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ABSTRACT 

 

Prediction of streamflow is the essential challenge of hydrology. The large and growing economic 

costs associated with flood and drought events provide the motivation for this study: to 

investigate opportunities for improving long-lead (monthly to seasonal) runoff prediction over 

large continental areas; and to evaluate the potential impacts of these improvements on water 

resources management. Potential runoff predictability as used in this study derives from climate 

signals and from initial conditions -- soil moisture and snow water equivalent at the beginning of 

the forecast period. Because long-term spatially distributed observations of soil moisture and 

snow water do not exist, a 50-year, hydrologically consistent data set of observed and derived 

surface energy and moisture fluxes and state variables was derived for the continental U.S. This 

data set provided the basis for investigating relative influences of initial states of the climate 

signal, snow water content, and soil moisture on long-lead predictability of runoff across the 

Mississippi River basin. The potential value of runoff predictability for water management was 

investigated using a simulation model of the Missouri River main stem reservoirs. In the 

Mississippi basin, climate indicators provide a small but significant source of winter runoff 

predictability through a lead time of three months. Soil moisture provides the dominant source of 

runoff predictability at lead times of one to two months over most of the Mississippi basin, except 

in the snow dominated mountainous areas of the west. For smaller sub-areas, runoff predictive 

skill exists through a lead of two seasons, longer than is currently used in operational forecasting. 

There was a very small difference in Missouri River system hydropower benefits associated with 

perfect forecast skill, due primarily to the system’s large storage capacity relative to inflow. An 

investigation of the effect of prediction skill relative to reservoir size found a generally inverse 

relationship, which is which is consistent with various previous studies. A hypothetical reduced-

volume system showed greater sensitivity to runoff predictability; with knowledge of the climate 

state, and snow and soil moisture initial states providing an increase of $6.8 million in annual 

hydropower benefits, about two percent of total annual hydropower revenues. 
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CHAPTER I: INTRODUCTION 

 

�Those who have knowledge do not predict. Those who predict do not 
have knowledge.� 
Lao Tzu 

 

Extreme hydrologic events such as floods and droughts exact a large economic toll on society. 

While estimates are approximate and vary with the period analyzed and technique used, floods 

are the most costly natural disasters in the United States, with average damages of $5 billion per 

year in the 1990s (Pielke and Downton, 2000). Droughts, although less visible than floods, have 

economic costs nearly as large.  The most costly natural disaster in the U.S. was the 1987-89 

drought, which had $39 billion in total damages and affected 70% of the U.S. population 

(Riebsame et al., 1991). Costs due to both floods and drought have been rising, with flood 

damages increasing by a factor of five (in constant dollars) between the 1940s and 1990s (Pielke 

and Downton, 2000) and drought by a factor of two from 1975 to 1994 (Mileti, 1999). 

Furthermore, global climate change is expected to increase the magnitude and frequency of these 

events in some areas (National Assessment Synthesis Team, 2001). Clearly, effective 

management of water resources is critical to the mitigation of flood and drought losses.  While 

some drought damages are not directly associated with water management (e.g., in the case of 

unirrigated crops), greater than half of the market value of U.S. agricultural crops is from 

irrigated land (U.S. Department of Agriculture, 1997). These large and growing costs could 

translate into substantial societal benefits to the extent that hydrologic extremes are predictable, 

and that forecast information is usable in mitigation and adaptation.  

The economic importance of flood and drought prediction helped inspire the recommendations of 

the National Research Council (NRC) for research “increasing the extent to which such events 

can be predicted” (NRC, 2002) and “determining [the predictions’] usefulness for water 

management. (NRC, 2001) These recommendations provide a two-fold motivation for this study: 
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to investigate the opportunities for improving long-lead (monthly to seasonal) runoff prediction; 

and to evaluate the potential impacts of these improvements on water resources management. 

Characterization of the land surface moisture state (especially soil moisture and snow) has long 

been recognized as a crucial component in hydrologic forecasting. Typically, long-lead (monthly 

to seasonal) streamflow forecasts rely on regression-based methods (Soil Conservation Service, 

1988; Garen, 1992), or use hydrologic simulation models to capture the hydrologic memory 

reflected in soil moisture and snow storage, with climatological average conditions assumed 

during the forecast period. (Twedt et al., 1977). Comprehensive, accurate observations of soil 

moisture and snow water equivalent could result in improved runoff forecasts. Although 

improved characterization of soil moisture and snow conditions over large areas is evolving 

through better satellite information (e.g. Koike et al., 2000; Kelly, et al, 2001) and macroscale 

modeling (e.g., the North American Land Data Assimilation (LDAS) experiment (Mitchell, et al, 

1999)), comprehensive, long term, validated data sets of these products sufficient for this study 

are not currently available. However, we now have the capability to produce model-derived 

products, which in the absence of observations can act as surrogates, in much the same way that 

reanalysis products are used in atmospheric studies. 

Improved knowledge of climate dynamics and teleconnections, as manifested by ocean-

atmosphere phenomena such as El Niño-Southern Oscillation (ENSO) (Rasmussen and Wallace, 

1983), the Pacific Decadal Oscillation (Mantua et al., 1997), and the Arctic Oscillation 

(Thompson and Wallace, 2000), have resulted in improvements in long-lead (months to as much 

as a year) forecasts of sea surface temperature (SST), and some general climate anomalies 

(seasonal precipitation and temperature departures from normal), based on coupled ocean-

atmosphere-land models (e.g., Barnston et al., 1999). 

ENSO is the largest predictable climate signal at seasonal to interannual scales (Gershunov and 

Barnett, 1998), and its phase is correlated with a discernable response of regional climate 

(Goddard et al., 2001). This has resulted in a focus on coupled models’ ability to predict ENSO 

phase (Barnston, et al., 1999), and hence provide predictive skill for regional hydrology in 

teleconnected areas. However, the factors influencing the development of each El Niño event, and 

ultimately its predictability, are case-specific (Philander, 1999; Fedorov, 2002), resulting in 

dependence of model-based forecast skill on the ability of a given coupled model to simulate the 
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particular features of the developing SST patterns associated with a given El Niño event. 

Furthermore, the nature of the land surface manifestations vary significantly from one El Niño 

event to another, and there is great spatial variability in the strength and character of the regional 

effects at the land surface (e.g., Kahya and Dracup, 1993). These difficulties notwithstanding, 

incorporation of climate forecasts in long-lead streamflow forecasts has been demonstrated in 

some settings (e.g. Wood et al, 2002; Baldwin, 2001; Hamlet et al., 2002).  

Improved land surface moisture state determination combined with improved knowledge of the 

climate teleconnections has the potential to yield better predictability of streamflow to the extent 

that contributing runoff is influenced by these factors. This study identifies, over a large 

continental region, the relative importance to runoff predictability of hydrologic initial conditions 

and climate signals, as encoded in teleconnection patterns.  Subsequently, the value of the 

resulting runoff predictability to management of water resources within the Missouri River basin 

is assessed. 

In the context of water resources management, streamflow forecast information is only of value 

when there are physical and institutional structures that can respond to the information. These 

challenges of assessing the level and importance of long lead hydrologic predictability are 

summarized by two questions, which form the core of this study: 

1. What is the predictability of continental scale runoff attributable to climate 

teleconnections, surface, and subsurface moisture storage, given perfect land surface 

moisture knowledge, across the Mississippi River basin at seasonal to annual lead times?  

2. What are the potential benefits of improved runoff predictability to the operation of the 

major reservoirs of the Missouri River basin? 

The approach for addressing these questions is summarized in the following three chapters. 

Chapter 2 is a paper, accepted for publication in the Journal of Climate (Maurer et al., 2002a) that 

describes the long-term derived data set that forms the basis for my investigations. Due to the 

lack of comprehensive, long-term observational data sets of soil moisture and snow water 

content, a hydrologic model was used to create a 50-year data set of surrogate observations over 

the continental U.S. and portions of Canada and Mexico. The data set is composed of gridded 

observations of precipitation and temperature, with surface meteorological forcing variables 
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derived directly from the observations, and other land surface states and fluxes derived indirectly 

via a land surface model. Chapter 3, which has been accepted for publication by the Journal of 

Geophysical Research (Maurer and Lettenmaier, 2002a), characterizes the potential predictability 

of land surface runoff due to knowledge of the climate and land surface initial states, focusing on 

the Mississippi River basin. Chapter 4, submitted to Journal of Climate (Maurer and Lettenmaier, 

2002b), uses the predictability results from Chapter 3 in conjunction with a simplified system 

model of the Missouri River mainstem reservoirs to quantify the possible influence of increased 

predictability on the operation of a large water resource system, and the additional hydropower 

benefits that could be derived with added knowledge of climate state and initial land surface 

moisture conditions.  
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CHAPTER II: MODEL-DERIVED DATA OF LAND SURFACE 
STATES AND FLUXES 

�It is a capital mistake to theorize before one has data. Insensibly one 
begins to twist facts to suit theories, instead of theories to suit facts.� 
Sir Arthur Conan Doyle 

 

This chapter has been accepted for publication in Journal of Climate in April 2002 in its current 
form: Maurer, E.P., A.W. Wood, J.C. Adam, D.P. Lettenmaier, and B. Nijssen, 2002, A Long-
Term Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous 
United States, J. Climate (in press). 

INTRODUCTION 

Early evidence of the importance of the land surface as a boundary condition in climate modeling 

(Namias, 1952, 1962) helped inspire the incorporation of land surface representations in coupled 

atmospheric models (Manabe, 1969). As computational capabilities have improved, the 

representations of the land surface included in these coupled models have become more detailed 

(e.g., Mahrt and Pan, 1984). Investigations using coupled land-atmosphere models have shown 

significant sensitivity of precipitation forecasts for lead times of several days to initial land 

surface states such as soil moisture (Beljaars et al. 1996; Betts et al., 1996a), and of long-lead 

(months or more) forecasts of surface air temperature (Huang et al, 1996). These sensitivities, of 

course, vary regionally and seasonally. For example, Brubaker et al. (1993) argue that 

precipitation forecasts should be most sensitive to land surface conditions where local feedbacks 

exist through recycling of moisture via evapotranspiration, which in general suggests that 

sensitivities should be highest in mid-continental areas in summer. This has been confirmed 

recently in experiments by Koster et al. (2000), where soil moisture memory was shown to be a 

dominant source of long-term weather predictability for some midlatitude continental regions. 

The greatest difficulty in assessing the performance of coupled (and uncoupled) land-atmosphere 

parameterizations is the absence of comprehensive land surface observations against which 

simulations can be compared at the spatial and temporal resolutions at which the models operate. 
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The Atmospheric Model Intercomparison Project (Gates, 1992) included global climate 

simulations using 31 different coupled models, producing output including land surface variables 

of soil moisture, snow, and latent and sensible heat fluxes. In the validation stage, Gates et al. 

(1999) compare modeled precipitation to a gridded global data set based on both gauge and 

satellite estimates (Xie and Arkin, 1997), while most remaining surface variables were only 

intercompared, due to the limited quality and coverage of observations. Several methods have 

been used to evaluate the land surface representations in coupled models in so-called off-line 

experiments, i.e., where surface forcings to the models (precipitation, surface air temperature, as 

well as other surface meteorological variables and radiative forcings) are prescribed. These 

include comparisons of model-predicted evapotranspiration with those derived from an 

atmospheric water balance (Lohmann et al., 1998a), comparison of model-predicted energy and 

radiative fluxes with tower measurements during periods of intensive observations (Betts et al., 

1996b), comparison of model-predicted runoff with observed streamflow (Koster et al., 1999), 

and comparison of model predictions of soil moisture with spatial averages over large regions of 

point observations of soil moisture (Robock et al., 1998). While these approaches have provided 

useful model diagnostic information, the observation-based products used in the comparisons in 

all cases have some inconsistency with the model variables with which they are compared – e.g., 

observations are for points or areas much smaller than the model spatial resolution (in the case of 

tower observations), comparisons are restricted to temporal averages rather than time step 

evolution of predicted variables (in the case of soil moisture), or the spatial scale is large 

compared to that resolved by the model (in the case of estimates of evapotranspiration based on 

atmospheric budget analysis). Furthermore, none of the data sets available at present allows an 

evaluation of the interaction of the water balance components over large regions for long periods. 

A recent report of the U.S. Global Change Research Program (Hornberger et al., 2001) on global 

water cycle research identified as one of its three “pillar initiatives” determination of  “whether or 

not the global water cycle is intensifying and to what degree human activities are responsible.”  A 

key element in any attempt to identify possible ongoing changes in the land surface component of 

the global water cycle is the use of long records to determine the variability of land surface 

moisture fluxes and storages. The lack of long-term, continent-wide observations of many of the 

component variables of the water cycle greatly complicates the direct determination of changes in 

most of these variables (Ziegler et al., 2001) 
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Global reanalyses, such as those produced using global forecast models of the U.S. National 

Centers for Environmental Prediction (NCEP) (Kalnay et al., 1996) and the European Centre for 

Medium-Range Weather Forecasts (Gibson et al., 1997) provide one means of diagnosing model 

predictions of moisture and energy fluxes in the atmosphere and at the land surface.  The 

reanalyses are produced by implementing a fixed or “frozen” version of a weather forecast model 

retrospectively, using the best available data in the analysis cycle, and archiving the model 

analysis output, which forms a consistent space-time field of all fluxes and state variables 

simulated by the model.  The initial reanalysis produced using the NCEP model (produced in 

cooperation with the National Center for Atmospheric Research (NCAR), and usually referred to 

as the NCEP/NCAR reanalysis) is termed NRA1, to distinguish it from a more recent reanalysis, 

referred to here as NRA2, that uses the same forecast model (Ebisuzaki et al., 1998; Kanamitsu et 

al., 2000). NRA1 has been widely used for moisture and energy budget studies, model diagnosis, 

and many other purposes where temporally and spatially continuous-discrete fields are needed.  

Kalnay (personal communication) and her colleagues estimate that over 3000 journal articles 

have made use of NRA1 directly or indirectly in the 5 years since the data (now periodically 

updated to cover the 50+ year period from 1949 to within approximately one month of current 

time) were first made publicly available.  Reanalyses like NRA1 and NRA2 can provide an 

excellent resource for studies examining variables that are closely linked to assimilated variables 

(mostly atmospheric profiles of moisture, temperature, and wind), and in fact Kalnay et al. (1996) 

provide a classification of the quality of NRA1 variables which is largely based on how closely 

related an archived variable is to assimilated observations. Under this scheme, variables related to 

the land surface water budget are assigned to Class C, meaning there are no observations directly 

affecting the variables, which are completely determined by the model, and may have 

considerable biases.  For example, large biases have been identified in NRA1 precipitation 

(Higgins et al., 1996; Janowiak et al, 1998; Trenberth and Guillemot, 1998), evapotranspiration 

(Lenters et al., 2000), runoff (Roads and Betts, 2000; Coe, 2000), snow and soil moisture (Lenters 

et al, 2000; Maurer et al., 2001), although interannual variability of some variables, such as 

precipitation and runoff have been found to be better simulated (Roads and Betts, 2000).  The 

follow-up NRA2 reduces NRA1 land surface water budget biases, though some biases remain 

(Maurer et al., 2001), and NRA2 covers a much shorter period, covering the “satellite” era of 

1979-2000. 
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A major cause of problems with land surface variables in both NRA1 and NRA2 is the use of soil 

moisture “nudging” (or adjustment in the case of NRA2), which results in nonclosure of the 

surface water budget.  Maurer et al (2001) showed that the nonclosure term can be of the same 

order as other terms (e.g., runoff) in the surface water cycle. Although nudging in a reanalysis is 

designed to bring the model state (especially atmospheric moisture variables) closer to 

observations, this is done at the expense of other components of the water budget, and 

complicates studies focused on the interaction and variability of water budget components at the 

land surface (see, e.g. Maurer et al. (2001) for an assessment of the effect of soil moisture 

nudging on runoff in NRA1). For these reasons, reanalysis data can be inappropriate for diagnosis 

of land surface moisture and energy flux and state variable simulations, by either uncoupled or 

coupled land-atmosphere models (Maurer et al., 2000), especially where the relationships 

between the budget components and their variability are of interest. 

As argued by Maurer et al. (2000; 2001), better data for diagnosis of land surface water budget 

simulations can be produced through use of a physically based land surface model forced with 

quality controlled surface variables, and whose predicted surface runoff, when routed to 

correspond to streamflow measurements at the outlet of large river basins, matches observations.  

The effective degrees of freedom in a land surface scheme can be greatly reduced by prescribing, 

rather than predicting, model forcing variables at the land surface. For consistency of results, land 

surface schemes should, by construct, close the surface water and energy budgets (Pitman et al., 

1999), and given the closure of these budgets by design, the variability and interaction of other 

“internal” variables can be expected to be much more realistic than those produced by reanalyses 

(or for that matter, any coupled model) that include some type of updating of model states.  

We describe in this paper a consistent set of observation-based land surface forcings, and derived 

surface fluxes and state variables for a 50-year period that is more or less consistent with that 

available from NRA1.  Like the reanalyses, the derived data are based on use of a consistent 

model for the entire simulation period and model domain.  The time step is sub-daily (3-hours), 

and the model (and hence derived data) spatial resolution is 1/8 degree.  The domain covers all of 

the conterminous U.S. plus a bounding area that covers parts of Canada and Mexico (specifically 

longitudes 67°W to 125°W and latitudes 25°N to 53°N), and is consistent with the domain and 

resolution of the Land Data Assimilation System (LDAS) – North America project (see Mitchell 
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et al., 1999).  By construct, the surface energy and water budgets close at each time step; no 

assimilation of land surface state observations is performed. 

HYDROLOGIC MODEL DESCRIPTION 

The hydrologic model used in this study is the variable infiltration capacity (VIC) model (Liang 

et al. 1994; 1996).  VIC is a macroscale hydrologic model that balances both surface energy and 

water over a grid mesh, typically at resolutions ranging from a fraction of a degree to several 

degrees latitude by longitude.  Macroscale in this context refers to areas above a critical scale at 

which subgrid hydrologic variability can be captured statistically (e.g., Wood et al., 1988) – 

typically taken to be around 10 km.  The controls of vegetation on land-atmosphere moisture and 

energy fluxes within VIC can be considered to constitute a soil-vegetation-atmosphere transfer 

scheme (SVAT).  One distinguishing characteristic of the VIC model is its use of a subgrid 

parameterization of the effects of spatial variability in soils, topography, and vegetation that 

allows it to represent the observed nonlinear soil moisture dependence of the partitioning of 

precipitation into direct runoff and infiltration.  It also features a nonlinear mechanism for 

simulating slow (baseflow) runoff response, and explicit treatment of vegetation effects on the 

surface energy balance. 

In contrast with most SVATs, the VIC model generally (based e.g. on results of PILPS 

experiments; Lohmann et al., 1998a) does a better job of reproducing observed runoff 

characteristics, whereas compared with other hydrologic models, it includes a full energy balance 

formulation absent from most hydrologic, or rainfall-runoff models.  The VIC model has been 

successfully applied to many large global rivers (e.g., Abdulla et al., 1996; Lohmann et al., 

1998b; Nijssen et al., 1997; Wood et al., 1997; Nijssen et al., 2001).  For this study, the model 

was run at a 1/8-degree resolution from January 1950 through July 2000 (with 1949 used for a 1-

year spin-up to remove the effects of initial moisture storages). 

Prior to conducting the archived simulations described below, simulations of more limited length 

were conducted for sub-areas of the domain shown in Figure 2.1.  The simulated runoff was 

routed through the grid cell network to strategic outlet points, where it was compared to observed, 

or, where available, naturalized (water management effects removed) runoff.  The simulated 

runoff was calibrated by adjustment of soil parameters describing soil depth, baseflow drainage 
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and infiltration capacity of the soil layers, which is described in greater detail by Maurer et al. 

(2001), with the resulting “pseudo-observations” used to compare various coupled models. 
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Figure 2.1 - LDAS Domain with modeling sub-areas 

MODEL INPUT DATA SETS 

Land Surface Characteristics 

The soil characteristics used were taken from gridded 1/8° data sets developed as part of the 

LDAS (Mitchell et al., 1999) project.  Within the conterminous U.S., these data sets are based on 

the 1-km resolution data set produced by Pennsylvania State University (Miller and White, 1998).  

For areas in Canada and Mexico, the LDAS soil data are derived from the 5-minute Food and 

Agriculture Organization data set (FAO, 1998).  Soil texture in the LDAS data set is divided into 

16 classes for each of 11 layers, inferring specific soil characteristics (e.g., field capacity, wilting 

point, saturated hydraulic conductivity) based on the work of Cosby et al. (1984) and Rawls et al. 

(1998), and Reynolds et al. (2000).  These LDAS data sets were used to specify the relevant soil 

parameters required by the VIC model directly.  For remaining soil characteristics (e.g., soil 

quartz content), values were specified using the soil textures from the 1-km database, which were 

then indexed to published parameter values (the primary source was Rawls et al. (1993)), and 

aggregated to the 1/8° model resolution.  The VIC model as applied in this study uses a three-

layer soil column, with depths of each layer specified for each grid cell as derived during sub-area 

calibration.  
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Land cover characterization was based on the University of Maryland global vegetation 

classifications described by Hansen et al. (2000), which has a spatial resolution of 1 km, and a 

total of 14 different land cover classes.  From these global data we identified the land cover types 

present in each 1/8° grid cell in the model domain and the proportion of the grid cell occupied by 

each, as described by Maurer et al. (2001).  The primary characteristic of the land cover that 

affects the hydrologic fluxes simulated by the VIC model is leaf area index (LAI). LAI is derived 

from the gridded (1/4°) monthly global LAI database of Myneni et al. (1997), which is inverted 

using the Hansen et al. land cover classification to derive monthly mean LAIs for each vegetation 

class for each grid cell.  The LAI values do not change from year to year in this implementation 

of VIC, hence interannual variations in vegetation characteristics are ignored.  Furthermore, the 

Myneni et al. LAI values to which the method is tied are based on averages over the period 1981-

1994 which may not be representative of the entire simulation period.  Rooting depth is specified 

for each land use type so that shorter crops and grasses draw moisture from the upper soil layers, 

and tree roots from the deeper layer (e.g. Jackson et al., 1996).  Additional parameters for each 

vegetation type were assembled based on several sources, including roughness length and 

displacement height (Calder, 1993), architectural resistance (Ducoudré et al., 1993), and 

minimum stomatal resistance (DeFries and Townshend, 1994). 

Meteorological and Radiative Forcings 

The VIC model is forced with observed surface meteorological data, which include precipitation, 

temperature, wind, vapor pressure, incoming longwave and shortwave radiation, and air pressure.  

Because only temperature and precipitation are measured routinely at a reasonably large number 

of locations within the domain, we use established relationships relating these other 

meteorological and radiation variables (excluding wind) to precipitation, daily temperature and 

temperature range.  For example, dew point temperature is calculated using the method of 

Kimball et al. (1997), which relates the dew point to the daily minimum temperature and 

precipitation, and downward shortwave radiation is calculated based on daily temperature range 

and dew point temperature using a method described by Thornton and Running (1999).  Because 

surface observations of wind speed are sparse and are biased toward certain geographical settings 

(e.g., airports), daily 10-m wind fields were obtained from the NCEP/NCAR reanalysis (Kalnay 
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et al., 1996), and regridded from the T62 Gaussian grid (approximately 1.9° square) to the 1/8° 

grid using linear interpolation. 

Within the conterminous U.S., precipitation data consist of daily totals from the National Oceanic 

and Atmospheric Administration (NOAA) Cooperative Observer (Co-op) stations, the average 

density of which is about one station per 700 km2. Daily precipitation totals were assigned to each 

day based on the time of observation for the gauge. For example, a gauge reporting precipitation 

accumulation at 7 am would have 7/24 of the daily total assigned to the reporting day, and the 

remainder to the previous day. The precipitation gauge data were gridded to the 1/8° resolution 

using the SYMAP algorithm of Shepard (1984) as implemented by Widmann and Bretherton 

(2000).  The gridded daily precipitation data were then scaled to match the long-term average of 

the parameter-elevation regressions on independent slopes model (PRISM) precipitation 

climatology (Daly et al., 1994, 1997), which is a comprehensive data set of twelve monthly 

means for 1961-1990 that is statistically adjusted to capture local variations due to complex 

terrain.  This was done by generating twelve scale factors for each grid cell, one for each month, 

where each scale factor was the ratio of the PRISM mean monthly precipitation for 1961-1990 to 

the mean monthly gridded, unscaled co-op station precipitation for 1961-1990.  Although the 

PRISM data do account for the lower station density in more complex terrain, they do not include 

an adjustment for precipitation gauge undercatch, which can be significant especially for snowfall 

measurements (Goodison et al., 1998). For this reason, some underestimate of precipitation may 

still be present in snow-dominated areas.  The minimum and maximum daily temperature data, 

also obtained from Co-op stations (approximately one station per 1000 km2 on average), were 

gridded using the same algorithm as for precipitation, and were lapsed (at –6.5°C/km) to the grid 

cell mean elevation. Temperatures at each time step were interpolated by fitting an asymmetric 

spline through the daily maxima and minima. 

For Canadian portions of the study area, the daily gridded precipitation and temperature data are 

generally of lower quality than in the U.S. part of the domain, due to lower station density and the 

need to include some less reliable sources to obtain a complete record.  For the years 1949 

through 1999 (excluding British Columbia for 1999), observed daily temperature and 

precipitation station data (Environment Canada, 1999) were used in the same manner as were 

such observations over the U.S.  Precipitation is measured at more than 2500 Environment 
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Canada meteorological stations, resulting in an average station density of one station per 4,000 

km2 in the region of Canada included in this study (Metcalf et al., 1997).  Additional sources of 

data were used to complete the precipitation and temperature forcings for British Columbia for 

1999 and for all of Canada for 2000.  For precipitation, the Global Precipitation Climatology 

Project (GPCP) gridded one-degree precipitation product (Huffman et al., 2001) was used.  The 

GPCP daily product, available from 1997 on, is derived from gauge data merged with satellite 

estimates of precipitation.  The gauge data in the GPCP product include monthly precipitation 

reported via the World Weather Watch Global Telecommunication System, which are 

observations at a lower station density than the Environment Canada meteorological stations.  For 

temperature, the NCEP/NCAR reanalysis product (Kalnay et al., 1996) daily minimum and 

maximum 2-meter air temperatures were used.  At present, the PRISM data do not include 

Canada or Mexico, with the exception of the Canadian portion of the Columbia River basin, 

hence no rescaling of precipitation was performed for the portions of Canada or Mexico without 

PRISM data. 

As for the Canadian portions of the study area, the Mexican portion also has a relatively low 

station density, and uses data sources that are generally less reliable than those used within the 

U.S. to obtain a complete record.  For the years 1949 through 1997, observed daily temperature 

and precipitation station data were used.  Daily precipitation and temperature measurements were 

available from 1949-1997 at 132 stations in the Mexican region of the domain (Servicio 

Meteorológico Nacional, 2000), for an average station density of one station per 6,000 km2. For 

1998-2000, the GPCP precipitation and the NCEP/NCAR reanalysis air temperatures were used. 

Daily precipitation totals were apportioned evenly over each three-hour model time step.  To 

evaluate the sensitivity of the diurnal cycle of model-predicted fluxes to this assumption, we 

developed a simple algorithm for disaggregating daily precipitation.  From NCDC Co-op stations 

reporting hourly data, we derived the probabilities of time-of-occurrence and number of hours of 

precipitation, and created cumulative distribution functions of these for each season for five 

ranges of daily total precipitation at each co-op station.  Using these relationships, we 

stochastically disaggregated the gridded daily precipitation and ran the VIC model, with both 

disaggregated and non-disaggregated (evenly distributed through the day) daily precipitation.  A 

comparison of the mean diurnal cycle of precipitation, runoff, and evapotranspiration from these 
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two simulations, run over the lower Mississippi River basin for 1996-1999, is shown in Figure 

2.2.  Even in the summer, when the diurnal cycle of precipitation is strongest, the assumption of 

uniform diurnal precipitation rate does not substantially affect the mean diurnal cycle of the 

partitioning of precipitation into evapotranspiration and runoff.  The same is true for the mean 

diurnal cycle of the energy balance.  The use of a constant daily precipitation rate does result in 

slightly increased runoff and decreased evapotranspiration.  However, it should be noted that the 

model parameters were estimated based on a constant diurnal cycle of precipitation, and the 

results for disaggregated precipitation may be slightly biased as the model was not recalibrated to 

the disaggregated precipitation.  Nonetheless, the results show that the assumption of a constant 

diurnal cycle has minimal effect on the model-derived moisture and energy fluxes. 
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Figure 2.2 - Comparison of effect of stochastic disaggregation of daily precipitation totals versus 
constant precipitation rate on simulated runoff and evapotranspiration. Columns in the figure are 

for different variables, and rows are for each of four seasons. 

PRELIMINARY ANALYSIS 

The parameterized forcings and model-simulated variables were compared to selected sets of 

observations where available, in order to evaluate the quality of the model-simulated data. We 
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present five comparisons here, both to confirm the validity of the derived variables, and to 

illustrate some potential uses of the data set. 

Comparison of routed VIC runoff with observed streamflow 

As in previous applications of the VIC model, the runoff was routed from individual grid cells, 

through a defined channel network, to produce hydrographs at selected points.  The routing 

algorithm is based on Lohmann et al. (1996), which uses daily runoff at each contributing grid 

cell. Although the routing model can be calibrated to improve timing of hydrographs, we 

performed no calibration of the routing model for this comparison. The resulting predicted 

hydrographs for 12 locations throughout the domain are shown in Figure 2.3.  For comparison, 

observed flows at U.S. Geological Survey stream gauges are shown.  In the case of the Columbia, 

Sacramento, Tuolumne, Colorado, Missouri, Alabama and Potomac Rivers, naturalized flows, 

that is, observed flows that have been adjusted for anthropogenic effects (e.g., irrigation 

diversions, reservoir storage, and evaporation) are shown. In general, the VIC model is quite 

successful in capturing the peak flows, the baseflow-dominated low flows, and the interannual 

variation of streamflows. 

Table 2.1 - Simulated and observed streamflow comparison statistics. 
River RMSEa (%) Relative Biasb (%) Average Observed 

Flow (m3s-1) 
Columbia R. 44.0 9.0 5349 
Sacramento R. 46.4 -0.4 239 
Tuolumne R. 68.4 30.3 76 
Colorado R. 45.7 26.7 580 
Neches R. 61.4 29.5 44 
Arkansas R. 56.3 35.0 1605 
Missouri R. 38.8 -3.7 3119 
Upper Mississippi R. 25.6 -13.8 3511 
Ohio R. 21.3 -14.8 9760 
Alabama R. 48.2 31.7 1113 
Moose R. 71.8 -50.9 738 
Potomac R. 47.9 0.5 424 
Overall (weighted by Obs. Flow) 34.5 -3.1  

Figure 2.4 shows the average annual cycle of the simulated and observed flows for the 10 year 

time series in Figure 2.3. As with Figure 2.3, the range of flows represented varies widely 
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Figure 2.3 - Comparison of routed simulated runoff (dashed lines) with observed (or naturalized) 
streamflows (solid lines). Shaded areas are the contributing regions to each identified point. 

Ordinate values are runoff in m3s-1, abcissa is a ten year period, the beginning of which varies by 
basin depending on observed flow availability. 
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Figure 2.4 - Average flows by month for each of the 12 basins shown in Figure 2.3.  Ordinate 
values are m3s-1, solid lines are observed or naturalized flows, and dashed lines are routed 

simulated runoff. 

between basins. The root mean square error (RMSE) and relative bias for these 12 locations are 

summarized in Table 2.1. It should be noted that for the Arkansas River, significant withdrawals 

and diversions affect the observed flows, but unfortunately naturalized flows for this river are not 

available for the period analyzed. Therefore it is expected that the simulated flows, which do not 

consider water management effects and diversions, will exceed the observed flows, and in fact the 

VIC simulations generally exceed the USGS observations. Based on data for 1995 (Solley et al., 

1998), the depletions are estimated to be 10-15% of the annual flow, thus the relative bias in 

Table 2.1 would be reduced accordingly, as would the RMSE. The bias over all areas, weighted 

by flow, is quite low; relative bias for the basins contributing the smallest amounts of flow tends 

to be larger than for the higher flow producing regions. RMSE, representing the average error in 

monthly flow simulation, shows the same pattern where RMSE tends to be smaller for the areas 

contributing greater flows. The Moose River in Ontario, Canada shows the highest bias and 

RMSE of the basins included in Table 2.1. This reflects the lower density of meteorological 

stations in Canada, hence greater uncertainty in the forcing data for the hydrologic model. In 



18 

 

addition, the undercatch of frozen precipitation, which is not corrected for in this study, would 

more important at higher latitudes. Further, no calibration to streamflow was performed for the 

portions of the domain in Canada (except the Canadian portion of the Columbia River basin, 

which was calibrated) or Mexico, for which soil parameters were transferred from the nearest 

calibrated basins in the U.S.  For the Columbia River basin, the RMSE value is inflated due to the 

timing shift apparent in both Figures 2.3 and 2.4, which illustrates the sensitivity of the RMSE 

statistic when applied to timing errors in seasonal hydrographs. Although no calibration of the 

routing model was performed for this study, manually shifting the flows by two to three weeks 

reduces the RMSE by 50%. This shows that the simulated model output, when used with a 

customized routing for each basin, could produce simulated streamflows with lower RMSE than 

that shown in Table 2.1, although the bias would remain unchanged. It should be emphasized that 

the RMSE values shown in Table 2.1 are applicable to individual months and years; the errors 

associated with mean flows averaged over n years would scale with approximately 1/n1/2. 
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Figure 2.5 - Taylor diagram for simulated monthly runoff routed to basin outlet points. The 
plotted numbers identify the basin, using the same numbering system as used in Figures 2.3 and 
2.4, and are shown in font sizes scaled by the cube root of the observed flow. See text for details. 

Figure 2.5 illustrates three important characteristics of the simulated and observed monthly time 

series for each basin, using a Taylor diagram (Taylor, 2001). The numbers plotted correspond to 

the numbering of the basins in Figures 2.3 and 2.4, and the font size for each number is scaled by 

the cube root of the observed average flow. The radial distance from the origin to each number 

represents the ratio of the simulated to the observed standard deviation; the cosine of the azimuth 

angle represents the correlation of simulated streamflows with observations (after removal of the 
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mean); and the distance from the point where observations would plot, located at (1,0), is 

proportional to the RMSE. Figure 2.5 shows good correlation of simulated and observed flows, 

with all basins exceeding 0.8, and most above 0.9. The most prominent feature is that the basins 

with the largest runoff show the best correspondence with observed variance, plotting very close 

to the dashed line at the radial value of unity. 

The overall success at reproducing runoff hydrographs, taken together with the use of 

observed precipitation, implies that, over time scales long enough for the change in 

surface storage to be small relative to the accumulated values for other variables in the 

water budget, ET is realistically estimated. In addition, due to the physically based 

representation of soil moisture and runoff generation processes within the model, 

simulations of other surface flux and state variables (e.g., ET, total soil moisture storage, 

and snow) should reasonably represent the true (but unobserved) variables. Although 

runoff can be validated against observed streamflow at many locations, validation of 

other model simulated variables, such as ET and soil moisture are more difficult due to 

the paucity of long-term observations over broad spatial domains. Ongoing validation of 

the data set presented here will identify areas where this approach performs best, and 

where improvements will be most valuable for future investigations.  We report below 

comparisons for a few locations where long-term observations of variables other than 

runoff are available. 

Comparison with Illinois soil moisture 

There are few systematic measurements of soil moisture within the model domain that provide 

records of a length sufficient for comparison to the VIC model simulation.  The soil moisture 

database described by Hollinger and Isard (1994), available from as early as 1981 through August 

1996 through the Global Soil Moisture Data Bank (Robock et al., 2000), is unique in the length 

and detail of the measurements.  Observations are available from 19 sites distributed more or less 

uniformly over the state.  Soil moisture is reported at 11 different depths to a total of 2 m, with a 

sampling interval of approximately every 2 weeks on average (less frequently in the winter).  For 

comparison with these 19 point measurements, we selected the 17 VIC 1/8-degree grid cells that 
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contain all of the observation locations.  In addition, because the soil depths in the VIC grid cells 

vary between 1.0 and 2.3 meters, only the soil moisture from the top 1 meter from both the 

observations and the VIC model were used in the comparisons.  Figure 2.6a compares the 

observed monthly average soil moisture for the top 1 m for 1981-1996 with the VIC model 

simulation for the same period. The climatological soil moisture level for the VIC simulation is 

low relative to the observations, but the average monthly flux, which affects the model’s water 
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Figure 2.6 - Comparison of observed soil moistures in Illinois from 1981-1996 with simulated 
values for the same period. a) average soil moisture in the top 1 meter of soil for each month; b) 

average soil moisture tendency for each month;  c) coefficient of variation of monthly soil 
moisture anomalies; d) autocorrelation of soil moisture anomalies. 
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balance, is simulated quite accurately (Figure 2.6b). This suggests that, at least in the Illinois area, 

the VIC simulation produces soil moisture storage changes that are consistent with observations. 

Additionally, a monthly time series of average soil moisture in the top 1 meter was computed for 

both the Illinois observations and the VIC simulations.  The coefficient of variation of each 

month, defined as the standard deviation divided by the mean, is a measure of the interannual 

variability of soil moisture.  Figure 2.6c shows that the coefficient of variation for the VIC 

simulations slightly underestimates the seasonal variation of interannual variability seen in the 

observations.  Finally, Figure 2.6d illustrates that the autocorrelation of soil moisture anomalies in 

the VIC model is similar to that of observed data, which suggests that the persistence of soil 

moisture anomalies is comparable in the model and observations. 

Comparison of Diurnal Cycle of Surface Fluxes with Observations 

To evaluate the simulated daily radiation, as well as the diurnal cycle, we use observations of 

selected sites in the continental U.S. established as part of the Surface Radiation Budget Network 

(SURFRAD) (Augustine et al., 2000).  We chose the four sites with the longest records, 

beginning in 1994-1995, which are located in Mississippi, Montana, Illinois, and Colorado.  

Figure 2.7 shows the observed downward solar radiation and net (longwave plus shortwave) 

radiation fluxes at these four sites (aggregated from 3-minute to 3-hour, to match the VIC 

simulation time step), averaged for June, July, and August for 1996-1999, and the model 

simulated fluxes for the grid cells containing these points.  Both the simulated average daily 

downward solar radiation and net radiation are within ten percent of the observations at all 

locations; averaged over all sites these are within two percent.  There is a downward bias of the 

daily peak for these fluxes of between three and 15 percent, with an average of ten percent over 

all sites.  In general, the comparisons indicate reasonable agreement of daily radiative fluxes, with 

some peak radiation underestimation, across a wide range of geographical settings. 

The First International Satellite Land Surface Climatology Project (ISLSCP) Field Project (FIFE) 

included an intensive collection of land surface flux data at multiple locations within a 15 km x 

15 km site near Manhattan, Kansas (centered at 39.05°N, 96.53°W).  Intensive field campaigns 
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Figure 2.7 - Comparison of observed (thick lines) and simulated (thin lines) downward solar 
radiation and net radiation at four SURFRAD sites. Data is average for June, July and August, 

1996-1999, with the observations aggregated temporally to 3-hours for comparison. 

were conducted during the summers of 1987 and 1989, generally of length about 2-3 weeks each, 

with continuing observations with fewer stations during the remainder of the summers, and 

during the summer of 1988 (Sellers et al., 1992).  The resulting tower flux observations were 

compiled and quality controlled by Betts and Ball (1998).  The data set provides a multi-site 

average of surface fluxes, reported every 30-minutes, that allows examination of the VIC model 

output with an observed diurnal cycle for surface flux variables. 

As an example, we compare the average diurnal cycle of surface fluxes for the VIC grid cell 

centered at 39.0625°N, 96.5625°N, which is comparable to the FIFE site in location and 

dimension, measuring 13.9 km north-south x 10.8 km east-west.  Figure 2.8a compares the 

average diurnal cycle for this grid cell with the FIFE observations for June through August, 

averaged over 1987-1989.  In general, the VIC-derived peak solar radiation is underestimated by 

15 percent, while the daily average is underestimated by 7 percent.  The net radiation is also 

underestimated relative to the observations, by 16 percent for the peak, and by 9 percent for the 

daily average.  The average underestimate of the latent heat flux by VIC, for the averaged 1987-

1989 period, is 21 W m-2, or 19 percent, which is equivalent to 0.73 mm d-1 of evaporation.  This 
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Figure 2.8 - Comparison of observed (thick lines) and simulated (thin lines) surface fluxes at the 
FIFE site; averaged June, July and August values over 1987-1989. 

can be compared to estimates of the site-averaged non-closure of the water balance for the 

observations, which for the period May 29 – October 16, 1987 which vary from 20 mm (Duan et 

al., 1996) to 40 mm (Betts and Ball, 1998), or an average 0.14-0.28 mm d-1 over the observation 

period.  As shown in Figure 2.8b, the partitioning of the net radiation into latent and sensible heat 

does follow the pattern seen in the observations.  The average simulated sensible heat flux 

exceeds the observed by 5 Wm-2, which is a 16 percent overestimation.  The average Bowen ratio 

for daytime hours for the observations for this period is 0.36, and for VIC is 0.61.  Although 

summer evapotranspiration for this grid cell shows some bias relative to the observations, since 

the model is forced with precipitation and reproduces observed runoff, evapotranspiration is 

correctly estimated over larger areas. 

Derived Soil Moisture Persistence 

Huang et al. (1996) produced a 63-year time series of monthly soil moisture for the 

conterminous U.S., using historical monthly average precipitation and temperature at 344 

climate divisions.  They developed a simple monthly water balance bucket-type soil 

model, where potential evapotranspiration was computed using a temperature index 

method, which was then scaled by the soil saturation level to estimate actual 

evapotranspiration.  Surface runoff was calculated based on incident monthly 
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precipitation, scaled by a non-linear relation of saturation of the soil, and base flow 

discharge from the soil column was a function of soil moisture in the column.  Using 

their derived soil moistures, they produced maps of the autocorrelation of soil moisture, 

as well as correlations of soil moisture with precipitation and temperature.  Huang et al. 

apply uniform soil model parameters to the conterminous U.S., developed based on 

runoff data in Oklahoma and validated against soil moisture in Illinois.  Figure 2.9 

compares the autocorrelation of soil moisture anomalies at 3-, 6- and 9-month lags for the 

VIC model output.  Panel 4d) is comparable to Figure 3 in Huang et al. (1996). There is a 

strong correspondence with the VIC-derived statistics and Huang et al. (1996).  For 

instance, both sets of results show higher soil moisture persistence toward the western 

portions of the domain, and more moderate levels in the north-central U.S., though the 

VIC model correlations are generally lower than the Huang et al. values by 0.1 to 0.2.  

Focusing specifically on Illinois, at a 3-month lag the VIC model simulations show a 

monthly autocorrelation of soil moisture anomalies between May and August of 

approximately 0.25-0.3 (with an average of 0.28 over the Illinois area) while the Huang 

et al. model estimates approximately 0.35-0.5 for this region.  By comparison, the Illinois 

soil moisture measurements show a 3-month autocorrelation of soil moisture anomalies 

for May/August of 0.27, again using the soil moisture observations discussed above.  

This suggests that, at least for Illinois, the more complex VIC model land surface 

representation reproduces observed soil moisture persistence somewhat better than does 

the more simplified model of Huang et al.  Figure 2.9 also illustrates the decay of the 

autocorrelation with time.  For instance, February soil moisture anomalies tend to 

dissipate more quickly than August anomalies, which have significant persistence over 

larger areas 9 months later. 

Observed and Simulated Snow Extent 

Northern hemisphere snow extent data are archived by the National Snow and Ice Data 

Center (1996) for the period 1971-95.  These data were derived from digitized versions of 

manual interpretations of AVHRR, GOES and other visible band satellite data, and are 
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gridded to a spatial resolution of 25 km. For comparison with the gridded observations of 

snow extent, Figure 2.10 shows the areas that, in the hydrologic model simulation, 

contain greater than 5 mm of snow water equivalent on the selected dates at least 80% of 

the time during 1971-1995. The contour line on Figure 2.10 shows for each date the 

extent to which snow cover is observed 80% of the time during the same period. It should 

be noted that there is not direct, fixed correspondence between a specific snow water 

equivalent on the ground and snow extent detected by a satellite, but a qualitative 

assessment can be made on the basis of this comparison. Figure 2.10 illustrates three 

features of the model simulated snow: the seasonal retreat of the snow line for the eastern 

half of the domain closely matches the observations; but the model underestimates snow 

extent in the northern great plains; and a slight overestimation of late season snow by the 

model relative to the observations is apparent in some areas of the mountainous western 

U.S.  Cherkauer (2001, Appendix A) in a study focused on the Upper Mississippi River 

basin demonstrated the significant effect of correcting precipitation for undercatch of 

precipitation, especially frozen precipitation. The increase in winter (December, January 

February) precipitation was greatest in northern areas, and may account for some of the 

difference in observed snow extent and simulated snow water equivalent in the northern 

Great Plains. 

DATA FORMAT AND AVAILABILITY 

The data described in this paper are archived in netCDF format.  Monthly summaries of model 

forcing variables, model output, and derived variables are available to the public via ftp from our 

web site (www.hydro.washington.edu).  Arrangements are currently in progress to make the 

data set accessible via the University Corporation for Atmospheric Research (UCAR) Joint Office 

of Science Support. Details of access to the full dataset, which includes 3-hour output and daily 

summary data archived by variable by year, are also available from our web site. This site will 

also announce updates of the archive. 
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Figure 2.9 - Autocorrelation of soil moisture anomalies at lags of 3, 6, and 9 months. Shaded 
regions include correlations significant at a 0.05 level. 

The variables included in the archive are listed in Table 2.2.  For the 3-hourly data, flux variables 

(in units of either kgm-2s-1 or Wm-2) reported at each time step are averages over the preceding 3 

hours.  State variables (kgm-2) are reported at the end of the time step.  For monthly and daily 

summary data, both flux and state variables are averages of the eight reported values during that 

day. In addition to the model forcing and output variables, there are derived monthly summary 
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Figure 2.10 - Comparison of simulated snow water equivalent and the observed snow extent for 
1971-1995. Countour line indicates the extent of observed snow cover 80% of the time on the 

specified date. Shaded areas are those showing simulated snow water equivalent in excess of 5 
mm 80% of the time on the indicated dates. 

data, including soil moisture and snow water fluxes averaged over each month.  The variable 

names are generally consistent with the Assistance for Land Surface Modeling (ALMA) 

standards (Polcher et al., 2001).  For variables not included in the ALMA list, variable naming 

conventions are based on the LDAS (Mitchell et al., 1999) common output standard. 

CONCLUSIONS 

We have described a derived data set of land surface states and fluxes for the LDAS domain, 

which comprises the conterminous United States, and portions of Canada and Mexico.  The data 

set spans the period 1950-2000, and is at a resolution of 1/8 degree, or roughly 140 km2 per grid 

cell on average.  The data are distinct from reanalysis products in that both the water and energy 

budgets at the land surface balance at every time step.  Furthermore, the surface forcings include 

observed precipitation, and the simulated runoff is shown to match observations quite well over 

large river basins, indicating that, over the long term, in order to balance precipitation and runoff, 

evapotransporation must also be realistic. Given the physically-based parameterizations in the 

model, we argue that over shorter timescales other terms in the surface water balance (e.g., soil 

moisture) are probably well represented, at least for the purposes of diagnostic studies such as 

those in which reanalysis products have been widely used.  These characteristics give this data set 

promise for proving useful for a variety of studies, especially where ground observations are 
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lacking.  As the data are extended through 2000 and 2001, the overlap of the data set with 

archived model results including assimilation of remotely sensed observations will provide more 

opportunities for study. 

Table 2.2 - Variables Included in Data Archive. 
Variables – 3-hour and Daily Variable Name Units 
Precipitation Prate kgm-2s-1 
Evapotranspiration Evap kgm-2s-1 
Runoff (surface) Qs kgm-2s-1 
Baseflow Qsb kgm-2s-1 
Soil Moisture, Layer 1 Soilm1 kgm-2 
Soil Moisture, Layer 2 Soilm2 kgm-2 
Soil Moisture, Layer 3 Soilm3 kgm-2 
Snow Water Equivalent SWE kgm-2 
Net Shortwave Radiation at the Surface SWnet Wm-2 
Incoming (downward) Longwave Radiation LWdown Wm-2 
Net Radiation at the Surface NetRad Wm-2 
Latent Heat Flux Qle Wm-2 
Sensible Heat Flux Qh Wm-2 
Ground Heat Flux Qg Wm-2 
Albedo Albedo --- 
Surface (skin) Temperature RadT K 
Relative Humidity RH % 
Air Temperature Tair2 K 
Wind Speed Wind ms-1 
   
Variables – Derived Monthly Variable Name Units 
Average Soil Moisture Tendency, Layer 1 DelSoilm1 kgm-2s-1 
Average Soil Moisture Tendency, Layer 2 DelSoilm2 kgm-2s-1 
Average Soil Moisture Tendency, Layer 3 DelSoilm3 kgm-2s-1 
Average Snow Water Tendency DelSWE kgm-2s-1 
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CHAPTER III: LONG-LEAD HYDROLOGIC PREDICTABILITY IN 
THE MISSISSIPPI RIVER BASIN 

 
�There is genius in persistence� 
Orison Swett Marden 

 

This chapter has been accepted for publication in Journal of Geophysical Research in its current form: 
Maurer, E.P and D.P. Lettenmaier, 2002, Predictability of seasonal runoff in the Mississippi River basin, J. 
Geophys. Res. (in press). 

INTRODUCTION 

The history of the United States, and especially its expansion westward, is inextricably tied to 

water.  Beginning with the Homestead Act of 1862, the federal government actively promoted 

settlement of the arid and semi-arid west. Incentives were increased as the available lands became 

less fertile and more arid. The Reclamation Act of 1902 was transformed in the early 1930s into a 

major land and water development program, and the period of settlement that ended around 1900 

was followed by a period of intense construction of increasingly large, multi-purpose water 

projects, which continued into the 1960s. As the better dam sites were developed and their 

economic feasibility came into question, and with a mounting environmental opposition, the 

emphasis in water policy shifted toward management of resources. (e.g. Plummer 1994; Beard, 

1994; Marston, 1987) This last period, which continues today, arguably began with the Wild and 

Scenic Rivers Act of 1968. With population of the U.S. projected to rise by 20 percent by 2020 

(U.S. Census Bureau, 2000) and the West, where water scarcity is greatest, by up to 30 percent 

(Western Water Policy Review Advisory Commission, 1998), water planners are being forced to 

look for new opportunities for better management of a resource that is now essentially fully 

developed. In addition, some have argued that climate change may increase water scarcity in 

areas of the U.S. where water supplies generally are not currently constrained (Intergovernmental 

Panel on Climate Change, 2001, Chap. 4; National Assessment Synthesis Team, 2001; 

Vörösmarty et al., 2000). 
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Aside from structural changes in water use (e.g., reallocation of water, such as from agriculture to 

municipal and industrial), perhaps the greatest potential for improving water management is 

through more accurate streamflow forecasting. Over the last decade, great strides have been made 

in two areas that offer considerable potential for improved streamflow forecasting.  The first is 

better understanding of climate teleconnections as manifested by ocean-atmosphere phenomena 

such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation, and the Arctic 

Oscillation (AO). A second opportunity is use of remote sensing products for better initialization 

of the hydrologic system (e.g. Walker and Houser, 2001; Pauwels, 2001; Rango et al., 2000; 

Carroll, et al, 1999). These include snow cover extent, snow water equivalent, and surface skin 

temperature. All of these variables are observed, with various limitations, by existing sensors, the 

resolution and quality of which have improved with launch of Earth Observing System (EOS) 

Terra and Aqua platforms, and with planned soil moisture missions. (Hall et al., 2001; Ma et al., 

2002; Njoku and Li, 1999; Kerr et al., 2001) 

Improved knowledge of climate dynamics has resulted in demonstrable improvements in long-

lead (to lead times as long as a year) climate forecasts, based on coupled ocean-atmosphere-land 

models (e.g., Goddard et al., 2001 and references therein). Teleconnections of climate signals, 

especially ENSO and also the AO, have been established for the U.S. for precipitation and 

temperature (Higgins et al., 2000; Livezey and Smith, 1999; Kumar and Hoerling, 1998; 

Gershunov, 1998; Wang et al., 1999), snowfall (Kunkel and Angel, 1999), and streamflow 

(Dracup and Kahya, 1994; Kahya and Dracup, 1993). Despite the presence of apparent 

predictability in the climate signal, and the teleconnections to land surface hydrologic variables, 

the incorporation of climate forecasts in forecasts of seasonal runoff (or streamflow) has thus far 

been largely limited to experimental settings (e.g. Wood et al, 2002; Baldwin, 2001; Garen, 1998; 

National Water and Climate Center, 1998). Monthly to seasonal streamflow forecasts widely used 

in the western U.S. more commonly rely on regression-based forecasts (Soil Conservation 

Service, 1988; Garen, 1992), or use hydrologic simulation models to capture the hydrologic 

memory, as reflected in soil moisture and snow storage, and then assume, explicitly or implicitly, 

climatological average conditions during the forecast period (e.g. Twedt et al., 1977). We contend 

that recent advances in climate prediction and remote sensing provide the capability to improve 

long-lead streamflow forecasts by utilizing climate forecasts, and by incorporating better 
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estimates of the state of the land surface at the time of forecast, a contention that we evaluate for 

the domain of the Mississippi River basin in the remainder of this chapter. 

Hornberger et al. (2001), in their assessment of global water cycle research necessary to address 

critical water problems facing society, identified as one of their three key science questions the 

predictability of variations in the global and regional water cycle. The National Research Council 

(2002a) built on that assessment and raised the questions of whether accurate observation of 

initial land surface conditions increases hydrometeorological predictability, and when and where 

this predictability is likely to be most important. In this study, we address these questions by 

taking advantage of a recently developed hydrologically-based land surface data set (Maurer et 

al., 2002) to characterize hydrological predictability due to climatic persistence and persistence 

related to the initial state of the land surface. We focus on distributed runoff (e.g., spatial fields of 

runoff) rather than the space-time convolution of runoff (streamflow), in order to identify regional 

patterns and influences in runoff predictability. The primary questions we address are: 1) during 

which seasons is the predictability of runoff greatest? 2) how does the contribution of initial 

hydrologic conditions relative to climate predictability vary geographically? 3) where are 

potential improvements in seasonal runoff forecast accuracy due to improved observations (e.g. 

through remote sensing or in situ observations) of the land surface moisture state the greatest? We 

focus our attention on the Mississippi River basin (Figure 3.1), which coincides with the study 

area of the World Climate Research Programme’s Global Energy and Water Cycle Experiment 

(GEWEX) Continental-scale International Project (GCIP), a project established with the long 

term goal of demonstrating skill in predicting changes in water resources on time scales up to 

seasonal, annual and interannual (World Meteorological Organization, 1992). 

METHODS AND DATA 

The gridded data set of land surface and climatic variables of Maurer et al. (2002) is used to 

determine the predictability of runoff throughout the Mississippi River basin from currently 

available, or potentially available information. Details of the data derivation and validation can be 

obtained in Maurer et al. (2002). To summarize briefly, the runoff data were produced using the 
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Figure 3.1 - Location of the Mississippi River basin in North America. The basin boundary is 
shown in white, as is a north-south line at longitude 100 west. 

Variable Infiltration Capacity (VIC) hydrologic model driven by observed precipitation and 

temperature, and other derived surface radiative and meteorological forcings (see Liang et al., 

1994, and Cherkauer et al., 2002 for details of the model structure). The model was run at a 3-

hour time step for the period January 1950-July 2000, with a grid cell size of 1/8 degree 

(approximately 140 km2 per grid cell). Throughout this paper, predictability is assessed for 

seasonal average runoff on a grid cell by grid cell basis for a range of lead times for hydrologic 

and climatic initial conditions extracted from the Maurer et al (2002) data set, as shown in Figure 

3.2. Following the convention of Barnston (1994), the lead time is the number of seasons 

“skipped” between the predictor(s) and the predictand, so a lead-0 indicates a lead time of 1.5 

months from the initialization to the mid-point of the predicted season. Seasons are defined as 

December-February (DJF), March-May (MAM), June-August (JJA), and September-November 

(SON). The date on which initial conditions are determined, i.e., the initialization date or date of 

forecast, is shown with vertical lines in Figure 3.2 for the example of predicting DJF runoff. 

Because we use climate and land surface variables on the initialization date to predict runoff in a 

future season, we do not include any runoff forecast skill obtainable through predictability of the 

evolution of these variables. For the case of climate initial conditions, this is discussed in more 

detail below. 

Climate indicators (represented in this study by the Southern Oscillation Index, SOI and the 

Arctic Oscillation, AO, Index) and land surface state (snow water equivalent, SWE, and soil 

moisture, SM) influence seasonal runoff as indicated in Figure 3.3, which shows schematically 
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the effect of unpredictable weather noise in the climate system. Note that we ignore the 

possibility of an additional noise component between the soil moisture and snow states and runoff 

in this study. Because the runoff and land surface states in the Maurer et al (2002) data set are 

derived from the same model simulation, the only direct effect of noise on runoff in the data set is 

though the unpredictable weather component that drives the hydrologic model. 

Forecast
Season

DJF

Initialization Dates for DJF Forecast

30 Nov30 Nov 28 Feb 31 May 31 Aug

Lead-0Lead-4 Lead-3 Lead -2 Lead 1

D J F M A M J J A S O N

 

Figure 3.2 - Example of initialization dates for forecasting the DJF runoff at lead times of 0 
through 4 seasons. 

For this study, we consider only the initial conditions of the climate indicators and land surface 

moisture state as predictors of future runoff, so the process illustrated in Figure 3.3 is “one-way,” 

in that no feedback from the initial land surface moisture state to climate evolution is included. 

Initial soil moisture, varying between extreme wet and dry initial states, has been shown to 

greatly change 30-day forecasts of precipitation averaged over regional to continental areas 

(Beljaars et al., 1996; Betts et al, 1996a), though the effects of initial soil moisture anomalies 

representative of typical interannual variability have been shown to have little impact on the 

evolving atmosphere (Oglesby et al., 2002). Because we include initial soil moisture explicitly as 

a predictor, any predictability due to feedback to the atmosphere, at least that which can be 

captured by the linear relationships used in this study, is attributed to knowledge of the initial 

moisture state rather than knowledge of climate evolution due to initial land surface state. 
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Figure 3.3 - Schematic of the predictable and unpredictable influences on seasonal runoff 
considered in this study. Note that for this study the interactions are one-way; feedback from the 
land surface to climate is not considered -- only the initial conditions of the climate indicators are 

included. 

Evaluation of Predictability 

To assess the predictability of seasonal average runoff, we used multiple linear regression, using 

as predictors various combinations of the SOI, AO, SM, and SWE at different lead times. The 

regressions were performed on a grid cell by grid cell basis across the domain. The multiple 

regression equations developed for the combinations of variables are not used as predictive 

models; only the variance explained by the regression is used. The values of the variance 

explained by the predictors, r2 (where r is the correlation coefficient of the regression) were 

plotted spatially at the different lead times to illustrate their predictive capability of seasonal 

runoff by season and by lead time. The predictor variables are assigned to three tiers, where the 

climate indicators that are currently available for incorporation into forecasts, are assumed to be 

the best known variables, and SWE, which in practice is estimated by ground surveys and remote 

sensing, is less known, and SM is essentially unobserved, and hence is least well known. The 

variances explained by each tier are the incremental amounts over and above that already 

explained by better known variables. In this way, variances explained by two correlated variables 

are only counted once, and are attributed to the better known variable. 
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To test for significant correlations, the two step process outlined by Livezey and Chen (1983) was 

used. First, temporal autocorrelation was taken into account, and the effective number of temporal 

degrees of freedom was determined. As applied in this study, the time between independent 

samples was computed for each grid cell for each combination of predictors as (Livezey and 

Chen, 1983): 
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where CP is the autocorrelation function for the selected combination of predictors (separated by 

season, e.g.. a 50 year sequence of DJF values of SOI), CR is the autocorrelation function of the 

seasonal runoff, i is the sample number of N total samples, and ∆t is the sampling time (one 

season for this study), so i∆t represents a lag of i seasons. The effective number of degrees of 

freedom, n, was then determined by (Livezey and Chen, 1983): 
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At each grid cell the computed value of the correlation coefficient r  was compared against the 

95% significance criterion for no correlation, which provided a determination of local 

significance. 

The total amount of significant area was determined by counting the number of grid cells 

exhibiting locally significant correlation, with each grid cell weighted by the cosine of latitude to 

avoid biasing due to differences in grid cell area. If there were no spatial correlation and each grid 

cell (there are 1532 ½-degree grid cells in the Mississippi River basin) were an independent 

sample, we would expect 5% of the grid cells (77) to show significant correlation by chance 6% 

of the time, based on the binomial distribution. At lead times and seasons where greater than 6% 

of the area showed local significance, statistical field significance at the 95% confidence level 

would be claimed. Because there is spatial correlation between grid cells in the runoff fields (as 

well as in SM and snow fields), the actual number of spatial degrees of freedom is considerably 

less than 1532. As a first estimate, the number of empirical orthogonal functions needed to 

describe 95 percent of the variance in seasonal runoff varies from 35 in DJF to 39 in JJA, which 
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translates to 15.2-15.8% of the area that would show local significance by chance. As a practical 

matter, this suggests a need to use a Monte Carlo technique to assess spatial field significance.  

Monte Carlo simulations were performed in a manner similar to that of Barnston (1994), in which 

the forecast to observation year correspondence was randomly shuffled over the entire domain, 

and the fractional area of the basin exhibiting significant correlation at a 95% level based on a t-

test was computed. The process was repeated 500 times for each lead time, season, and set of 

predictors. For each season and lead time the area determined as significant by this Monte Carlo 

technique is the minimum for a result to achieve statistical field significance. Table 3.1 shows the 

results of these Monte Carlo simulations, and the minimum area with significant correlations for 

field significance. It should be noted that field significance is a basin-wide test in this study. If a 

particular (a priori) interest were exclusively in one sub-area of the basin, then local significance 

would still be pertinent, though basin-wide field significance of this may not. A separate set of 

Monte Carlo experiments for only the area of interest could be used to determine the area 

required for field significance of a sub-area. 

Table 3.1 - Fractional area thresholds (expressed as percentages of entire Mississippi River 
basin area exhibiting local significance) that must be exceeded to achieve statistical field 
significance at a 95% confidence level. 
 DJF MAM 
 Lead Lead 
Predictors 0 1 2 3 4 0 1 2 3 4 
ALL 54 42 44 54 58 53 52 40 43 53 
SOI AO 29 28 27 28 27 24 24 26 25 26 
SWE 10 8 8 10 10 9 9 8 8 9 
SM 10 8 8 9 9 9 8 8 8 9 
 JJA SON 
ALL 40 50 51 40 40 41 41 53 54 40 
SOI AO 25 29 28 27 28 27 24 24 26 25 
SWE 8 10 11 8 9 8 8 9 10 8 
SM 8 10 8 8 9 9 9 8 8 8 
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Climate Signals 

Given the established teleconnections of climate signals with hydrologic variables over the U.S. 

(see references above), our objective was to characterize the seasonal predictability of runoff, and 

the dominant sources of predictability. At seasonal to interannual scales, the El Nino/Southern 

Oscillation (ENSO) is the best known and most prominent predictable climate signal (Rasmussen 

and Wallace, 1983). One index used to quantify the phase of the ENSO signal is the SOI, which 

is based on the surface pressure difference across the South Pacific (Tahiti minus Darwin). The 

SOI has been related to various land surface effects in the continental U.S., including seasonal 

temperatures (Wolter, et al., 1999), precipitation (McCabe and Dettinger, 1999), and streamflow 

(Cayan et al., 1999). Because of this past use of the SOI in teleconnection studies we decided to 

use it in this study as well, and we obtained the monthly standardized difference index from the 

National Oceanic and Atmospheric Administration, National Centers for Environmental 

Prediction Climate Prediction Center (http://www.cpc.ncep.noaa.gov/data/indices/). Trenberth 

(1997) recommends smoothing of the monthly SOI index to remove the effect of high frequency, 

small scale phenomena. As in Ropelewski and Jones (1987), we applied a five-month moving 

average to the monthly SOI time series. Although the effect of this smoothing is to include some 

future information of SOI state in the value for the current month, we argue that that the 

smoothing, by removing high frequency fluctuations, makes the SOI more comparable to the 

more slowly-varying sea surface temperature (SST)-based ENSO indicators. For example, the 

unsmoothed SOI has a correlation with the SST index Niño 3.4, for the period 1950-1999 of –

0.72, while 5-month smoothing of SOI produces a stronger correlation of –0.87. The smoothing 

therefore results in SOI values that more closely resemble the SST-based index that would be 

available at the time of forecast.  These values can be used as an indicator of climate state that 

would be known at the initialization time, with the results of the predictability analysis being 

more robust, irrespective of the ENSO index chosen. 

Shukla (1998) suggested that the evolution of ENSO events appears to be predictable 6 to 9 

months in advance, and that SOI-based persistence forecasts may underestimate the predictability 

of sea surface temperature anomalies. Barnston et al. (1999) subsequently showed that both 

coupled GCMs and statistical models outperform simple persistence in forecasts of ENSO state at 

lead times of 3.5 to 9.5 months. Landsea and Knaff (2000) argued that a more reasonable baseline 
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of ENSO predictability than simple persistence is a simple statistical model such as the ENSO 

climatology and persistence (ENSO-CLIPER) model (Knaff and Landsea, 1997). Landsea and 

Knaff (2000) show that this simple regression-based model outperformed coupled GCMs and 

more complex statistical models for predicting the 1997-1998 El Niño event for lead times 

through two seasons, though for 3 and 4 season forecast lead times a modest improvement was 

achieved using a more sophisticated statistical model. The factors influencing the characteristics 

of an El Niño event, and ultimately its predictability, differ for each event (Philander, 1999; 

Fedorov, 2002). This implies that the predictability of an El Niño event achieved by any 

particular model will vary with each event, hence the relative skill attributed to coupled GCMs, 

statistical or persistence forecasts will change accordingly. Although the ENSO-CLIPER model 

will not outperform GCM forecasts for all historical El Niño events, we use the ENSO-CLIPER 

model to generate forecasts of SOI to estimate of the potential difference in runoff predictability 

between simple persistence and forecasted ENSO state. 

Barnston et al. (1999) note that success in forecasting sea surface temperatures does not 

necessarily imply comparable success in forecasting impacts in teleconnected regions such as the 

continental U.S. The process of translating a predicted sea surface temperature anomaly into a 

remote land surface response introduces additional unpredictable noise, so that a marginal 

increase in prediction of ENSO will not necessarily result in measurable increase in predictability 

of the land surface effects associated with ENSO. In particular, the selection of an ENSO 

indicator used in persistence mode, or with a model to predict its evolution, may not result in 

substantially different land surface predictability. 

To test whether, for predictions of seasonal runoff, there is any change in apparent potential skill 

between using the simple persistence of initial SOI relative to SOI forecasted by a statistical 

model, the ENSO-CLIPER model was obtained (from 

http://www.aoml.noaa.gov/hrd/Landsea/ensocliper/). It was run from 1951 (the earliest year for 

which required input data are available) through July 2000, with the climatological SOI values 

added for 1950 to make the record consistent with the period of record for the land surface 

variables included in this study. The SOI used for testing the simple persistence model was the 

smoothed SOI index discussed above.  
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Figure 3.4 - Predictability of seasonal runoff due to SOI, expressed as the fractional variance, r2, 

of seasonal runoff explained by SOI , using a) a simple persistence model, and b) the ENSO-
CLIPER model. Countour intervals of r2 values are every 0.1, and shading indicates locations 

where the r2 is  statistically significant. In the lower right corner of each panel is the fraction of 
the total basin area with significant correlation. 
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Seasonal average runoff values at each grid cell were regressed against the smoothed SOI values 

in a persistence mode – that is, against the SOI value for the appropriate initialization date for 

each season and lead times of 0, 1, and 2 seasons. Spatial plots of the variance explained by this 

SOI initialization (persistence mode) are shown in Figure 3.4a. For comparison, the seasonal 

runoff at each grid cell was also regressed against the ENSO-CLIPER forecasted SOI values. 

First, the ENSO-CLIPER model was initialized on the appropriate initialization date, after which 

seasonal average values of SOI were forecasted for each lead time. These forecasted SOI values 

were regressed against the seasonal average runoff for the same season. The runoff variance 

explained using ENSO-CLIPER forecasted SOI values is plotted in Figure 3.4b. The patterns 

exhibited in these two figures are in general very similar. This suggests that, although ENSO-

CLIPER shows better sea surface temperature forecast skill (as measured by root mean square 

error, RMSE) than simple persistence (at least for the event studied by Landsea and Knaff, 2000), 

consistent with the discussion above, the marginal increase of ENSO predictability does not 

translate to a measurable increase in land surface predictability. We conclude that the use of the 

SOI forecasts produced by the ENSO-CLIPER model has a negligible effect on the skill of 

seasonal runoff predictability in the Mississippi River basin as compared to using SOI values in a 

persistence mode. Furthermore, because the RMSE of ENSO-CLIPER is shown by Landsea and 

Knaff (2000) to be 49-66% lower than the simple persistence model for leads of 0-2 seasons, with 

no measurable benefit for runoff forecasting, the additional improvement (reflected by a further 

RMSE reduction by 18-24%) of more sophisticated statistical models compared to ENSO-

CLIPER at leads of 3-4 seasons would not be expected to provide additional predictability of 

seasonal runoff over the persistence model. We conclude, therefore, that for our purposes, 

treating SOI in a persistence manner (that is, discarding knowledge of the climatological 

evolution of ENSO events), produces results that are comparable to those achieved by using a 

more sophisticated statistical model.  

Recent studies show that additional predictability of air temperature and precipitation, particularly 

in winter, can be obtained over portions of the U.S. by incorporating the modes of the AO, which 

encompasses the North Atlantic Oscillation (e.g. Higgins et al., 2000; Rohli et al., 1999; Lin and 

Derome, 1998). Operational seasonal climate predictions for the United States currently are 

capable of exploiting strong ENSO signals to improve forecast skill.  It has been argued (Baldwin 

and Dunkerton, 2001; Higgins et al., 2000) that future forecast improvements will require the 
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ability to predict subtler changes in ENSO conditions, as well as the AO. For this reason, we use 

two indices to represent the predictability of seasonal runoff due to climate signals: the 5-month 

smoothed SOI index and the AO. Values of SOI for the initialization day were interpolated by 

averaging the two adjacent monthly values of the filtered SOI. To characterize the mode of the 

AO, an AO index was obtained (from http://www.atmos.colostate.edu/ao/Data/ao_index.html -- 

see Thompson and Wallace, 1998; 2000 for details). The AO index for the initialization day (date 

of forecast) was interpolated from adjacent monthly values, as for the SOI. 

Snow 

In areas where a substantial fraction of precipitation falls as snow, water stored in the snowpack 

can be released months later, providing a source of persistence that can be exploited in seasonal 

streamflow forecasting. In the U.S., seasonal streamflow forecasts have been based on estimates 

of the amount of water stored in the snowpack since at least 1900 (Church, 1937). Individual 

snow surveys (which, in automated form, remain at the heart of the streamflow forecasts 

produced by the National Resources Conservation Service (Soil Conservation Service, 1988) are 

(or were, prior to automated data collection) time consuming and cover relatively small areas.  

The need for a better spatial context for estimates of the snow state inspired early attempts to use 

panoramic photographs for forecasting runoff from snow melt (Potts, 1937).  Because 

photographs provide a basis for estimating snow covered area (SCA) rather than the water 

equivalent of the snowpack, approaches based on SCA necessitated the development of methods 

to deduce snow water content from spatial coverage. In the satellite era, remotely sensed products 

have provided estimates of SCA, which have shown to be have value for runoff forecasting (e.g., 

Rango and Martinec, 1979). Although methods have been developed for direct estimation of the 

water content of the snowpack (or SWE) via remote sensing (e.g. Goodison and Walker, 1994; 

Shi and Dozier, 2000), and new sensors such as the Advanced Microwave Scanning Radiometer 

(launched in May 2002 on NASA’s Aqua platform) hold promise for future SWE measurements, 

these methods have not been available operationally (Rango et al., 2000), and cannot provide the 

length of record needed for this study of the variability of SWE in the context of runoff 

predictability. 

Therefore, for assessing potential predictability due to knowledge of initial snow water storage, 

we use the derived snow water equivalent product in the Maurer et al (2002) data set. The snow 
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water equivalent used for prediction is the value for the last (3-hour) time step of the last day of 

the month prior to the beginning of the forecast season. We believe that this is a reasonable 

surrogate for the initial snow water equivalent condition that would be available at the forecast 

time, and therefore represents the maximum level of predictability obtainable through error-free 

observations of the water equivalent of the snowpack.  

In order to avoid spurious correlations due to poorly conditioned probability distributions of SWE 

in areas that usually are snow-free, we apply a threshold to the SWE data at each grid cell. During 

the entire period of 51 years, we require for each season that during at least 10 of the years a 

minimum of 0.1 mm of SWE must be on the ground in order for SWE to be included as a 

candidate predictor. 

Soil Moisture 

In addition to the water stored as snow, the water stored in the soil column exhibits seasonal and 

interannual persistence that can be exploited in seasonal forecasts. It has been well known from 

the early days of hydrologic prediction that SM plays a key role in predicting the effect of a given 

precipitation pattern on the resulting runoff response of a watershed (e.g. Linsley and Ackerman, 

1942). Despite its importance to hydrologic modeling and runoff forecasting, SM lacks a good 

observational database (Dirmeyer, 1995).  

Given the expense and difficulty of collecting SM measurements, alternative techniques are being 

implemented that offer promise for better determination of SM state, and hence better definition 

of initial conditions for forecasting seasonal water supply. Two recent advances that offer the 

potential to provide more accurate estimates of SM conditions for runoff prediction are 

macroscale hydrologic modeling and remote sensing. The North American Land Data 

Assimilation (LDAS) experiment (Mitchell, et al, 1999) simulates SM fields in real-time over the 

continental U.S. using observations of precipitation and temperature to drive a suite of several 

land surface models. Shortcomings of SM estimates produced using this technique include errors 

in forcing data due to the inhomogeneity and low station density of near-real-time meteorological 

observing stations (Groisman and Legates, 1994), and the effects of model and parameter errors 

on the generated SM fields (Schaake et al., 2002). 
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The most promising method for estimating soil moisture via remote sensing is based on remote 

sensing using passive microwave instruments operating at long (in excess of 10 cm) wavelengths.  

A key technological constraint that has precluded spaceborne remote sensing of soil moisture to 

date is the tradeoff between the need for long wavelengths to penetrate soil to sufficient depths 

(which in any event are limited to a few cm) and to avoid obscuring the signal with vegetation 

water, and the requirement for large antennas to achieve adequate spatial resolution consistent 

with hydrological and atmospheric models (e.g., 10-25 km) at long wavelengths.  The advanced 

scanning microwave radiometer (AMSR) instrument on board the EOS Aqua platform (launched 

May 4, 2002) has a 4.3 cm wavelength for one of its channels, which although not ideal for soil 

moisture sensing, provides some capabilities in regions of sparse vegetation cover. The current 

observations of SM, sparser and less consistent than observations of SWE, do not cover a time 

period or have a spatial resolution adequate for the investigation in this study. 

Therefore, for this study we used an index of SM, specifically the total moisture in the soil 

column on the forecast initialization date from the derived data set of Maurer et al. (2002). 

Notwithstanding the inability at present to observe SM directly, the Maurer et al. (2002) data set 

can be considered to be a surrogate for the best information that may eventually be available 

through a combination of remote sensing and modeling.  As such, it can be considered to provide 

an upper limit on the information content that would be available from high quality observations, 

and its use is consistent with our attempts to estimate potential runoff predictability. 

Runoff Data 

The runoff data used in this study were the derived product archived by Maurer et al. (2002). For 

this study we aggregated the 3-hourly runoff values to monthly and seasonal averages. 

Furthermore, we aggregated spatially from the 1/8 degree native spatial resolution of the data set  

to ½ degree spatial resolution, in order to reduce array sizes and produce a more computationally 

tractable data set. As shown by Maurer et al. (2002) the runoff, when routed through a channel 

network to basin outlet points, closely matches observed streamflows throughout the basin. 
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RESULTS AND DISCUSSION 

Seasonal runoff magnitude 

The magnitude of runoff in the Mississippi River basin varies considerably across the domain and 

throughout the year. Figure 3.5 shows the seasonal runoff, expressed as the average runoff at each 

grid cell divided by the basin-wide average runoff for each season. For example, most of the DJF 

runoff is produced in the southeastern part of the basin, and the highest JJA runoff is produced 

along the western edge of the basin, in the Rocky Mountains. Seasonal predictability is generally 

of greatest value where a) runoff volumes are high, as it indicates potential for forecast skill that 

could affect a relatively large part of the annual runoff, and/or b) in locations where infrastructure 

(such as large reservoirs) exists to allow water managers to respond to long lead forecast 

information. 
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Figure 3.5 - Average seasonal runoff for the Mississippi River basin, divided by the seasonal 
basin-wide average. 

Total runoff predictability 

Figure 3.6 shows the total variance of seasonal runoff explained by the climatic and land surface 

predictors together. The shading highlights areas with locally statistically significant correlation. 

Shown on each plot are the fractions of the basin with significant local correlation, which were 

compared with the threshold values in Table 3.1 to test for field significance. Statistical field 

significance exists in DJF for leads up to and including 3 seasons, while MAM and SON runoff 

predictability shows field significance at leads through one season. The JJA season shows field 

significance through a lead of 1 season and also at a lead of 4 seasons. 
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Figure 3.6 - Predictability of seasonal runoff for each season (columns) and each lead time 
(rows), using combined climatic and land surface predictors, SOI, AO, SM, and SWE. 

Predictability is defined as the fractional runoff variance explained by the predictors, r2, in a 
multiple linear regression. Contour interval is 0.1, with locally significant r2 values shaded. The 
number in the lower right corner of each panel indicates the fraction of the basin exhibiting local 
statistical significance; this number is used in comparison with the field significance thresholds 

in Table 3.1. 
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For DJF runoff predictability, a very large percentage (up to 70%) of the runoff variance at lead-0 

is explained in the northern and western areas of the basin, while Figure 3.5 shows the greatest 

runoff occurs in the south and east. These very high levels of predictability in the western 

mountains are due to three combined effects: 1) precipitation is low during this season and 

snowmelt is limited, so direct surface runoff is low; 2) the runoff leaving each grid cell is drained 

from the lower soil layers, and 3) in the VIC model used to produce the data in Maurer et al. 

(2002), the rate of soil moisture drainage is controlled by the moisture level in the lowest soil 

layer. During MAM at lead-0, the variance explained by the predictors drops to 30-50% through 

most of the northern and western portions of the basin, with the lowest values tending to occur 

where runoff is highest. The JJA runoff variance explained by the predictors is more uniform 

throughout the basin, with a concentration of higher values along the mountainous western 

extreme of the basin, which coincides with the highest runoff values in Figure 3.5. JJA runoff 

predictability in this region is of particular importance, because it provides the water supply used 

to fill large reservoirs throughout the western part of the basin. It is this predictability that is 

exploited by streamflow forecasters in the west to anticipate available water supply. Typically 

this forecasting of MAM and JJA runoff begins in January. This figure shows that, using climatic 

indicators and knowledge of the land surface moisture state some measure of locally significant 

runoff predictability exists for the mountainous western area of the basin for lead times of 4 

seasons, which would be a valuable extension of the current forecasts. By partitioning this 

predictability we will examine the sources of this total predictability during different seasons and 

at different lead times. 

Runoff predictability due to climate 

Figure 3.7 shows the runoff variance explained by the climatic predictors. Because these 

predictors (SOI and AO indices) are both available in near real-time, this represents a source of 

runoff predictability that is realistically achievable (discounting the effect of the 5-month 

smoothing of SOI). Applying the threshold values from Table 3.1, statistical field significance 

can be claimed for DJF at a lead of 0 seasons, and also at leads of 2 and 3 seasons. Runoff in 

MAM and JJA shows field significance through a 0 season lead, and SON shows no field 

significance for any leads. 
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Figure 3.7 - Same as for Figure 3.6, but including only climatic indicators, SOI and AO as 
predictors. 

This is consistent with the observation that ENSO (e.g. Kumar and Hoerling 1998) and AO (e.g. 

Higgins et al., 2000) signals typically exhibit their strongest signals in boreal winter. Although 

the runoff variance explained for DJF at a lead of three seasons is generally low (about 10%) its 

field significance and its overlap, at least partially, with areas of high runoff (Figure 3.5) suggest 
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that these climate indicators may be capable of providing valuable predictive information for 

runoff in the Mississippi River basin at leads of greater than 9 months. For the mountainous 

extreme western portion of the basin, even with relatively small areas showing significant 

amounts of JJA runoff variance explained at leads of two and three seasons, the relatively high 

runoff produced by these areas (Figure 3.5) during JJA implies a potential local benefit for 

including climatic indicators at these leads, despite the lack of field significance at a basin-wide 

level. 

For DJF runoff, the coincidence of areas with high runoff with modest, but statistically 

significant, runoff predictability at long indicates that for prediction of DJF runoff, climatic 

indicators may be the most important source of long-lead predictability. This also illustrates a 

complication in using persistence of climate signals for prediction, as is done in this study. 

Specifically, noting the significant runoff predictability in the southeastern (Gulf) region of the 

basin at a lead of 3 seasons, this predictability vanishes at shorter leads of 1 and 2 seasons. 

Dracup and Kahya (1994) discuss one potential explanation for this phenomenon (in their case, it 

apparently occurs because observations of the La Niña phase of the ENSO cycle during winter 

and spring in the Gulf region of the United States are typically followed by anomalously wet 

conditions the next year). Although the results shown in Figure 3.7 include the effects of both 

ENSO and AO, this highlights the point that the predictability due to climate is not necessarily 

due to persistence of the climate signals, but may reflect a regionally specific response to climatic 

forcing. It should also be stressed that this analysis is based on a 50 year record, and individual 

events in each season may have differing sources and levels of predictability that do not match 

this general climatological predictability indicator. 

Runoff predictability due to snow state 

The climatic indicators we use as predictors are based on direct and readily available 

observations, whereas the soil and snow moisture states are based on perfect knowledge of the 

land surface moisture state. Because both SM and SWE are driven by the same climatic factors, 

and by their nature interact with one another, they can be highly correlated. Figure 3.8 shows the 

correlation coefficient between SWE and SM for each season. Not surprisingly, the two tend to 

be correlated most strongly in areas undergoing episodes of snow melt, thus MAM shows high 
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correlations over the northern and western areas, while the mountainous areas along the extreme 

west show very high correlation in JJA. 

Due to the longer history of remote sensing of snow and the wider array of ground observations 

as compared to SM, for comparative purposes we first examine the portion of the runoff 

predictability due to land surface moisture that is attributable to knowledge of SWE. To do so, we 

subtract from the runoff variance explained by SOI, AO and SWE that explained by SOI and AO. 

In this way, runoff predictability due to SWE represents the incremental increase, above that due 

to climatic state, in explained runoff variance due to the knowledge of SWE alone. This is shown 

in Figure 3.9.  
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Figure 3.8 - For each season, the correlation coefficient between the seasonal average SM and 
seasonal average SWE. 

As would be expected, SWE explains seasonal runoff variance most strongly where snow existing 

on the initialization date melts and forms runoff during the season being predicted. This can be 

seen most clearly at lead 0 in the northwestern portion of the basin. During DJF (at lead 0, using 

November 30 predictors) the correlations are strongest in the northwestern portion of the basin, 

while for MAM (February 28 predictors) the area of high correlation retreats toward the 

mountains and the northern central area, and during JJA (May 31 predictors) strong correlation is 

seen only in the Rocky mountains on the western boundary of the basin. Referring to Figure 3.5, 

the predictability due to SWE coincides closely with the areas of highest runoff production, 

which illustrates the importance of snow, and its current operational use, in forecasting late spring 

and summer streamflow in the rivers originating in the western Mississippi River basin. 
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Figure 3.9 - As for Figure 3.6, but showing the predictability due to SWE alone. 

At longer leads of two to three seasons, locally significant runoff predictability exists almost 

exclusively in isolated areas along the western boundary of the basin, which is again an 

anticipated result, as the snowpack disappears over virtually the entire basin each year, and 

deeper snowpacks that are capable of persisting longer than three seasons exist only in the highest 

mountains. JJA, which is the season with high runoff rates from the mountainous western areas of 
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the basin, shows areas with locally significant runoff variance explained at a lead of two seasons, 

that is, JJA runoff is partially predictable from SWE information on November 30. Although at 

the scale of the entire Mississippi basin this spatially limited response does not exhibit field 

significance, regional analyses could reveal useful predictability at a lead of two seasons. The 

current operational use of the snow state in spring-summer streamflow forecasts begins on 

January 1; however these results suggest that skillful forecasts could possibly begin at least one 

month earlier. 

Runoff predictability due to soil moisture state 

The predictability due to SM was computed using the combined variance explained by the 

climatic and land surface predictors, and subtracting the variance explained by the combination of 

SOI, AO and SWE, and is shown in Figure 3.10. By estimating the predictability of runoff due to 

SM in this way, Figure 3.10 displays the increase in predictability due to SM knowledge beyond 

that already explained by climate signals and the SWE. Field significance in Figure 3.10 can be 

claimed through a 4 season lead for DJF runoff prediction, and through 3 seasons for MAM and 

JJA runoff.  

The most prominent feature in Figure 3.10 is the larger area of the basin, as compared to climate 

predictors (Figure 3.7) or SWE (Figure 3.9) that shows statistically significant runoff variance 

explained for all seasons at lead 0. Although SM explains considerably greater DJF runoff 

variance than SWE at leads of one to two seasons for the western regions, this area produces 

relatively little runoff during this period so the value of the added predictability is lessened. 

During the intense JJA runoff from the mountainous west, SM provides a small but significant 

increase in explained runoff variance in pockets of the mountainous western boundary in addition 

to that achievable due to knowledge of snow state, indicating that despite the high correlation of 

SWE and SM in this area, significant independent information is obtained from each source. The 

areas showing the greatest JJA runoff (Figure 3.5), however, are still more highly correlated with 

SWE (Figure 3.9) than with SM (Figure 3.10).  

In general, for the western boundary of the Mississippi River basin, SM shows greater persistence 

than SWE, as indicated by higher levels of significant runoff variance explained at longer lead 

times. For example, SWE provides very little predictability of JJA runoff at a lead of three 
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Figure 3.10 - As for Figure 3.6, but showing the predictability of seasonal runoff due to SM 
alone. 

seasons, while significant SM influence is still seen. For an initialization date (date of forecast) of 

August 31 (i.e., lead-1 for DJF, lead-2 for MAM, lead-3 for JJA), snow is virtually absent from 

the basin, and can provide no forecast information, while SM shows significant explained runoff 

variance for DJF, MAM and JJA at leads through 3-4 seasons. This illustrates how knowledge of 
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the SM and snow states can complement each other in a forecast setting, providing considerable 

independent information despite their correlation with each other. 

Importance of predictability due to defined sources 

To quantify the importance of the climate indicators, SWE, and SM in forecasting runoff, a 

dimensionless variable is derived for each grid cell, and summed over the entire basin. The 

variable defined is the product of unitless runoff at each grid cell (Figure 3.5) and the variance 

explained by 1) SOI and AO (as in Figure 3.7); 2) SWE (Figure 3.9); and 3) SM (Figure 3.10) at 

each grid cell. Spatial plots of this variable are shown in Figures 3.11 and 3.12 for leads of 0 and 

2 seasons, respectively. The basin-wide sum of this variable provides a snapshot of the relative 

importance of each source of predictive information in each season and at each lag. Table 3.2 

presents these values for the entire Mississippi River basin. Most of our results (e.g., Figures 

3.11, and 3.12) show distinct differences between the western and eastern portions of the basin 

Therefore, Tables 3.3 and 3.4 provide the same variable, summed over areas west and east, 

respectively, of longitude 100 West.  

Table 3.2 - Summary of relative importance of predictors in forecasting seasonal runoff. Values 
are computed by multiplying at each grid cell the runoff variance explained by the predictors by 
the local unitless seasonal runoff, and summing these values over the Mississippi basin. Higher 
values indicate greater basin-wide predictability of seasonal runoff volume attributable to the 
predictor(s). Bold indicates the most influential factor for each season and lead. 
 DJF MAM 
 Lead Lead 
Predictors 0 1 2 3 4 0 1 2 3 4 

SOI AO 158 95 75 157 27 90 83 55 60 81 

SWE 21 0 6 23 23 94 26 0 4 19 

SM 441 75 44 26 26 189 89 45 39 27 

 JJA SON 
SOI AO 90 93 82 70 85 58 69 76 64 56 

SWE 120 102 47 4 5 3 21 30 18 1 

SM 278 53 49 36 37 228 48 35 34 38 

Figure 3.11 shows the dominance of SM for runoff prediction at a lead of 0 seasons throughout 

the basin, which is also supported by Table 3.2. It is also obvious from Figure 3.11 that 

knowledge of SWE in the mountainous western extreme of the basin provides the most important 

information for predicting JJA runoff, as discussed above. It is interesting to note that the low 
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levels of predictability of MAM runoff due to SWE at lead-0 in Figure 3.9 are absent from Figure 

3.11, since the predictability affects a very small amount of runoff. Figure 3.11 also illustrates 

that despite low levels of predictability (approximately 10-20% of runoff variance explained) by 

soil moisture in the southeast for JJA runoff at a lead of 0 seasons, the high levels of runoff in this 

region accentuates the importance of predictability attributable to soil moisture.  

Table 3.3 - Summary of relative importance of predictors, as for Table 3.2 but only for regions 
west of longitude 100 West. 
 DJF MAM 
 Lead Lead 
Predictors 0 1 2 3 4 0 1 2 3 4 

SOI AO 2 2 3 3 2 6 4 4 5 3 
SWE 1 0 6 4 2 11 5 0 4 3 
SM 30 20 4 3 3 20 20 13 4 4 
 JJA SON 
SOI AO 25 23 25 28 25 6 8 5 5 6 
SWE 120 78 39 4 5 3 21 15 9 1 
SM 44 18 16 11 10 61 12 8 7 5 

Table 3.4 - Summary of relative importance of predictors, as for Table 3.2 but only for regions 
east of longitude 100 West. 
 DJF MAM 
 Lead Lead 
Predictors 0 1 2 3 4 0 1 2 3 4 

SOI AO 156 93 72 154 26 84 79 51 55 78 

SWE 20 0 0 19 21 84 21 0 0 16 

SM 411 55 40 23 23 169 69 32 35 23 

 JJA SON 
SOI AO 65 71 56 43 60 52 61 71 58 50 

SWE 0 23 8 0 0 0 0 14 9 0 

SM 234 35 33 25 27 168 37 27 27 33 

Table 3.2 indicates that the climate signal is dominant at leads of one season or more at the basin-

wide scale for DJF and SON runoff, and at two seasons or more for MAM and JJA runoff. 

Examining the division of the basin in Tables 3.3 and 3.4, SWE provides the dominant source of 

JJA runoff predictability in the western portion of the basin through a lead of two seasons. SM 

provides the dominant influence on MAM runoff predictability in the west through a 2 season 

lead. The land surface signal, that is, SM and SWE combined, is a stronger predictor of runoff 
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than the climate signal in the western portion of the basin, except for JJA runoff at lead-3 and 

lead-4, though again these cases have limited practical significance. For the eastern portion of the 

basin (Table 3.4) the climate signal is the dominant source of important runoff predictability at 

lead times of 1 season or more. 
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Figure 3.11 - Unitless variable representing the importance of predictability. The variable is 
defined as the fraction of the runoff explained by the climate or land surface indicators (defined 

in the left panel for each row) times the unitless runoff (Figure 3.5), for a lead of 0 seasons. 

Figure 3.12 shows that this dominance of the climate signal in runoff predictability at a lead of 2 

seasons is very limited spatially, and is accompanied by no important predictability from the land 

surface. It is evident from Figure 3.12 that the values in Tables 3.2, 3.3 and 3.4 at leads of two 

seasons (or more, though no Figure is shown) represent low predictability in spatially limited 

areas, with the SM and SWE generally only providing important predictability along the western 

edge of the basin, and climate information being focused in isolated pockets in the east and 
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southeast. Long lead runoff predictability is geographically limited, and is largely due to modest 

levels of predictability (Figures 3.7, 3.9 and 3.10) in areas with high levels of runoff. 
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Figure 3.12 - - Same as for Figure 3.11, but for a lead of 2 seasons. 

The field significance of the dimensionless variables plotted in each panel of Figures 3.11 and 

3.12 correspond to those for Figures 3.7, 3.9, and 3.10; that is, for Figure 3.12, scaled 

predictability due to climate and soil moisture are field significant in all seasons, while snow is 

not field significant for seasons JJA or SON. For Figure 3.13, the scaled predictability due to 

climate is field significant only for the DJF season, that due to snow only for SON, and soil 

moisture passes the field significance test for all seasons. Figures 3.12 and 3.13 show that if the 

interest is related to a sub-area of the Mississippi River basin, as would be typical for a water 

manager concerned with runoff contributing to a reservoir, for example, the basin-wide field 

significance is too stringent a test. Failure to pass the basin-wide field significance test applied in 
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this study does not indicate that there is no important predictability in localized areas, however, a 

separate evaluation of the area of interest would be required. 

CONCLUSIONS 

The predictability of runoff throughout the Mississippi River basin has been evaluated both 

spatially, and by season and prediction lead time. As surrogates for climate predictability, we 

used the SOI and the AO. In general, SOI used in a simple persistence mode (ignoring 

climatological knowledge of ENSO event evolution) was found to provide comparable 

information for our purposes to a statistical forecast of SOI. 

The climatic indicators provided a small but significant source of predictability for DJF runoff for 

leads of one through three seasons that exceeded that due to the land surface state, especially in 

the eastern portions of the Mississippi River basin. Because these climate indicators are readily 

available, this represents a source of predictability that can be exploited at present. 

In general, SM is the dominant source of runoff predictability at lead 0 in all seasons. When the 

basin was divided at longitude 100 W into western and eastern portions, SM provided the 

dominant source of predictability at lead-0 (which represents an average lead time of 1.5 months) 

in both regions, except in JJA in the western mountainous region, where SWE was most 

important. For lead times of 1.5 months, then, a better determination of soil moisture state can 

provide valuable predictive capability of runoff throughout the basin. For areas west of longitude 

100 W, the land surface state generally has a stronger predictive capability than the climate 

indicators; whereas climate indicators are more important for eastern areas of the Mississippi 

basin at leads of one season or greater. Although SM and SWE are correlated to varying extents 

during certain seasons in different parts of the basin, they nonetheless can provide a level of 

significant independent information and complement each other for runoff predictability. 

Although modest (though statistically significant) DJF runoff predictability exists at a lead time 

of 3 seasons due to both climate and SM, much of this predictive capability is in areas producing 

little runoff, and is therefore of lessened practical importance. For JJA runoff in particular, locally 

significant runoff predictability, limited geographically to the western mountainous areas, at a 

lead of 2 seasons is coincident with high runoff producing areas. This information could be useful 
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to water managers in the western Mississippi River basin, since it suggests the potential to 

provide skillful forecast information at lead times earlier than are currently used operationally, 

and there are large storage facilities allowing managers to respond to long lead forecasts. 
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CHAPTER IV: POTENTIAL EFFECTS OF LONG-LEAD 
HYDROLOGIC PREDICTABILITY 

�I must create a system, or be enslaved by another man's� 
William Blake 

 

This chapter was submitted for publication in Journal of Climate in August 2002 in its current form: 
Maurer, E.P and D.P. Lettenmaier, 2002, Potential effects of long-lead hydrologic predictability on 
Missouri River main-stem reservoirs, J. Climate (in review). 

INTRODUCTION 

Better understanding of the links between remote conditions, such as tropical sea surface 

temperatures, and climate over the continental U.S. has facilitated improved land surface 

hydrologic predictability, manifested especially in more accurate streamflow forecasts, especially 

for lead times longer than are achievable through traditional methods (Wood et al, 2002; Baldwin, 

2001; Hamlet and Lettenmaier, 1999; Garen, 1998). In addition to these climate teleconnections, 

better definition of the land surface moisture state at the time of the forecast, through macroscale 

hydrologic modeling and remote sensing provides additional opportunities for improved 

hydrologic forecasting (e.g. Walker and Houser, 2001; Pauwels et al., 2001; Rango et al., 2000; 

Carroll et al, 1999). 

Remote climate forcing signals and initial land surface states have been shown to provide a 

measure of predictability of runoff over the Mississippi River basin (Maurer and Lettenmaier, 

2002b), with considerable spatial variability in the degree of predictability, its sources, and the 

lead times at which it is significant. Studies of the predictability of streamflow and/or of related 

climatic forcing variables, and implied benefits to water resources systems are numerous (e.g., 

Goddard et al., 2001; Hu and Feng, 2001; Fennessy and Shukla, 2000; Cayan et al., 1999; Dracup 

and Kahya, 1994; Kahya and Dracup, 1993).  However, studies of the economic value of land 

surface hydrologic predictability are more rare (e.g., Hamlet et al., 2002; Yao and Georgakakos, 

2001; Yeh, et al., 1982; Castruccio et al., 1980).  
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The National Research Council (2002a) identified the key to operational implementation of 

research findings related to hydrologic predictability as communication and strong linkages 

between research institutions and operational programs. However, an essential component of 

operational implementation of new techniques or data products (such as satellite-derived land 

surface characterizations) to improve predictability is a demonstration of the benefits the 

improved predictability may bring. Hornberger et al. (2001) assert that “Improved information 

systems and prediction methods can lead to large benefits for water, land, and biological resource 

management…” In this study we build on previous work by Maurer and Lettenmaier (2002b) that 

identified levels of predictability due to climate and land surface sources throughout the 

Mississippi River basin, and investigate how large an effect long-lead predictability can have on a 

water resource system, in comparison to that predictability already available. 
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Figure 4.1 - Missouri River main stem dams. Size of circle at each point is scaled according to 
the ratio of the active storage volume to the river flow at that point. 

Specifically, this study evaluates the impact of streamflow predictability at long lead times 

(months to a year) on reservoir operation in the main stem Missouri River system, which includes 

six dams managed by the U.S. Army Corps of Engineers (Figure 4.1). The Missouri River basin 
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was selected due to the demonstrable long-lead runoff predictability in the basin (Maurer and 

Lettenmaier, 2002b) and the extensive network of water management facilities that allow water 

managers to respond to monthly and seasonal forecast knowledge. We develop a simplified 

simulation model of the system of reservoirs, and use this reservoir simulation model to evaluate 

the bounding cases of perfect predictability and no predictability. We then use estimates of 

realistically achievable streamflow predictability determined by Maurer and Lettenmaier (2002b) 

to compute the value of predictive skill associated with knowledge of remote climate forcing 

impacts of Missouri River streamflow, as well as knowledge of initial snow water content and 

soil moisture over the basin. 

STUDY SITE DESCRIPTION 

The Missouri River is one of the largest rivers in North America, and in its virgin state exhibited 

highly variable flows. A combination of the Great Depression and the Dust Bowl of the early 

1930’s inspired the construction of Fort Peck dam, one of the largest modern structures on the 

planet (Reisner and Bates, 1990), completed on the upper main stem of the Missouri River in 

1940. A sequence of three large floods in 1943 compelled the U.S. Army Corps of Engineers 

(COE) to draft plans for five additional large main stem dams, the last of which was completed in 

1964 (Reisner, 1986). The motivation for drought and flood protection provided the extreme 

conditions reflected in the enormous system design volume, which is intended to provide 

protection against both a repeat of the 12-year 1930s drought (Lund and Ferreira, 1996) and the 

1881 flood of record (COE, 1999). The system is operated to provide hydropower, flood control, 

navigation, water supply, recreation, and environmental mitigation benefits, although evacuating 

storage for spring runoff and releasing sufficient flow for downstream navigation largely drive 

the annual system operation. For example, the total annual requirements for irrigation, municipal, 

industrial, livestock and all water uses in tributary areas to the mainstem dams averages less than 

200 m3/s (COE, 1998), or about one third of the required release for navigation even in drought 

years. 

The Missouri River basin and the six main stem dams are shown in Figure 4.1. The three 

upstream main stem reservoirs are significantly larger than the three downstream reservoirs. 

Table 4.1 shows the relative abilities of these reservoirs to regulate flow, expressed as the total 

active reservoir storage volume (excluding the permanent pool storage) divided by the average 
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annual main stem flow at the dam site. The upstream-most dam, Ft. Peck, has the largest ratio, 

with an active storage capacity of 1.8 times the average annual inflow. The overall dominance of 

the upper three dams for water management purposes at time scales greater than one month is 

clearly shown. For the system-wide total, the active reservoir capacity of all six reservoirs 

combined is approximately equal to the annual discharge at the mouth of the Missouri. 

Table 4.1 - Ratio of the total volume and active volume for each dam (the reservoir volume minus 
the permanent pool storage) to the average annual flow at each site. 
Dam Total Vol./Avg. 

Annual Flow 
Active Vol./Avg. 
Annual Flow 

Ft. Peck 3.0 1.8 
Garrison 1.6 1.0 
Oahe 1.4 0.8 
Big Bend 0.1 0.02 
Ft. Randall 0.4 0.2 
Gavins Pt. 0.03 0.01 

Of the total annual flow at Gavins Point (23,300 million m3), 89% is generated upstream of Oahe 

Dam, which highlights the importance of the upstream three reservoirs in regulating the annual 

flow variations.  The downstream reservoirs provide additional hydropower generation and flow 

regulation over shorter time spans. With these large storage capacities, the Missouri River main 

stem system is capable of responding to long-lead forecasts by adapting water storage and release 

decisions to anticipated inflows months to a year in advance. 
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Figure 4.2 - a) Monthly mean inflow to upper three reservoirs in the Missouri River main stem 
system; b) Standard deviation of the monthly inflows; c) Coefficient of Variation. 

Figure 4.2a shows the average annual cycle of inflow to the upper three reservoirs, which is 

dominated by snowmelt in the spring and early summer. The standard deviation of the flows is 
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shown in Figure 4.2b, which indicates that the variability is greatest in the spring and early 

summer. Figure 4.2c shows the coefficient of variation (standard deviation divided by the mean), 

and illustrates that, relative to the mean inflow, greatest variability in streamflow occurs in 

Spring. This means that predictability of spring and early summer flows can be expected to have 

the greatest impact on system operation, as it affects a substantial fraction of the annual inflow, 

during the time of year that it is most variable. 

METHODS 

The potential seasonal predictability of runoff identified by Maurer and Lettenmaier (2002b) for 

the Mississippi River basin implied an inherent benefit to water resources management. In order 

to quantify this benefit for the Missouri River main stem reservoir system, and to reveal the 

impact of increased predictability at long lead times on water resources management, a simulation 

model of the system of reservoirs was developed. The methods used in developing and applying 

the model are explained below. 

Predictability for each contributing area 

Maurer and Lettenmaier (2002b) computed for each season the r2, representing predictability, 

associated with a multiple linear regression between selected initial conditions (i.e., different 

combinations of knowledge of climate or land surface conditions) and the seasonal average runoff 

at 1532 ½-degree grid cells in the Mississippi River basin.  r2 values were computed for seasons at 

leads of 0-4 seasons (where lead 0 would be a forecast of a season’s runoff using initial 

conditions of the first day of the season, or an average of 1.5 month lead time). The r2 associated 

with any correlation is numerically equal to the coefficient of prediction, Cp, defined in the 

Appendix, and this terminology will be used throughout.  

For the present study, these Cp values (e.g., Figure 6 in Maurer and Lettenmaier, 2002b) are 

averaged over each of the contributing areas for the upstream three Missouri River reservoirs, 

weighting by the average runoff for each grid (Figure 5 in Maurer and Lettenmaier, 2002b). 

These values of weighted average Cp were developed for each season and each lead time of 0-4 

seasons. A grid consisting of all values of 1 represents perfect predictability, and all 0 values 

indicates no predictability. In addition to these bounding conditions, Cp values were estimated for 
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three scenarios: 1) for the case of known climatic indicators; 2) for the case where perfect 

knowledge of snow water equivalent is added to the knowledge of climate signals; and 3) for the 

case where perfect soil moisture knowledge is also assumed, in addition to snow water content 

and climate signals. As discussed by Maurer and Lettenmaier (2002b), these three scenarios are 

arranged as “tiers” in accordance with how well defined the variables are with current 

technology. The climate indicators are best known, as they are available in real-time. Snow state 

is less well known, although ground surveys and remote sensing provide a basis for estimates that 

are available to water managers. Soil moisture is essentially unobserved, and hence is least well 

known. The difference between the Cp values for each scenario represents the incremental 

variance explained above that already achieved with better known variables, hence the variances 

explained by correlated variables (such as soil moisture and snow) are only counted once, and are 

attributed to the better known variable. 

The climatic indicators used by Maurer and Lettenmaier (2002b) are the Southern Oscillation 

Index (SOI), which is an indicator of the state of the El Niño-Southern Oscillation, in 

combination with an Arctic Oscillation (AO) index. Both of these climate indicators are published 

monthly, and hence are currently available to water managers. Although the evolution of these 

indices through the forecast period is not considered, Maurer and Lettenmaier show that the 

predictability of runoff achieved using their states at the time of forecast are comparable to what 

is obtained by considering the evolution of climate state indicators in the Missouri and 

Mississippi River basins. The seasonal Cp values for Fort Peck are shown in Table 4.2 for each of 

the three cases. This indicates the runoff variance explained by each tier of variables, by 

correlating the seasonal average runoff with the initial state conditions of the indicated set of 

predictors for the corresponding lead time. For example, the Cp value associated with predicting 

DJF seasonal average runoff at lead-0 indicates the predictors were set on November 30. The 

table shows the general decrease in predictability with increasing lead time, the high levels of 

predictability identified by Maurer and Lettenmaier (2002b) for winter runoff at short lead times 

(attributable primarily to knowledge of soil moisture), and the important role of knowledge of 

snow water content for summer runoff predictability. Though not shown in the table, for the 

contributing areas to Garrison and Oahe dams, snow is of less importance for summer runoff 

prediction, and is of greater importance for spring runoff prediction, although only at lead times 

less than about three months. 
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These seasonal Cp values were interpolated to monthly values for lead times of 0-11 months, 

where a lead time of zero months indicates a forecast of a month’s average runoff on the first day 

of the month. These monthly Cp values for each incremental area are represented by a 12 x 12 

grid, with one row for each month for which flow is being predicted, and one column for each 

lead time from 0 to 11 months. 

Table 4.2 - Seasonal weighted average Cp values for the contributing area to Fort Peck dam, 
derived from Maurer and Lettenmaier (2002b) for the cases of different predictors (see text). 
Leads indicate the number of intervening seasons between the forecast date and the forecasted 
seasonal average runoff. Seasons are winter (DJF), spring (MAM), summer (JJA) and fall (SON). 
 Lead-0 Lead-1 Lead-2 Lead 3 Lead-4 

Predictors: Climate Indicators 

DJF 0.046 0.041 0.065 0.076 0.04 
MAM 0.039 0.044 0.038 0.049 0.04 
JJA 0.064 0.075 0.08 0.083 0.096 
SON 0.031 0.046 0.038 0.03 0.033 
Predictors: Climate Indicators + Snow Water Content 

DJF 0.124 0.045 0.078 0.092 0.093 
MAM 0.113 0.116 0.038 0.062 0.055 
JJA 0.346 0.185 0.176 0.127 0.141 
SON 0.048 0.06 0.059 0.067 0.034 
Predictors: Climate Indicators + Snow Water Content + Soil Moisture 

DJF 0.672 0.311 0.187 0.145 0.148 
MAM 0.276 0.271 0.099 0.091 0.089 
JJA 0.393 0.203 0.196 0.14 0.15 
SON 0.179 0.12 0.091 0.096 0.062 

 

MOSIM Missouri River mainstem system model 

The U.S. Army Corps of Engineers operates a series of six reservoirs along the main stem of the 

Missouri River. The operation of the reservoirs is governed by a master water control manual 

(COE, 1979), which has been under review for several years to adapt the management of the main 

stem system for ecological and other concerns (National Research Council, 2002b; COE, 2001). 
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As part of the review, extensive studies by the COE have been made on the operation of the 

system, using a system simulation model operating at a monthly time step, under different 

scenarios and constraints (COE, 1994a). In addition to COE efforts, other researchers have 

developed Missouri River main stem reservoir operation models for a variety of purposes. To 

investigate climate change effects, a daily Missouri River main stem system operation model was 

developed by Hotchkiss et al. (2000) based on work of Jorgensen (1996). Lund and Ferreira 

(1996) developed a monthly model using simulation software for the Missouri River basin. The 

COE monthly simulation model does not include an explicit ability to include forecast 

knowledge, nor does the Hotchkiss et al. model, which also does not consider hydropower 

generation. Although the Lund and Ferreira model did include hydropower, their optimized 

operating rules resulted in system operation very different from the historic (and current) 

operation. 

For this study, our desire was to maintain the simplicity of a monthly model, to take advantage of 

the flexibility of simulation software, and to emulate the current operations relatively closely. To 

achieve this, we constructed a system model, MOSIM, using the Extend simulation software 

(Imagine That, Inc., 2001). MOSIM uses the physical reservoir data and minimum releases for 

hydropower and environmental constraints from the long-term study model described by the COE 

(1994a), which are shown in Table 4.3. We include the simplification used by Jorgensen (1996) 

and COE (1991) that combines local inflow to Big Bend and Ft. Randall reservoirs.  This 

assumption is justified by the small contributing area between Big Bend and Oahe Dams. 

The three upstream reservoirs contain about 90% of the total system storage, and therefore 

provide the majority of the capacity to operate the system by draining during the Fall and Winter 

and refilling during Spring. Therefore, in our system model the downstream three reservoirs are 

operated in a run-of-river mode, where for each month the inflow is equal to the outflow. The 

model determines the release from each reservoir at each time step in a two-step process. The first 

step consists of meeting the minimum and maximum flow release requirements in Table 4.3, and 

the release needed to evacuate reservoir storage in the winter to prepare for spring inflow 

volumes, which is set to match the current operational goal of draining each reservoir to the base 

of the multiple use zone by March 1 (COE, 1994a). Shortfalls in meeting environmental targets 

(required flows for Least Tern and Piping Plover habitat) up to 10% are permitted to occur in the 
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model when the total system storage is below the top of the carryover storage zone. This process 

is run from the upstream-most dam (Ft. Peck) downstream to Gavins Point. The second step 

involves checking the release at Gavins Point to see if the navigation target, which is a function of 

date and system storage (COE, 1994a) as shown in Table 4.4, has been met by the releases 

determined in the first step. If a supplemental release is needed to meet the navigation flow at 

Table 4.3 - Dam release constraints and key elevations for U.S. Army Corps of Engineers main 
stem Missouri River project used in the MOSIM model. 
 Ft. Peck 

Dam; 
Ft. Peck 
Lake 

Garrison 
Dam; Lake 
Sakakawea 

Oahe 
Dam; 
Lake 
Oahe 

Big Bend 
Dam; 
Lake 
Sharpe 

Ft. Randall 
Dam; Lake 
Francis Case 

Gavins Pt. 
Dam; Lewis 
and Clarke 
Lake 

Release, m3/s 
Max. releasea 708 1700 1925 2265 2265 2265 
Max. winter releaseb 425 708 708 708 708 708 
Max. hydropower 453 1189 1670 3115 1303 991 
Min. hydropowerc 85 227 28 0 28 142 
Min. tern & ploverd 241 566 0 0 793 821 
Min. spawning, irrig., 
water supplyd 

85 453 170 0 142 170 

Elevation, m 
Max. flood control 686.0 565.2 493.9 433.8 419.2 368.9 
Max. multiple use 684.8 564.0 493.0 433.5 416.2 368.3 
Max. carryover 681.1 560.2 490.1 432.9 411.6 367.2 
Max. permanent pool 658.5 541.2 469.5 431.4 402.4 367.1 
Avg. Tailwater 620.1 511.0 434.5 412.5 376.5 354.0 
Volume at given elevation, 106 m3 
Max. elev. flood 
control 

23050 29380 28540 2290 6680 580 

Max. elev. multiple 
use 

21850 27550 27180 2220 5470 510 

Max. elev. carryovere 18500 22340 23230 2070 3850 400 
Max elev. permanent 
pool 

5190 6140 6630 1740 1870 380 

aValues of 2265 indicate no defined maximum in the COE (1994a) Report. 
bMaximum flows are reduced in winter (December through February) due to channel ice formation. 
cMinimum hydropower is the sustained flow set to meet the MAPP requirements in the COE Long Range 
Study (LRS) model. 
dMinimum flows (from both COE, 1994a and input files for the COE LRS model) applied May through 
August. 
eAs the base of the multiple use zone, this is the target volume for March 1 in COE (1994a). 
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Gavins Point, this is allocated to the upper three reservoirs with the supplemental release drawn 

from each reservoir in proportion to its current volume. This helps to balance the levels of the 

upstream three reservoirs, which is an operational goal with the Missouri River main stem 

system, described by COE (1994a). These supplemental releases are passed through the system to 

determine the final releases at each dam.  

Table 4.4 - Total system storage category definitions and navigation flow targets, adapted from 
COE (1994a) and Jorgensen (1996). 
 High Medium Low 
System Storage Definition, 106 m3 
Dec-Feb 77710 71540 67840 
Mar-Apr 67230 56740 49340 
May 69080 59210 49340 
Jun-Nov 72780 62290 49340 
Service level flow (release target at Gavins Point) a, m3/s 
Dec-Feb 708 425 255 
Mar-Nov 991 821 566 
aReleases are based on the total system storage, as defined for the three 
categories of high, medium, and low. For system storages between the 
threshold values, flow targets are interpolated. 

Figure 4.3 compares the historic system-wide monthly storage for 1968-1997 with that simulated 

by the system model, MOSIM. The mean monthly bias is –557 million m3, or 0.8% of the 

average historic system storage.. The root mean square error of monthly storage volumes is 3458 

million m3, or 4.8%, and the Pearson correlation coefficient of the historic and simulated monthly 

volumes is 0.92, which reflects the good correspondence between the model and historic system 

simulation seen in Figure 4.3. 
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Figure 4.3 - Monthly simulated and historic Missouri River main stem system volumes, 1968-
1997. 
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Figure 4.4 - Monthly energy generation of Missouri River main stem dams, historic and 

simulated. a) Time series of monthly values; b) average annual cycle for the 50-year period, 
1968-1997. 

MOSIM includes a computation of system hydropower generation and system energy capacity for 

each dam. System energy capacity is a function of reservoir elevation (tables relating elevation to 

capacity used in MOSIM are those used by COE 1994a), and is an indication of the ability of the 

system to generate peak power. Energy generation is a function of discharge and elevation at each 

reservoir. Historic and simulated energy generation in GWh for each month for 1968-1997 are 

shown in Figure 4.4. The annual average historic energy generation is 10,187 GWh, and the 

simulated value is nearly identical at 10,158. Although Figure 4.4a shows that MOSIM 

overpredicts the peak generation during the low system storage period during the late 1980s and 

early 1990s (when MOSIM has higher reservoir elevations than historic values), Figure 4.4b 

shows that the seasonal average cycle is captured accurately by the model. 
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Forecasted inflows representing predictability levels 

To contrast the effects of different levels of predictability on the system operation, it was 

necessary to develop forecasted inflow sequences that reflect each predetermined level of 

predictability. This was accomplished by stochastically adding error to observed system inflow 

sequences, with larger errors reflecting lower levels of predictability, and perfect predictability 

resulting in forecasted flows equal to observed. The method used, based on Lettenmaier (1984), is 

outlined in Appendix A. To extend this analysis further into the past, we used as a surrogate for 

the historic record the 100-year reconstructed historic reservoir inflows developed by COE 

(1994a), which remove the effects of upstream water management and set a constant depletion 

level at the relatively low level present in 1949. 
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Figure 4.5 - Accumulated inflow to Ft. Peck dam for a 12-month forecast period under conditions 
of perfect and zero predictability. 

For each month of the historic record for each contributing area, 500 synthetic forecasts were 

made for each of the following 12 months, reflecting the Cp values for the current month. From 

this sequence, the 90th percentile flow for each month was determined. These 90th percentile flows 

represent the assumed level of risk (10%) for this study (and the highest runoff conditions, or 

“upper decile,” used in planning reservoir releases in COE, 1979), where operational decisions 

are based on these anticipated flow volumes for the following 12 months. An example of the 

generation of forecasted flow sequences is shown in Figure 4.5 for the case of no predictability 
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(all Cp values set to 0). This shows the widening band of uncertainty as the forecast lead time 

increases.  

The value of added predictability 

To compare the benefits associated with different levels of predictability quantitatively, it is 

convenient to compute system economic benefits under different alternatives. The current COE 

system operation produces many benefits, including flood control, navigation, hydropower, water 

supply and recreation. In addition, the system is operated to provide environmental mitigation 

benefits, including habitat protection for the Least Tern and Piping Plover populations that nest 

along the river. Among these benefits, hydropower dominates (COE, 1994a). For the MOSIM 

model developed for this study, the remaining purposes for the reservoir system were imposed as 

constraints, while differences in hydropower generation under different alternatives provided the 

metric for the value of the predictability. 

Hydropower benefits were calculated for system capacity and energy production. COE (1994a) 

estimated that system capacity historically has generated roughly two thirds of the total 

hydropower benefits. The economic benefits of both capacity and energy vary through the year. A 

set of monthly capacity and energy benefits were derived based on COE (1994b), which are 

shown in Table 4.5. 

Table 4.5 - Energy and capacity values used in this study 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Energy, 
mills/kWh 

21.00 21.00 19.00 19.00 19.00 27.00 27.00 27.00 19.80 19.80 19.80 21.00 

Capacity, 
$/kW/month 

13.26 9.62 5.33 0 4.01 18.44 30.10 26.73 12.99 1.36 7.32 12.99 

The annual operation in MOSIM was based on COE (1994a), which uses a target of draining all 

reservoirs (in the case of MOSIM, the three upper reservoirs only, as the lower three are run-of-

river) to the target elevation corresponding to the base of the annual flood control zone (also 

referred to as the flood control and multiple use zone) by March 1. In order to permit the use of 

long-lead forecast information, this rule was altered to use two forecast volumes. First, rather than 

fix the March 1 level to the base of the multiple use zone, the level was set to allow storage of the 

forecasted volume of spring and summer inflow (defined as March through July) less the 

maximum amount that could be released through the turbines, in order to minimize spill. Second, 



72 

 

the forecasted inflow volume from the current month through March 1 was compared against the 

maximum volume that could be released through the turbines by March 1. This allowed a 

decision each month as to whether the evacuation needs to begin or not, and retained the reservoir 

at as high a level as possible until lowering of levels to meet the March 1 target must begin. Table 

4.5 shows how maintaining higher water surface elevations, especially in December-February and 

June-August, can result in increased system benefits due to greater economic value of energy 

production and capacity. Additional predictability, and hence reduced uncertainty in anticipated 

flow volumes, allows the maintenance of higher reservoir levels, and provides a quantitative 

estimate of benefits due to additional predictive skill. 
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Figure 4.6 � Monthly historic and simulated main stem system storage, as in Figure 4.3, but 
including the system operation under the flexible rule curve adopted in this study to adapt 

operations to different levels of predictability. MOSIM � no forecast component corresponds to 
the MOSIM model plotted in Figure 4.3 

With the addition of this capability of the system to respond to different levels of predictability, 

the system operation changes, as shown in Figure 4.6 for the cases of perfect and zero 

predictability. The greatest difference in operation is in dry years, where with predictability in the 

system is not drawn down as far as it was historically. It is also interesting to note that even the 

zero predictability case has considerably less drawdown of the system during the dry period of 

the late 1980s to early 1990s. This illustrates that since the synthetic forecast technique adds noise 

to the historic inflows, even a zero predictability scenario effectively incorporates some 

knowledge of future inflows, and does not represent a true “zero skill” forecast, which would 

assume climatological inflows. 
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RESULTS AND DISCUSSION 

Current system configuration 

As a bounding case, the annual system-wide hydropower benefits under a perfect forecast 

scenario (complete knowledge of future flows) are compared to those resulting from no 

predictability. The average annual hydropower benefits for the no predictability scenario were 

$530 million, while the perfect forecast scenario produced $540 million, representing an increase 

of 1.8%. This suggests a relative maximum potential benefit in the Missouri River basin, due to 

hydropower alone, with improved predictability that amounts to several million dollars but is 

small on the scale of the benefits already produced by the project. 

This result is reasonable, given the scale of the existing project, where the total system storage (of 

the COE mainstem projects) is three times the annual inflow to the reservoirs. As illustrated in 

Figures 4.5, the greatest volume of water affected by the forecast in a month (that is, the 

maximum difference in slope between perfect and zero predictability), is approximately 900 x 106 

m3. This volume of water can be interpreted as an amount that can be stored under perfect 

forecast knowledge, while with zero predictability it would have to be released to leave room to 

store anticipated inflow (that would not ultimately occur). However, the extremely large size of 

the reservoirs relative to the inflows results in this volume representing an elevation difference, at 

Ft. Peck dam, of 1.0 m, or 1.5% of the total head available for hydropower generation at Ft. Peck. 

Similarly, the large reservoirs impounded by Garrison and Oahe dams relative to their inflows 

dampen the sensitivity to inflow forecasts, resulting in the relatively small range of benefits under 

perfect and no predictability forecasts. 

To put this information in the context of past studies, we compiled the results from five previous 

studies that compared hydropower generation benefits under perfect forecast (or under optimal 

operation) and with zero forecast skill (or with little accounting for forecast knowledge). For each 

of these past studies, Figure 4.7 shows the ratio of system volume to annual inflow versus the 

percent difference in hydropower benefits with the best forecast as compared to least or no 

forecast skill. Although the value of forecast skill is a function of many factors such as the 

variability of inflows and demands, and the studies employ a variety of assumptions, Figure 4.7 

shows that the ratio of system volume to average inflow limits the potential of a system to benefit 
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from forecast information. As an extreme case (large storage relative to mean flow), the Missouri 

River main stem falls within the trajectory seen from past studies, showing that 12-month 

forecasts in this study have a limited effect on this system, designed for multiple year storage. 
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Figure 4.7 - Ratio of system volume to annual system inflow versus the percent difference 
between perfect and no forecast skill for past studies and the current study. Symbols drawn with 

dotted pen indicate sensitivity studies for reduced volume systems (see discussion in text). 

Hooper et al. (1991) included a sensitivity study of the effect of reducing system storage volume 

on the benefits of forecast information. To simulate the effects of a volume reduction due to 

system modification, the system storage capacity was reduced by 17%, and the resulting 

difference between a perfect and zero forecast increased markedly to 13.6% (the reduced capacity 

Salt River system is shown in Figure 4.7 with a dotted pen). The Salt River system Hooper et al. 

analyzed may be more sensitive to changes in system storage than the Missouri River main stem 

system, because the Salt River system relies on costly groundwater pumping to achieve water 

supply requirements not met by surface runoff, and the pumping cost is included in their analysis. 

However, it does show that a reduction in total system capacity may result in greater forecast 

value. In the present study, a similar sensitivity study was performed for two purposes: 1) to 

identify a system capacity at which the value of forecast information provides a greater marginal 

increase in benefits, and 2) to examine the value of the climate, snow, and soil moisture 

information within the bounds of perfect and zero predictability. 
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Modified system configuration 

Although the current storage capacity of the Missouri River main stem reservoirs is too large to 

show a substantial difference in hydropower benefits between different levels of predictability, 

for reasons discussed above, a smaller system in the same geographical setting could show 

greater sensitivity. To investigate this, the MOSIM model was altered by reducing the total 

capacities of the carryover storage and permanent pool zones of the three upstream reservoirs, 

resulting in a hypothetical system with smaller reservoir storage capacities that is more sensitive 

to changes in forecasted inflows. The three reduced Missouri system configurations are 

summarized in Table 4.6. The smaller system sizes result in a greater range of elevations for the 

multiple use zone (which retained its original size for all configurations), and the value of forecast 

information relative to no forecast knowledge likewise increases. The smallest system, with a 

volume/flow ratio of 1.2, showed a difference of 7.1% in hydropower benefits between the 

perfect and zero predictability alternatives, representing a difference of $25.7 million in annual 

average hydropower benefits. 

Table 4.6 - - Data related to the sensitivity study with resizing of the main-stem Missouri River 
system reservoirs. 
Total System Volume, 
106 m3 

System Volume/Annual 
Flow at Gavins Pt. 

Avg. Elevation Range in 
Multiple Use Zone, m 

% Increase in Benefits 
with Perfect Forecast 

90520 3.0 3.0 1.8 
58240 1.9 5.4 4.2 
45420 1.5 7.3 5.8 
36450 1.2 15.2 7.1 

For this study, this reduced main stem system was used in the analysis of the value of forecast 

information added by knowledge of the climate state and the initial state of snow water and soil 

moisture, as developed by Maurer and Lettenmaier (2002b). The three cases of incremental 

knowledge of climate and land surface state identified above were applied to this reduced main 

stem system. The total hydropower benefits of the project using these three cases, bounded by the 

hydropower benefits for perfect and zero predictability scenarios, are summarized in Table 4.7. 

Figure 4.8 shows the system reliability in meeting the minimum environmental flow releases for 

the Least Tern and Piping Plover habitat at Ft. Peck and Garrison dams. Figure 4.8 shows that the 

reliability of meeting these release targets is generally equal or better under greater predictability 

and higher benefit alternatives. In addition, the maximum winter releases are met 100% of the 
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time at these points, as are the navigation release targets at Gavins Point. This illustrates that the 

increase in benefits between these alternatives is not due to a reduction in reliability in meeting 

some other system benefit. 
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Figure 4.8 - Reliability of system for meeting environmental release targets at Ft. Peck and 
Garrison dams, measured as the fraction of time that the releases are met, and the average 

magnitude of each shortfall expressed as a fraction of the target release. 

Table 4.7 shows that for this reduced configuration of the Missouri River main stem reservoir 

system, the total potential annual hydropower gain above zero predictability accounting for the 

climate state, with perfect knowledge of the snow water content and soil moisture, amounts to 

$6.8 million annually, which is 26% of the total difference between zero and perfect forecast 

skill. Using currently available knowledge of the climate signal, with no knowledge of snow or  

Table 4.7 - Total system hydropower benefits for reduced-volume Missouri River main stem dams 
under different levels of predictive skill. 
Scenario/Forecast Knowledge Average Annual  Hydropower Benefits, millions of 

dollars 
Zero predictability $359.8 
Climate state $363.2 
Climate state and snow water content $364.5 
Climate, snow, and soil moisture $366.6 
Lag flow forecast $363.5 
Perfect forecast skill $385.5 

soil moisture states, provides $3.4 million in benefits above the no predictability case. The 

incremental benefit of perfectly knowing snow state throughout the basin, in excess of the benefit 

resulting from knowledge of climate state, is $1.3 million. Although soil moisture shows high 

predictability at lead times less than three months and has its highest correlations for 
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predictability of winter runoff, when runoff is lowest, the incremental benefit (above that already 

achieved with snow and climate knowledge) due to perfect knowledge of soil moisture state is 

$2.1 million. As noted in above, the predictability of summer runoff attributable to knowledge of 

snow water is high at Fort Peck, but lower at the more downstream projects, hence snow has an 

overall system impact less than that due to soil moisture. 

Using the SOI and AO climate indicators, which are published monthly (and are therefore 

available at forecast time), the hydropower benefits obtained from 12 month forecasts, in excess 

of those for the no predictability scenario, are approximately equal to that which can be obtained 

using only past inflow observations (the “lag flow” forecast indicated in Table 4.7). When a 

perfect knowledge of the basin snow and soil moisture state at the time the forecast is made is 

added to knowledge of the climate indicators, the total increase in hydropower benefits (above a 

no predictability scenario) double. 

It should be emphasized that these results apply to the entire (reduced volume) main stem system. 

Any component operated on its own, or other projects in the basin would have different sources 

and levels of predictability, and the dominance of these sources in producing hydropower benefits 

would likewise be different. Furthermore, as noted by Yao and Georgakakos (2001), the response 

of a water resources system to forecast information is highly dependent on the reservoir operating 

rules imposed. Hence, the conclusions from the present study, with system operations based on 

those used by the COE long term simulation model, would be expected to change under different 

operating rules. 

The results in Table 4.7 are also dependent on the order in which the tiers of variables are 

introduced. As mentioned above, the best known variables are introduced first, hence any 

predictability associated with correlated variables is assigned to the better known variables. The 

implication of this on the results in Table 4.7 is that, for example, if it were assumed that soil 

moisture could be characterized using a hydrologic model to better accuracy than snow water 

content is observed, soil moisture would be introduced before snow in the development of the Cp 

values in Table 4.2. This would attribute a greater portion of the total variance explained to soil 

moisture (since soil moisture and snow water are correlated), and therefore a greater proportion of 

incremental benefits shown in Table 4.7 would be assigned to soil moisture. 
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Seasonal distribution of predictability 

The seasonal distribution of the value of this predictability was investigated by generating 

forecasts using different levels of predictability (either a lag flow forecast, or some combination 

of knowledge of climate state, snow water content, and soil moisture) in one month, and no 

predictability in the remaining months. The month with predictive skill was stepped through the 

year, with the benefits determined for hydropower using the reduced volume system 

configuration. The resulting levels of benefits are shown in Figure 4.9, where for example “Jan” 

indicates the predictability level for January was set using the appropriate values for the level of 

knowledge indicated, and no predictability was assigned to all other months. The ordinate values 

indicate the average annual system (using the reduced system configuration) hydropower benefits 

above those obtained with no predictability. 
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Figure 4.9 - Benefits above a zero predictability scenario with the specified level of predictability 
in the current month, and no predictability in other months. 

Figure 4.9 shows several interesting features on the monthly scale. First, using this month-by-

month technique, the benefits obtained form incorporating the known climate indicators (labeled 

“Climate Only” in Figure 4.9) in the prediction scheme are nearly identical to the benefits 

obtained using correlation relationships with historic observed flows (“Lag Flow”). The 

incremental benefits (above those already obtained using climate indicators) obtained with perfect 

knowledge of snow state throughout the basin has its major impact in February, when the high 

spring and summer flow volumes are highly correlated with the water stored in the snow pack. 

The benefits due to snow decrease sharply in March, however, since the March 1 target date of 
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the following year is the next opportunity for the system to adapt to forecasted inflows. This 

illustrates the interaction of benefits obtained by forecasts and the operating rules imposed on the 

system. 

In general, the value of predictability in the spring, when interannual variability is greatest 

(Figure 4.2), is greater than during the remainder of the year. The late winter and spring, 

especially February and May, is also when the incremental benefits due to soil moisture 

knowledge, above those already obtained from knowledge of climate and snow, are greatest, 

illustrating the potential value of soil moisture knowledge in determining spring and summer 

inflows. Knowledge of soil moisture also provides incremental benefits during October and 

November, since the low winter inflows are dominated by soil moisture-driven base flow. 

Using this technique to examine the month-by-month value of predictability has some 

counterintuitive results. One illustration of this is seen for December in Figure 4.9, where 

increasing information about the land surface moisture state in December (with no predictability 

in all other months) results in slight decreases in average annual benefits. This is explained by the 

use of the flexible rule curve to set the March 1 system evacuation target, and the non-linearity of 

monthly benefits. For example, a high level of knowledge about the upcoming flows in December 

might indicate that inflows will be low and releases can be limited. However, when the system 

returns to no predictability forecasts the following month and higher anticipated inflows, 

reservoir releases will increase in the following months of January and February. For lower 

predictability levels in December, the higher anticipated inflows would require higher reservoir 

releases in December, and subsequently potentially lower required releases in February. Any shift 

in releases from December to February with higher levels of predictability would result in lower 

hydropower benefits, as shown by the capacity values in Table 4.5. 

CONCLUSIONS 

The value of long-lead streamflow prediction skill added by knowledge of climate teleconnection 

information and land surface moisture state in the Missouri River basin on the main stem 

reservoir system was evaluated. The value was based on the hydropower generated by the main 

stem dams for a simulated period of 1898-1996 using a monthly simulation model, MOSIM, 
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developed for this study. Simulated forecasted flows were generated to represent the levels of 

predictability determined in a previous study. 

The configuration of the Missouri River main stem reservoirs, which have a total storage capacity 

of three times the average annual discharge at the downstream end of the system, shows little 

sensitivity to streamflow prediction skill at long lead times (months to a year) – only a 1.8% 

difference in hydropower benefits between a zero and perfect predictability forecast. This is also 

reflected in past studies in other basins, where larger systems show smaller incremental benefits 

due to long-lead forecast skill.  

To simulate the potential effects of predictability on a smaller system in the same geographical 

setting, a hypothetical Missouri River main stem system was developed with reduced storage 

equal to 1.2 times the annual flow volume. This system showed a larger difference between the 

zero and perfect forecast predictability case of 7.1%, and allowed the investigation of the levels 

of predictability due to climate and land surface state knowledge to be investigated. With the 

reduced main stem system, incorporating both a knowledge of the climate state as well as perfect 

knowledge of snow and soil moisture states in the forecast resulted in an increase of 1.9% in 

system hydropower benefits, representing $6.8 million annually. Of this $6.8 million total, use of 

currently available climate indicators provides the largest portion at $3.4 million, which is 

approximately the same as the value of predictability provided by historically observed inflows. 

Of the additional benefits above that already provided due to climate knowledge, soil moisture 

adds the greatest value, at $2.1 million. This provides an important context for operational 

implementation of hydrologic predictability, where for large water resources systems the benefits 

of added predictability may amount to modest sums, but represent a small percentage of 

additional benefits. 

A monthly analysis indicates that, for the modified (reduced-volume) Missouri River main stem 

system configuration and operating rules considered in this study, including climate knowledge 

alone provides a level of benefits comparable to that obtainable using historic system inflow 

observations. Benefits above those obtainable using historic inflows can be obtained with the 

addition of knowledge of snow water content and soil moisture throughout the basin. Knowledge 

of soil moisture provides the bulk of these increased benefits, and has its greatest impact when 

knowledge is provided of soil moisture state in the spring and fall. 
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In the Missouri River basin, greater benefits due to runoff predictability may be realized in 

reservoir systems that are large enough to respond to long-lead forecast information (i.e. capable 

of storing several months of inflow) yet are small enough where the volume in flow affected by 

the forecast has an appreciable effect on the generated system benefits. Future research into the 

interaction of reservoir system size and predictability levels will help identify the areas where 

forecasts produced with additional knowledge of the climate and land surface state will be most 

beneficial. 
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CHAPTER V: CONCLUSIONS 

 
�Life is a revolt against predictability.� 
Albert Camus 
 

The motivation for this study was to investigate the opportunities for improving long-lead 

(monthly to seasonal) runoff prediction over large continental watersheds; and to evaluate the 

potential utility for water resources management. For the selected study area of the Mississippi 

River basin, the first task was to identify the magnitude, location, timing, and sources of runoff 

predictability. This required a comprehensive set of long-term (multi-decadal) records of spatially 

distributed soil moisture, snow water equivalent, and runoff. Such data are not available from 

observations, therefore a set of derived land surface moisture and energy states and fluxes was 

developed. The data set is based on gridded observed precipitation and temperature data, and 

parameterized radiative and other meteorological surface forcings that were used to drive a 

macroscale hydrologic model for the 50-year period 1950-2000. The simulated runoff is shown to 

match observations quite well over large river basins, which suggests that, over the long term, 

evapotransporation must also be realistic. Given the physically-based parameterizations in the 

model, we argue that over shorter timescales other terms in the surface water balance (e.g., soil 

moisture) are probably well represented, at least for the purposes of diagnostic studies.  

Furthermore, observed and modeled soil moisture change is shown to match quite closely over 

the state of Illinois, where long-term soil moisture observations are available. These 

characteristics give this data set promise for a variety of studies, especially where ground 

observations are lacking. For water and energy balance studies in particular, this derived data set 

is shown to be far superior to the land surface variables from coupled land-atmosphere reanalysis 

projects (e.g., Kalnay et al, 1996; Gibson et al., 1997), which have been the basis for a number of 

previous large scale studies. 
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The derived data set provided a unique source of hydrologically consistent, spatially distributed 

fields of land surface moisture and runoff that could be used to investigate the predictability of 

runoff due to initial land surface moisture conditions and climate state. Using this data set, the 

predictability of runoff throughout the Mississippi River basin was evaluated both spatially, and 

by season and prediction lead time. As surrogates for climate predictability, we used the Southern 

Oscillation Index (SOI) and an Arctic Oscillation (AO) index. The principal conclusions from this 

investigation were: 

• Climatic indicators (SOI and AO) provided a small but significant source of predictability 

for DJF runoff for leads of one through three seasons that exceeded that due to the land 

surface state, especially in the eastern portions of the Mississippi River basin. Because 

these climate indicators are readily available, this represents a source of predictability 

that can be exploited operationally, as these indicators are available in near real-time. 

• At the basin-wide level, for the predictors included, soil moisture (SM) is the dominant 

source of runoff predictability at lead 0 (which represents an average lead time of half a 

season, or 1.5 months) in all seasons. 

• When the basin was divided at longitude 100 W into western and eastern portions, SM 

provided the dominant source of predictability at lead-0 in both regions, except in JJA in 

the western mountainous region, where snow water equivalent (SWE) was most 

important. For lead times of 1.5 months, then, a better determination of soil moisture state 

can provide valuable predictive capability of runoff throughout the basin. 

• For areas west of longitude 100 W, the land surface state generally provides a stronger 

predictive capability than do climate indicators; whereas climate indicators are more 

important for eastern areas of the Mississippi basin at leads of one season or greater. 

Modest (although statistically significant) DJF runoff predictability exists at a lead time 

of 3 seasons due to both climate and SM, although much of this predictive capability is in 

areas producing little runoff, and is therefore of lessened practical importance. For JJA 

runoff in particular, locally significant runoff predictability, limited geographically to the 

western mountainous areas, at a lead of 2 seasons is coincident with high runoff 

producing areas.  
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This analysis of runoff predictability has the potential to be useful to water managers, especially 

in the western part of the Missouri River basin. To investigate the potential value of the these 

varying levels of runoff predictive skill added by knowledge of climate signals and land surface 

moisture state, the next phase of this study focused on the main stem reservoir system of the 

Missouri River basin, which comprises 44% of the Mississippi River basin area. As a highly 

managed system with a large reservoir storage capacity relative to system inflows, the Missouri 

River also is capable of responding to long-lead predictive information. The value of 

predictability under different scenarios was based on the hydropower generated by the main stem 

dams for a simulated period of 1898-1996 using a monthly simulation model, MOSIM, developed 

for this study. Simulated forecasted flows were generated to represent the levels of predictability 

determined in a previous study. 

• The Missouri River main stem reservoirs, which have a total storage capacity of about 

three times the average annual inflow to the system, shows little sensitivity to streamflow 

prediction skill at long lead times (months to a year) – only a 1.8% difference in 

hydropower benefits between forecasts produced under perfect and zero predictability 

scenarios. A review of previous studies reveals a consistent relationship between 

economic (hydropower) benefits gained by increased predictability and system volume 

(normalized by average annual system inflow). This provided the motivation for 

investigating the potential effects of the predictability levels on a smaller reservoir system 

in the same geographical setting.  

A hypothetical Missouri River main stem system was developed with reduced storage equal to 

1.2 times the mean annual flow volume. Because the existing main stem reservoir system is 

capable of storing several years of inflow, its sensitivity to forecasts with a 12 month horizon is 

limited. The use of the hypothetical reduced-volume system allowed the investigation of potential 

value of 12 month forecast information to a smaller reservoir system. The reduced-volume system 

showed a larger difference between the zero and perfect forecast skill case of 7.1%, and allowed 

the investigation of the levels of predictability due to climate and land surface state knowledge to 

be investigated. 

• With the reduced-volume main stem system, incorporating a perfect knowledge of basin 

initial conditions (i.e., both a knowledge of the climate state as well as perfect knowledge 
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of snow and soil moisture states) in the forecast resulted in an increase of 1.9% in system 

hydropower benefits, representing $6.8 million annually. 

• Of this $6.8 million total, use of currently available climate indicators provides the 

largest portion at $3.4 million, which is approximately the same as the value of 

predictability provided by historically observed inflows. 

• Of the additional benefits above those already provided due to climate knowledge, soil 

moisture information adds the greatest value, at $2.1 million.  

This study provides an important context for operational implementation of hydrologic 

predictability, where for large water resources systems the benefits of added predictability may be 

modest, but represent a small percentage of additional benefits. In the Missouri River basin, 

greater benefits may be realized in smaller reservoir systems that are large enough to respond to 

long lead forecast information (i.e. capable of storing several months of inflow) yet are small 

enough that the volume in flow affected by the forecast has an appreciable effect on the generated 

system benefits. Future research into the interaction of reservoir system size and predictability 

levels will help identify the areas where forecasts produced with additional knowledge of the 

climate and land surface state will be most beneficial. 
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APPENDIX: DEVELOPMENT OF FORECAST RESERVOIR 
INFLOWS 

Lettenmaier (1984) defined an index of forecast skill, the coefficient of prediction, as: 

( )
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−=  (A-3) 

where tX~  is the forecasted flow at time t, Xt denotes the recorded flow, and σt is the standard 

deviation of the recorded flows in period t. For the predictabilities determined by Maurer and 

Lettenmaier (2002) using multiple linear regression techniques, Cp is numerically equal to the 

square of the correlation coefficient, i.e. the fraction of the runoff variance explained by the 

predictors. 

For a given level of forecast skill, forecasted flows are developed from the “recorded” flows as 

follows. As represented by Lettenmaier (1984), forecast flows are equal to recorded flows plus an 

additive error component: 

ttt XX ε+=~  (A-4) 

where εt is an error term that grows as the forecasts contain less skill. The forecast error is a 

function of the forecast accuracy, with zero error associated with a perfect forecast and the 

maximum error associated with no forecast skill. In order to generate errors for different 

scenarios of forecast skill, the following methodology was used.  

The error term, εt, is normally distributed with a mean of zero and a variance computed by: 

22 )1( tpC σσ ε −=  (A-5) 

where σt is the standard deviation of the recorded flows in period t; in this case t represents 

months, so σt is the standard deviation of the set of  flows for month t. In Lettenmaier (1984) the 

εt is assumed to have a lag-1 (using daily data) Markov correlation structure. The effective lag-1 
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correlation coefficient, ρ, of the recorded flow is derived such that the established value of Cp is 

reproduced. The lag-1 forecast error correlation, ρε is estimated, which is a function ρ and the 

length of the forecast and observation periods. As illustrated in the implementation of this 

technique by Datta and Burges (1984), as well as in the example in Lettenmaier (1984), even very 

large values of Cp and ρ produce relative low correlation values of ρε. In this implementation, ρε 

was estimated at below 0.1 for the range of Cp values reported by Maurer and Lettenmaier (2002), 

and would therefore have a negligible effect on the estimated forecast values. Hence, the forecast 

errors were assumed uncorrelated for this study. With these assumptions, this method reduces to 

that used by Yeh et al. (1982) for stochastic flow generation. 
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