50°, 2/3),” and a
trellis network with junction angles 90° that was generated using Q=1/2, is designated
“(t, 90°, 1/2).” Q parameter values are sampled at intervals of 1/6, similarly to Chapter 2,
ie., Q=0, 1/6, 1/3, 1/2, 2/3, and 5/6. Values of . are sampled at intervals of 20°, at the
values of 30°, 50°, 70°, and 90°. These values of o are chosen for the purpose of
illustration, however junction angles below 30° and above 90° also occur in nature. The
value of dmin Was set equal to sin(c/2), i.e., half of the width of a junction, and dmax wWas
set equal td 3.

Table 3.1 summarizes the space-filling sample networks created, and their
principal topologic variables: magnitude (i), Strahler order (), diameter (d), total
topologic path length (p), width (w), bifurcation ratio (Rp), and topologic area and length
ratios (Rta and RY). Dendritic test sample networks obtained with Q=0, 1/6, 1/3, 1/2,
2/3, and 5/6, are depicted in Figures 3.14 through 3.19, respectively. Apparent from these

figures is the tendency for flow path convolution at large Q values. Figures 3.20 and 3.21
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depict four stages in the growth of networks (d, 70°, 0) and (d, 70°, 5/6), respectively.
These same networks zire also depicted in Figures 3.14 and 3.19. For Q=0 (Figure 3.20),
all exterior (or “terminal”) links have equal branching probability at each growth step, and
this model is designated “terminal growth.” Terminal growth resembles a wave of
dissection, where the area invaded by the network is fully or nearly filled with channels,
i.e., network extension and elaboration (concepts introduced by Glock [1931]) are
concurrent. For Q=5/6 (Figure 3.21), network extension precedes elaboration, i.e., the
network extends in length until spatial constraints prevent further elongation, after which
growth of tributary basins occurs in order to achieve space filling.

Trellis test sample netw<‘)rks were obtained with Q=0 and a=30°, 50°, 70°, and
90° (Figure 3.22); and with Q=0, 1/6, 1/3, 1/2, 2/3, and 5/6 for a=90° (Figure 3.23).
Even if not immediately apparent to the eye in Figure 3.23, flow path convolution
increases with Q, resulting in longer network diameters. The diameter paths in sample
networks (t, 90°, 0) and (t, 90°, 5/6) are highlighted in Figure 3.24, for comparison.

For the purpose of comparison with space-filling networks, test sample networks
were also created using the Qg model computer code in the topologic mode of operation.
The magnitude of each topologic-mode network was specified to be equal to that of fhe
space-filling sample dendritic network having a=70° created with the same Q value (given
in Table 3.1). For example, the topologic-mode network obtained with Q=0 has
magnitude 1,111, which was chosen in order to be the same as the magnitude of the
space-filling mode sample network (d, 70°, 0).

In Chapter 4, the coefficients of the topologic analogs of properties I-VII (listed in
Section 1.2.1) are computed for all sample networks. The coefficients of topologic mode
(TM) and space-filling mode (SM) networks created with the same Q values will be

compared.



95.

Table 3.1. Topologic properties of SM and TM test sample networks.

Sample u Q d 4 w Rp Ry R,

SM sample networks: dendritic
75 183,615 120 3.847 4.192 1.645
83 196,447 120 3.726 4.070 1.778
138 275,447 80 3.724 4.109 1.728
138 283,865 92  3.523 3960 1.832
195 551,101 70  3.845 4.084 2.192
223 472,679 64 3.670 4.066 2.038

(d,30°,0) 2,179
(d,30°,1/6) 2,176
(d,30°,1/3) 2,175
(d,30°,1/2) 2,177
(d,30°,2/3) 2,187
(d,30°,5/6) 2.170

79 129,255 78  3.502 3.812 1.809
105 139,669 72 3.530 3.899 1.693
89 157,035 68  4.229 4.714 2.246
184 258,313 48  3.508 3.825 1.957
200 299,739 38  4.637 5.023 2.550
247 360,367 38 4253 4796 2.713

(d,50°,0) 1,391
(d,50°,1/6) 1,391
(d,50°,1/3) 1,396
(d,50°,1/2) 1,380
(d,50°,2/3) 1,389
(d,50°,5/6) 1,386

83 105,281 62 4431 5.109 1.606
99 109,349 60 4.149 4750 2.096
117 155,549 54 4263 4708 2.323
121 149,951 44 4231 4.843 2.223
231 282,079 26 5.593 6.439 3.551
184 235,933 38  4.384 4995 2.595

(d,70°,0) 1,111
(d,70°,1/6) 1,108
(d,70°,1/3) 1,099
(d,70°,1/2) 1,108
(d,70°,2/3) 1,100
(d,70°.5/6) 1,095

111 123,323 46  4.166 4.771 2.100
121 134,005 32 4.157 4.578 2311
105 128,505 48  4.160 4.797 2.169
177 231,643 32 4355 4904 2.569
232 242,707 30 4322 5.038 2.486
238 265,399 24 4199 4.825 2.699

(d,90°,0) 1,045
(d,90°,1/6) 1,031
(d,90°,1/3) 1,036
(d,90°,1/2) 1,042
(d,90°,2/3) 1,032
(d,90°.5/6) 1,020

M sample networks: trellis
(t,30°,0) 2,134 82 204,667 120 3.883 4.130 1.796
(t,50°,0) 1,207 87 114,869 62 3380 3.719 1.605
(t,70°,0) 931 85 92,479 54 4.030 4.658 1914
(t,90°,0) 1,193 98 137,879 62 4173 4.776 2.080

110 142,135 56 4.183 4.790 2.033
138 164,711 48  4.112 4.663 2.309
156 224,415 42 3330 3.708 1.928
260 281,855 32 4229 4.864 2.580

(t,90°,1/6) 1,193
(1,90°,1/3) 1,193
(£,90°,1/2) 1,193
(t,90°,2/3) 1,193
(£,90°,5/6) 1,193

= W= NN o e e e N TP E=a = We e e o)t Ho NV, e Ne e et e e e B e e e B B

385 434,951 18 4.184 4.766 2.909
TM sample networks: '

Q=0 1,111 7 22 28,605 264  3.107 3.405 1.243
Q=1/6 1,108 7 36 43919 164 3213 3475 1.346
Q=1/3 1,099 6 57 71,915 78  4.061 4.466 1.948
Q=1/2 1,108 6 151 189,167 46 4.019 4.468 2.288
Q=2/3 1,100 6 284 304,921 28  4.133 4597 2.542
Q=5/6 1,095 5 - 535 625,829 14 5887 6.897 4.629
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@ a=o+aop ' b)) a=ug+o
o =0 oy=0o0ra,=0
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Figure 3.1. Two topologically identical networks with a=80°, and drainage pattern
(a) dendritic (8=d); (b) trellis (3=t). The network outlet is indicated by an arrow head.
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y
x' = x + cos(P)
y' =y +sin(f)
[31: B + (Xl
B=PB-ay

y'

y

0 X x' X

Figure 3.2. Spatial coordinates (x, y) and orientation angle, B, of a link. Computation of

spatial coordinates (x’, y’) and orientation angles, B1 and B9, of its tributary links, from
(X, y), B, and semidivide angles o and o).
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Figure 3.3. Examples of a specified drainage area, A, and outlet link location, 0. A is
square in all three examples, but may have any shape, provided it has a single external
boundary line. (a) A is a square of side measuring 10 length units, and the outlet link
location, O, is described by (xg, yo)=(10, 5) and Bo=180°; (b) A is a square of side
measuring 10 length units, and O is described by (xo, y0)=(5. 0) and Bo=90% (c) A is a
square of side measuring 50 length units, and O is described by (xp, yo)=(0, 0) and
Bo=45°. Sample networks studied in this chapter are space filling of the area A and have
the outlet location O depicted in ().
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Figure 3.4. Definition of distance between two links. The links of the network depicted
are labelled “A” through “X.” The distance between links F and J, for example, denoted
dgy, is equal to the length of the dashed line shown connecting the two links. Links O and
U cross each other, therefore we have dou=0.
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Figure 3.5. A and O are those depicted in Figure 3.4c. Values dpmin=0.2 and dmpax=3 are
stipulated. (a) A network that is space filling of A given O, under d=d and a=70° (b) A
network that is not space filling of A given O under 8=d and a=70°, because some links
not joined at a junction are at a distance smaller than dm;n, and because some points of A
are at a distance larger than dmax from the closest point on the network. (¢) A network
that is topologically identical to the one in (b), but having geometric properties d=d and
a=50°. The network topology in (b) and (c) is space-filling of A given O under d=d and
a=50° (shown in (c)) but not under 8=d and a=70° (shown in (b)).
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Figure 3.6. A and O are those depicted in Figure 3.3b. Values dmin=0.1 and dmax=3 are
stipulated. The three topologically distinct networks are space-filling of A given O, under
8=d and a=40°. The network in (a) has magnitude 41, and the networks in (b) and (c)

have magnitude 42.
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_ p=4 u=5
=3 -
p=2 v /

=l 4 »
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Figure 3.7. Example sequence of 4 growth steps of the Qg model, yielding a network of
magnitude 5. The link chosen for branching is indicated by an arrow head. The digit “1”
representing the link chosen for branching is underlined in the binary string representing
the network. In the computer code of the Qg model, this digit “1” is replaced by the
sequence “011” as indicated.
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Figure 3.8. Example 1: (a) Network of magnitude 8. Exterior links are labelled A
through H, and nodes are numbered 1 through 7. (b) Branching of link H will affect the
partitions at nodes 1 and 7, encircled. (¢) Branching of link D will affect the partitions at

nodes 1, 2, 3, 4, and 6, encircled.



Figure 3.9. Example 2: Generation of the 42 TDCN of magnitude 6 (mimbered in the
upper left-hand corner of the corresponding box) from the 14 TDCN of magnitude 5
(numbered in Roman numerals) by the Qg model in the space-filling mode, using QQ—- 12
Each matrix box represents the outcome of branching of one external link of the
magnitude-5 network in the same row, first column. The expected frequency of each
branching event is indicated in the lower right-hand corner the corresponding box.
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unit length

Figure 3.10. Example 3: A network under geometric properties 8=d and a=90°, and its
outlet link positioned at O. This network is topologically identical to that in Figure 3.8.
Exterior links are labelled A through H. Addition of new tributary links (represented by
dashed lines) to exterior links A, F, and H will not result in violation of spatial constraints

WIth, C.g., dm1n=0.2 and dmax=2.
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(a) | l ®

. \J

Figure 3.11. The TDCN numbered 42 in Figure 3.7, pictured with geometric properties
(a) 8=d and ®=90°, and (b) &=t and a=90°. In (a), vthc requirement for a minimum

distance between any two links not joined at a junction is violated for any specified
dmin>0. In (b), this requirement is not violated for dmin=1 or smaller.



.....................................................................................................................................

[ 1 12 3 4 5
g RN *ff i ? R g 1 1
NN mo N LI I CZSI ZHI 3
i 6 i7 3 8 HE) ;
Y Y Yo Y Y2 Y2
210 140 84 42 42

.....................................................................................................................................

.....................................................................................................................................

v 15 16 117 18 19

\g \@_1_ V_L f_u E 1 % 1
.............................. 210: ¥ 0: Y 84 X 42 Y. .4
v 20 21 17 22 23 :
% VJ_ V_L vﬁ 1 1
SO R SOOI SR 2.1 SO SO 140 Xl 84 K. 42 X 42
vi 24 25 126 27 28 ‘
$ ﬁj_ %_1_% &ﬁ 1 1 1
SN R SO (-2 SIS o 140 X 84 X 42; 42
v 29 30 126 31 132 '
YoY% Yo Yoo AR
N OO N G CAL TSR 40: y..84: ¥ .42 Y. .4
v 33 34 :12 35 36 :
$ Q?L R 4 1 1
00N JOUUE SR UL -2 R AUUNIL 5. SV, RO 84: M. 2: N 2
Hix 37 11 134 7 2 :
y— #_1_5 :ﬂj_é ?L %1_ \i 1
L 21 60 ... 60: ... 60 ...l .. 50,
% 38 16 21 30 25 :
g—H%- _ﬁﬁ:_l_i 72, 4 1 1 1
TN GO N S 210; ..k _.®;: ¥ 80: K. .80 . f..8.
ixi 39 140 37 6 i :

.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................

Figure 3.12. Example 4: Generation of TDCN of magnitude 6 (numbered in the upper
left-hand corner of the corresponding box) from the 14 TDCN of magnitude 5 (numbered
in Roman numerals) by the Qg model in the space-filling mode, using Q=1/2, under 8=d
and a=90°. TDCN #42 is precluded by spatial constraints. Expected frequencies (in the
lower right-hand corner of each box) of TDCN #10, 24, 29, 33, 37, 38, 40, and 41, on
the same matrix rows as #42, are increased relatively to the topologic mode (Figure 3.9).
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30

20 1

10 1

Figure 3.13. Drainage area, A, is a square of side measuring 30 length units, and outlet
link location, O, is defined by (xg, yo)=(0, 0) and Bo=45°. Variables dmin=0.2 and
dmax=3 are specified. The network depicted has 3=d and a=30°, and was obtained with
the Qg model using Q=5/6. Even though no more links may be added without either
violation of the spatial constraint imposed by dmin, or crossing of the boundary line of A,
this network is not space-filling of AA because the constraint imposed by dmax is violated
in two sub-areas left undrained. The appearance of such undrained sub-areas is rare for
larger a and for lower Q values.
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6=d, a=30° Q=0 6=d, a=50° Q=0
50 . ’ ; 2 50 3
40 F 40 1
304 F 30
:44
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0 10 20 30 40 50 0 10 20 30 40 50
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Figure 3.14. SM dendritic test sample networks created with the Qg model, using Q=0,
with various bifurcation angles, o: (d, 30°, 0), (d, 50°, 0), (d, 70°, 0), and (d, 90°, 0).
These networks have magnitude 2,179, 1,391, 1,111, and 1,045, and diameter 75, 79,
83, and 111, respectively (Table 3.1).
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Figure 3.15. SM dendritic test sample networks created with the Qg model, using Q=1/6,
with various bifurcation angles, o: (d, 30°, 1/6), (d, 50°, 1/6), (d, 70°, 1/6), and
(d, 90°, 1/6). These networks have magnitude 2,176, 1,391, 1,108, and 1,031, and
diameter 83, 105, 99, and 121, respectively (Table 3.1).
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Figure 3.16. SM dendritic test sample networks created with the Qg model, using Q=1/3,
with various bifurcation angles, a: (d, 30°, 1/3), (d, 50°, 1/3), (d, 70°, 1/3), and
(d, 90°, 1/3). These networks have magnitude 2,175, 1,396, 1,099, and 1,036, and
diameter 138, 89, 117, and 105, respectively (Table 3.1).
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Figure 3.17. SM dendritic test sample networks created with the Qg model, using Q=1/2,
with various bifurcation angles, o: (d, 30°, 1/2), (d, 50°, 1/2), (d, 70°, 1/2), and
(d, 90°, 1/2). These networks have magnitﬁde 2,177, 1,380, 1,108, and 1,042, and
diameter 138, 184, 121, and 177, respectively (Table 3.1).
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Figure 3.18. SM dendritic test sample networks created with the Qg model, using Q=2/3,
with various bifurcation angles, o (d, 30°, 2/3), (d, 50°, 2/3), (d, 70°, 2/3), and
(d, 90°, 2/3). These networks have magnitude 2,187, 1,389, 1,100, and 1,032, and
diameter 195, 200, 231, and 232, respectively (Table 3.1).
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Figure 3.19. SM dendritic test sample networks created with the Qg model, using Q=5/6,
with various bifurcation angles, a: (d, 30°, 5/6), (d, 50°, 5/6), (d, 70°, 5/6), and
(d, 90°, 5/6). These networks have magnitude 2,170, 1,386, 1,095, and 1,020, and
diameter 223, 247, 184, and 238, respectively (Table 3.1).
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Figure 3.20. Four stages in the growth of test network (d, 70°, 0), depicted in Figure
3.14. The growing network is shown after 277, 555, 833, and 1,110 growth steps. The
final network has magnitude 1,111. Growth with Q=0 resembles a wave of dissection, in
which network elongation and elaboration occur concurrently.
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Figure 3.21. Four stages in the growth of test network (d, 70°, 5/6), depicted in Figure
3.19. The growing network is shown after 273, 547, 821, and 1,094 growth steps. The
final network has magnitude 1,095. Growth with Q=5/6 favors network extension,
followed by elaboration once spatial constraints prevent further extension.
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Figure 3.22. SM trellis test sample networks created with the Qg model, using Q=0, with
various bifurcation angles, a: (t, 30°, 0), (t, 50°, 0), (t, 70°, 0), and (t, 90°, 0). These
networks have magnitude 2,134, 1,207, 931, and 1,193, and diameter 82, 87, 85, and
98, respectively (Table 3.1).
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Figure 3.23. SM trellis test sample networks created with the Qg model with o=90°
(maze networks) using various Q values: (t, 90°, 0), (t, 90°, 1/6), (t, 90°, 1/3),
(t, 90°, 1/2), (t, 90°, 2/3), and (t, 90°, 5/6). All of these networks have magnitude 1,193,
and their diameters are 98, 110, 138, 156, 260, and 385, respectively (Table 3.1). The
diameter paths for (t, 90°, 0) and (t, 90°, 5/6) are depicted in Figure 3.24.
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Figure 3.24. Diameter path of test sample networks (t, 90°, 0) and (t, 90°, 5/6), depicted
in Figure 3.23. Diameters are 98 and 385, respectively. Higher Q values tend to originate
convoluted flow paths and longer diameters.



Chapter 4

Sensitivity of Channel Network Planform Laws
To Network Growth Processes |

Under Spatial Constraints

4.1 Introduction

The objective of this chapter is to test the sensitivity of the channel network
planform laws (properties I-VII listed in Section 1.2.2) to the Q parameter, under spatial
constraints. The coefficients of the topologic analogs of properties I-VII are computed for
each sample network created with the Qg model in Chapter 3 (Section 4.2). The sensitivity
of these coefficients to Q is compared to that of sample networks subject to no constraints,
similar to the networks studied in Chapter 2. Additional topologic properties are also
compared (Section 4.3).

The probability of producing any given network depends on Q. The Q value that
maximizes the likelihood of producing a given network in the absence of spatial
constraints can be determined from the network’s topology (Section 4.4). This value is
designated the maximum-likelihood estimator of the Q parameter, and denoted “ML-Q.”
The ML-Q is computed for space-filling network samples and compared to the Q values
that were used to create these samples (the “true Q") (Section 4.4). Differences between
ML-Q and true Q values are caused by spatial constraints, and constitute a measure of the

effect of these constraints on network topology.
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4.2 Topologic Analogs of Channel Network Planform Laws

In this section, the pafameters of the topologic-analog of each channel network law
listed in Section 1.2.1 (properties I-VII) are computed for each sub—nefwork of space-
filling mode (SM) and topological mode (TM) sample networks described in Section 3.4
and listed in Table 3.1. Every link of a sample network is the outlet link of a sub-network.
Thus, a sample network of magnitude p contains 2p-1 sub-networks. There is only one
TDCN of magnitude 1 and one TDCN of magnitude 2, and two TDCN of magnitude 3
(differing only in left-right link orientation). Hence, only sub-networks of magnitude 4 or
higher were considered. Topologic variables are computed from the binary strings
répresenting the sample networks and their sub-networks, using the computer code

“topovars.f,” previously used in Chapter 2.
4.2.1 Property I: Horton’s laws and ratios

Figure 4.1 shows the Rp distribution for the sub-networks of sample networks
obtained with various Q values, including TM networks, and SM networks having 6=d
and a=70°. The R means and standard deviations for all sample networks are given in
Table 4.1. For any given Q, TM and SM networks have markedly different Rp
distributions. The sensitivity of the Rp distribution to Q is greater in TM thﬁn in SM
sample networks. Results are qualitatively similar for Rl and R!p distributions (Table
4.1).

Figures 4.2, 4.3 and 4.4 show the mean values Rg, R, and R, plotted against Q
for TM, SM dendritic, and SM trellis sample networks, respectively. There is marked
increase in mean values with Q for TM sample networks, as was shown in Chapter 2

(Figure 2.5). In SM dendritic sample networks (Figure 4.3), there appears to be no
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sensitivity of Rg, RY, and Rty to Q, except possibly some limited sensitivity for a=90°.
To establish whether this apparent limited sensitivity to Q for a=90° is statistically
significant would require a larger sample size. It suffices to conclude from our results that
the sensitivity of Rg, Rt , and Rty is greatly reduced in SM dendritic networks relatively
to TM networks. For TM sample networks, the interval of variation of Rg for the Q range
sampled is [3.026, 5.200]. For SM dendritic sample netwofks, the Ry range is reduced to
the narrower intervals of [3.202, 3.362] for a=30°, {3.359, 3.603] for a=50°, [3.677,
4.114] for Q=70°, and [3.988, 4.277] for a=90°.

In SM trellis networks, sensitivity of Rg, Ry and Rt to Q for a=90° (Figure 4.4)
appears to have a different tendency from either TM or SM dendritic networks. Minimum
values of Rg, Rl and R, are reached at intermediate Q values, in the vicinity of 1/2. A
larger sample size would be required to establish whether this behavior is statistically
significant. In SM dendritic and trellis sample networks, the mean values Rg, R' and Rty
are more sensitive to o than to Q (Table 4.1, Figures 4.3 and 4.4). Sensitivity to a is

greater in trellis than in dendritic networks.
4.2.2 Property II: Correlations between Horton ratios

Table 4.2 lists the correlation values bethcn topologic-analog Horton ratios in all
test sample networks. These correlation values do not exhibit a consistent tendency to
increase or decrease with either a or Q. Correlations of all three pairs, (Rg, RfL),
(Rg, Rta), and (RY, Rtp), are generally higher in TM than in SM sample networks. The
lower correlations in SM networks are partly due to the narrower range of variation of the
three topologic-analog ratios (see Property I in Section 4.2.1).

Despite the generally lower correlations in SM networks, correlations between

pairs (Rp, Ri) and (R!, Rtp) increase with network magnitude, |, more rapidly than in
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TM sample networks. This is demonstrated by the ratio log(Rp)/log(R'L) plotted against i
in Figures 4.5, 4.6, and 4.7, for TM, SM dendritic, and SM trellis networks,
respectively. For low Q values (sampled values Q=0 and Q=1/6), TM networks have a
large scatter of this ratio, which narrows slowly with p (Figure 4.5), while in SM
networks this ratio converges quickly to values between 1 and 2 (Figures 4.6a and b, and
4.7a and b). For larger Q values, the conversion of this ratio is rapid for both TM and SM
networks.

We conclude that the space-filling constraint causes the ratio log(Rp)/log(R'L) to -
converge rapidly to a value between 1 and 2 with increasing network magnitude. A similar
effect was observed for the ratio log(R!p)/log(R!a) (not shown). The ratio
log(Rp)/log(RY) provides an estimate of the contribution of topology to a network’s
fractal dimension [Tarboton, 1988; La Barbera and Rosso, 1989; Liu, 1992]. See Liu

[1992] for a fractal interpretation of the function 2log(R'L)/log(RtA).

4.2.3 Property III: Statistical distributions of second-order stream lengths,

Schumm lengths, and areas

The topologic analogs of second-order stream length and drainage area are the
topologic length, LY, and the total number of links, 2Lb+1, respectively (Section 2.4.3).
Table 3.4 gives the mean and standard deviation of L2, for all test sample networks. The
mean, LY, is higher in TM than in SM sarr_lple networks. The highest LY value observed
in SM networks is smaller than the lowest Lt value observed in TM networks.

Sensitivity of the mean, LY, to Q is higher in TM than in SM sample networks. In
TM sample networks, Ly varies over the range [1.822, 2.552], which has amplitude

0.73. In all the SM sample networks in Table 3.4, L, varies over the narrower range
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[1.449, 1.680], which has only amplitude 0.231. For o equal to 0, 1/6, 1/3, 1/2, 2/3, and
5/6, the range of variation of LY is 0.079, 0.093, 0.207, and 0.043, respectively.

In SM sample networks, LY reveals no consistent tendency to increase or decrease
with either Q or o (Table 4.3). The increase of LY standard deviation with o is possibly
due to the dccreésc in nétwork magnitude, W, with o (Table 3.1). In TM sample
hetworks, both the Lt mean and standard deviation increase with Q.

Figures 4.8, 4.9, and 4.10 depict the exceedence probability function of LY for
TM sample networks, SM dendritic networks, and SM trellis networks, respectively. The
excedence probability changes markedly with Q for TM sample networks (Figure 4.8),
but changes more slightly for SM sample networks (Figures 4.9 and 4.10). In TM sample
networks, the form of this function in the semi-log plots is convex for low Q values, and
concave for high Q values. In SM networks, the LY excedence probability takes the

approximate form of a power function (Figures 4.9 and 4.10).

4.2.4 Property 1V: Proportional relationship between stream frequency and

the square of drainage density

The topologic analog of stream frequency, Fs, and drainage density, D, is the ratio
of the number of streams, S, to the number of links, 2u-1 (Section 2.4.4). Table 4.4
gives S¢/(2u-1) for SM and TM networks. The range of variation of Sg/(2u-1) with Q is
larger in TM sample networks than in SM sample networks. The interval of variation with
Q is [0.568, 0.750] in TM sample networks, [0.620, 0.644] in SM trellis sample
networks having «=90°, and [0.632, 0.721] among all SM dendritic sample networks,
that is, including all o.. The amplitude of variation of S¢/(2p-1) with Q is 0.182 in TM

sample networks, but only 0.021 in SM trellis sample networks with a=90°, and 0.020,
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0.024, 0.024, and 0.045 in SM dendritic sample networks with o equal to 30°, 50°, 70°,
and 90°, respectively.

For fixed Q, Sg/(2i1-1) decreases with o in SM sample networks. For Q=0,
Ss/(2u-1) decreases from 0.718 for a=30° to 0.620 for «=90° in SM trellis sample
networks (an amplitude of variation of 0.098), and from 0.711 for a=30° to 0.671 for
0=90° in SM dendritic sample networks (an amplitude of variation of 0.040). Therefore,
S¢/(2u-1) in SM sample networks generally revealed greater sensitivity to o than to Q.

Figures 4.11, 4.12, and 4.13 depict Sg/(2u-1) plotted against p for TM sample
‘networks, SM dendritic sample networks having a=70°, and SM trellis sample networks
having a=90°, respectively. The reduced sensitivity of Sg/(2u-1) to Q in SM networks
relatively to TM networks is apparent from these figures. In general, Sg/(2p-1) values for
any Q value are closer to the prediction of the RT model in SM networks than in TM
networks. Agreement with RT model predictions is better in SM networks with dendritic

patterns than in those with trellis patterns.
4.2.5 Property V: Variation of mainstream length with basin area

The topologic analogs of mainstream length and basin area are the diameter, d, and
the total number of links, 2-1, respectively (Section 2.4.5). Figures 4.14, 4.15, and
4.16 show logarithmic plots of d versus 2u-1 for TM sample networks, SM dendritic
sample networks having a=70°, and SM trellis sample networks having a=90°,
respectively. It is apparent from these figures that the sensitivity of d(it) to Q is smaller in
SM networks than in TM networks. In general, d(i) in SM networks is closer to the

| predictions of the RT model, shown in Figure 4.14d.

Table 4.5 gives the values of the exponent, 6, and the coefficient, X, in

d=K(2u-1)9, obtained by least-squares linear regression for the sub-networks of each
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sample network. Because the exponent varies with [, also given in Table 4.5 are the
values of © and x computed for the more restricted range of u>50. While in TM sample
networks 6 increases with Q over a range of amplitude 0.456 (from 0.386 for Q=0 to
0.842 for Q=5/6), variation in SM dendritic networks is restricted to amplitudes of 0.105,
0.145, 0.115, and 0.137 for o« equal to 30°, 50°, 70°, and 90°, respectively, and in SM
trellis networks having a=90° this amplitude is 0.247.

In general, 0 values in SM sample networks of any given Q different from 1/2,do
not deviate largely from the RT modél prediction of about 0.5-0.6, and are often closer to
the RT model prediction than to the 8 value of TM networks obtained with the same given
Q. For example, the SM dendritic network, having a=70°, created with Q=0, has
0=0.579 (Table 4.5), closer to the value 6=0.621 of the TM network obtained with Q=1/2
than to the value 6=0.386 of the TM network obtained with Q=0. Also corﬁparc Figure
4.15a to Figures 4.14a and 4.14d.

4.2.6 Property VI: Variation of basin distance-weighted area with basin area

The topologic analogs of distance-weighted area and basin area are the total
topologic path length, p, and the total number of links, 2u-1, respectively (Section 2.4.6).
Table 4.6 gives the values of the exponent, ¢, and the coefficient, &, in p=£(2p,-1)¢,
obtained by least-squares linear regression for the sub-networks of each sample network.

Figures 4.17, 4.18, and 4.19 show logarithmic plots of p versus (2p1-1) for TM
sample networks, SM dendritic sample networks having a=70°, and SM trellis sample
networks having o=90°, respectively. Results are qualitatively similar to those of property
V (Section 4.2.5). Variability of p(p) with Q is reduced in SM networks relatively to TM

networks. For Q values different from 1/2, results are generally not largely deviated from
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those for the TM sample network obtained with Q=1/2 (topologically random), as

apparent from comparison of Figures 4.18 and 4.19 with Figure 4.17d.

4.2.7 Property VII: Relation between distance from the basin outlet to

centroid and mainstream length

The topologic analog of the channel distance from the outlet to the basin centroid is
the mean path length, p, and the topologic analog of mainstream length is the diameter, d
(Section 2.4.7). The modified mean path length, p*, defined as p*=p -1, was introduced in

Section 2.4.7.

Table 4.7 gives the mean and standard deviation of the ratio p*/d for the sub-
networks of each sample network. Figures 4.20, 4.21, and 4.22 show p'/d plotted against
network magnitude, i, for TM sample networks, SM dendritic sample networks having
a=70°, and SM trellis sample networks having a=90°, respectively. Mean p'/d values are
generally lower in SM networks than in TM networks created with the same Q, and is
approximately equal to 0.5 in SM networks.

The mean ratio p'/d does not consistenly increase or decrease with Q, in either TM
and SM networks. In Chapter 2 (Section 2.4.6), property VI was shown to have very

limited sensitivity to Q in TM networks.
4.3 Other Topologic Relations

In addition to the topologic analogs of properties I-VII studied in Section 3.5, in
this section we compute a few other topologic variables, and use them to compare SM and
TM networks. The topologic variables considered are the total “tree asymmetry” (Section

4.3.1), the fraction of “tributary-source” links (Section 4.3.2), the fraction of “CIS” links
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(Section 4.3.3), the network’s width (Section 4.3.4), and the width function (Section

4.3.5). Each of these variables is defined in the respective section.

4.3.1 Tree asymmetry

The variable designated “tree asymmetry,” denoted Ay, was introduced by Van Pelt
et al. [1992] 1o study the topology of neuronal dendrites, and is defined next. Consider the
upper node of a link of magnitude p. The tributary link on the left-hand side of this node
has magnitude a, and that on the right-hand side has magnitude p-a. The partition at this

node (Section 3.3.2) is (a, p-a). The “node asymmetry,” Ap, is defined by:

&—2-2‘3: asp-a : '
Ap(a, p-a) = { : u>2 (4.1a)
l»l-2: a>p-a
Ap(l, =1 p=2 (4.1b)

The “ree asymmetry,” Ay, is the average of all nodes’ asymmetry:

p-1

A[=u—1_1-2Api 4.2)

i=1

A, takes values in the interval [0, 1]. A¢ equals 0 in networks where all nodes are
symmetric, i.e., all node partitions of magnitude p are (1/2, /2). At equals 1 in networks
where all node partitions of magnitude W are either (1, p-1) or (u-1, 1), i.e., networks of
Strahler order 2. Van Pelt et al. [1992] showed that A, is sensitive to the Q parameter in
the absence of spatial constraints, and that for a given Q, A;converges to a constant value
for large L.

Table 4.8 gives A for each test sample network. A;increases with Q in TM

sample networks, from 0.464 for Q=0 to 0.965 for Q=5/6. The A range of variation is
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more restricted in SM networks. For example, in SM sample networks having a=70°, A,
varies from 0.602 for Q=0 to 0.652 for Q=5/6. This range is slightly below the value of
A=0.657 of the TM network created with Q=1/2 (RT model). In SM trellis sample
networks having a=90°, A; values are higher than in dendritic sample networks created

with the same Q. For fixed Q, A¢ increases with ¢, especially in trellis sample networks.
4.3.2 Fraction of tributary-source links

Exterior links, or source links, that join an interior link downstream, i.e., that are
tributary to a link of magnitude greater than 2, are designated “tributary-source” links, or
TS links [Mock, 1971]. The number of TS links is denoted by “nTS,” and the fraction of
TS links is nTS/p. The RT model predicts that nTS/u tends to 1/2 for large p, however
values much lower and much higher than 1/2 have often been observed in nature.
Abrahams [1977] found a positive correlation between the percentage of TS links (nTS/n
x100%) and a basin’s relative relief.

Table 4.8 gives nTS/u values for each test sample network. The fraction nTS/ is
strongly correlated with A; and results are qualitatively similar to those reported in Section

4.3.1.
4.3.3 Fraction of CIS links

The number of CIS and TRANS links (defined in Figure 1.5) are denoted "nCIS"
gnd "nTRANS," respectively. The fraction of CIS links, defined as nCIS/(nCIS +
nTRANS), is insensitive to Q in TM networks, and has an expectation value of 0.5, that
is, in the absence of spatial constraints, CIS and TRANS links appear with equal

likelihood for any Q value. In the TM test sample networks, the fraction of CIS links
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ranges from 0.492 to 0.532 (Table 4.8), reflecting statistical variability. In the SM sample
networks, the fraction of CIS links increases with Q for fixed &, and appears to have a
tendency to dec;reasc with o for fixed Q. For fixed Q and @, the fraction of CIS links is
smaller in trellis than in dendritic networks. |

The fraction of CIS links is the only variable studied which is insensitive to Q in
the absence of spatial constraints; and the only variable studied which under spatial
constraints gains some sensitivity to Q, hower limited. Low values of this variable have
been observed and attributed to spatial constraints (as reviewed by Abrahams [1984]). The
results obtained here corroborate this interpretation, and also indicate that the fraction of
CIS links may depend on network gcometry, being smaller for small junction angles, and
being smaller in trellis than in dendritic drainage patterns.

4.3.4 Width

Network width, w, is defined as the maximum number of links having the same
topologic path length (distance to the root). Table 4.9 gives the values of the exponent, ¥,
and the coefficient, %, in (4.3), obtained by least-squares linear regression for the sub-

networks of each sample network.
w=g(2u-1)Y 4.3)

While in TM sample networks y decreases with Q over a range of amplitude 0.423
(from 0.773 for Q=0 to 0.350 for Q=5/6), variation in SM dendritic networks is restricted
to amplitudes of 0.038, 0.101, 0.123, and 0.079 for & equal to 30°, 50°, 70°, and 90°,

respectively, and in SM trellis networks having 0=90° this amplitude is 0.220.
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In general, y values in SM sample networks of any given Q different from 1/2, do
not deviate much from the value y=0.531 obtained for the TM network created with Q=1/2
(RT model). For example, the SM dendritic network, having a=70°, created with Q=0,
has y=0.519 (Table 3.10), cloéer to the value y=0.531 of the TM network created with
Q=1/2 than to the value y=0.773 of the TM network obtained with Q=0.

4.4 Inference of Model Parameter Q Using Maximum Likelihood

In this section, the most likely Q parameter value, designated “ML-Q,” is inferred
from the topology of sample networks, and compared to the Q value that was effectively
used in creating those networks (the “true Q”). The probability of producing each sample
network is computed for values of Q in [0, 1], sampled at intervals of amplitude 0.01 (that
is, Q equal to 0, 0.01, 0.02, ..., 0.99, 1). This probability is the likelihood of Q. The
ML-Q is the Q value sampled whose likelihood is maximal.

The likelihood of a given Q value is computed using the product of the probability
p(a, b; Q) of each partition, (a, b), in the network, using (3.1). Due to the large number of
TDCN that can be constructed with magnitudes in the range of our sample networks, the
likelihood of producing a particular TDCN with any given Q is a very small number
(roughly between 10°13% and 104°%), Therefore, the logarithms of the likelihood values,
denoted “Log-1.(Q),” are reported instead of the likelihood values themselves.

Figure 4.23 shows the Log-L(Q) plotted against Q for networks created with Q=0.
The left-hand column corresponds to SM dendritic sample networks (d, 30°, 0), (d, 50°,
0), (d, 70°, 0), (d, 90°, 0) and the right-hand column corresponds to TM sample
networks. SM and TM networks on the same row have the same magnitude. The ML-Q

'value is indicated by a dashed line. The ML-Q of TM networks coincides with the true Q,
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equal to zero. The ML-Q of SM dendritic networks is very deviated from the true Q of
zero, and varies from 0.34 (for a:=30°) to 0.52 (for a=90°).

Figure 4.24 corresponds to networks created with Q=1/2. While TM networks
have ML-Q values (dashed line) close to the true Q value (dotted line, marking Q=1/2),
SM dendritic networks have ML-Q values lower than 1/2 for small ¢, and higher than 1/2
for large o. |

Figure 4.25 summarizes the correspondence between ML-Q and true Q for SM
dendritic networks. The space-filling constraint has restricted the range of variation of
ML-Q to a much narrowed interval than the range of true Q. The location of this narrow
range depends on junction angle, o, but is in general not situated far from Q=1/2, the
parameter value which originates topological randomness. It is possible that this effect is
responsible for the success of the random topology model in predicting many topologic
properties of channel networks.

In attempting to infer growth model parameter values from maximum-likelihood
estimators, or tests‘ of hypotheses, the deviation of maximum-likelihood parameter values
from the true parameter values may originate errors in statistical testing, including errors
of type I (rejection of the true Q value) and of type II (failure to reject values distant from
the true Q). A likely error of type II is the failure to reject the RT model (Q=1/2) even for
networks which may have developed by headward growth (Q=0), or other different
processes. It is concluded that the failure to account for the space-filling constraint, for
junction angles and drainage pattern, may be a serious impediment to model inference

from network morphology.
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Table 4.1. Arithmetic means and standard deviations of Rp, Rts and R!y, for the
subnetworks of SM and TM test sample networks.

Rp Riy R
Sample mean st.dev. mean stdev. mean stdev.
SM sample networks: dendritic
(d,30°,0) 3.362 0.813 4.605 1.546 1.944 0.772
(d,30°,1/6) 3.119 0.744 4246 1.524 1.782  0.740
(d,30°,1/3) 3.279  0.825 4.491 1.658 1.910 0.806
(d,30°,1/2) 3202 . 0.777 4318 1.506 1.842 0.734
(d,30°,2/3) 3216 0.734 4338 1.553 '1.853  0.687
(d,30°,5/6) 3.260 0.802 4.376 1.646 1.913  0.809
(d,50°,0) 3.381 0.797 4533  1.529 1.949  0.775
(d,50°,1/6) 3.359 0.811 4.565 1.572 1.971 0.785
(d,50°,1/3) 3.486  0.962 4792 1.887 2.084 0.933
(d,50°,1/2) 3.455  0.819 4.648  1.601 2.041 0.784
(d,50°,2/3) 3.823 0971 5.146 1.604 2.288 0.837
(d,50°,5/6) 3.603 0.829 4.645 1.374 2.182 0.756
(d,70°,0) 3.860 1.050 5.321  2.004 2.310 1.016
(d,70°,1/6) 3.702  0.966 5.025 1.674 2.212 0.886
(d,70°,1/3) 3726  0.881 5.113 1.753 2.219  0.882
(d,70°,1/2) 3.677 0915 4930 1.792 2.255 00918
(d,70°,2/3) 4.114 1.083 5.387 1.662 2.560 0.927
(d,70°,5/6) 4.107 1.087 5.400 1.647 2.540 0.910
(d,90°,0) 3.988 1.048 5.532  2.034 2.449  1.053
(d,90°,1/6) 3.563 0.850 4.849 1.735 2.177 0.869
(d,90°,1/3) 3.848 1.013 5.226 1.841 2.364 0.926
(d,90°,1/2) 4.001 0.975 5.337  1.726 2.438 0.905
(d,90°,2/3) 4299  1.136 5731 1.810 2.699 1.016
(d,90°,5/6) 4.227 1.258 5.672 2310 2.774  1.288
SM sample networks: trellis
(t,30°,0) 3.307 0.904 4.537 1.840 1.889  0.902
(t,50°,0) 3.685 1.206 5.073 2.492 2.252 1.229
(1,70°,0) 4.026 1.192 5.662 2.472 2.494 1.256
(1,90°,0) 4.324 1.346 6.457  3.007 2.803 1.492
(1,90°,1/6) 4352 1452 6.341 3.001 2.805 1.531
(t,90°,1/3) 3.916 1.283 5.549 2722 2.522  1.302
(t,90°,1/2) 3.793 1.122 5.378 2.510 2.404 1.224
(t,90°,2/3) 3.871  0.981 5.210 1.866 2.474 0.983
(1,90°,5/6) 4.028 1.003 5.341 1.873 2.637 0.976
TM sample networks:
Q=0 3.026 0.851 4361 1.929 1.726  0.948
Q=1/6 3263 0.929 4,728  2.065 1912 1.023
Q=1/3 3.498 1.153 5.067 2.541 2.139  1.243
Q=12 3.930 1.301 5.590 2.805 2.451 1.385
Q=2/3 4.131 1.413 5.815 2905 2.682 1.469

Q=5/6 5200 1.592 7.116  3.394 3.886 1.656
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Table 4.2. Correlations, r(-, -), between topologic-analog Horton ratios for the

subnetworks of SM and TM test sample networks.

Sample r(Rg, RiL) r(Rp, R'A) r(R'L, RtA)

" SM sample networks: dendritic
(d,30°,0) 0.866 - 0.871 0.953
(d,30°,1/6) 0.892 0.903 0.960
(d,30°,1/3) 0.889 . 0.897 0.960
(d,30°,1/2) 0.892 0.879 0.951
(d,30°,2/3) 0.885 0.852 0.939
(d,30°,5/6) 0.925 0.888 0.950
(d,50°,0) 0.875 0.893 0.939
(d,50°,1/6) 0.873 0.888 0.951
(d,50°,1/3) 0.913 0.909 0.965
(d,50°,1/2) 0.894 - 0.871 0.940
(d,50°,2/3) . 0.869 0.852 0.936
(d,50°,5/6) 0.928 0.795 0.884
(d,70°,0) 0.889 0.893 0.966
(d,70°,1/6) 0.881 0.890 0.940
(d,70°,1/3) 0.888 0.877 0.953
(d,70°,1/2) 0.916 0.875 0.934
(d,70°,2/3) 0.918 0.841 ' 0.927
(d,70°,5/6) 0.915 0.900 0.936
(d,90°,0) 0.894 0.895 0.958
(d,90°,1/6) 0.922 0.894 0.949
(d,90°,1/3) 0.896 0.880 0.938
(d,90°,1/2) 0.907 0.858 0.943
(d,90°,2/3) 0.911 0.856 0.924
(d,90°,5/6) 0.958 0.928 0.939
SM sample networks: trellis '
(t,30°,0) 0.917 0.914 0.970
(t,50°,0) 0.954 0.943 0.974
(t,70°,0) 0.939 0.938 0.974
(1,90°,0) 0.936 0.942 0.983
(t,90°,1/6) 0.939 0.942 0.973
(t,90°,1/3) 0.939 0.943 0.965
(t,90°,1/2) 0.945 0.941 0.969
(1,90°,2/3) 0.932 0.882 0.925
(1,90°,5/6) 0.929 0.883 0.902
TM sample networks:
Q=0 0.944 0.974 0.977
Q=1/6 0.937 0.962 0.979
Q=1/3 0.950 0.962 0.981
Q=12 0.928 0.925 0.960
Q=2/3 0.961 0.935 0.968

Q=5/6 0.965 0.932 0.920
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Table 4.3. Arithmetic mean and standard deviation of LY, for the subnetworks of SM and
TM test sample networks.

Sample Ly

: mean s.d.

SM sample networks: dendritic
(d,30°,0) 1.656 0.944
(d,30°,1/6) 1.560 0.897
(d,30°,1/3) 1.614 0.968
(d,30°,1/2) 1.590 0.903
(d,30°,2/3) 1.539 0.855
(d,30°,5/6) 1.598 0.986
(d,50°,0) 1.565 0.872
(d,50°,1/6) 1.626 0.930
(d,50°,1/3) 1.701 1.038
(d,50°,1/2) 1.652 0.949
(d,50°,2/3) 1.678 0.993
(d,50°,5/6) 1.637 0.929
(d,70°,0) 1.642 1.113
(d,70°,1/6) 1.574 0.963
(d,70°,1/3) 1.656 1.061
(d,70°,1/2) 1.614 1.061
(d,70°,2/3) 1.550 0.985
(d,70°,5/6) 1.449 0.895
(d,90°,0) 1.678 1.221
(d,90°,1/6) 1.654 1.087
(d,90°,1/3) 1.709 1.126
(d,90°,1/2) 1.637 1.059
(d,90°,2/3) 1.687 1.177
(d,90°,5/6) 1.680 1.283
SM sample networks: trellis

(1,30°,0) 1.711 0.973
(t,50°,0) 1.723 1.202
(1,70°,0) . 1.785 1.426
(t,90°,0) 2.803 1.960
(1,90°,1/6) 2.372 1.771
(1,90°,1/3) 2.124 1.586
(t,90°,1/2) 2.120 1.613
(1,90°,2/3) 1.759 1.242
(t,90°,5/6) 1.866 1.289

TM sample networks: '
Q=0 1.822 1.013
Q=1/6 1.895 1.111
Q=1/3 1.864 1.333
Q=12 1.982 1.517
Q=2/3 2.162 1.695

Q=5/6 2.552 2.671
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Table 4.4. Value of Sg/(2u-1) for SM and TM test sample networks. B

Sample Sg/(2u-1)
SM sample networks: dendritic
(d,30°,0) 0.711
(d,30°,1/6) 0.721
(d,30°,1/3) 0.709
(d,30°,1/2) 0.712
(d,30°,2/3) 0.710
(d,30°,5/6) 0.701
(d,50°,0) 0.699
(d,50°,1/6) 0.698
(d,50°,1/3) 0.694
(d,50°,1/2) 0.690
(d,50°,2/3) 0.675
(d,50°,5/6) 0.675
(d,70°,0) 0.686
(d,70°,1/6) 0.688
(d,70°,1/3) 0.685
(d,70°,1/2) 0.682
(d,70°,2/3) 0.675
(d,70°,5/6) 0.664
(d,90°,0) 0.671
(d,90°,1/6) 0.677
(d,90°,1/3) 0.666
(d,90°,1/2) 0.663
(d,90°,2/3) 0.651
(d,90°,5/6) 0.632
SM sample nerworks: trellis
(t,30°,0) 0.718
(t,50°,0) 0.679
(t,70°,0) 0.656
(t,90°,0) 0.620
(£,90°,1/6) 0.629
(1,90°,1/3) 0.643
(1,90°,1/2) 0.644
(1,90°,2/3) 0.641
(1,90°,5/6) 0.623
TM sample networks:
Q=0 0.750
Q=1/6 0.720
Q=173 0.702
Q=11 0.664
Q=2/3 0.635

Q=5/6 0.568
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Table 4.5. Exponent, 6, and coefficient, x, in dr=|((2},1-1)e for the sub-networks of SM
and TM test sample networks, obtained by least-square linear regression of log(d) on
log(2u-1); and standard deviation about the regression line.

Full yrange u=50
Sample ) K s.d. 0 K s.d.

SM sample networks: dendritic
(d,30°,0) 0.528 0.319 0.154 0.454 0.749 0.160
(d,30°,1/6) 0.514 0.327 0.137 0.447 0.711 0.116
(d,30°,1/3) 0.552 0.232 0.143 0.573 0.092 0.154
(d,30°,1/2) 0.577 0.142 0.158 0.636 -0.229 0.201
(d,30°,2/3) 0.577 0.148 0.152 0.595 0.027 0.164
(d,30°,5/6) 0.619 0.028 0.176 0.753 -0.857 0.142

(d,50°,0) 0.550 0.306 0.167 0.376 1.328 0.155
(d,50°,1/6) 0.571 0.229 0.139 0.517 0.553 0.157
(d,50°,1/3) 0.547 0.304 0.168 0.451 0.870 0.170
(d,50°,1/2) 0.634 0.066 0.146 0.686 -0.280 0.123
(d,50°,2/3) 0.652 0.024 0.165 0.629 0.175 0.178
(d,50°,5/6) 0.692 -0.109 0.162 0.748 -0.462 0.170

(d,70°,0) 0.579 0.261 0.137 0.485 0.806 0.129
(d,70°,1/6) 0.611 0.181 0.169 0.521 0.697 0.173
(d,70°,1/3) 0.577 0.284 0.135 0.389 0.818 0.109
(d,70°,1/2) 0.651 0.089 0.160 0.565 0.622 0.173
(d,70°,2/3) 0.693 -0.042 0.139 0.676 0.077 0.116
(d,70°,5/6) 0.692 -0.041 0.148 0.641 0.287 0.148

(d,90°,0) 0.597 0.273 0.148 0.545 0.554 0.101
(d,90°,1/6) 0.600 0.226 0.153 0.535 0.597 0.128
(d,90°,1/3) 0.623 0.174 0.159 0.507 0.867 0.158
(d,90°,1/2) 0.664 0.020 0.162 0.732 -0.425 0.148
(d,90°,2/3) 0.734 -0.120 0.154 0.734 -0.118 0.173
(d,90°,5/6) 0.727 -0.078 0.166 0.661 0.349 0.164

SM sample networks: trellis

(,30°,0) 0.508 0363  0.159 0420 0877  0.154
(£.50°.0) 0.603  0.188  0.152 0517  0.683  0.150
(£.70°.0) 0.598 0274  0.185 0533 0612  0.195
(£.90°.0) 0.560 0374  0.161 0509  0.661  0.165

(1,90°,1/6) 0.599 0.305 0.186 0.453 1.141 0.136
(1,90°,1/3) 0.639 0.145 0.191 0.528 0.816 0.223
(1,90°,1/2) 0.616 0.208 0.140 0.500 1.008 0.083
(t,90°,2/3) 0.747 -0.162 0.161 0.771 -0.354 0.177
(£,90°,5/6) 0.807 -0.353 0.147 0.842 -0.577 0.098

TM sample networks: ’
Q=0 0.386 0.634 0.142 0.205 1.527 0.083
Q=1/6 0.437 0.545 0.163 0.289 1.290 0.163
Q=1/3 0.491 0.464 0.167 0.346 1.257 0.127
Q=12 0.621 0.185 0.190 0.554 0.601 0.204
Q=2/3 - 0.736 -0.146 0.176 0.871 -1.047 0.128

Q=5/6 0.842 -0.289 0.108 0.825 -0.163 0.095
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Table 4.6. Exponent, ¢, and coefficient, €, in p=e(2u-1)¢ for the sub-networks of SM
and TM test sample networks, obtained by least-square linear regression of log(p) on
log(2-1); and standard deviation about the regression line.

Sample ¢ E s.d.
SM sample networks: dendritic
(d,30°,0) 1.481 0.038 0.113
(d,30°,1/6) 1.461 0.076 ' 0.097
(d,30°,1/3) 1.493 0.006 0.111
(d,30°,1/2) 1.525 -0.104 0.149
(d,30°,2/3) 1.539 -0.139 0.139
(d,30°,5/6) 1.568 -0.222 0.160
(d,50°,0) 1.506 0.003 0.130
(d,50°,1/6) 1.499 0.010 0.111
(d,50°,1/3) 1.507 -0.007 0.118
(d,50°,1/2) 1.573 0.195 0.135
(d,50°,2/3) 1.593 0.234 0.152
(d,50°,5/6) 1.646 0.405 0.167
(d,70°,0) 1.530 -0.049 0.103
(d,70°,1/6) 1.547 -0.086 0.131
(d,70°,1/3) 1.531 -0.049 0.113
(d,70°,1/2) 1.593 -0.209 0.121
(d,70°,2/3) 1.645 -0.362 0.132
(d,70°,5/6) 1.662 -0.412 0.151
(d,90°,0) 1.546 -0.055 0.120
(d,90°,1/6) 1.554 . -0.096 0.113
(d,90°,1/3) 1.581 -0.167 0.137
(d,90°,1/2) 1.639 -0.357 0.147
(d,90°,2/3) 1.670 -0.401 : 0.150
(d,90°,5/6) 1.686 -0.424 0.165
SM sample networks: trellis
(1,30°,0) 1.466 0.069 0.115
(t,50°,0) 1.550 -0.101 0.130
(t,70°,0) 1.559 -0.087 0.125
(t,90°,0) 1.531 -0.002 0.123
(1,90°,1/6) 1.537 0.008 0.148
(1,90°,1/3) 1.583 -0.143 0.151
(t,90°,1/2) 1.572 -0.125 0.114
(t,90°,2/3) 1.662 -0.378 0.148
(1,90°,5/6) 1.744 -0.617 0.156
TM sample networks:

Q=0 1.362 1.340 0.088
Q=1/6 1.379 0.292 0.106
Q=1/3 1.438 0.176 0.113
Q=12 1.579 -0.161 0.161
Q=2/3 1.683 -0.443 0.161

Q=5/6 1.803 -0.681 0.136
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Table 4.7. Mean and standard deviation of p'/d, for the subnetworks of SM and TM test
sample networks.

Sample pid
mean s.d.
SM sample networks: dendritic
(d,30°,0) 0.497 0.049
(d,30°,1/6) 0.497 0.044
(d,30°,1/3) 0.502 0.048
(d,30°,1/2) 0.505 0.053
(d,30°,2/3) 0.510 0.050
(d,30°,5/6) 0.505 0.051
(d,50°,0) 0.503 0.048
(d,50°,1/6) 0.487 0.038
(d,50°,1/3) 0.492 0.048
(d,50°,1/2) 0.488 0.043
(d,50°,2/3) 0.512 0.042
(d,50°,5/6) ‘ 0.509 0.048
(d,70°,0) 0.494 0.041
(d,70°,1/6) 0.491 0.046
(d,70°,1/3) 0.489 0.041
(d,70°,1/2) 0.485 0.037
(d,70°,2/3) 0.498 0.037
(d,70°,5/6) 0.521 0.053
(d,90°,0) ' 0.487 0.036
(d,90°,1/6) 0.496 - 0.044
(d,90°,1/3) 0.502 0.046
(d,90°,1/2) - 0.522 0.059
(d,90°,2/3) 0.491 0.039
(d,90°,5/6) 0.516 0.050
SM sample networks: trellis
(1,30°,0) 0.497 0.049
(1,50°,0) 0.499 0.042
(1,70°,0) 0.499 0.053
(1,90°,0) 0.497 0.052
(t,90°,1/6) 0.484 ‘ 0.042
(1,90°,1/3) 0.496 0.047
(1,90°,1/2) 0.495 0.045
(,90°,2/3) 0.487 0.048
(1,90°,5/6) 0.497 0.043
TM sample networks:

Q=0 0.540 0.041
Q=1/6 0.523 0.041
Q=173 0.557 0.043
Q=112 0.559 0.051
Q=273 0.485 0.046

Q=5/6 0.533 0.037
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Table 4.8. A,, fraction of CIS links, and fraction of TS links for SM and TM test sample

networks.

Sample A nTS/u nCIS/(nCIS+nTRANS)
SM sample networks: dendritic
(d,30°,0) 0.557 0.369 0.431
(d,30°,1/6) 0.520 0.337 0.483
(d,30°,1/3) 0.541 0.357 0.457
(d,30°,1/2) 0.538 0.362 0.497
(d,30°,2/3) 0.542 0.357 0.511
(d,30°,5/6) 0.563 0.392 0.538
(d,50°,0) 0.573 0.352 0452
(d,50°,1/6) 0.573 0.377 0.481
(d,50°,1/3) 0.584 0.391 0.578
(d,50°,1/2) 0.598 0.391 0.514
(d,50°,2/3) 0.619 0.431 0.535
(d,50°,5/6) 0.636 0.436 0.508
(d,70°,0) 0.602 0.381 0.400
(d,70°,1/6) 0.604 0.390 0.428
(d,70°,1/3) 0.607 0.387 : 0.485
(d,70°,1/2) 0.625 : 0.401 0.463
(d,70°,2/3) 0.640 0.415 0.512
(d,70°,5/6) 0.652 0.443 0.520
(d,90°,0) 0.642 0.430 0.358
(d,90°,1/6) 0.630 0.434 0.393
(d,90°,1/3) 0.652 0.456 0.416
(d,90°,1/2) 0.652 0.455 0.444
(d,90°,2/3) 0.690 0.498 0.479
(d,90°,5/6) 0.726 0.559 0.451
SM sample networks: trellis ’
(1,30°,0) 0.533 0.351 0.376
(t,50°,0) 0.618 0.420 0.325
(t,70°,0) 0.670 0.491 0.252
(t,90°,0) 0.738 0.618 0.228
(t,90°,1/6) 0.723 0.586 0.285
(t,90°,1/3) 0.698 0.552 0.281
(t,90°,1/2) 0.702 0.552 0.306
(t,90°,2/3) 0.703 0.554 0.300
(1,90°,5/6) 0.746 0.599 0.321
TM sample networks:
Q=0 0.464 0.343 0.510
Q=1/6 0.522 0.381 0.508
Q=1/3 0.567 0.399 0.492
Q=12 0.657 0.487 0.500
Q=2/3 0.722 0.583 0.524

Q=5/6 0.865 0.772 0.532
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Table 4.9. Exponent, ¥, and coefficient, ¥, in w=x(2i-1)Y for the sub-networks of SM
and TM test sample networks, obtained by least-square linear regression of log(w) on
log(2u-1); and standard deviation about the regression line.

Sample Y X s.d.
: SM sample networks: dendritic
(d,30°,0) 0.555 -0.098 0.241
(d,30°,1/6) 0.571 -0.086 0.231
(d,30°,1/3) 0.571 -0.123 0.247
(d,30°,1/2) 0.531 0.023 0.261
(d,30°,2/3) 0.517 0.073 0.235
(d,30°,5/6) 0.543 -0.030 0.247
(d,50°,0) 0.534 -0.075 0.275
(d,50°,1/6) 0.521 -0.021 0.233
(d,50°,1/3) 0.541 -0.096 0.256
(d,50°,1/2) 0.514 -0.034 0.232
(d,50°,2/3) 0.468 0.106 0.240
(d,50°,5/6) 0.440 0.178 0.220
(d,70°,0) 0.519 -0.125 0.231
(d,70°,1/6) 0.488 -0.021 0.244
(d,70°,1/3) 0.542 -0.194 0.215
(d,70°,1/2) 0.464 0.051 0.247
(d,70°,2/3) 0.419 0.167 0.211
(d,70°,5/6) 0.473 0.053 0.232
(d,90°,0) 0.500 -0.130 0.225
(d,90°,1/6) 0.470 0.038 0.220
(d,90°,1/3) 0.499 -0.085 0.220
(d,90°,1/2) 0.459 0.109 0.255
(d,90°,2/3) 0.422 0.102 0.210
(d,90°,5/6) 0.421 0.128 0.237
SM sample networks: trellis
(1,30°,0) 0.587 -0.146 0.257
(t,50°,0) 0.515 -0.065 0.253
(t,70°,0) 0.521 -0.179 0.259
(t,90°,0) 0.577 -0.437 0.248
(1,90°,1/6) 0.530 -0.280 ' 0.261
(1,90°,1/3) 0.502 -0.127 0.263
(t,90°,1/2) 0.502 -0.134 0.246
(1,90°,2/3) 0.416 0.149 0.254
(1,90°,5/6) 0.357 0.338 0.235
TM sample networks:

Q=0 0.773 -0.595 0.253
Q=1/6 0.712 -0.503 0.254
Q=1/3 0.631 -0.353 0.265
Q=12 0.531 -0.203 0.290
Q=2/3 0.499 0.042 0.299

Q=5/6 0.350 0.133 0.237
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'Figure 4.1. Rp distribution histograms for TM and SM dendritic test sample networks,
using a bin size of 0.1. For each sample, the vertical reference axis extends from the
minimum to maximum values observed, and the width about the axis is proportional to
frequency. Where: there is no thickness about the reference axis, there are no observed
values. The corresponding Q value is indicated at the bottom of each histogram.
Sensitivity to Q is marked in the TM sample networks, as shown in Chapter 2, but slight
in SM dendritic sample networks. The Rp mean and standard deviation for each sample is

given in Table 4.1.
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Figure 4.2. Mean values of topologic-analog Horton ratios for the subnetworks of TM
test sample networks, plotted against Q. Rg, R and RA are markedly sensitive to Q in
TM networks, as shown in Chapter 2. These mean values and corresponding standard
deviations are given in Table 4.1.



144

8F T T ] 8t 1
7F 3 3 E
6F 3 6f
- . R 5
e 51 'R-( 3 lx 5 A _':
< P A L TR ©------ S ©---e- O © ]
4 Y R O--... Q----- FCEEERER © |m- F _
e 4F - E i 4F Re E
Rs 5 PRI o . o o}
? R R O O---- Q- © 2 e
3t r 3b E
R ] : L
E L 3 b P O o) i
N e R
1E 1 1 ! ! ! 3 1E 1 i L ! ! 3
0 1/6 1/3 1/2 2/3 5/6 1 0 1/6 ~1/3 1/2 2/3 5/6 1
. Q Q
6=d, a=70° 6=d, a=90°
8f T T T T T 8F T T T T T
7F 3 7F 3
6F 3 5‘ St E
- s 3 Ra o0
b Ra O ° E . B o @
lx 5¢ - O-.... o - e 5F o . 3
— 1 b O---..
- Ry  .©----- 3 . . A%
I 4% B © E 1€ 4P - o E
N o [ o o
st _ E st . E
R‘L < RL O - " o]
3 Q----- Lo] b o----- o
----- @O O 4 o
2F 3 2 ° 3
1: 1 1 1 A i E 1E 1 ] 1 ! 1 b
0 1/6 1/3 1/2  2/3 5/6 1 0 1/6 1/3 1/2 2/3 5/6 1
. Q Q
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any, is markedly lesser tharn in TM networks (Figure 4.2). Sensitivity to @ is greater than
to Q. These mean values and corresponding standard deviations are given in Table 4.1.
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having a=90°, created with various Q values, plotted against subnetwork magnitude, W.
This ratio approaches a value between 1 and 2 for large  for all Q values sampled.
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Figure 4.8. LY, exceedence probability for each subnetwork of TM test sample networks
created with various Q values, plotted against subnetwork magnitude, . The probability
of exceedence of any given value is generally higher for larger Q values. LY means and
standard deviations are given in Table 4.3.
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Figure 4.11. Number of streams, Ss, divided by number of links, 2j-1, in each
subnetwork of TM test sample networks created with various Q values, plotted against
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network created with Q=0, to 0.568 for the complete network created with Q=5/6 (Table

4.4).



Ss/(2u-1)

Ss/(2u-1)

So/(2p-1)

153

1.0 T T T T T B! T T T T T 3
(@)a =0 E (b)a = 1/6 ]
0.9 3 3
] ~ 5
0.8 15 3
13 ]
] N ]
1 J 3
0.7 E E
. D0 o mw © omn o W0 N, e o ° E
L) 1
0.6 3 E
0.5 1 1 L 1 1 n . L 1 1 ] 1 |
[ 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
7 7
1.0 T T T T T 1.0 T T T T T 3
(c)a=1/3 ] (dya=1/2 3
0.9 3 —
] ~ E
0.8 1= 3
1a ]
] & 3
E N E
0.7 - i I 3
Py o o om0 " @B O aB E 7] oD 1
0.6 E 3
0.5 L L L L L 3 1 L L 3
o 200 400 600 800 1000 1200 600 800 1000 1200
7 7
1.0 T T T T T E 1.0 T T T T T ]
(e)Q = 2/3 ] (f) @ =5/8 ]
0.9 4 0.9 ~
I~
0.8 - T 0.8 3
e 3
] N b
i E
0.7 4 4 o7 e
-« b : E
‘udntadiied comman o w cmm= 17 %N v~ - o 3
0.6 e 0.6 —
0.5 1 1 1 1 1 - 0.5 1 1 1 1 1 |
[ 200 400 600 800 1000 1200 [ 200 400 600 800 1000 1200
7 u“
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Figure 4.13. Number of streams, Ss, divided by number of links, 2u-1, in each
subnetwork of SM trellis test sample networks, created with various Q values, plotted.
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shows no consistent tendency with Q, and varies in the range [0.623, 0.644] (Table 4.4).
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Figure 4.14. Logarithmic plot of diameter, d, of each subnetwork of TM test sample
networks created with various Q values, plotted against number of links, 2i-1. The d(u)
distribution is sensitive to Q, as shown in Chapter 2. Computed values of the slope and
intercept, that is, best fit values of the exponent, 0, and coefficient, x, in

d=x(2u-1)9, are given in Table 4.5.
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Figure 4.15. Logarithmic plot of diameter, d, of each subnetwork of SM dendritic test

sample networks having a=70°, created with various Q values, plotted against number of
links, 2p-1. The d(u) distribution has limited sensitivity to Q. Computed values of the
slope and intercept, that is, best fit values of the exponent, 8, and coefficient, X, in
d=x(2u-1)®, are given in Table 4.5.
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Figure 4.16. Logarithmic plot of diameter, d, of each subnetwork of SM trellis test

sample networks having a=90°, created with various Q values, plotted against number of
links, 2i-1. The d(W) distribution has limited sensitivity to Q, except for higher Q values.
Computed values of the slope and intercept, that is, best fit values of the exponent, 6, and

coefficient, x, in d=K(2u-1)9, are given in Table 4.5.
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Figure 4.17. Logarithmic plot of total path length, p, of each subnetwork of TM test
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The p() distribution is sensitive to Q, as shown in Chapter 2. Computed values of the
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Figure 4.18. Logarithmic plot of total path length, p, of each subnetwork of SM dendritic
test sample networks having a=70°, created with various Q values, plotted against
number of links, 2u-1. The p(y) distribution has limited sensitivity to Q. Computed
values of the slope and intercept, that is, best fit values of the exponent, ¢, and coefficient,
g, in p=e(2u-1)%, are given in Table 4.6.
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Figure 4.19. Logarithmic plot of total path length, p, of each subnetwork of SM trellis
test sample networks having a=90°, created with various Q values, plotted against
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Figure 4.20. Ratio of mean modified path length, p* to diameter, d, for each subnetwork
of TM test sample networks created with various Q values, plotted against network
magnitude, ). Ratio p*/d has very limited sensitivity to Q, as shown in Chapter 2. Values
of p*/d mean and standard deviation are given in Table 4.7.
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of SM dendritic test sample networks having a=70°, created with various Q values,
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Q. Values of p'/d mean and standard deviation are given in Table 4.7.
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Figure 4.22. Ratio of mean modified path length, p* to diameter, d, for each subnetwork
of SM trellis test sample networks having 0=90°, created with various Q values, plotted
against network magnitude, ji. Ratio p*/d does not exhibit consistent variation with Q.
Values of p'/d mean and standard deviation are given in Table 4.7.
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Figure 4.23. Value of Log-Likelihood function, Log-L(Q), plotted against Q, for SM
dendritic test sample networks having o equal to 30°, 50°, 70°, and 90° (left-hand
column), and TM test sample networks (right-hand column). All networks represented
were created with Q=0 (their true Q value). The magnitude of an SM and a TM network
on the same row is the same. Dashed line indicates the maximum likelihood Q value (ML-
Q). For TM networks, the ML-Q is zero, equal to their true Q value. For SM networks,
the ML-Q is deviated from the true Q and increases with a. (Table 4.10).
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Figure 4.24. Value of Log-Likelihood function, Log-L(Q), plotted against Q, for SM
dendritic test sample networks having o equal to 30°, 50°, 70°, and 90° (left-hand
column), and TM test sample networks (right-hand column). All networks represented
were created with Q=0.5 (their true Q value), indicated by a dotted line. The magnitude of
an SM and a TM network on the same row is the same. Dashed line indicates the
maximum likelihood Q value (ML-Q). For TM networks, the ML-Q is zero, equal to their
true Q value. For SM networks, the ML-Q increases with @, and is deviated from the true
Q for all a except a=70° (Table 4.10).
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Chapter 5

Conclusions

The sensitivity of the coefficients of topologic analogs of channel network
planform laws to the parameter of the Q model of network growth [Van Pelt and Verwer,
- 1985] was tested in the absence and in the presence of spatial constraints (Chapters 2 and
4, respectively), yielding different results. Sensitivity to Q was in general more limited in
space-filling networks, and showed dependency on the geometric properties of drainage
pattern and juncﬁon angle. Model inference from network planform requires consideration
of space filling and geometric properties.
In Chapter 2, the purely topological version of the Q model was considered,
- without regard for spatial constraints. All geometric properties such as link lengths,
junction angles, drainage pattern, etc., weré ignored. It was shown that, in the absence of
spatial constraints, the coefficients of the topologic analogs of properties I through VI
(listed in Section 1.2) are markedly sensitive to the Q parameter. Only property VII
revealed little sensitivity to Q, except for low Q values.

The comparatively small variability of these coefficients in nature, as well asin a
variety of models of network growth over a two-dimensional surface, provoked the
question, introduced in Chapter 1, of whether there may be a common factor shared by all
networks which reduces their topologic sensitivity to growth models. It was hypothesized
that such a possible shared factor may be the constraint that all natural networks must, to
some approximation, be space filling of a two-dimensional area.

In Chapter 3, a model designated Qg was introduced (Section 3.3) which is

topologically equivalent to the Q model but is capable of generating space-filling networks
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over a plane surface, with specified properties of link lengths, junction angles, drainage
pattern, etc. The Q and Qg models are topologically equivalent because any given TDCN
is equally likely to be produced by either model, in the absence of spatial or other
constraints. Test sample space-filling networks were generated (Section 3.4), and the
coefficients of the topologic-analogs of properties I through VII, and other additional
properties, were computed for these networks (Sections 4.2 and 4.3).

It was shown that the sensitivity of the coefficients of the topologic-analog
properties to parameter Q is reduced in space-filling networks comparatively to networks
which are not constrained to be space filling. Under the space-filling constraint, the
distribution of all topologic variables analyzed, except for the fraction of CIS links,
including variables Rp, R'L, Rta, log(Rp)/log(R!L), L3, S¢/(2pu-1), 4, p, p*/d, A,
nTS/u, w, and p, were sensitive to Q but varied over a restricted range, considerably
narrower than the range of variation observed in the absence of space filling (Chapter 2).

The restricted range of variation with Q of topologic variables under the space-
filling constraint depends on drainage pattern (dendritic and trellis), 8, and on junction
angle, o, and in general is not situated far from the value predicted by the random
topology model (RT model) [Shreve, 1966]. This is a possible and novel explanation for
the predictive success of the RT model. It is also a possible explanation for the
approximate agreement between the outcome of a variety of models of network formation
that have been published in the literature, noted, e.g., by Howard [1972] and Rodriguez-
Iturbe and Rinaldo [1997].

The fraction of CIS links, nCIS/(nCIS+nTRANS), is the only variable analyzed
which is not sensitive to Q in the absence of space filling. The expectation value of this
variable is 0.5 for all Q values in the purely topologic mode of operation. Under the space-
filling constraint, however, the fraction of CIS links increases sigﬁiﬁcantly with Q for

fixed & and c. For fixed Q and o, the fraction of CIS links is smaller for a trellis than for
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a dendritic drainage pattern, and for fixed Q and 9, the fraction of CIS links decreases
with o,
Maximum-likelihood Q values (ML-Q) were computed (Section 4.4) for the test
- sample space-filling networks created with the Qg model with various Q parameter values.
ML-Q values were also computed for test sample networks obtained with the same Q
values but which were not required to be space'filling. The ML-Q of the unconstrained
sample networks corresponded closely with the true Q used in creating the networks. The
ML-Q of the space-filling sample networks, however, often deviated markedly from the
true Q used in the creating the networks. The ML-Q of space-filling hctworks varied over
a much narrower range than the true Q. This narrow range of variation depends on & and
o, but in general is not situated far from the value Q=1/2, yielding topological
randomness.

Inference of the Q parameter based on maximum likelihood estimates will often
lead to erroneous conclusions. Under the space-ﬁlling constraint, a given Q value may
generate a network which would have very low probability of being generated with that Q
value in a purely topological mode of operation of the Q model. Statistical testing of
hypotheses using the likelihood values computed without regard for the effects of spatial
constraints is likely to lead to errors of type I and type Il in statistical testing.

Disagreement between the properties of networks generated by a same given
model when operated under the space-filling constraint, and without constraints, was
found previously by Howard [1971]. Howard did not interpret these results correctly.
Noting that the properties of networks generated by different models under the space-
filling constraint were in approximate agreement, Howard proposed the explanation that
the random component present in all of these models dominates model results. However,
the same random component is present in the purely topological mode of operation of

these same models, and yet the properties of the resulting networks are clearly
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distinguishable between models. It is the space-filling constraint, not the stochastic
component, which is responsible for the convergence of network properties produced by
different models.

It is doubtful that any proposed model of network development in space can be
validated based bn comparison of any of the measures of network planform studied here
with those extracted from natural networks. The agreement between model outcomes and
natural channel morphology may be a result of limited sensitivity of these measures to
network growth models. In physically-based models of network development [e.g.,
Wilgoose et al., 1989; Howard, 1994], it may be more fruitful to compare geometric
measures of simulated networks against observations. Geometric measures of potential
interest are the distribution of link lengths, junction angles, and the spatial layoui of the
network, that is, whether the'drainage area to the left and to the right of a mainstream tend
to differ little, as is often observed, and whether there is a tendency for tributaries to curve
upstream towards the mainstream, as is also often observed [Abrahams, 1984], etc.

It has been proposed [e.g., Abrahams, 1984] that space-filling constraints
originate deviations from the RT model, such as reflected by the fraction of CIS links and
the fraction of TS links. I have shown that space-filling constraints not only originate
deviations from the RT model but also, and more importantly, that they may be
responsible as well for the vast body of agreement of observations with the RT model.
Space filling reduces the sensitivity of a large number of topologic variables to network
growth processes, restricting their variability to a narrow range that changes with
geometric factors, but is generally located close to RT model predictions.

The space-filling constraint and the geometric properties of channel networks are
most important determinants of measures of channel network planform. Failure to account
for these spatial factors results in errors in model inference from network morphology. It

is possible that additional constraints impose further restrictions on measures of channel
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network planform. In particular, the effects of principles of efficient transport, that is, of
minimal energy expenditure, must be considered. Efficient transport may exclude
networks with tortuous flow paths, such as those obtained in Chapter 3 using large values
of Q, which are not observed in nature.

The results of this research provide an explanation for the predictive abilify of the
random topology model for channel networks, and for the agreement between the
outcomes of widely different models of network formation over a two-dimensional
surface. We conclude that current measures of channel network plan view morphology
ought not be used for model validation. These results also indicate that model inference
from the plan view morphology of space-filling networks in diverse fields of science may
be erroneous because the most likely inferred models and parameters may differ from the

models and parameters that have produced the network.
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Appendix A

Notation

Gg, GiL, Ga

-

Lty

No

nCIS
nTRANS
nTS

P, P

basin area.

area of a basin of order .

total asymmetry of a network.

topologic analog of A: number of links in a network of order .
diameter.

drainége density.

link frequency.

stream frequency.

geometric-mean bifurcation ratio, and topologic-analog length, and
area ratios.

mainstream length.

channel distance from outlet to network center of gravity.

length of a stream of order @.

topologic analog of L,: number of links in a stream of order .
number of streams of order .

number of CIS links in a network.

number of TRANS links in a network.

number of tributary-source links in a network.

distance-weighted basin area.

standard and modified total topologic length in a network.



Pis Pe

Q

Rp, RL, RA
Ry, Rta
RT model
Ss

SM network

TDCN

TM network

€0
K, ©

QM)
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branching probability of an interior and an exterior link in the Q
model.

parameter of the Q and Qg models.

arithmetic-mean bifurcation, length, and area ratios

topologic analogs of Ry, and Ra.

random topology model.

number of Strahler streams in a network.

network obtained by the Qg model in the space-filling mode of

operation.

topologically distinct channel networks.

network obtained by the Q model or the Qg model in the topologic
mode of operation.

network width.

junction angle.

drainage pattern.

exponent and coefficient in property V

exponent and coefficient in property VI

network magnitude.

network Strahler order.

most frequent Strahler order among TDCN of magnitude .

Strahler order of a link, Strahler stream, or network.



Appendix B

Derivation of Equation (3.7)

Equation (3.7a) follows directly from (3.1b). Equation (3.7b) follows directly
from (3.4) and (3.5). Equations (3.7a through h) are derived recursively as follows.

For the case where b=a, we obtain from (3.6):

p(a, a; Q) =p(Lla-1,2; Q p(a-1,2; Q +p(Rla,a-1; Q) p(a, a-1; Q)  (Bl)

Using (3.3) and (3.5), and rearranging (B1):

Pzl 5 Q=5 REAIL (B2)

The partition probabilities in (B2) can be computed from (3.1).

For the case where b=a+1, we obtain from (3.6):

p(a, a+1; Q) =p(Ll a-1, a+1; Q) p(a-1, a+1; Q) + p(Rl a, 3; Qp@,aQ (B3

Using (3.4) and (3.5), and rearranging (B3):

p(Lla-1,a+1; Q) = 5o, :1+1; g (p@a+1;Q -%p(a, HO) (B4)

For the case where b=a+2, we obtain from (3.6):
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p(a-1, a+1; Q) =p(Lla-2, a+1; Q) p(a-2,a+1; Q)

+p(Rla-1,a; Q) p(a-1,a, Q) (BS)

Using (3.5) and (B2), and rearranging (BS):

1 :
p(LI a'zr a+17 Q) = p(a_z’ a+1; Q) {p(a'l’ a+1, Q)

- pla-1, 3 Q5 Pl 3 Q) (B6)
Similarly, for the case where b=a+3:

p(a-1, a+2; Q) = p(L! a-2, a+2; Q) p(a-2, a+2; Q)
+p(Rla-1, a+1; Q) p(a-1, a+1; Q) (B7)

Using (3.4) and (B4), and rearranging (B7):

1 .
P(LI a'27 a+29 Q) = p(a_z, a+2; Q) (p(a‘l, a+2, Q) - p(a—l, a+1, Q)+

1
p(a, a+1; Q) - 5 p(a, & Q) (B8)
Similarly, for the case where b=a+4:

p(a-2, a+2; Q) = p(L! a-3, a+2; Q) p(a-3, a+2; Q)
+p(Rl a-2, a+1; Q) p(a-2, a+1; Q) (B9)

Using (3.5) and rearranging (B9):
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1
p(Lia-3,a+2; Q) = p(a-3, a+2; Q) (p(a-2, a+2; Q)-p(a-2, a+1; Q)

+p(a-1, 3 Q+p(a, & Q) (B10)

From (B2), (B4), (B6), (B8), and (B10), we obtain by induction the general

expression (B11), also given as (3.7¢):

Ib-ai-1
P2, 5 Q =575 gyt €D g m Q= TCD! p(aeaa, brab; Q)

i=1

for a<b, 0<Q<1 (B11)

where m, Aa and Ab are given by (3.7d through h).



Appendix C
Plots of topologic variables
Plots of topologic relations studied in Section 4.3 are included in this appendix.

Summary statistics of the variables represented in these plots were given in Chapter 4, Table

4.8.
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Figure C.1. Total asymmetry, Ay, for each subnetwork of TM test sample networks
created with various Q values, plotted against network magnitude, 1. A, increases from
0.464 for the complete network created with Q=0, to 0.865 for the complete network
created with Q=5/6 (Table 3.9).
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Figure C.2. Total asymmetry, A, for each subnetwork of SM dendritic test sample
networks having a=70°, created with various Q values, plotted against network
magnitude, p. A increases from 0.602 for the complete network created with Q=0, to
0.652 for the complete network created with Q=5/6 (Table 3.9). '
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Figure C3. Total asymmetry, A;, for each subnetwork of SM trellis test sample
networks having a=90°, created with various Q values, plotted against network
magnitude, pt. A; does not exhibit consistent variation with Q (Table 3.9).
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Figure C.4. Number of tributary-source links, nTS, divided by network magnitude, W,
for each subnetwork of TM test sample networks created with various Q values, plotted
against J1. Ratio nTS/p increases from 0.343 for the complete network created with Q=0,
to 0.772 for the complete network created with Q=5/6 (Table 3.9).
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Figure C.5. Number of tributary-source links, nTS, divided by network magnitude, M,
for each subnetwork of SM dendritic test sample networks having a=70°, created with
various Q values, plotted against p. Ratio nTS/p increases from 0.381 for the complete
network created with Q=0, to 0.443 for the complete network created with Q=5/6 (Table
3.9).
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Figure C.6. Number of tributary-source links, nTS, divided by network magnitude, U,
for each subnetwork of SM trellis test sample networks having a=90°, created with
various Q values, plotted against L. Ratio nTS/p varies in the range [0.698, 0.746], and
does not vary consistently with Q (Table 3.9).
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Figure C.7. Fraction of CIS links, nCIS/(nCIS+nTRANS), for each subnetwork of TM
test sample networks created with various Q values, plotted against pu. Fraction
nCIS/(nCIS+nTRANS) in the complete networks varies about the theoretic expectation
value of 0.5, in the range [0.492, 0.532] (Table 3.9).
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Figure C.8. Fraction of CIS links, nCIS/(nCIS+nTRANS), for each subnetwork of SM
dendritic test sample networks having a=70°, created with various Q values, plotted
against p. Fraction nCIS/(nCIS+nTRANS) in the complete networks increases from
0.400 for the complete network created with Q=0, to 0.520 for the complete network

created with Q=5/6 (Table 3.9).
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complete network created with Q=0, to 0.321 for the complete network created with
Q=5/6 (Table 3.9), a range of variation below the theoretical value of 0.5 for ™
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Variables d and w are given in Table 3.1. Sensitivity to Q is reduced in both dendritic and
trellis sample networks, relatively to TM sample networks.
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Digital elevation model networks (DEMON):
A model of flow over hillslopes for computation

of contributing and dispersal areas
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Department of Civil Enginecring, University of Washington, Seattle

Abstract.

Current algorithms for computing contributing areas from a rectangular grid

digital elevation model (DEM) use the flow-routing model of O’Callaghan and Mark
(1984), which has two major restrictions: (1) flow which originates over a two-
dimensional pixel is treated as a point source (nondimensional) and is projected
downslope by a line (one dimensional) (Moore and Grayson, 1991), and (2) the flow
direction in each pixel is restricted to eight possibilities. We show that large errors in
the computed contributing areas result for any terrain topography: divergent,
convergent, or planar. We present a new model, called digital elevation model
networks (DEMON), which avoids the above problems by representing flow in two
dimensions and directed by aspect. DEMON allows computation of both contributing
and dispersal areas. DEMON offers the main advantage of contour-based models (e.g..
Moore et al., 1988), the representation of varying fiow width over nonplanar
topography, while having the convenience of using rectangular grid DEMs.

1. Introduction

The specific contributing area (SCA), and the specific
dispersal area (SDA) (Figure 1), are distributed variables
with important hydrological, geomorphological, and geolog-
ical significance. The total contributing area (TCA) of a
contour segment is the plan area of terrain that contributes
flow to the contour segment. The SCA (designated often by
“‘q** in the literature) of a contour segment is the TCA
divided by the contour segment length. Because it is a plan
area, the concept of SCA relies on the assumption that the
plan view projection of flow directions does not change with
depth below the land surface and is determined by surface
topography. This assumption provides a valid approximation
where the terrain permeability is small relative to the rainfall
rate or where subsurface flow lines are approximately par-
allel in plan view to surface flow lines. The SCA is the plan
area located topographically upstream from the unit contour
length of interest. The SCA may be interpreted as an
equivalent flow path length, because when upslope flow lines
are parallel in plan view, the SCA equals the upslope flow
path length.

In hydrology and geomorphology, the SCA is used exten-
sively as an indicator of discharge. This assumes that the
rate of flow generation r is uniform spatially and that the
discharge rate is steady, in which case the specific discharge
equals SCA times r. While these conditions of uniformity
and equilibrium seldom are met in nature, they are assumed
often to approximate natural conditions. Uses of the SCA as
an indicator of discharge include studies of hillslope hydro-
logic response, channet location, long-term basin evolution,
landslide risk, soil water content, and vulnerability to pollu-
tion, among others. Indexes that combine the SCA as a
discharge indicator with other variables are used widely in

Copyright 1994 by the American Geophysical Union.
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hydrology and geomorphology. Examples of such indexes
are In(SCA/S), where S is slope, used to predict the soil
moisture deficit [Beven and Kirkby, 1979], and S2SCA, used
to predict channel initiation by overland flow {Montgomery
and Dietrich, 1989, 1992; Montgomery and Foufoula-
Georgiou, 1993]. Use of the SCA as an indicator of discharge
for prediction of the location and extent of channel networks
is widespread. Reviews of channel network location based
on SCA values obtained from rectangular digital elevation
models (DEMs) include those by Mark [1988) and Tarboton
et al. (1989, 1991].

The total dispersal area (TDA) of a contour segment is the
plan area of terrain that drains flow from that contour
segment. The SDA of a contour segment is the TDA divided
by the contour segment length. The underlying assumption is
the same as for the SCA definition. and the SDA is then the -
plan area topographically downstream from the unit length
of contour. The SDA extends over the hilisiope and may
terminate at a location of topographic convergence or at a
receiving water body. The SDA indicates the area of influ-
ence of flow generated at the given location and may be
used, for example, to predict the influence zone of upslope
pollution sources or of any development affecting terrain
permeability. Speight (1974, 1980] interpreted the SDA as an
indicator of soil drainage rate. Present uses of the SDA are
more limited than those of the SCA.

The SCA and the SDA were defined originally for a
segment of a contour line, and Speight [1974] pioneered the
computation of these variables for landform classification,
using a terrain partition based on contours and flow lines.
Given the convenience of representing distributed variables
for grid cells, or pixels, of rectangular digital elevation
models (DEMs), the concept of the SCA was transferred
from contour segments to DEM pixels and has joined the list
of geomorphometric parameters that are computed routinely
in the analysis of a DEM. Various models for flow routing in
rectangular DEMs have been proposed for the computation
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Figure 1. Illustration of the concepts of specific contribut-
ing area and specific dispersal area of a contour segment of
unit length. The channel network drains to the top right of
the figure.

of SCAs. These models have not been used, however, to
compute SDAs, given their inappropriate (one-dimensional)
downslope projection of flow. The same limitations that
render current grid-based models unsuitable for computing
SDAs make them equally inappropriate for computing
SCAs. The major fault of most current models is their point
source representation of flow generation and the resuiting.
one-dimensional representation of flow paths [Moore and
Grayson, 1991].

In digital elevation model networks (DEMON), flow is
generated areally, not at pomt sources. Flow generated over
a pixel is projected downslope over a two-dimensional flow
strip, analogous to a flow tube. Flow direction is determined
by the local aspect angle, in a manner similar to that used by
Lea [1992]. The computed width of a *‘flow tube’” increases
over divergent topography, decreases over convergent to-
pography, and remains constant over plane surfaces. DE-
MON offers the main advantage of contour-based models
[e.g., Moore et al., 1988], the representation of flow width
variation as a function of local topography, and the benefits
of rectangular grid DEMs. In addition, it permlts computa-
uon of both SCAs and SDAs.

2. Review of Existing Methods and Their
Limitations

Several methods exist for computing the SCA of a DEM
pixel. We are unaware of methods for computing the SDA of
a pixel. Computation of SDA values was possible previously
only for the areal segments of a contour-based terrain
partition [Moore and Grayson, 1991]. A review of the
principal methods for computing SCAs for DEM pixels and
what in our view are their limitations is presented below.

2.1. D8 [0’Callaghan and Mark, 1984)

The methods used most for SCA computation for DEM
pixels are based on the flow-routing model introduced by
O'Callaghan and Mark [1984]. We refer to them collectively
as method D8. In method D8, pixels are centered on the
DEM grid points, and each pixel discharges, or **spills,”” into
one of its eight neighbors: the one located in the direction of
steepest descent. The total contributing area (TCA) of a
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.pixel is the number of pixels whose flow reaches the pixel of

interest following a path of steepest descents, multiplied by
one pixel area, AxAy. The SCA of a pixel is given by the
TCA divided by the length of the segment orthogonal to fiow
direction in the pixel, either a pixel side, Ax or Ay, or the
diagonal, (Ax2 + ay?)'?2,

Efficient algorithms for computing TCAs search upslope
from a pixel and involve recursion. Examples include.
among others, the algorithm of Mark [1988] and those of
Tarboton et al. [1989, 1991].

The D8 method allows flow from each pixel to discharge to
only one receiving neighbor. This amounts to treating fiow
which originated over a two-dimensional pixel as a point
source (nondimensional) and projecting it downslope by a
line (one dimensional) instead of a flow tube (two dimension-
al). This limitation has been pointed out by Moore and
Grayson {1991]. The single receiving neighbor also imposes
restrictions on possible flow path configurations because
flow can occur only in either a cardinal or diagonal direction.
The errors resulting from these limitations are different for
areas where flow is divergent (where flow tube width in-
crease’s downslope), convergent (flow tube width decreases
downslope), or parallel (flow tube width is constant).

For paralle! flow the true SCA is equal numerically to the
flow path length. Method D8 computes the SCA correctly for
parallel flow only when flow is in the x or y direction. When
flow is at an angle to the principal grid orientation, two kinds
of errors arise: errors that affect flow path direction and
errors of SCA underestimation for a given flow path. The
first source of error results when flow is at an angle different
from a multiple of 45°. For example, if flow is at an angle of
30° (measured counterclockwise from east), then the steep-
est descent direction given by the D8 method will be toward
the NE, and each pixel will discharge into its NE neighbor.
This amounts to approximating the angle of fiow to 45°, and
modeled flow is diverted from its true path by 15°,

The second source of error results from the one-
dimensional projection of flow. Consider parallel flow at an
angle of 315° (a multiple of 45°), shown in Figure 2. The
computed TCA is underestimated by a factor of 2 when using
method D8. When using D8, the computed SCAs for parallel
flow are correct for flow that is entirely in a cardinal
direction (0°, 90°, 180°, or 270°), are underestimated by a
factor of 2 for flow that is entirely in a diagonal direction (45°,
135°, 225°, or 315°), and are less than the correct value by a
factor between 1 and 2 for flow that changes along its path
between cardinal and diagonal directions. A simple correc-
tion by a factor of 2 is possibly only if the entire TCA of the
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Figure 2. TCA of a pixel on a planar slope with aspect angle
315° (a) predicted by method D8 and (b) true TCA. Method
D8 underestimates the TCA of pixel A by a factor of 2.

Al

A
>/




COSTA-CABRAL AND BURGES: DIGITAL ELEVATION MODEL NETWORKS

pixel is in a diagonal direction. In cases where flow paths
have both cardinal and diagonal directions a correction
factor between 1 and 2 must be determined.

For divergent flow over a right circular cone mountain
(Figure 3), the true TCA of any pixel includes the pixel itself
and a triangle with one vertex at the cone center and two
vertices at pixel corners. The SCA of a pixel at a distance r
from the cone center is numerically close to 1 r, and the SCA
has radial symmetry (Figure 3d). Divergent flow cannot be
represented by a linear path of steepest descents, hence the
SCA values computed by method D8 do not have radial
symmetry (Figure 3¢). Modeled flow is concentrated arbi-
trarily on eight preferential paths oriented in the cardinal and
diagonal directions, while avoiding other paths. Conse-
quently, at any given distance r from the cone center, some
pixels drain all pixels between themselves and the cone
center and have an SCA close to r, an overestimation by a

" factor of 2; while other pixels drain only themselves and
have an SCA equal to a pixel side (Ax or Ay), an underes-
timation that approaches 100% at large r. Similar problems
arise for convergent flow, such as over a right circular cone
crater (Figure 4). Again, modeled flow is concentrated along
eight preferential paths (Figure 4c), although overestimation
and underestimation of the SCA magnitudes are not as large
as for a cone mountain.

2.2. Rho8 [Fairfield and Leymarie, 1991)

Method Rho8 attempts to solve one of the problems of
method D8: the diversion of modeled flow paths toward a
cardinal or diagonal direction, resulting arbitrarily from grid
orientation. Method Rho8 introduces a stochastic*compo-
nent into method D8, yielding flow paths that reflect more
closely the true aspect of hillslopes. As in method D8, each

(a) (b)

/

(© (d)

Figure 3, TCA of pixels on a right circular cone mountain
surface (or TDA of pixels on a right circular cone crater
surface): (a) TCA of pixels A, B, and C predicted by method
D8, (b) true TCA of pixels A, B, and C, (¢) SCA contours for
method D8, and (d) true SCA contours. Radial symmetry is
not conserved with method D8. With D8, pixel A drains only
itself.

200

1683
YYVIY Jale
Iy =&
VI HEIEIEZ
al YA t< Al
) Bl et 1
. I’I’1 1
> N8 I B[S
3 b )
fecs K A
e

@) (b)

() (d)

Figure 4. TCA of pixels on a right circular cone crater
surface (or TDA of pixels on a right circular cone mountain
surface): (a) TCA of pixels A and B predicted by method D8,
(b) true TCA of pixels A and B, (c) SCA contours for method
D8, and (d) true SCA contours. Radial symmetry is not
conserved with method D8. The TCA of pixel A is underes-
timated greatly.

pixel discharges into one of its eight neighbors. (A variation,
called method Rho4, considers only the four cardinal neigh-
bors.) The choice of the receiving pixel among the neighbors
is made stochastically. One of the neighbors is assigned a
probability p of being chosen and another neighbor is
assigned a probability 1 — p.

The scheme for assigning probabilities and the objective of
this method are illustrated in the following example. Con-
sider a plane surface with an aspect angle of 30° (measured
counterclockwise from east). Method D8 makes every pixel
discharge into its NE neighbor, resulting in a path direction
that is wrong by 15°. Method Rho8 assigns a probability p to
any given pixel discharging to its NE neighbor and a prob-
ability (1 — p) to it discharging to its eastern neighbor.
Therefore some pixels will discharge to their NE neighbor,
and the remainder will discharge to their eastern neighbor. If
the number of pixels discharging to the NE versus the
eastern neighbor is in the right proportion (the expected
proportion is p/(1 — p)), then the resulting flow lines will
have an overall direction of 30°. The value of p should be
such that the expected value of the flow path direction is
equal to the aspect angle.

While this method provides, in mathematical expectation,
appropriate flow path directions, all other problems identi-
fied above remain. Method Rho8 introduces problems of its
own: randomness does not ensure reproducible results; and
in locations of parallel flow, adjacent flow paths are not
parallel but wiggle randomly and therefore often converge
laterally with one another. Lateral convergence of fiow paths
on plane surfaces, where flow should be parallel, concen-
trates upsiope flow on only some pixels. Once two flow paths
have merged due to their random wiggling, there is no
mechanism that can make them diverge again, hence errors
increase downslope as flow becomes more and more con-
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centrated. Some pixels will have overestimated TCA values,
while others that were missed by the wiggling flow paths
have underestimated TCAs.

2.3. Lea [1992]

This method solves the problem attempted by Fairfield
and Leymarie [1991] by routing flow according to local
aspect angle. The surface of each pixel is approximated by a
best fit plane, and the direction of steepest slope (or the
aspect angle) is computed (section 3.2 below). Flow is routed
.downslope along a path comprising straight segments with
different directions, according to the aspect angle of each
pixel. The algorithm models the entry and exit points of flow
on the perimeter of each pixel along the flow path. Flow is
modeled as a ‘‘rolling ball’* (point source assumption) mov-
ing across the topographic surface in the direction of local
aspect. Hence the major limitation of method D8, the
one-dimensional representation of flow, remains.

2.4. Muiltiple-Direction Methods

Multiple-direction methods attempt to solve the major
limitation of method D8, the one-dimensional representation
of flow, by distributing flow from a pixel among all of its
lower-elevation neighbor pixels, according to some specified
rule. Quinn et al. [1991] proposed that the fraction of flow
allocated to each lower neighbor i be determined by

S,‘L,’
fi= (1)
S S;L;

where the summation is for all lower neighbors, S is the
directional slope, and L is an “*effective contour length’” that
acts as a weighting factor. The values of L used by Quinn et
al. [1991] were % of the pixel side for cardinal neighbors and
a fraction 0.354 of the pixel diagonal for diagonal neighbors.

Freeman [1991] proposed that the fraction of flow allo-
cated to each lower neighbor i be determined by

N

fi=<3 (D)
287
where § is the directional siope and p is a nonphysical
parameter. This method was tested for flow over a right
, circular cone mountain, for different values of parameter p.
Since p = 1.1 provided drainage contours which ap-
proached circles, this value was recommended for use.
Freeman applied the method exclusively to divergent topog-
raphy and used a different algorithm for convergent topog-
raphy.
Figure 5 represents schematically the contributing area of
a pixel, labeled '‘A,”" located on three different surfaces: a
plane, a right circular cone mountain, and a right circular
cone crater. The contributing areas shown are those that
result from use of any multiple-direction algorithm, such as
those of Quinn et al. [1991) or Freeman [1991]. For an
inclined plane surface each pixel discharges to three or four
other pixels (depending on plane aspect), and only a fraction
of the discharge pixe! surface area belongs to the contribut-
ing area of a receiving pixel. Therefore the contributing area
of a pixel does not include any full pixel but instead is
composed of portions of different pixels and is discontigu-
ous. The flow direction over the plane in Figure 5a is top to
bottom, and the true TCA of pixel A is the full area of the
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Figure 5. Schematic representation of the TCA of a pixel

that is estimated by any multiple-direction aigorithm. The
size of the shaded square inside each pixel is proportional to
the size of that pixel's portion that drains to pixel A. (a)
Predicted TCA of pixel A located on a plane surface where
flow is from top to bottom. (b) Predicted TCA of pixel A
located on a right circular cone mountain. (c) Predicted TCA
of pixel A located on a right circular cone crater.

four pixels immediately above pixel A. Multiple-direction
algorithms predict that the contributing area is composed of
portions of pixels inside a triangular region. The computed
TCA value of a pixel is correct if it is located far enough from
the plane’s lateral edges, otherwise the triangular region is
incomplete and the TCA is underestimated. For the plane
represented in Figure 5a, 70 of the 100 pixels represented
have an underestimated TCA value (e.g., the TCA of pixels
labeled **B’" and *'C""). Thus results are affected by bound-
ary proximity. For a right circular cone mountain (Figure 5b)
and a cone crater (Figure 5¢) the TCA of pixel A is, again,
discontiguous and includes portions of pixels located far
outside the true (triangular) contributing area. Parameter
calibration may yield predicted TCA values that are correct
(e.g., p = 1.1 in (2) for a right circular cone mountain). The
approximation relies on surface geometric symmetry and
will suffer to the extent that a natural terrain surface will
diverge from the symmetric geometric surfaces used for
parameter calibration. Due to their misplacement of contrib-
uting areas, multiple-direction algorithms are not appropri-
ate for contaminant tracing nor can they represent distrib-
uted runoff rates.

2.5.

The D8 family of methods, used to compute SCAs for
DEM pixels, contains limitations which can result in large
errors for any terrain configuration, including planar, diver-
gent, and convergent topographies. More recent methods
attempt to overcome some of the problems of method D8.
Lea {1992] provides a sound scheme for aspect-driven rout-
ing which is an improvement over D8 routing. However, no
satisfactory solution has been presented for the most impor-
tant limitation of method D8, the point source assumption
and one-dimensional routing. This problem has been ad-
dressed with partial success by multiple-direction models. In
our view, the most important limitations of multiple-
direction models are that the computed contributing areas
are discontiguous. and the quality of the approximation of
the computed values relies on geometric symmetry and is
affected by boundary proximity.

We present an alternative approach which attempts to
overcome the problems identified in this section by modeling
downslope flow in two dimensions and in well-defined flow
tubes.

Summary
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3. DEMON

In this section we define the SCA and SDA of a pixel (or,
in general, any terrain discretization element), discuss our

representation of the flow field, and describe the DEMON

algorithms used to compute the SCA and SDA matrices.

3.1.

The total contributing area (TCA) of a DEM pixel is the
plan-view area draining to that pixel. Implicit in this defini-
tion is the assumption that the plan-view projection of the
flow field does not change with depth below the land surface
and is determined by surface topography. The TCA of a
pixel is then the plan-view area of the collection of all points
located upstream topographically from the pixel. A point is
located upstream topographically from a pixel if the surface
fiow line passing through that point enters the pixel down-
stream. The SCA of a DEM pixel (or any terrain discretiza-
tion element) is defined as the average value of contributing
area per unit flow width as flow exits the pixel and is
obtained by division of the pixel's TCA by the total exiting
flow width, w, that is,

Definitions

TCA
SCA=——
w

3

The TDA of a DEM pixel is the plan-view area draining
flow from the pixel. The implicit assumption is the same as in
the TCA definition. The TDA of a pixel is the plan-view area
of the collection of all points located topographically down-

_stream from the pixel. A point is located topographically

downstream from a pixel if there is a flow line that passes

“through the pixel and also through the point downstream.

The SDA is the TDA per unit flow width

SDA = — 4
w
The total flow width o in (3) and (4) is the flow width
orthogonal to the flow direction along the portion of the pixel
boundary through which flow exits the pixel. For a DEM
grid with x and y axes pointing east and north, respectively,
and pixel dimensions Ax and Ay,

dw dl dw dl Jdw dw

—dl + —dl + — —
S [ G| S| Sra
N 3 s [

=f sin a(x, y = Ay) dx + f cos a{x = Ax, y) dv
In 3

—J sin a(x, y=0) dx—J'
Is Iw

where Iy, lg. Is. and ly designate the lengths of the exit
segments lying on the northern, eastern, southern, and
western boundary segments, respectively, and a(x, ¥) is the
fiow direction angle, measured counterclockwise from east.
Here Iy and [g take values between zero and Ax, and {g and
Iy take values between zero and Ay.

w =

cos alx =0, ) dy (5

3.2. Surface Fitting to the DEM and Determination
of Flow Direction Angles

The SCA and SDA variables are determined entirely by
the flow field, that is. the field of flow direction angles, a(x,
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v). Flow at a point is in the direction of maximal surface
slope and is obtained from the reverse direction of the
elevation tensor at that point. Thus determination of the flow
angle field requires prior knowledge of the elevation field.
Given that the DEM provides only a point sampling of
elevations, it is necessary to fit an elevation surface to the
DEM. This may be thought of as an attempt to reconstruct
the topographic surface after it had been stored in the
image-compressed form of a DEM. How well the recon-
structed surface represents the true topographic surface will
depend on the size of the DEM grid relative to the roughness
of the terrain and on the surface-fitting method.

The simplest surface-fitting method approximates the sur-
face of each pixel by a best fit plane using local interpolation.
In this case the fitted terrain surface consists of planar
mosaics and. in general, will be discontinuous (i.e.. with
finite jumps from one pixel to the next). The approximation
is best for Ax and Ay small relative to topographic rough-
ness.

DEMON uses planar surfaces because a single-flow direc-
tion within each pixel is simpler computationally. Pixels are
defined by grid lines. having grid points at the corners. The
elevation tensor in each pixel is given by vector ai + bj (i
and j are unit vectors in the x and ¥ directions, respectively),
with

= (=2, + s+ -z
a ZAX( 1 2 23 )
(6)
1
=_‘—'(Z|+22_Z3—34)
v

where z,. 2>, 23, and 24 are the elevations at the upper left,
upper right, lower right, and lower left pixel corners, respec-
tively. Flow is in the direction of vector — (ai + bj),
indicated by the aspect angle a.

For planar pixels, if the flow direction is parallel to the grid
orientation, the exit portion of the boundary is a single full
boundary segment. If the flow direction is not parallel to the
grid orientation, the exit portion of the boundary consists of
two full adjacent boundary segments. The general expres-
sion (5) for the flow width becomes

w = [sin a|Ax + |cos alAy N
3.3. DEMON-Downslope and DEMON-Upslope Algorithms
for Computing the SCA and SDA Matrices

DEMON-downslope is a particle-tracking algorithm that
projects flow downslope using the matrix of flow angles and
allows computing both the SCA and SDA matrices. DE-
MON-upslope traces the boundary of a pixel's contributing
area and calculates the size of the area enclosed by that line.
DEMON-upslope computes the SCA matrix faster than
DEMON-downslope but does not calculate the SDA matrix
because the TDA cannot always be bounded by a single
connected line (Figure 1). While different, the two algo-
rithms, DEMON-downslope and DEMON-upslope, provide
the same SCA values. The information required by either
algorithm is the matrix of flow angles.

3.3.1. DEMON-downslope: SCA computation. If a unit
flow depth is generated uniformly everywhere over the area
covered by the DEM, the total flow volume drained by any
given pixel equals the pixel's TCA. DEMON-downslope
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Figure 6. (a) Example of two-dimensional, aspect-driven (arrow directions) fiow movement. Flow
originates over pixel (1,1). The area shaded is the TDA of pixel (1,1). (b) Influence matrix of pixel (1,1).
Each entry in the influence matrix represents the fraction of the area within pixel (1,1) that is drained by
a pixel. (c) lllustration of the physical meaning of the value 0.58 of pixel (4,3) in Figure 6b.

considers that a unit flow depth is generated uniformly over
the surface of every pixel in the DEM. The flow generated
over each pixel is tracked downslope in two dimensions (i.e.,
as a flow tube) according to local terrain aspect, until the
flow either leaves the DEM or enters a sink pixel (a *‘pit™).
The total flow drained by a given pixel equals that pixel's
TCA.

DEMON-downslope takes one pixel at a time and makes it
a source pixel. A unit flow depth is considered to be
generated uniformly over the source pixel and is followed
downslope. Figure 6a shows two-dimensional aspect-driven
flow movement from source pixel (1,1) (we use (i, j) to
indicate the pixel corresponding to row i and column j of the
DEM). As we track the flow downslope, we compute the
flow volume drained by each pixel that the fiow traverses.
The influence matrix of a source pixel contains the flow
volume from the source pixel that is drained by each pixel in
the DEM. If a pixel receives no flow from the source pixel,
its entry in the influence matrix is zero; if it drains all of the
flow, its entry is AxAy; and if it drains part of the flow, its
entry is a fraction of AxAy. Figure 6b is the influence matrix
of pixel (1,1) (in this example, Ax = Ay = 1). The entries on
any cross diagonal of the influence matrix, before flow
convergence to a line occurs, sum to unity. Figure 6¢ shows
the physical location of the portion of the source pixel
(shaded area) associated with the entry of pixel (4,3) in the
influence matrix of pixel (1,1). Pixel (4,3) drains 585 of the
area of pixel (1,1).

The TCA matrix is computed by successive addition of the
influence matrix of every pixel in the DEM. In the example
DEM of Figure 6, 36 influence matrices, one for each source
pixel, are computed and added. The SCA matrix is com-
puted by division of the TCA matrix by the flow width
matrix, which is obtained from the matrix of flow angles
using (7).

We use Figure 6 to illustrate the three-step procedure for
computing the influence matrix of a pixel.

Step 1: Flow generated over the source pixel flows over
the pixel surface in the direction indicated by a. If e is a
multiple of 90°, all flow goes to a single neighbor. For
example, if « is equal to 180°, all fiow will enter the western
neighbor. If a is not a multiple of 90°, then flow will be split
between two cardinal neighbors (S and E in Figure 7). There
can be no flow to a diagonal neighbor because contact with
diagonal neighbors is through a point (width of flow is
infinitesimally small), not a segment. For flow to reach a

diagonal neighbor it must cross through a cardinal neighbor.
Therefore a diagonal neighbor cannot be a direct receiving
pixel. Figure 7 illustrates how flow is split among the eastern
and southern neighbors for a = 292° (the flow angle of pixel
(1,1) in Figure 6). A flow particle generated in the upper right
shaded triangular area, moving at an angle of 292°, must
cross the eastern border and enter the eastern neighbor. The
area of the triangular section and the fractions f; and f are,
for a = 292°,

= e o 20.20; fs=1-f;=0.80
fe=7 2 Ax tan (292°) Is Ie
(8)

where A, represents the triangular area in Figure 7, and A
represents the pixel area (AxAy). Twenty percent of the flow
generated over pixel (1,1) is delivered to the E neighbor and
80% to the S neighbor.

Step 2: In Figure 6a, source the S neighbor. has two
receiving pixels. To follow flow downslope we must step to
one of these two receiving pixels, while the other one is put
on a waiting list for later consideration. Consider pixel (2,1),
with pixel (1,2) on the waiting list.

Step 3: Figure 8 illustrates the definition of the eight

Nw N NE

Sw S SE

Figure 7. Iliustration of how flow from the source pixel is
partitioned between two cardinal neighbors. In this case the
flow angle in the source pixel is 292°, and flow is partitioned
between the eastern and southern neighbor pixels. The
fraction of flow that enters the eastern neighbor is the
fraction of the area of the source pixel represented by the
darker shaded triangular area.
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Figure 8. Illustration of the definition of variables F., fis
fa, f3, Xy, X2, X3, and I, needed for projecting flow across
pixel (4,2). F is the flow entering pixel (4,2) (the shaded
area); f, and f, are the lengths drained by the flow lines
bounding the flow tube; I = 1, 2, 3, 4 indicates flow entering
from the north, east, south, and west, respectively; x; and
x, indicate the points of entry of the bounding flow lines; x3
indicates the point of entry of the flow line generated at the
corner of the source pixel (dashed curve); f3 = f, indicates
that all points inside the flow tube to the right of the dashed
curve drain the same amount of flow, while the flow drained
by any point to the left of the dashed curve varies linearly
across the flow tube.

variables (F, fi, f2,» f3, I, x|, x2, and x3) required to
describe the geometry of flow movement across a pixel
(pixel (4,2) in Figure 8). (The DEM in Figure 8 is different
from that in the previous figures to facilitate displaying the
eight variables.) The source pixel being considered in Figure
8 is (1,1). The flow tube shown is the flow tube that has the
path (1,1)-(2,1)-(2,2)-(3,2)-(4.2). Part of the flow carried by
this flow tube will enter pixel (4,3) and the remainder will
enter pixel (5,2), that is, this flow tube will be split into two

i
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flow tubes. The fractions entering (4.3) and (5,2) are com-
puted from geometry, using fy, f>. and fa.

Topographic convergence converts a flow strip (two di-
mensional) into a line (one dimensional). The vertical bold
arrow in the lower right of Figure 6a is an example of
one-dimensional flow. One-dimensional flow need not be
along pixel boundaries but may cross through pixels. Pro-
jecting a line according to flow angle requires onty the
variables / and x, to keep track of the point of entry of the
flow line in each pixel [Lea, 1992].

The algorithm used to compute the influence matrix of a
pixel can follow one flow path at a time, that is, the dispersal
area of the pixel is dissected into several flow tubes so that
the path of each flow tube can be written as a path from one
pixel to the next. The flow tube in Figure 8 can be written as
(1,1)-(2,1)-(2.2)-(3.2)-(4,2), which is a directed graph. Figure
9a represents all the (directed graph) flow tube paths that can
be written for the example DEM shown in Figure 6. Figure
9b represents these paths schematically; each branch in
Figure 9b corresponds to one flow tube in Figure 9a.

3.3.2. DEMON-downslope: SDA computation. The
SDA is computed simultaneously with the SCA. As we step
to each pixel downslope and project flow through it. the size
of the area within the pixel occupied by the flow tube is
computed. The summation of all these areas is the TDA of
the source pixel (the shaded area in Figure 6a). The SCA
matrix is obtained from the TCA matrix through division by
the flow width matrix.

3.3.3. DEMON-upsiope. The DEMON-upslope algo-
rithm computes the TCA directly for each pixel by tracing
the boundary of the pixel’s contributing area and calculating
the size of the area enclosed by that line. Most pixels have a
single source area, whose boundary intercepts two corners
of the pixel of interest. It is not possible to start at one pixel
corner and trace the entire boundary line until the second
pixel corner is reached. This is because for part of the way
the tracing direction is against the fiow (going upslope),
while for the second part, movement is with the flow (going
downslope), and it is not known a priori which is the right
location to switch from upslope to downslope. Hence it is
necessary to trace the boundary line starting at each of its
two ends at the pixel corners and always move upsiope, until
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Figure 9.

(a) Flow tubes that must be considered to compute the influence matrix of pixel (1,1) in Figure

6. (b) Schematic representation of the flow tubes defined in Figure 9a. Branching corresponds to flow being
split between two neighbor pixels. All paths exit the DEM in concentrated form, indicated by “‘c.”
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Figure 10. Illustration of the right-hand side (RH) and

left-hand side (LH) flow lines that must be traced uphill in
the DEMON-upslope algorithm.

the point where the two traced lines meet (Figure 10). Some
pixels may receive flow from two source areas, in which case
four lines must be traced. The three-step procedure for
computing the TCA of a pixel is as follows:

Step 1: Determine which of the four cardinal neighbors
discharge some flow to the pixel of interest. If a cardinal
neighbor drains into the pixel of interest, an indicator
variable for that neighbor is set to 1 (0 otherwise). Next, the
indicator variables of the four neighbors are checked in
clockwise order, and if a switch from 0 to | or from 1 to 0
from one neighbor to the next is found, then there is a
boundary line that starts at the corner point shared by those
two neighbors. _

Step 2: Trace the TCA boundary lines uphill. If a pixel
has more than one contributing area, this procedure is
repeated for each. The boundary line consists of two lines
that join uphill; the left-hand (LH) line bounds the contrib-
uting area from the left, and the right-hand (RH) line bounds
the contributing area from the right as paths are followed
upslope from the pixel. The RH line is traced from the pixel
of interest by moving continuously against the flow direc-
tion. The coordinates of the points at which the line inter-
cepts the boundary of each pixel are stored. The RH line is
traced for some large, preestablished, number of pixels #n,
(e.g., equal to 3 times the typical hillslope length for the
study area). The LH line is traced uphill in the same way,
until the RH line is met. While tracing the RH or LH line,
often a local elevation maximum is found. In such cases it is
not possible to move further upslope, so the path follows a

Ir

Figure 11. TCA of a pixel on a planar slope with aspect
angle 315° predicted by DEMON.
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Figure 12. TCA of pixels on a right circular cone mountain
surface (or TDA of pixels on a right circular cone crater
surface) predicted by DEMON. (a) TCA of pixels A, B, and
C. The prediction is poorest for pixel B, which is overesti-
mated as a result of allowing for a single flow direction in
each pixel. (b) SCA contours.

line of divergence, that is. a line where flow directions
oppose each other on each side.

Step 3: After the RH and LH lines have been mapped,
the TCA boundary is known. The TCA is calculated from the
area enclosed by the boundary lines which is determined
from the stored coordinates that describe their paths.

4. Results

We present results from use of DEMON for a plane, a
right circular cone mountain, and a right circular cone crater
(Figures 11-13, respectively) to illustrate model performance
for parallel, convergent, and divergent flow conditions.
Figures 11-13 may be compared with Figures 2—4, which
show the corresponding results using D8; and Figures 11,
12a, and 13a may be compared with Figures 5a-5c. which
show the corresponding results using multiple-direction al-
gorithms. For the plane, computed SCAs correspond cor-
rectly to the distance to the top of the plane. True SDAs for
a right circular cone mountain are the same as the SCAs for
a right circular cone crater and vice versa. For both cones
the predicted SCA and SDA isolines are approximately
circular with indentations to the north, east, south, and west.
These indentations are larger for the crater cone than for the
mountain cone, and in both cases they become more pro-
nounced with distance to the cone center. The indentations
result from the approximation of the conical surface by a
mosaic of planes, which generates a bias toward the N-S and
E-W directions. The indentations can be avoided only if a
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Figure 13. TCA of pixels on a right circular cone crater
surface (or TCA of pixels on a right circular cone mountain
surface). (a) TCA of pixels A and B predicted by DEMON.
(b} SCA contours.



COSTA-CABRAL AND BURGES: DIGITAL ELEVATION MODEL NETWORKS

curved rather than a planar surface is fitted to each pixel;
using DEMON. the computational expense for nonplanar
surface fitting would be large. Significant errors may result
on concave or convex hillslopes that are long relative to grid
size, that is. comprising a large number of pixels. For a
conical surface the magnitude of the error a distance of 40
pixels away from the cone center is approximately 15%. For
a 10-m grid DEM, 40 pixels represents a physical distance of
400 m.

To illustrate model performance for natural topography,
we present results of computed SCAs and SDAs for the
pixels of a DEM for Mettman Ridge, in southern Oregon
[(Zhang and Montgomery, 1994]. This DEM has a 2x2m
grid covering an area of 720 x 900 m? (360 x 450 pixels) and
was obtained by interpolation of a 1:4800 scale topographic
map [Montgomery, 1991}. Field mapping of the channel
network revealed that the land surface differed locally from
the DEM [Montgomery and Dietrich, 1994, Figure 4(b)}. The
SCA and SDA matrices obtained with DEMON are repre-
sented as images in Figures 14 and 15. Figure 16 shows the
SCAs computed using D8. DEMON represents hillslope
aspect better, while in D8 the erroneous tendency toward
preferred directions is obvious. Also, curved flow paths are
represented by DEMON but not D8.

In Figure 17 we plot the computed SCA values for each
pixel using DEMON and D8. Only pixels belonging to basins
that lie fully inside the DEM are represented, to eliminate
any DEM boundary effects. The disagreement between
computed SCAs spans 5 orders of magnitude at the hilisiope
scale. The two methods agree in many pixels with a high
SCA value because no flow is lost in either routing model, so
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Figure 15. Image of the SDA matrix for the Mettman
Ridge study area obtained with DEMON. A logarithmic
scale of gray shades is used; lighter shades correspond to
higher values.

Figure 14. Image of the SCA matrix for the Mettman Ridge
study area obtained with DEMON. A logarithmic scale of
gray shades is used; lighter shades correspond to higher
values.

Figure 16. Image of the SCA matrix for the Mettman Ridge
study area obtained with D8. A logarithmic scale of gray
shades is used; lighter shades correspond to higher values.
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that topographic convergence eventually leads to the same
value at the outlet of each basin. The large differences found
at the hillslope scale are attributed principaily to D8 errors
similar to those illustrated in Figures 2—4.

Figure 18 shows the histograms of the SCAs smaller than
100 m computed with D§ and DEMON. The D8 histogram is
discontinuous, while the DEMON histogram is continuous
and smooth, as is to be expected over natural hillslopes. The
discontinuous D8 histogram reflects the fact that D8 TCAs
are integers. and flow width has only three possible values
(Ax, Ay, or (Ax? + Ay?)17?),

Figure 19 shows pixels with SCAs smailer than 4 m (i.e.,
draining themselves and one other pixel), for DEMON and
for D8. DEMON gives low values almost exclusively at or
near hilislope tops, while D8 gives low values at many
locations on the hilislopes. This is because some pixels are
missed by the one-dimensional flow paths of method D§
where flow is divergent (such as pixel A in Figure 3a).

Figure 20 shows pixels with SCAs higher than 1000 m, for
DEMON and for D8. There are significant differences be-
tween the two drainage configurations. Overall, the D8
network has straighter segments. Network structure is dif-
ferent at a location near the lower left-hand comner (see
arrow). Two D8 flow paths run parallel at a very short
distance from each other at a location in the central upper
half of the study area (see arrow). The high-SCA network
configuration computed with DEMON is in better agreement
with the field-surveyed channel network [Montgomery and
Dietrich, 1994, Figure 4(b)].

5. Conclusions

We have shown that the models presently in widest use for
computing the specific contributing area of rectangular grid
DEM pixels, those based on flow-routing method D8 {O’Cal-
laghan and Mark, 1984}, can produce seriously erroneous
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Figure 17. Plot of SCA values for the Mettman Ridge

study area: D8, horizontal axis, and DEMON, vertical axis.
One fifth (32.400) of all pixels are shown to avoid clutter.
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results for either planar, convergent, or divergent topogra-
phy. The most important source of errors is the point source
assumption and the resulting one-dimensional flow routing
(each pixel discharges into only one neighbor pixel). Another
source of error is the restriction on the flow direction in each
pixel to only eight possibilities (multiples of 45°), established
by the orientation of the sampling grid. More recent models
reviewed attempt to overcome the limitations of method D8,
with partial success. Lea [1992] provides a sound scheme for
aspect-driven routing which is an improvement over D8
routing. However, no satisfactory solution has been pre-
sented for the most important limitation of method D8, the
point source assumption and one-dimensional routing. This
problem has been addressed with partial success by multi-
ple-direction models. The most important limitations of
multiple-direction models are that the computed contributing
areas are discontiguous, and the quality of the approxima-
tion of the computed values relies on surface geometric
symmetry and is affected by boundary proximity.

DEMON computes the specific contributing areas and
specific dispersal areas of DEM pixels. Assignment of flow
directions is according to aspect angle, as given by Lea
[1992}. Flow path routing is two dimensional, allowing
representation of the effect of terrain topography on flow
path width. Flow path width remains constant over planar
terrain, increases over divergent topography, and decreases
over convergent topography. Thus the proposed model has
capabilities which at present are offered only by contour-
based flow models, while having the convenience of using
rectangular grid DEMs.

Results for geometric surfaces for which SCAs can be
computed analytically show that DEMON approximates
analytic values, while D8 has large errors for either parallel,
convergent, or divergent flow. Computed SCAs for the
Mettman Ridge DEM using D8 and DEMON differ by 5
orders of magnitude at the hillslope scale. The two methods
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have better agreement at high SCA values, because flow
conservation leads to similar values after flow is concen-
trated into linear paths by terrain convergence. The large
errors at the hillslope scale indicate that D8 is inappropriate
for hillslope applications, including studies of hillslope hy-
drologic response, channel head location, long-term basin
evolution, landslide risk, and soil water content.

We presented two equivalent algorithms for computing
SCAs: DEMON-downslope and DEMON-upsiope. DE-
MON-downslope provides more information than DEMON-
upslope. The particle-tracking approach of DEMON-

downslope may be used for surface sediment or pollutant -

tracking. While both algorithms can be adapted to accom-
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Figure 19. Image of the SCA values less than 4 m, that is,
pixels that drain no more than the area of one pixel other
than themselves for (a) DEMON and (b) D8. Low values of
SCA are located over large ridges for DEMON but are
ubiquitous on the hillslopes for D8.
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Figure 20. Image of the SCA values larger than 1000 m for
(a) DEMON and (b) D8. (In some locations the networks are
discontinuous because the pits in the original DEM were not
removed.)

modate distributed values of runoff generation, only DE-
MON-downslope can permit reinfiltration. DEMON-
downslope can also provide SDA values for individual flow
tubes within a pixel, which may constitute useful informa-
tion for a large grid size. Finally, DEMON-downslope dis-
tinguishes between dispersed (two dimensional in plan view)
and concentrated (one-dimensional) flow, information with
potential utility for models of rainfall-runoff, soil water
content, and other applications.
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