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ABSTRACT:

The potential effects of climate change on the hydrology and water resources of
the Columbia River Basin (CRB) were evaluated using simulations from the U.S.
Department of Energy and National Center for Atmospheric Research Parallel Climate
Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21%
century based on a “business as usual” (BAU) global emissions scenario, evaluated with
respect to a control climate scenario based on static 1995 emissions. Time-varying
monthly PCM temperature and precipitation changes were statistically downscaled and
temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic
simulation model of the Columbia River basin at %4 degree spatial resolution. For
comparison with the direct statistical downscaling approach, a dynamical downscaling
approach using a regional climate model (RCM, was also used to derive hydrologic
model forcings for 20-year subsets from the PCM control climate (1995-2015) scenario
and from the three BAU climate (2040-2060) projections.

The statistically downscaled PCM scenario results were assessed for three analysis
periods (denoted Periods 1-3: 2010-2039, 2040-2069, 2070-2098) in which changes in
annual average temperature were +0.5, +1.3, and +2.1 °C, respectively, while critical
winter season precipitation changes were -3, +5, and +1 percent. For RCM, the predicted
temperature change for the 2040-2060 period was +1.2°C and the average winter
precipitation change was -3 percent, relative to the RCM control climate. Due to the
modest changes in winter precipitation, temperature changes dominated the simulated
hydrologic effects by reducing winter snow accumulation, thus shifting summer and
autumn stream-flow to the winter. The hydrologic changes caused increased competition
for reservoir storage between firm hydropower and in-stream flow targets developed
pursuant to the Endangered Species Act listing of Columbia River salmonids.

We examined several alternative reservoir operating policies designed to mitigate
reservoir system performance losses. In general, the combination of earlier reservoir refill
with greater storage allocations for in-stream flow targets mitigated some of the negative
impacts to flow, but only with significant losses in firm hydropower production (ranging
from -9 percent in Period 1 to -35 percent for RCM). Simulated hydropower revenue
changes were less than 5 percent for all scenarios, however, primarily due to small
changes in annual runoff.
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Chapter 1 - Introduction

Man’s activities since the 1800’s have unquestionably affected the chemical
composition of the atmosphere. Concentrations of greenhouse gases (GHGs), especially
carbon dioxide, have increased almost monotonically since the onset of major global
industrialization. These changes are well documented, showing increases of about 25%
in the atmospheric concentration of CO, during the period of instrumental record, which
began less than 50 years ago. Although scientific opinions vary about the possible
severity of changes in climate resulting from changes in atmospheric gas concentrations,
there is a high certainty that changes have and will continue to occur as a result of
increasing GHG concentrations. For instance, according to the Intergovernmental Panel
on Climate Change (IPCC, Houghton and Ding, 2001):

“For the end of the 21% century (2071-2100), for the draft SRES marker scenario A2,
the global average surface air temperature change from [General Circulation Models
(GCM)] compared with 1961 to 1999 is +3.05°C and the range is +1.3 to +4.5°C. ...
These quantities are model dependant, and the previous range for this quantity [based
upon 2xCO; GCM results], widely cited as +1.5 to +4.5°C, still encompasses the
more recent model sensitivity estimates.”

The effects of global warming on U.S. are expected to be most profound in the West,
where the hydrology and water resource systems are reliant, in large part, upon snow
accumulation and melt patterns that are highly temperature dependant (Leung and Ghan,
1999). Further, many previous studies (e.g. Gleick and Chaleki, 1999; McCabe and
Wolock, 1999; Hamlet & Lettenmaier, 1999; Lettenmaier, Brettmann, and Vail, 1992;
Lettenmaier and Gan, 1990) indicate that even relatively small increases in temperatufe
would result in a significant shift in runoff patterns (e.g. more winter runoff, an earlier
peak snowmelt runoff, and reduction of summer and fall streamflow). The consequences
of such shifts for managed water resources in the West could be substantial because
snowpack influences summer streamflows, when a relatively small proportion of annual

precipitation falls (e.g. Lettenmaier and Sheer, 1991).
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This thesis evaluates how climate change might affect the water resources specific to

- the Columbia River Basin and investigates the value of several alternative reservoir
operations in mitigating negative impacts. The primary focus of the work is on
mitigating the climate-related impacts to hydropower production, flood protection, and
fisheries protection and enhancement. Climate related impacts and the consequences of

alternative operations to recreation and irrigation are also presented.

1.1: The Application of Climate Models

The presence of ongoing global climate change has been well documented in scientific
literature and through various global and national reviews (IPCC, Houghton and Ding,
2001; IPCC, Houghton and Filho, 1996; Hansen, et al., 1998, Gleick and Chaleki, 1999; °
Cicerone, 2000). Many indications point to the anthropogenic production of greenhouse
gases (CO,, N,O, CHy4, HFC, PFC, and SFs) as primary contributors to global warming —
particularly to CO, (United Nations: Framework Convention on Climate Change
(UNFCCC), 1997). GCMs are the primary tool by which the effects of changing
concentrations of GHGs are projected. They represent the interactions between the
. atmosphere, ocean, and land surface in a manner similar to that used by numerical
weather prediction models (e.g. short-term weather forecasting models), that is, by
solving the equations of fluid motion in the atmosphere, given land surface and ocean
conditions as evolving boundary conditions, which are themselves represented by
dynamic models.

Despite the understanding of the climate system represented in GCMs, the science of
predicting climate change is in its early stages. Projections made for even the near future
are subject to considerable uncertainty and cannot be considered to be forecasts in the
commonly used sense. Several problems exist in making climate projections, including:
representation of cloud physics in GCMs, the effects of the land surface on climate, and
uncertainty associated with downscaling climate simulations to the river basin scale.
However, climate projections based on GCM simulations of temperature, precipitation,

and other variables can allow for the study of ‘potential’ hydrologic futures, which in fm
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can be used to assess sensitivities of water resource systems to changes future climate
change, and to allow the feasibility of alternative adaptation strategies.

This thesis uses simulations performed at the National Center for Atmospheric
Research (NCAR) from a state-of-the-art coupled land-atrnosphere-ocean GCM, the US
Department of Energy (DOE)/NCAR Parallel Climate Model (PCM) (Barnett et al,
2001). PCM represents the evolution of climate specifically as it might be affected by
increases in trace gas concentrations (Washington et al., 2000). Among various scenarios
of future greenhouse gas emissions that have been evaluated using PCM is an ensemble
of "business-as-usual" (BAU) projections (projecting CO, increases that fall between the
1995 TIPCC A2 and B2 scenarios). The BAU emission scenario reflects the hypothésis
that current GHG trends, practices, and abatement strategies will continue over the next
century.

This study uses three PCM future climate ensembles with identical GHG emissions
forcing, but with different atmospheric initializations: a process that allows the chaotic
nature of the atmosphere and its interactions with the ocean and land to evolve
differently. Thus, each ensemble presents a different future that could occur, consistent
with the prescribed (deterministic) emissions scenario. The predicted western U.S.
warming by the mid-21* century for these scenarios is approximately 1 degree Celsius
relative to a “control run” that reflects recent conditions (1995). The climate control run,
in turn, is about %2 °C warmer than the recent historical period, which reflects observed
late-20™ century conditions relative to the past.

In general, the amount of warming predicted by PCM (globally, as well as for the U.S.
Pacific Northwest) is smaller than that predicted by most other climate models, such as
those used in the recent IPCC and U.S. National Assessments (see IPCC, Houghton and
Ding 2001, Gleick and Chaleki, 2000). The lower temperature sensitivity of PCM to
greenhouse gas forcing relative to other GCMs is attributed by Barnett et al (2001) to
more sophisticated representation of ocean-atmosphere coupling in PCM compared with

other GCMs, the result of which is the storage of more heat in the ocean over the next

)
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century, and hence smaller increases in atmospheric temperature. The GCM and

ensembles used in this study are presented in greater detail in Chapter 2.

1.2: The Columbia River System

‘The Columbia River Basin (CRB) covers portions of seven western states and the
Canadian province of British Columbia (Figure 1). Most of the basin lies within
Washington, Oregon, Idaho, and British Columbia. In total, the basin is approximately
the size of Texas. From its headwaters in the Canadian Rockies, the Columbia flows
1,930 kilometers and drops 800 meters from its Columbia Glacier headwaters to the
Pacific Ocean. Of the tributaries feeding the Columbia River, the largest is the Snake,
which constitutes half of the Columbia River Basin in the US and flows over 1,770
kilometers from its headwaters in the Grand Tetons of Wyoming to its confluence with
the Columbia in southeastern Washington.

Within the CRB, the annual precipitation varies from 150 to 2,800 mm, resulting in a
unique range of vegetation and climate: from temperate rain forests to semi-arid plateaus.
The highest precipitation falls along the mountainous fringes. Some of the interior is
unsuitable for intense cultivation without irrigation. Despite the basin’s need for
irrigation, annual outflows are large. Annually, the Columbia River discharges an
average 5,210 m*/s at The Dalles (or 270 mm averaged over the drainage basin), and
forms a 600 km long freshwater plume in the Pacific Ocean during the present regulated

peak spring discharge.
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The most significant aspect of
the basin’s geography, as it
pertains to water resources, is its
effect on both the regional
climate and hydrology.  The
hydrology of the CRB is
dominated by the winter snowfall
and spring snowmelt cycle, which

are byproducts of large winter

snow accumulations in the Rocky and Cascade Mountain Ranges. Under the present

climate, this cycle effectively stores large quantities of winter precipitation thsough the
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late spring. At The Dalles, nearly 60% of the runoff first accumulates as snow, and
approximately one third of the annual discharge originates from the Canadian Rockies
(Hamlet and Lettenmaier, 1999).

1.3: The Columbia River Reservoir System

Although the lower CRB underwent significant dévelopment in the 1800’s (especially
canal building and dredging projects), the current state of the system is dominated by
infrastructure constructed during the 20" century. The convergence of various interests
lead to the development of the CRB. These include, among others, public and private
hydropower interests, irrigation projects, navigation interests, and work relief projects
during the Great Depression. The resulting hydroelectric resources contributed directly
to World War II, especially through development of an abundant supply of electricity that
fueled aluminum plants, shipyards, and development of nuclear weapons at the Hanford
Engineering Works near Richland, Washington. The boom in river development, which
began with the construction of the largest dams in the 1930s and 1940s, ended in the late
1970’s after the completion of Canada’s Mica Dam and the four run-of-river projects on
the lower Snake River. Despite the halt in developnient, the Columbia remains among

the most densely developed hydropower sources in the world.



Table 1.1 - Columbia River dams contributing to flood protection at The Dalles, OR

ColSim Reservoir Locati Total Storage Nameplate
ocation ors 3 .

Storage Dams Names (billion m") Rating (MW)
Mica Kinbasket British Colombia 24.55 1,792
Keenleyside Arrow Lakes British Colombia 9.03 185
Duncan - British Colombia 1.76 0
Libby Koocanusa Montana 7.22 525
Corra Linn Kootenai British Colombia 1.01 559
Hungry Horse Flat Head Montana 4.50 428
Kerr - Montana 2.21 114
Albeni Falls Pend Oreille Idaho 1.87 43
Grand Coulee F D Roosevelt Washington 11.22 6,465
Upper Snake (Aggregated) Idaho 3.18 120
Mid Snake (Aggregated) Idaho 5.23 107
Brownlee - Idaho 1.75 585
Dworshak - __| Idaho 4.28 400
Total | 77.81 11,096

The largest dams in the CRB (see Table 1.1) have a combined total storage capacity
of nearly 62 billion cubic meters, which is managed to support a variety of purposes.
Although dams are authorized individually for specific purposes, all of those listed in
Table 1.1 provide a degree of flood protection, and all are operated to - produce
hydropower. Grand Coulee and the Snake River dams are operated to assist with the
irrigation of over 5 million acres (2.02 million hectares) of farmland. The four lower
Snake dams and the four lower Columbia projects have made Lewiston, Idaho the
world’s furthest inland sea-accessible port, 680 km from the ocean. A more thorough
description of the CRB reéervoir system and its operating purposes is provided in
Chapter 3.

Hydropower provides, by far, the most significant economic benefit of the CRB
reservoir system. Traditionally, the demands for electric power within the Columbia
have been more or less consistent with flood control objectives on the lower Columbia —
that is, large reservoir evacuations to provide storage for the spring runoff peak have
coincided with the high-demand winter period. As a result, hydropower has de facto
access to the largest portion of “active” storage in the basin (as compared with flood

control, stream augmentation, and irrigation). Effective operation of the hydropower
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facilities is critical to the region, as they account for roughly 70 percent of the region’s
electrical capacity (Northwest Power Planning Council, 2001). This abundance of
hydropower is one reason why the Pacific Northwest has the nation’s cheapest electricity
rates (BPA, 2001).

The enormity of the Columbia’s hydropower capacity, however, did not come without
a cost. The eleven run-of-river structures on the Columbia present a serious impediment
to the survival of native fish and to the breeding cycles of anadromous species (most
notably salmon) (National Marine Fisheries Service (NMFS), 2000). High spring runoff
traditionally carried salmon smolt rapidly to the Pacific. However, the now-languid
backwaters of the CRB reservoir system force salmon to make the trip without the benefit
of naturally high stream velocities, resulting in greater in-stream mortalities.

In recent decades, both the Endangered Species Act (ESA) and court cases associated
with tribal treaty rights have increased the priority of fish and wildlife management in
reservoir operations and administrative budgeting. One result is that a significant portion
of the Bonneville Power Administration’s annual budget is allocated to reséarching ways
to improve fish survival while minimizing effects on hydropower production (BPA,
2002). In the last 20 years, the BPA alone has invested nearly $3.5 billion in salmon
recovery efforts (Northwest Power Planning Council, 2001).

1.4: Implications of Climate Change for CRB Water Resources

CRB water managers — principally the U.S. Army Corps of Engineers (COE), BC
Hydro, the Bonneville Power Administration (BPA), and the U.S. Bureau of Reclamation
(USBR) - have conflicting resource goals, intermittent (and politically fueled) changes in
system priorities, and a dynamic natural hydrology. Reservoir managers routinely deal
with interseasonal and interannual climate variability in mediating demands for flood
protection and the need to maintain both reservoir storages and streamflows through the
summer. In a sense, potential climate change is only one of many strains placed on CRB
management. The major constraint in dealing with conflicting system demands (reservoir

storage) is fixed, and there are few opportunities (either politically or geographically) to
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develop additional storage. Nevertheless, storage requirements for the Endangered
Species Act and regional power consumption have been increasing (largely due to
population growth; per capita power consumption has mostly been decreasing). Climate
change complicates these trends by shifting the seasonal availability of runoff: a result
that will increase competition for limited reservoir storages. |

The direction, if not the magnitude, of climate change impacts on the Columbia River
are reasonably well known. All climate scenarios indicate a general warming, a change
that moves the spring discharge peak earlier in the year, and reduces summer and fall
discharge (Hamlet and Lettenmaier, 1999). In addition, many sub-basins could be prone
to increased winter flooding (Loukas, et. al., 2002), severe and frequent droughts, and
significant decreases in summer flows. The latter effect will assuredly result in increased
conflicts among summer lake recreation, instream flow for fish, irrigation withdrawals.
On the other hand, there is some hope that improvements in reservoir management could
help to mitigate some of these conflicts. For instance, Yao and Georgakakos (2001)
studied the effect of climate change on the performance of Folsom Lake (a large reservoir
in California) and found that both adaptive decision systems and dynamic operations

would be able to benefit reservoir performance considerably under a changed climate.

1.5: Hypothesis

Given that climate change of some magnitude is likely due to ongoing increases in
concentrations of GHG and inertia in both emissions control policies and the clifmate
system, adaptation to climate change is required. Adaptation strategies have the potential
to reduce many of the adverse impacts of climate change, although neither without cost
nor without leaving residual damage (IPCC, Houghton and Ding, 2001). The central
hypothesis of this thesis is that alternative operating policies for the CRB reservoir
system could substantially mitigate impacts to reservoir system performance that

otherwise would be expected due to climate change over the next century.
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Chapter 2 - Research Approach

The research reported in this thesis was supported by the U.S. Department of Energy
as part of its Accelerated Climate Change Prediction Initiative (ACPI). ACPI was
created to study, among other things, the potential impact of climate change on the
nation’s energy supply. The ACPI addresses the national need for understanding climate
processes: |

“[The] United States requires an unprecedented acceleration and extension of the
modeling state of the art to reduce existing uncertainties about long-term climate
change and provide regional specification in climate change projections to support
national and international energy and environmental policies that must be formulated
and implemented early next decade (DOE, 1998).”

The ACPI seeks to integrate three research pathways: the development and evaluation of
GCMs, the publication of climate projections, and the assessment and analysis of -
hydropower impacts related to the projections.

This thesis is associated with the third pathway. Specifically, it assesses climate
impacts on the performance of federal hydropower projects within the Columbia River
Basin. This assessment used the DOE/NCAR PCM, the Variable Infiltration Capacity
(VIC) macroscale hydrology model (Liang et al, 1994; Liang et al, 1996b), and the
Columbia Simulation Model (ColSim) (Hamlet, et al, 1999). Four PCM ensembles were
constructed and run by NCAR: three transient climate change ensembles spanning the
21% Century and a 52 year control ensemble representing the atmospheric conditions of
1995 (see Section 2.1). 'Atmospheric data, including temperature, precipitation, and
information on near-surface energy balances were downscaled and bias corrected from
the PCM ensembles to match with the temporal and spatial resolution of the VIC model.
The downscaling and bias correction methods used to transform PCM outputs into VIC
inputs are described in detail by Wood, et al. (2002a; b), and are summarized in Section
2.2. The VIC model, described in Section 2.3, was used to generate naturalizéd, or

unregulated, hydrographs at 15 river stations in the CRB that correspond with the

’
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projected PCM climate changes over the next 100 years. These hydrographs were used
directly as input into the ColSim reservoir operation model, where experiments were
conducted to establish the impact of projected hydrology changes on the Columbia
River’s operational reliability. Alternative operating policies were then pursued in
ColSim to develop the sensitivity of system performance to reservoir operations. Finally,
an assessment was conducted to maximize system operations considering a combination

of several operating alternatives and conservative system constraints. (See Section 2.4.)
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Figure 2.1 — The underlying relationship between the PCM, VIC, and ColSim models in this study

Figure 2.1 illustrates the basic process integrating results from PCM, VIC, and
ColSim. This has become a common method of assessing the results of GCMs on
regions and river basins. Lettenmaier and Gan (1990) developed the basic approach for

investigating of the effect of climate change in California’s Central Valley, as part of an
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EPA Report to Congress (Smith and Tirpack, 1989). The method has since been applied
several times to the CRB to determine the system’s sensitivity to various GCM
projections of climate change (e.g. Hamlet and Lettenmaier, 1999; Cohen, et al, 2000),
and to determine the economic value of long-lead forecasting in countering climate
change (Hamlet, et al, 2002). For the present study, the approach was expanded to
evaluate the water resource implications of a true transient GCM global warming
scenario, and to investigate the potential for mitigating system losses with reservoir

operations (constrained to conservative assumptions for future system demands).

2.1: Parallel Climate Model

The basis for the climate change projections in this study come from the DOE/NCAR
Parallel Climate Model. PCM is a General Circulation Model that incorporates a
representation of the fluid motion of the étmosphere, land surface, ocean, and sea-ice
components of the global climate (Washington, et al., 2000). PCM was developed in
response to a perceived lack of climate predicting capability within the U.S., for use in
assessing the implications of global warming on the nation, including western
hydropower resources, fire hazards, agriculture production, and biological implications.
The effects on hydropower, which are of particular interest to the DOE, are a major focus
of this study.

Among various scenarios of future greenhouse gas emissions that have been
evaluated using PCM is an ensemble of "business-as-usual" (BAU) projections (using
CO, increases that fall between the 1995 IPCC A2 and B2 scenarios). The BAU
emission scenario reflects the hypothesis that current GHG trends, practices, and
abatement strategies will continue, at least over the next century. This study is based on
three PCM ensembles, each of which uses the same BAU greenhouse gas emission
scenario, but-in which the atmosphere was initialized differently so as to allow the
chaotic nature of the atmosphere (and its interactions with the ocean and land) to evolve
differently. The generation of the three ensembles is performed in a manner similar to

that routinely used in weather forecasting; each of the three ensembles represents a
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different future that could occur, consistent with the prescribed (deterministic) emission
scenario. For the purposes of this study, the three ensembles are treated as equally
probable scenarios.

The three BAU climate ensemble members (Table 2.1) used in this study are denoted
B06.44, B06.46 and B06.47, and span the period 1995-2099. A shorter (1995-2048)
control simulation, denoted B06.45, in which GHG emissions are fixed at roughly year
1995 levels is also used in this study, as is part of a historical simulation (130 years), for
which GHG emissions were fixed at pre-industrial levels. In particular, the historical
simulation (B06.28) is used to derive statistics needed for bias-correcting the PCM

control and climate change runs.

Table 2.1 —- PCM Simulations used in this study

Run Description Period
B06.28 Historical (CO,+aerosols at pre-industrial levels) 1870-2000
B06.45 Climate Control (CO,+aerosols at 1995 levels) 1995-2048
B06.44 Climate Change (BAUS, future scenario forcing) 1995-2099
B06.46 Climate Change (BAUS6, future scenario forcing) 1995-2099.
B06.47 Climate Change (BAUS, future scenario forcing) 1995-2099

The results reported here are based on segments of the BAU ensembles for thfee 30-
year periods: 2010-2039, 204042069, and 2070-2098. Our assessment approach is based
on full transient assessment of these warming scenarios within the VIC hydrology model,
rather than the more common "quasi-transient” approach (Lettenmaier et al., 1999), in
which segments of the warming scenarios (e.g. decades) are averaged and used to adjust
historic observations to reflect decadal changes in means relative to a control climate run.

Figures 2.2 and 2.3 show the temperature and precipitation trends of the three
transient runs for the CRB, compared with the control run. Averages of the historic and

control climates are included as horizontal lines. The average 1995 temperature is
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noticeably higher than the historic temperature, which is expected and confirms the
increases in temperéture that have already occurred in the Pacific Northwest (Mote, et al,
1999).

As part of other studies (Wood, et al, 2002c; Hamlet, et al, 1999; Maurer, et al, 1999),
several other GCM runs have been downscaled and used in the VIC model, including
runs from the Max Planck Institute (MPI) and the U.K. Hadley Center (HC2). Figure 2.3
displays the resulting of hydrographs (routed through VIC) for each of the GCMs used to
date. The PCM results are notable in that they have smaller temperature rises than most
other models, primarily due to their higher rates of ocean sequestration of greenhouse
gasses. It is worth noting that among the three models there is relatively less disparity in
the projections for early in the 21* century, primarily because the initial climate condition
exerts considerable control early in the simulations.

A critical aspect of the approach is the use of a chain of models — including the GCM
and the resultant ensembles, a downscaling approach to produce from the GCM
ensembles input at the appropriate spatial and temporal resolution, the VIC hydrology
model, and the ColSim reservoir sifnulation model. The downscaling approach is
summarized in the following section. The VIC hydrology model and the ColSim
reservoir model are described briefly in the following sections. More information on the
PCM, its development, and its regional application in the ACPI is available in
Washington (2002), Barnett et al. (2001), and Leung, et al. (2002).
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Figure 2.3 — A comparison of projected naturalized annual hydrographs about the year 2045 at The
Dalles, OR. Represented are projections from the Max Planck Institute (MPI) the U.K. Hadley
Centre (HC2) for the 2040 decade (the closest approximation of Period 2 from previous studies, i.e.
Hamlet, 1999) and the DOE/NCAR Parallel Climate Model (PCM), which is used as the Control

(current climate) and displays the average results from Period 2 (2040-2069).

2.2: Downscaling Approach

In order to transform PCM outputs into naturalized runoff hydrographs, biases in the

climate model outputs had to be removed and downscaled to meet the spatial and

temporal requirements of the hydrology model. The method of bias-correction used is

based on a quantile mapping method developed by Wood et al. (2002a), which was

originally designed for application to streamflow forecasting driven by multi-month

climate ensembles.

Its application to downscaling of the PCM climate ensembles is

described in Wood et al (2002b). The basic procedure is to map observed probability

distributions of average monthly temperature (T..g) and total precipitation (Py) to
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probability distributions for the simulated GCM ensemble output. The procedure is
described below briefly.

The mapping procedure translates probability distributions of monthly average
temperature T,yg and total precipitation Py from the PCM control run, which spans the
period 1995-2048. For this process, each of the 13 PCM cells covering the CRB was
treated independently. The observed climate was derived from the National Climatic
Data Center (NCDC) cooperative observation station data, averaged to the PCM grid
resolution (spanning the same historical period). The mapping from PCM to observed
climate was subsequently applied to the PCM control run and future climate scenario
outputs, so that they are also expressed in a plausible range relative to historic
observations. The mapping was performed at the spatial resolution of the PCM output
(about two degrees latitude by longitude); hence the adjustments vary spatially at the
PCM grid scale, by month. To address the temperature shift of the future climate
scenarios, the cell-specific temperature trends (estimated from a nine-year centered
moving average) were removed before, and replaced after the bias-correction step.

Following bias correction, the climate change ensembles were disaggregated from the
PCM cells (thirteen cells of T62 resolution, dimensions 1.91° latitude by 1.87° longitude)
to the Y4-degree latitude-longitude resolution of the hydrology model. This was achieved .
by imposing a random daily pattern of Tayg and Py (from the historic record, at the
resolution of the VIC hydrology model) so as to reproduce the interpolated PCM monthly
fields. The reader is referred to Wood et al., (2002a; b) for details of the procedure.

2.3: Variable Infiltration Capacity Hydrology Model (VIC)

The Variable Infiltration Capacity (VIC) macroscale hydrologic model (Liang et al.,
1994; 1996; 1999) was used to generate the naturalized streamflow hydrographs for the
Columbia River. VIC simulates land-atmosphere interactions via a multi-layered grid
cell mosaic representation of the land-surface. Within each grid cell, sub-grid spatial

variability in precipitation, infiltration, and vegetation cover are represented, with the
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sub-surface represented by three soil layers. Lateral movement of water from grid cell to
grid cell is represented via a channel routing post-processor. Land-atmosphere fluxes of
moisture and energy are assumed to be entirely vertical. VIC has been applied to such
large continental rivers as the Columbia (Nijssen et al., 1997), the Arkansas-Red
(Abdulla et al., 1996), and the Mississippi (Maurer et al. 1999; Cherkauer and
Lettenmaier, 1999), and, as part of the Land Data Assimilation System (LDAS) project
(Mitchell et al, 2000), to the continental U.S. (Nijssen, et al., 2001). The model has
performed consistently well in comparisons with observations conditions (e.g. Liang
1998; Lohmann 1998). Figure 2.5 illustrates how VIC translates surface meteorological
and radiative forcings (precipitation, temperature, wind, humidity and downward solar

and long wave radiation) into runoff.
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The naturalized daily VIC outputs were routed through the stream network to 15 nodes

corresponding with stream gauge locations along the Columbia River and its tributaries,
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as shown in Figure 2.4. For the ColSim reservoir model, each streamflow time series was
produced on a daily time-step by VIC and was then aggregated into a monthly flow

volume to fit with the water resources model.
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Figure 2.6 — (a) average annual runoff and (b) mean monthly hydrograph for The Dalles, OR

2.4: Columbia River Simulation Model (ColSim)

ColSim was developed by Hamlet (1999) to provide a relatively simple tool to

evaluate the implications of hydrologic changes associated with climate, vegetation, and
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other large-scale changes represented by the VIC macroscale hydrology model on
performance of the CRB reservoir system. ColSim simulates the operations and outputs
of thirty-three dams in the Columbia River basin. Twenty of these dams are run-of-river
projects, which primarily generate power and assist navigation along the lower Columbia.
The other thirteen structures are storage reservoirs operated for a variety of purposes,
which fall loosely into two categories: dam-specific operatiohs (such as local flow,
recreation, and agricultural requirements) and system-wide objectives (like flood control,
hydropower production, and instream flow targets).

Although operations within the Columbia Basin are quite complex, ColSim uses
appropriate assumptions that enable the model to be used as an effective planning and
sénsitivity analysis tool. Hamlet (1999) demonstrated ColSim’s ability to reproduce
system responses (reservoir levels and releases) similar to observations, and to do so
when using both observed and VIC-simulated reservoir inflows. ColSim has been used
to assess several aspects of the Columbia River’s water resource system, including the
effects of Hadley Center and Max Planck climate model projéections, and the economic
value of long-lead oceanic-based forecasting on hydropower (Miles et al, 2000).

Since the inception of ColSim, various aspects of the reservoir operating policies,
especially those pertaining to instream flow requirements and hydropower production
targets, have changed. Where necessary, these operating policies were adjusted to meet
with present operating conditions in the CRB. The modifications include the addition of
the Bonneville Dam flow target (in response to the 2000 National Marine Fisheries
Service (NMFS) Biological Opinion Paper), the Army Corps’ VER-Q flood control
modifications at Libby Dam (COE, 2002), and an improved *relationship between
agricultural applications and return flows in the Snake River Plain. A more detailed
| description of the operations at each dam is provided in Chapter 3.

ColSim is used here to evaluate possible changes in the CRB reservoir operating
policies that might mitigate effects of global warming as predicted by the PCM
ensembles. Altering regulatory requirements within the ColSim model provided the

means for these evaluations. Specifically, alterations in the required winter flood control
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evacuation, shifts in the timing of refill, changes in the demand curve for firm energy,
and increases in the total allocated storage for instream- flow requirements were

evaluated. Details of the specific evaluations performed are described in Chapter 4.
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Chapter 3 - Representing Columbia River reservoir operations:
ColSim

ColSim is a monthly time-step, object-oriented model designed to evaluate the
performance of the Columbia River reservoir system, as it would be affected by either
changes in reservoir inflows (associated with changes in climate, and/or 'land cover) or
reservoir operation. ColSim replicates the key features of the present reservoir system
and its current operating policies while maintaining a principle of limited complexity, or
Occam’s razor. Details of the physical system and its operation are included in ColSim
only to the extent that they substantially affect the overall system’s performance.

ColSim explicitly represents eleven major storage reservoirs, two aggregated storage
reservoirs, and hydropower production at 20 run-of-river facilities within the system.
Although representation of hydropower generation is a key objective, the model also
represents performance of the system with respect to the other major purposes of system
operation, including flood damage mitigation, environmental flow targets, Snake River
Plain irrigation, and recreation at Lake Roosevelt. Each of these multiple purposes are
monitored in terms of their overall monthly performance and, when possible, in economic
terms.

For this study, the primary focus is on the relationships among flood control,
hydropower, and instream flow targets. Ultimately, this work is concerned with
answering, “Can negative climate change impacts be mitigated by altering reservoir
operation policies?” This lrequires an understanding of how individual reservoir
functions are most affected by both changes in natural inflows and alternative operation
policies. Performance measures (also called metﬁcs of performance, or metrics) were
developed to highlight the system’s sensitivity within ColSim’s monthly time_step
environment. The sensitivity results are used in formulating several alternative policies
and a final, combination alternative, designed to maximize the performance of the water

resource system within each of the three 30-year analysis periods.
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3.1: Flood Control

All dams within the CRB have one of five classifications with respect to flood control,
as designated by the US Army Corps of Engineers (COE, 1991): (1) Headwater
reservoirs operated with fixed releases; (2) reservoirs operéted for tributary protection;
(3) major lakes operated for flood control; (4) reservoirs operated With variable releases
for downstream flood control; or (5) run-of-river projects. Of these, (1) and (4) are the
most important to short-term system regulation. Category 4 reservoirs in particular
(Arrow, Grand Coulee, and John Day) require continual adjustment during the spring
runoff to achieve flood control in the lower Columbia (COE, 1991).

ColSim reduces this complexity into three elements; 1) run-of river dams with no
flood operations, 2) operations at individual dams for local targets, and 3) conjﬁnctive
operations for protection of the lower Columbia River. The majority of dams modeled by
ColSim are represented as run-of-river structures, including John Day, which is modeled
as a run-of-river structure bécause its storage is nominal in relation to flooding events that
occur on a monthly time-step. Individual operations include provisions for protection
against local flooding, such as in the reaches below Mica and Corra Linn Dams. Many of
the existing local operations, such as ramping rates (restrictions pertaining on the rate by
which the instantaneous releases from dams can be altered) and maximum daily releases,

are obscured at the monthly time-step used by ColSim and are therefore not represented.

Table 3.1 — The relationship between flows at The Dalles and Portland-Vancouver flood conditions
(COE, 1991) '

Outflow at The Dalles Corresponding Flood condition at Annual
Vancouver Stage Portland Exceedance
(cfs) (cms) (feet) (m) Frequency
450,000 13,000 16 5 Bankfull 10%
500,000 14,000 19 6 5%
600,000 17,000 225 7 Minor Damage 2%
750,000 21,000 26 8 Major Damage 0.2%
950,000 27,000 30 9 Levee Overtopping 0.05%
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Protection of flood control levees in the Portland area is indexed by flows at The
Dalles (a point also used by the COE in more detailed flood analyses), and requires the
conjunctive regulation of flows at all thirteen ColSim storage reservoirs. ColSim
represents these operations by attempting to maintain average monthly releases at The
Dalles below the bankfull value of approximately 450,000 cfs (13,000 cms). Table 3.1
defines the relationship between Dalles outflow and Portland-Vancouver flood conditions
used in this study. The contribution of ColSim storage projects to Dalles flood control is
achieved in different manners, depending upon their COE flood control designation.
Generally, all dams have evacuation requirements based on forecasts of spring snowmelt,
which are simulated in ColSim as error-free (perfect fore-knowledge of future inflows).
Arrow and Grand Coulee (as category 4 dams) are the only two in the model with the
ability to manage flows on the lower Columbia River. This is a result of travel time
limitations at the other storage reservoirs. The remaining storage projects (Mica,
Duncan, Libby, Hungry Horse, Noxon, Brownlee, Dworshak, and the two aggregated
Snake River reservoirs) provide flood control either incidentally or through COE

developed variable draft schedules, published as Storage Reservation Diagrams (SRD).
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storage based upon projections of snowpack and flooding potential. (BPA, 2001a)
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SRDs provide release schedules, which include a fixed rule curve until January 1%, and
then a variable rule curve, which is a function of forecast inflow between January 1% and
July 1% (conceptualized in Figure 3.1). The aggregated Snake River projects (which
represent Jackson Lake, the Palisades, Anderson Ranch, Arrowrock, and Lucky Peak
Reservoirs) are operated in ColSim for the protection of nearby tributaries and
agricultural demands. According to the COE (COE, 1991), they provide only incidental
flood protection for the lower Columbia. |

SRDs and release ratios were adjusted to be consistent with the monthly time-step of
ColSim, which is generally sufficient to simulate drawdown and release in a manner
consistent with observations (Hamlet, 1999). The SRDs utilized in ColSim were
developed in the Columbia River Treaty Flood Control Operating Plan (COE, 1972), and
then reiterated in the COE 1991 flood control review (COE, 1991). Generally, little
adjustment was required to adapt the published flood control operations for a monthly
time-step simulation. SRDs pertaining to ColSim are provided in Appendix A.

Notwithstanding the ability of ColSim to represent major aspects of conjunctive flood
operation, the monthly time-step introduces a degree of uncertainty in the representation
of flood risks at The Dalles. Figures 3.2 and 3.3 show the relationship between average
monthly streamflow and peak daily flows at The Dalles for the months April through
August for two conditions; 1) the regulated historic record for water years 1974 to present
(conditions since the construction of Mica Dam; effectively representing completio;l of
the present flood coﬁtrol system), 2) the unregulated VIC model flows simulated for
historic conditions (1975-2000), routed to The Dalles.

These two ratios are relatively close. The regulated historical ratio between average
monthly outflow and peak daily flow is 1:1.28 and the same relationship for naturalized
(unregulated) simulated flows over the same period produces a ratio of 1:1.33, about five
percent larger than the regulated value based on observed flows. The smaller, historic
régulated index (1.28) was used for three reasons: 1) there was little difference in the

projected damage levels between the two indices, 2) flood control would undoubtedly
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reduce expeéted ratios despite the proposed operations changes tested herein, and 3) the
smaller index overestimated the ratio between daily peak and monthly average flows for
the highest points in the scatter-plot (which are of the most concern in flood control),
thereby adding an extra level of safety in the calculations. (The process of converting
discharge values into dollar damages is discussed in detail later in this chapter: see
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The 1.28 factor relating monthly average flows to peak daily flows at The Dalles is an
estimate subject to some uncertainty. This uncertainty could be reduced, for instance,
through use of a hydraulic routing model, facilitating a detailed assessment of property
value in the floodplain. Such an effort was beyond the scope of this study. However, the
computed flood damages are relatively insensitive to the specific index estimate,
especially in comparison with economic implications to other system operating
objectives, hydropower in particular. For instance, an index value of 2.5 is needed to
increase annualized flood damages by a factor if 10, which still would considerably less

than hydropower gains or losses associated with changes in reservoir operating policies
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(see Section 3.2). The relatively simple indexing approach appears able to produce
estimates of economic (and not political) outcomes within the range of those reported by

the COE (1992).

3.2: Hydropower Production

Although flood control receives the highest operating priority for operations in the
present Columbia River system, the manner in which it is operated allows hydropower to
have almost equal access to reservoir storage. Hydropower demands align well with the
present flood evacuation and refill schedules, and are supplemented by flood control
operations. As will be shown later in this section, hydropower operations have greater
access to reservoir storage than do instream flow targets, which are met primarily by
unregulated outflows. ‘

In ColSim, hydropower is modeled through the traditional classifications of firm and
non-firm power. Firm power is generated in accordance with a demand, based upon of a
fixed system-wide energy curve (see Figure 3.4). Non-firm power is generated and
marketed under two conditions: 1) when releases from reservoirs for other operations
generate electricity in surplus of firm power demands, or 2) when non-firm demands
(Figure 3.4) are not satisfied by preliminary releases, and reservoirs hold storage in
excess of the Energy Content Curve, or the non-firm energy draft limitation (Figure 3.5).

Firm power is contracted through the BPA for periods up to 30 years in advance.
Generally, firm power follows the regional demand curve for electricity, which is highest
in the winter when space heating is highest. Power demands in the CRB are lower during
the late spring, summer and fall because temperatures seldom rise to levels that require
air-conditioning. Firm power has traditionally held a higher market value (in comparison
to non-firm power) because of its guaranteed nature, and dams are operated in a manner
that preserves storage for early winter generation. This results in a family of rule curves,
which are annually formulated by the BPA, COE, and USBR to preserve multiple basin

objectives at the maximum value to hydropower.
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There are four general rule curves at each storage dam: Flood Evacuation, Critical,
Assured Refill, and Variable Energy Content Curves (Figure 3.5). The flood evacuation
curve provides the upper bound on storage at each dam, as expressed in the SRDs. The
critical curve constrains drafts to help fulfill late fall contracts. This is achieved by
hedging against the worst one-year hydrologic period on record — presently September
1936 through April 1937 (BPA, 2001a). The assured refill curve is a desired storage goal
providing for autumn refill by hedging against the third worst hydrologic period on
record. The variable energy content curve (ECC) bounds non-firm drafts, and is based on
projections of runoff for the spring and summer. Although these curves are not absolute,

they are the guidelines that generally govern the production of ‘surplus’ energy.
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Non—firm— power is produced through incidentally by releases for other operations
(flood control evacuations, instream targets, navigation releases, eté.) or to accommodate
spot market demands, contingent upon storages above the ECC. ColSim models non-
firm demands with a peak during the summer, corresponding to spot market sales via the
California Intertie, which meet summer demands for air-conditioning. It could be argued
that the difference between firm and non-firm power used in ColSim has become less
distinct in practice, as a result of market responses to recent energy shortages and
impending deregulation. However, the quantification of a ‘safe yield’, represented well
by firm power capacity, is still a valuable indication of the hydropower system's overall
value. The blurred distinction between firm and non-firm power is acknowledged in this
study by using equivalent pricing for both production classifications (Figure 3.4).

The divergent cycles for firm and non-firm demand are important to consider when
contemplating potential changes in operations. An increase of power production during
the spring through fall, for instance, does not necessarily increase the revenue available
for hydropower. Even if more power were produced to coincide with the California
summer demands, they would be limited by the capacity of the California-Oregon Intertie
- about 6,500 MW (BPA, 1997). An important question addressed in Chapter 4 is how
seasonal shifts in energy production and the possibility of shifts in seasonal demand

might interact under a warmer climate.
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3.3: Instream Flow Targets

In the past decade, tremendous attention has been given to the decline of various fish
and wildlife species within the Columbia River basin and their causes. Anadromous fish,
such as salmon and steelhead trout, have been the most significantly impacted. Most of
the losses have been attributed to the so-called “4-H’s”: harvesting, hatcheries, habitat
loss, and hydropower (Federal Caucus, 1999). Although various federal and state
agencies have attempted to find economically viable solutions to the dwindling salmon
runs, the process itself has been criticized by non-government organizations for lacking
clear performance objectives, accountability, and the fragmented responsibilities for
planning, funding, and implementation.

Over the past two decades, the BPA alone has invested nearly $3.5 billion in salmon
recovery, including the installation of fish ladders, smolt barging operations, physical
improvements to dams and turbines, seasonal spills, hatcheries, and habitat research
(Northwest Power Planning Council, 2001). This amount increases when spending by
other federal agencies (e.g. COE, USBR, EPA) and state governments is considered,
although the predominant amount of state spending is funded through the BPA. During
this same period, several plans were implemented to restore salmon runs, although early
emphasis was placed on hatcheries (one of the 4 H’s) instead of wild salmon runs. The
discontinued Water Budgc;t was intended to set aside a block of storage which fish
managers could access on an “on-call” basis. Several issues contributed to the eventual
discontinuation of the water budget, primarily the endangered listing of Snake River
salmon under the ESA in 1991.

Three authorities play the most important roles in salmon recovery plans: the Council,
the U.S. Fish & Wildlife Service (FWS), and the National Marine Fisheries Services
(NMFS). The Council is a regional administrative body, which was authorized by
Congress and funded through the BPA. The Council’s mandate is to protect, mitigate,
and enhance fish and wildlife while providing “adequate, efficient, economical, and

reliable” power for the region. In response to its mandate, the Council publishes a Fish
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and Wildlife Plan, which reflects the opinions of state and federal fisheries. The Plan
itself holds no funding or implementation authority, however the Council does allocate
some BPA funding in support of 200 or so specific projects in association with the Plan.
FWS and NMFS are authorized and funded under the Endangered Species Act (ESA) to
publish Biological Opinion Papers (BiOP) suggesting minimum recovery standards for
both anadromous (NMFS) and resident (FWS) fish species. NMFS’s limited political
authority, however, somewhat countermands their legal authority, and their BiOPs
(including the most recent suggestion to augment Lower Granite targets with an
additional 1 million acre feet of storage) are fiercely debated as both insufficient and

extreme (Columbia River Inter-Tribal Fish Commission, 2000; USBR, 1999).
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Figure 3.6 — ColSim’s modeled target outflow for Lower Columbia relative to the average naturalized
outflows at The Dalles Dam (PCM control)

Recent BiOPs have resulted in three significant instream targets (see Figures 3.6 and

3.7) for salmon spawning cycles and reallocations of flood storage to improve resident
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fish habitat (e.g., the COE VAR-Q). The three BiOP targets concern the middle and
lower Columbia, where the run-of-river dams have created a veritable staircase to the
Pacific Ocean. In an effort to increase velocities through the reservoirs, outflow
requirements are occasionally higher than the pre-reservoir conditions for all three
targets. The intent of the target flows is not to replicate historic discharges, but to reduce
travel times through the reservoir system, thereby reducing the period during which

young salmon passing downstream are exposed to predators.
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Figure 3.7 — ColSim’s modeled target outflow the Lower Snake River relative to the average
naturalized outflow at Ice Harbor Dam (PCM control).

ColSim represents instream flow targets in much the same way the system is intended
to provide for them under the NMSF Biological Opinion. Responsibility for meeting the
two lower Columbia River targets is assigned to Grand Coulee Dam, although
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supplemental operations exist at both Hungry Horse and Libby Dams. As mentioned in
Section 3.1 on flood control, Grand Coulee is the only U.S. dam with a large enough
storage and a short enough travel time (lead times less than about a month.) to affect
flows along the middle and lower Columbia River. As per the USBR (2001), Grand
Coulee apportions available storage in April through August for meeting the lower
Columbia BiOP targets at McNary and Bonneville Dams. Withdrawals for firm power,
however, may diminish these allocations, resulting in a reduced ability 'to meet the BiOP
targets with high frequency or sufficient flows in the later summer months of all
simulations.

The 1995 NMFS BiOP suggested augmenting discharges through Lower Granite by

an amount up to 427,000 acre-feet in order to increase salmon smolt survival. The targets
for this flow were set between 85,000-100,000 cfs from April 10 to June 20 and 50,000-
-55,000 cfs from June 21 to August 31, depending on projections for the entire water year.
Dworshak Dam is primarily responsible for providing flow augmentation at Lower
Granite Dam. Some assistance is provided from other sources, including the Idaho Water
Bank - a state operated. entity allowing irrigators to transfer “excess” water between
federal projects without violating either the perpetual or beneficial-use clauses (see
‘Section 3.4) of their rights — and other year-to-year resources (e.g. negotiated
supplements with USBR storage facilities). These supplemental resources are not
modeled within ColSim, however a small storage allocation of about 200,000 acre-feet
(250 million m®) at Brownlee Dam is modeled for responses to deficits at Lower Granite
Dam. This storage augments the Lower Granite Dam target in April via shifts in basin-
wide changes in from Grand Coulee to dams upstream of Brownlee (Nielson, 1998).

Approximately seven percent of the total system’s storage above Grand Coulee is
allocated to meeting these three instream flow targets. However, the storage available for
flow augmentation is subject to draft limitations at the uppermost portion of each dam —
i.e. if the system fails to refill entirely, the allocation for instream flows is reduced below

the nominal seven percent.
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3.4: Irrigation

Irrigation in the Columbia River Basin is protected by the legal doctrine of ‘Prior
Appropriation’.  Prior appropriation allows private landowners to claim usufructory
rights on public waters (i.e. deed holders have the right of use, but no ownership of the
water). Water rights are contingent upon applications being perpetual (uninterrupted) and
beneficial (usually defined in broad terms, e.g. agriculture). These rights are protected by
state laws, and dedicated by seniority: the oldest deed has the first right to the water. The
status of “rights” for instream habitat relative to appropriated agricultural withdrawals
remains a contentious issue; in practice appropriated water rights have taken precedence,
with the possible exception of instream flows related to endangered species. In any
event, on the main stem of the Columbia, agricultural withdrawals are insignificant in
relation to the required supplements for instream flow targets. Agriculture in the Snake
River Plain (SRP) of Idaho, however, uses a great enough portion of natural flows

(especially in summer) to interfere with habitat goals.
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Figure 3.8 — Average Snake River flow (at Ice Harbor Dam) plotted against a stacked area graph of
SRP agricultural demands and the NMFS BiOP requirement at Lower Granite Dam (as represented
in ColSim) [Note: typical returns from agricultural withdrawals (which vary on the order of
withdrawals between five and fifteen percent) are not represented]

Approximately 8.4 million acres (3 million hectares) are irrigated within the Columbia
River Basin. The largest individual project, the USBR Columbia Basin Project, irrigates
almost 650,000 acres (260,000 hectares) with diversions from Lake Roosevelt. Net
withdrawal of the Columbia Basin Project constitutes about 3% of the mean annual flow
at Grand Coulee. In comparison, the SRP supports about 4.1 million acres (over 1.7
million hectares) of irrigated agriculture with a network of dams. The SRP agriculture
consumes and delays a significant enough portion of water that there would be substantial
impacts on irrigated agriculture if the Lower Granite Dam BiOP target were given
priority over senior water rights. For these reasons, ColSim explicitly models the

agricultural withdrawals in the Upper and Middle Snake River Plain. All other Columbia
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Basin irrigation is treated by subtracting consumptive use from naturalized inflows prior
to dam operations — i.e., agriculture is assumed to have first priority.

The Snake River reservoirs are aggregated based on traditional distribution and
management regions: structures above Milner Dam (on the Snake River) are considered
to be part of the Upper Snake region, structures between Milner and Brownlee Dams are
considered to be the Middle Snake region. ColSim represents the sum of storage in these
two regions with aggregated equivalent reservoirs. Each of the equivalent reservoirs is
assigned an agricultural demand and return ratio, which is explicitly defined by the 1989
records for agricultural withdrawal and consumption rates. The diversions, and their
return ratios are interpolated from data used by the Idaho Department of Water Resources
(IDWR) model: SRPSIM. The performance of SRP irrigation has been evaluated
through comparison with observed reservoir contents and releases, and it compares quite
well on an aggregate level — even though it does not represent performance of all the

individual reservoirs.

3.5: Recreation

The most significant recreational facility within the Columbia River reservoir system .
is Lake Roosevelt, formed by Grand Coulee Dam. Operations at Grand Coulee are
managed to maintain a high stage through the summer until Labor Day. ColSim
represents this objective by lowering the priority of energy production at Grand Coulee
during the months when high levels a-re desired. This is accomplished by a system of
weighted priority, where other dams are drafted for firm energy before Grand Coulee:
when a firm power shortfall occurs, Grand Coulee is the last to be drafted down to its

dead pool.

3.6: Measures of Performance

3.6.1 Flood Control
The Portland-Vancouver metropolitan area is the only instream control point

represented by ColSim for flood operations. All other flood prevention sites in the
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Columbia lie along tributary streams, and are not resolved by the model. Flows at
Portland are indexed to flows at The Dalles, OR, as described in Table 3.1. For this
study, an index was also needed to compare the severity and magnitude of flood damages
between climate conditions and operating periods. It was decided that an economic
description of flood damages in the Portland-Vancouver area would be the best way of
presenting these data for comparison.

The economic metric for flood control was created in three steps. The first step was to
index monfhly flows at The Dalles to typical maximum daily flows, based upon the linear
relationship between regulated monthly averages and daily peak flows at The Dalles, OR.
(See Equation 1.) '

(Peak daily flow at Portland) = (Mean monthly outflow at Dalles) * 1.28 (1)

The second step was to relate the indexed values for peak déily flows to stage and
damage levels in Portland. This index requires a piecewise relationship that relates the
linear increase of damages until flooding exceeds the COE-defined threshold for major
damage (about 9 m at Vancouver, corresponding to the more highly developed portions
of the floodplain). Above this threshold, damages increase exponentially. This scheme is
based upon a published estimation of both unregulated flows at Vancouver and prevented
damages between 1974 and 1988 (COE, 1991), and is illustrated in Equation 2.
Exceedances of the 9 m threshold, and damages corresponding with the exponential
portion of the equation, are considered to be both realistic and appropriate signals of
relative flood risk, where higher exceedances begin to carry more weight beyond a
certain point. This study does not account for basin development that occurred between
the COE assessments of prevented damages and present day, nor did it project

development that may occur in the future.
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Equation 3.1 - — The three part equation relating peak flows (Qp) to damages (D) occurring in
relation to the Minor Damage (Qxp) and Major Damage (Qup) thresholds. [Q was measured in
terms of 1000* cubic feet per second, damages are measured in dollars.]

No Damage D=0 for Qr < Qup

Minor Damage D =0.1466 * (Qp — Qnp) for Qnp < Qr < Qup : (2)
Major Damage D =0.3825 * e ** (0.0139 * (Qp — Qnp)) for Qr2Qup

Qp = Peak daily flows (1000* cfs) - from Equation 1

D = Damages ($ million)

Qnp = Minor damage threshold 600,000 cfs

Qvmp = Major Damage threshold 750,000 cfs

The third step was to express flood damages as expected annual losses, by averaging
the estimated losses over the period of analysis (51 years in the case of the control run, 30

years for the three study periods for the future climate ensembles).

3.6.2 Hydropower Production

Hydropower is evaluated in terms of economic value and reliability. The economic
valuation is straightforward. @Hydropower production is recorded throughout the
simulation in terms of firm and non-firm generation. Both classifications of production
are multiplied by the same approximation of current regional market price ($25 per
megawatt-hour), and by an index reflecting the traditional seasonal variation of value on
the spot market, shown in Table 3.2 (BPA, 1994). This pricing structure reflects the
assumption that firm pricing contracts will have approximately equal value with spot
market prices in the evolving era of deregulation

Firm energy is ‘guaranteed’ system production, and ColSim allows the entire system
to be drafted to the dead pool to insure its generation if need be. As such, firm power is a
good surrogate for the “safe yield” of the hydropower system, and at least for planning

purposes will likely to hold some significance in the near future. Therefore, shortfalls to
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firm power are likely to receive close scrutiny, even under a deregulated power structure
— especially given existing contracts for delivery of firm power. A successful operating
policy will need to consider both the desirability of maximizing revenues, and of
avoiding failures in firm power deliveries.

A general set of performance metrics is used to monitor firm power. Months where
the firm power target is not met are recorded as shortfalls. The overall reliability of firm
power is computed as the percentage of months where the target is fully met. However,
firm power shortfalls are significant mostly because they indicate long periods of storage
decline, which compromises the multi-purpose nature of the system. Therefore, firm

shortfalls are also compiled by month.

Table 3.2-Monthly hydropower price index and values (percent & dollars per megawatt-hour)

Oct Nov Dec Jan Feb Mar
Index: 95% 118% 121% 103% 99% 94%

Price: $23.77 29.58 3013 2568 24.68 2341

Apr May Jun Jul Aug Sep
Index: 66% 61% 76% 105% 144% 118%
Price: $16.61 1525 19.06 2632 36.03 29.49

3.6.3 Instream Flow Targets

Shortfalls for the three BiOP flow targets — Lower Granite, McNary, and Bonneville
(see Section 3.3) — were monitored in terms of their volumes and frequencies. Seasonal
reliability (the number of months where the targets were met) and deficit (the volume of
water by which the target was not satisfied) were monitored in the months when the
target was most significant. The performance season for Lower Granite was March-
August; for McNary it was April-August: and for Bonneville November-March. As with
firm power, a monthly breakdown of shortfalls and reliabilities was also develloped to

indicate the sensitivity of particular months to climate change and mitigation strategies.
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3.6.4 Irrigation
Because Snake River irrigation is the only consumptive agriculture demand that is
large enough to affect performance of the system with respect to instream flow targets
and hydropower production, it is the only project represented explicitly in ColSim. The
chosen metric for agriculture is the volume of water available for irrigation relative to
prescribed targets, which are based on known water rights. A volumetric approach to
monitoring agriculture in the Snake River Plain was chosen because irrigation supply
failures are difficult to evaluate in dollar terms. Variations in prices, the possibility of
crop substitution (which can significantly alter consumptive use), along with the macro-
scale resolution of ColSim, precfude the evaluation of economic impacts, especially
under conditions where the physical climate would have both direct effects on
agricultural productivity (e.g., due to carbon fertilization effects) and implications for

water availability.

3.6.5 Recreation

ColSim monitors recreation storage only at Lake Roosevelt. The desirable recreation
pool at Lake Roosevelt is 1,280 feet (mean sea level: 390 m) between June and August,
which corresponds to 8.3 million acre-feet of storage (10 billion m®) or about 15% of the
total possible evacuation. ColSim monitors the monthly stage of Lake Roosevelt during
the summer recreation season, and reports shortfalls in terms of reliability (defined as the
number of months where targets were met divided by the total number of months in the

recreation season over the period of simulation).
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Chapter 4 - Experimental Design

As discussed in Chapter 2, this thesis explores operating alternatives for mitigating
hydrologic changes associated with projected climate change over the next century, as
represented by the DOE-NCAR Parallel Climate Model (PCM). Briefly, a set of
experiments was designed to evaluate the sensitivity of basin operations to the PCM
projections; to test how changes in reservoir operation, power demand cycles, and the
quantity of storage allocated to BiOP targets affects CRB operations; and finally, to
evaluate the potential for mitigating changes in CRB system performance associated with

climate change by changing reservoir operating procedures.

4.1: Evaluating Reservoir System Performance

The sensitivity of reservoir system performance to the climate change scenarios was
evaluated by comparing performance for the control PCM hydrology with current
operations (the ‘control scenario’) and three approximately 30-year climate ensembles for
which corresponding hydrologic ensembles were produced using the VIC hydrology
model [2010-2039, 2040-2069, and 2070-2098]). The three periods are used in most of
the work that follows (referred to as Periods 1, 2, and 3). For each hydrologic ensemble,
system performance was evaluated for present operating conditions, and for three other

operating alternatives, which are described in the remainder of this chapter.

4.2: Flood Evacuation and Refill Modifications

This operating alternative provides greater hydropower by changing flood operations
in response to changes in future seasonality of runoff (see Figure 2.3) so as not to create
greater de facto hydropower drafts or further compromise BiOP targets. An array of five
flood evacuation policies was combined with a set of three system refill dates, creating
fifteen combinations of operating policies within this general category. The required

flood evacuations at each dam, as defined in the SRDs, were multiplied by the following
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factors [0.80, 0.90, 1.00, 1.10, 1.20] (see Figure 4.1). The 80% alternative requires 20%
less draft than the present system 'does; 100% represents current operations. The refill
timing was changed by reducing the duration of the flood evacuation pool in three
intervals [zero, 2-weeks, 1-month] (see Figure 4.2). For this experiment set, the 1-month
interval allows each dam to entirely refill one month earlier, the 2-week option allows
each dam to refill 50% of the total current draft requirement in the final month of their
flood evacuation schedule, and zero represents current refill schedules. Combinations of
changes in timing and flood evacuation volume were used to create tradeoff curves for

evaluation of system performance (see Chapter 6).
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Figure 4.1 — Examples of modifications to flood evacuation requirements studied
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Figure 4.2 — Evaluated shifts in the timing of system refill

4.3: Energy Demand Shifts |

Energy demand shifts are likely under a generally warmer climate, as a result both of
reduction in winter heating demands, and increases in summer air conditioning.
Although it is difficult to predict future prices and demands, a set of experiments was
designed to reveal the sensitivity of basin operations to shifts in the present firm energy
curve. Shifts in firm power demands were designed to move production from the winter
through to the summer in accordance with arbitrarily assigned temperature elasticities for
power demand. Demands were adjusted in equal increments of 5% (e.g., 110%, 105%,
95%, 90%, and 85%) relative to the current index, a monthly load factor (Figure 4.3).
The 85% option, for instance, allocates 15% of the typical winter firm power load to the
summer, as demonstrated in Figure 4.3 and by Table 4.1.



45

1.60

o——110%
140 w——100% - Status Quo
1.20 1

\

Monthly Energy Demand Factor

0.60 \V/

0.40

Oct Nov Dec Jan Feb Mar Apr May Jun Jut Aug Sep

Figure 4.3 — Flattening the energy demand curve

Table 4.1 — Monthly load factors, and an example of the 85% experiment described above

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Normal
Monthly 0.98 0.98 0.92 0.76 0.61 0.46 0.46 0.46 0.46 1.00 1.00 1.00

Load Factor

Experimental

Monthly 0.99 0.99 0.93 0.80 0.67 0.54 0.54 0.54 0.54 1.00 1.00 1.00
Demands .

(85% option)

4.4: Augmenting BiOP Storage Allocations

Present reservoir allocations for instream flow targets are relatively small in
comparison with the magnitude of the seasonal release requirements for instream flows
(storage makes up only about seven percent of the average target), therefore unregulated '
inflows are relied upon to meet demands rather than with the limited storage allocations.

Seasonality shifts in reservoir inflows predicted by the PCM evaluation used in this study
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(see Figure 2.4) reduces both summer baseflow and spring melt volumes, requiring
greater supplements from limited storage allocations. This set of experiments was
constructed to explore the effects of augmenting the two lower Columbia River BiOP
targets (McNary and Bonneville) with greater reservoir storage allocations (see Table
4.2). Storage augmentation in the Snake River for the Lower Granite BiOP target was
not pursued because it would necessitate evaluating tradeoffs with agriculture demands,
which ColSim currently is incapable of handling on a suitable scale for beneficial

analysis.

Table 4.2 - Breakdown of experimental changes for upper Columbia storage allocations to augment
instream flows in the lower Columbia River

. Libby, Duncan,
Total US Total Canadian | Grand Coulee Arrow Mica & Hunery Horse
el Il Dl e vl e e e
7% 0% 0.8 1.0 0.0 0.0 0.0 0.0 1.5 1.2
15% 0% 1.2 1.5 0.0 0.0 0.0 0.0 2.1 2.6
25% 15% 12 1.5 04 0.5 04 0.5 23 2.8
40% 20% 1.5 1.8 0.8 1.0 0.8 1.0 29 3.6
50% 25% 2.0 25 1.2 1.5 1.2 1.5 40 49

4.5: Combined Multiple Alternatives

Finally, a heuristic alternative was developed that combined flood evacuation and
refill alternatives with augmented storage for BiOP minimum streamflows and prescribed
changes in the firm power demand curve. Absent an optimization model, the
combination alternative was not intended to reach an optimum reservoir operation policy.
Instead, this final experiment evaluates the interrelated effects of shifting operations and
demonstrates tradeoffs that must be considered in any climate change mitigation strategy.

This alternative is structured to increase hydropower revenues, constrained by both

flood control and the current level of provision for summer instream flow targets. To do
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s0, operations were calibrated independently within each of the three analysis periods and
each of the three changed climate runs. The calibration process began with the selection
of instream storage allocations that decreased McNary average annual deficit to levels
equivalent or below the control scenario level. Next, both flood evacuations and system
refill timing were altered such that hydropower revenues were maximized. The
maximization of hydropower revenues was constrained by quﬂand-Vancouver flood
control losses and firm power reliability. A reduction in firm power capacity, or the
occurrence of Dalles outflow above 500,000 cfs was cause for rejection of an alternative.
These constraints were adopted because increased flood control storage has a policy
effect equivalent to increasing winter firm power demands, which in turn Tresult in
summer reliability losses for both firm power and instream flow targets. Having chosen
operations that maximized revenue production, firm power was then reduced to a level
that could be supported at 100% reliability. If the result produced a deficit at McNary
greater than the control, the iterative procedure was repeated until an acceptable solution

was reached.
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Chapter 5 - Results

5.1: System Sensitivities to Climate Change.

Following the general strategy outlined in Chapter 4, implications of changes in the
hydrologic forcings and accompanying system operation were evaluated for segments of
the three PCM ensembles described in Section 2.1. The ensembles are evaluated in three
approximately 30-year segments, referred to as Periods 1, 2, and 3, and corresponding to
2010-2039, 2040-2069, and 2070-2098, respectively. For each of these periods, the
implications of hydrologic changes were evaluated for current operations, and for four
sets of reservoir operating alternatives. Briefly, the four alternatives can be described as;
1) changes in the flood evacuation and system refill requirements, 2) changes in the
required firm power generation, 3) changes in the total allocation of storage for instream
flow targets, and 4) the combination of the above three alternatives to create a non-
optimized mitigation scheme.

For current operations under a changed climate, reliabilities (Figure 5.1) were
sensitive to the modest (relative to other GCM scenarios reported by the IPCC (1995;
2001) and U.S. National Assessment (Gleick, 1999)) changes in flow regime resulting
from the BAU climate scenarios (Table 5.1). Overall, the number of Dalles spring flood
control exceedances (set at 450,000 cfs in ColSim) decreased for all three periods.
However, flood control damages were significantly higher for all three periods, and
exceedances in Periods 2 and 3 began to occur in the late winter (February and March), a
time of year when flood control has traditionally not been a problem in the CRB.
Average annual flood damages (see Table 5.2) increase dramatically in relation to the
control run, for two reasons: 1) the seasonality of inflows shifts, so flows are larger
during an earlier time of the year, and 2) the maximum naturalized flows present in the
climate change ensembles exceed the flows produced by the control run during normal

flooding periods. Despite the larger magnitude of flows produced in the climate change
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ensembles, the largest naturalized June outflow at The Dalles, OR (900,000 cfs, see

Figure 5.2) is well within the historic record of naturalized flows.

100% T=

90%

80% +

Reliability (%, monthly based)

70% - M Control
o Period 1
H Period 2
60% ~ mPeriod 3
50% - —
40% +
Portland- Portland- ~ Autumn Firm % of Control McNary Middle Snake Grand Coulee
Vancouver Vancouver Power Hydropower Instream Agricultural Recreation
Spring Flood  Winter Flood  Reliability Revenues Target Withdrawal Reliability
Control Control (November) Reliability Reliability
Reliability Reliability (April-August)
Figure 5.1 — Base effects of climate on CRB resources
Table 5.1 — General hydrologic trends from PCM affecting reservoir operations
Period 1 Period 2 Period 3
DIJF precipitation
95% 102% 98%
(% of control, B06.45)
JIA precipitation
S preap 97% 83% 87%
(% of control)
DJF Temperatures
: P +0.6°C +1.3°C +2.4°C
(difference from control)
April 1% Snow
accumulation 85% 91% 79%
(% of control)
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Table 5.2- Average Annual Flood Damages at the Portland-Vancouver levees between the control
and three climate change analysis periods

Control Period 1 Period 2 Period 3
$292,394 $1,033,240 $1,042,487 $1,322,709
2]
2010-2039 400 E
w0
2040-2069 §
2070-2008

1 2 3 4 5686 7 8 9 101112

Figure 5.2 - Control run (dashed) and 3 PCM ensembles (solid): maximum and minimum
naturalized monthly flows at The Dalles, OR [x-axis reports calendar months; Jan=1, etc.]
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The ability to meet firm power diminishes as seasonality shifts progress. As
- exemplified by the November reliability of firm power in Figure 5.1, the late
summer/early winter firm power targets, which are predominantly governed by storage
drafts, steadily decline with diminishing snow accumulation and lower summer inflows.
Failures are computed as a percentage of months in which there was no shortfall.
Because all failures to firm power targets occur in the autumn, an annual calculation
window for firm reliability was inappropriate. Therefore, the firm power reliability
analyses focused on the autumn.

An investigation was performed in each period to determine how much firm power
could be supported without causing shortfalls. The results of this investigation are
termed ‘sustainable firm power’ (i.e., safe yield) and are described as percentages of the
control climate (with current operations) firm power demand. Climate change resulted in
a 7, 5, and 7 percent loss in sustainable firm power, for each of the three periods,
respectively (see Figure 5.1). Hydropower revenues, which rely more upon the volume
of annual outflows than seasonality shifts, were relatively insulated from the effects of
the climate projections on the seasonal hydrographs. Although average annual
hydropower revenues do not indicate severe economic impacts under a changed climate,
the system’s political responsibilities to provide instream habitat could force operations
to further diminish firm power. As a result, the shortfalls occurring to firm power and
instream flow targets indicate a system cost that is not reflected in power revenues
(sales). |

The volume of spring runoff predominantly governs environmental flow target
reliabilities (as demonstrated by the McNary Dam target), whereas the ability of the
system to reduce’ deficits to environmental targets is more constrained by storage
allocations and summer inflows. This is because reliabilities require that monthly targets
be met entirely, which happens mostly during periods of high inflow in the spring, and
less frequently as the summer progresses. Deficits, however, are a function of the
system's ability to restore the limited storage allocated to environmental targets by the

late spring and maintain them through the summer low flow period. During the summer,
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instream allocations can be reduced by drafts for firm hydropower, which diminish the
“would be” environmental reserves upstream of Grand Coulee. So while the reliability of
the McNary target closely follows the volume of spring runoff at Grand Coulee, the
cumulative deficits increase considerably as seasonality shifts lower both spring and
summer runoff: +30%, +20%, and +40% in all three periods, respectively, rising highest
in Period 3 when seasonality shifts have diminished spring refill the most.

The same relationships with spring runoff volume and reservoir carryover hold true
for Snake River irrigation, where reliabilities in the spring months closely follow the
volume of spring runoff, but the ability to reduce late summer deficits relies heavily upon
snowpack to maintain reservoir storages until the middle of summer. For reasons
mentioned earlier, particularly the inability of ColSim to resolve tradeoffs between
agriculture and instream flow targets within the Snake River Plain, it was not feasible to
evaluate operations alternatives for the SRP. Therefore, current operating policies were
assumed to remain constant in this portion of the basin.

The ability to meet recreation targets, which require the maintenance of storage
through Labor Day for most dams, depends mostly on summer runoff to keep elevations
at a suitable level. Hence, even though Period 3 is the warmest, with the greatest change
in the seasonality of runoff, the low summer inflows of Period 2 (demonstrated in the low
summer precipitation) cause the greatest loss of recreation reliability (as represented by

Lake Roosevelt).

5.2: Changing flood evacuation and refill timing

Changes in flood evacuation and refill timing (see Section 4.2) were pursued as a
potential adaptation to the increased winter flows and earlier annual runoff associated
with progressive seasonality shifts. Two actions have been suggested as likely
adaptations to climate change (Martin, 2001); 1) lower flood evacuation requifements and
2) earlier refill schedules. Although earlier refill and reduced flood evacuations might be

expected to improve the reliability with which McNary instream targets could be met,
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their benefit under the PCM climate scenarios was minimal because instream flow
deficits were more constrained by reservoir draft limitations than by the frequency of
dam refill. As found earlier, the system’s ability to refill under the PCM climate
scenarios has little impact on its ability to remain full through the summer until
November, when the environmental targets drop-off and firm power demands are highly
susceptible to shortfalls.

Generally, lower flood control evacuations yielded the most significant benefit to
McNary, but their effectiveness was compromised by a reduction in flood control, and
was steadily diminished as seasonality progressed. The 80% designation, corresponding
to a 20% reduction in required evacuation, reduced McNary deficits by 15%, 12% and
9% and increased the targets reliability by 3%, 2%, and 1% (for Periods 1-3,
respectively). However, this measure was ruled out as a potential adaptation policy
because it produced little to no benefit for hydropower and increased average annual
flood control damages by 50%, 156%, and 259% (in Periods 1-3, respectively).

The use of early refill dates resulted in the most positive benefits for the system as a
whole by increasing the frequency and magnitude of spring refill. This benefited
operations reliant upon carryover storage (like non-firm revenues and firm power
capacity) without significantly impacting flood control. However, draft limitations
constrained environmental targets from accessing much of the refill volumes, resulting in
an overall performance decline at McNary (Figures 5.3). Changes in refill timing seemed
only to displace average deficits in the early spring, with minimal effect on the late
summer: which is the most difficult to meet because hydropower can diminish
environmental reserves. This reinforces the finding that the present allocation limitations
for environmental flows are the limiting performance constraint, and may need

reconsideration in the event of seasonality shifts.
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Figure 5.3 — Monthly effects of earlier refill on McNary environmental target (deficit and reliability).
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(Figure 5.3 cont’d) The ‘Control’ bar represents current climate conditions under current
operations. The ‘Current Operations’ bar presents the climate change ensemble period operated
under current reservoir policies. The two-week and one-month bars present the specified climate
change ensemble period, operated with an earlier (specified) refill date.

The most significant tradeoff in pursuing earlier reservoir refill is between Portland-
Vancouver flood damages and the capacity and value of hydropower. As shown in
Figures 5.4, the hydropower benefits are so much larger than flood control damage
projections that power really dominates the cost-benefit aspects of these suggested
alternatives. This, of course, does not account for the social consequences of lower flood
risks, which would almost certainly pose a policy hindrance: making such an assessment
would require more detailed routing analyses with an attention to real property damages
and human safety issues, which are not within the scope of this study.

As seasonality shifts progress in periods 2 and 3, the two week earlier refill schedule
creates enough carryover storage to boost late summer firm energy production, resulting
in a higher firm energy capacity than was generated even with a 20% reduction in flood
evacuations. This shows that: 1) that firm energy failures under seasonality shifts are
highly sensitive to late spring refill, and 2) that floodplain management in Portland and
Vancouver may be effective in maintaining hydropower revenues, given the relatively

small economic benefits of flood control.
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5.3: Flattening the firm power demand curve

Changes to the seasonal distribution of firm power (reductions in the peak winter
demand, with corresponding increases in the summer) were pursued to simulate the
possible effects of temperature-based demand reductions in the winter and to quantify
their implications for performance of the system relative to late summer instream targets
and hydropower revenues. This method does not consider price changes; it only suggests
that a portion of the current winter demand could be shifted to the summer. This shift
was hypothesized to both decrease winter drafts and to increase hydropower revenues by
shifting sales to the high summer price period.

The anticipated reduction in winter demands, estimated by present temperature
elasticities for the Pacific Northwest, were approximately 5% (at most: see Table 5.3).
These estimations, however, are not entirely precise because they index average monthly
temperatures to changes expected for the peak daily load, and the RDI Northwest Power
Area includes regions outside this study. Also, it is possible that the daily fluctuations in
temperature could cause a different change in total monthly load. Nevertheless, for this
study, the values presented in Table 5.3 are considered to provide a reasonable

approximation of demand changes driven by winter temperature increases.

Table 5.3 - Anticipated changes in peak daily electrical demand for the Northwest Power Area (RDI,
2000) as a result of the PCM projections for increased winter temperatures

Period 1 Period 2 Period 3

Projected change in winter temperature +0.6°C +1.3°C +2.4°C
Changes in load for the'NWPA region, as 1.1% 5% 46%
a result of temperature Increases

Contrary to expectations, reservoir operations were relatively insensitive to demand
changes on the order of those listed in Table 5.3, (see Table 5.4). This insensitivity
appeafs to be the result of two aspects of the current operating policies: 1) drafts from
reservoirs in the winter for firm power effectively regulates releases during years with the

lowest runoff, and 2) flood control requirements, which are designed to assist in firm
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production, continued to force large releases during the winter despite lower firm power

targets during this time of year.

Table 5.4 — Sensitivity of operations to reallocations of power from winter to summer months. All
italicized percentages are based on a relationship with the control hydrology with current operations

Hydropower Sustainable Flood McNary McNary
revenues Firm Power Damages Deficits Reliability
— | Current
2 | Operations 95.5% 93% $1,033,000 131% 43.8%
51 15%
(3]
A« | reallocation 95.5% 94% $1,033,000 131% 43.8%
By S““"“-‘ 99.9% 96% $1,042,000 119% 54.7%
3 perations
s 1 15%
(3}
A | reallocation 100% 99% $1,042,000 119% 54.7%
Current

o
2 | Operations 97.5% 93% $1,323,000 141% 50.2%
= | 15%

(5]

A | reallocation 97.5% 96% $1,323,000 141% 50.2%

When the firm energy demand curve was entirely flattened (i.e. 100% reallocation of
winter energy demands above the mean to the summer), such that each month demanded
the same quantity of hydropower from the system, there was an average nine percent
increase in sustainable firm energy (Figure 5.5). However, the added benefit of this shift

“would likely be offset by the cost of replacing such a large amount of winter energy, as
demand reductions associated with warmer winter temperatures was much smaller, and
the lost winter energy would have to be purchased from outside suppliers at a price that

likely would be higher than its current production cost.
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Figure 5.5 — Changes in Firm Power Sustainability in relation to the reallocation of winter firm
energy demands to the summer. The control scenario was able to sustain 3.45 million megawatt-
hours of production per month.

An approach to exploit this interaction would be the simultaneous reduction of flood
control evacuations in the winter (thereby reducing the mandatory winter generation)
with the reallocation of firm demand to the summer. However, experimental reductions
in flood evacuation (described in the previous section) resulted in a large increase in
flood control exceedances during the winter for Periods 2 and 3. A more detailed study
of flood damages in the Portland-Vancouver area (than was possible with the monthly
time-step ColSim model) would be required to evaluate in sufficient detail the flood
damage implications of such policies. For this reason, they were not pursued further in

conjunction with the reallocation of firm power.
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5.4: Increasing storage allocations for environmental targets

As demonstrated earlier, the performance of the McNary instream flow target was not
improved by policies that were otherwise successful in enhancing hydropower
performance. This stems from two factors: 1) the storage allocations are more quickly
depleted under the PCM climate scenarios because summer inflows (i.e. summer
snowmelt) is lower and 2) the first priority allocation for firm power production is
capable of further diminishing the effectiveness of instream storage allocations by
requiring larger summer' drafts to accommodate for lower system inflows. In short,
deficits at the McNary dam target have been constrained by reservoir draft limitations.
Increasing the storage allocations for environmental flows was pursued as a response to
this constraint and was highly successful in reducing annual deficits at McNary.
However, there was a corresponding loss to firm power, which indicates that the
competition must be resolved between summer storage uses under a seasonality shifted
hydrograph.

Generally, a 4.3 million acre-foot (5.3 billion m®) storage allocation was adequate to
bring the cumulative annual deficit at McNary (for all three Periods) to a value
approximately equivalent to the control (Figure 5.6). However, the reliability of June and
July targets is still overwhelmingly tied to spring inflows, which prevents the McNary
target from matching that of the control, even when instream targets are given 100%
access to storage (i.e. 33.3 million acre-feet, 41 billion m®). The McNary reliability,
which is a function of meeting early targets with spring inflows, is not improved by
greater storage allocations. This results, in part, from greater winter drafts for the

Bonneville dam target, which subsequently lower flood damages.
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Figure 5.6 — Effects of greater storage allocations for environmental flows upon the McNary Dam
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(figure 5.6, cont’d) ...target by month. Control bar represents the control climate with current
operations. Current operations bar represents the specified climate change analysis Period with
current operations and a 2.30 million acre-foot (2.8 billion m3) storage allocation for instream

augmentation. Numeric bars represent the modified volume designation for instream targets, in
million acre-feet. [Allocations in metric units are 4.1, 5.3, 7.4, 10.2, and 41 billion m’, respectively]

One important question that is beyond the scope of this study is the relative benefit of
regulation for average deficits versus the frequency of meeting instream flow targets (in
terms to the benefits for fish populations). For this study it was assumed that the use of
cumulative annual deficits was a satisfactory metric for gauging mitigation (see Section
5.5).

As shown in Figure 5.7, the mitigation of McNary instream flow targets had a
significant diminishing effect on firm power capacity. This resulted, from difficulty in
retaining storage through the summer for November and December power release targets.
The reduction in capacity came with modest improvements in hydropower revenues and
flood control. The increase in revenue is attributed to slight production increases in the
summer months (June, July, August) where the value of generation is higher. Average
flood damage was reduced for all three periods as a resﬁlt of the winter flow target at
Bonneville Dam, which appropriated more of the winter inflows, thus effectively
increasing flood evacuations. As seasonality shifts progress (see Figure 5.7), greater
marginal benefits could be seen in flood protection, as well as greater marginal impacts
on the quantity of sustainable firm power. The flood control benefit stems from the
higher winter flows and the greater associated winter withdrawals for the Bonneville
Dam target, and the loss to firm power results from the competition for summer instream

targets and the desire to carryover storage for autumn firm power demands.
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Figure 5.7 — Sensitivity to an increased instream target allocation in the Upper Columbia Basin.




64
5.5: Combination of multiple alternatives
This experiment tested a combination of the strategies detailed in Sections 5.2-5.4.
The combination alternative was designed to maximize hydropower revenues, however,
there were two major constraints that kept the operations from truly ‘maximizing’
hydropower revenues: 1) the McNary flow target must be met in a manner that is
reasonably identical to its present (control climate, present operations) condition and 2)
flood control exceedances could not be larger than the indexed value for breaching the
Portland-Vancouver levee system. In this manner, the final alternative answers whether
the negative impacts of climate change on system performance can be mitigated and, if
not, it quantifies the degree to which performance losses can be considered irresolvable.
For this approach, selected aspects of the operating policies for each of the three
periods were adjusted (calibrated) independently. The calibration process began with the
selection of instream storage allocations that reduced the McNary average annual deficit
to levels equivalent to or below the control scenario level. Next, both flood evacuations
and system refill timing were altered such that hydropower revenues were maximized.
The maximization of hydropower revenues was constrained by Portland-Vancouver flood
control and firm power reliability according to the following rules: 1) a no further
reduction in firm power capacity; and b) no occurrences of Dalles outflow above 500,000
cfs. The latter constraint was imposed because increased flood control has a policy effect
equivalent to increasing winter firm power demands, which in turn results in summer
reliability losses for both firm power and instream flow targets. Having chosen
operations that maximized revenue, firm power was then reduced to a level that could be
supported at 100% reliability. If the end result produced a deficit at McNary greater than
the control, the procedure was iterated until an acceptable solution was reached.
The results from this process are summarized in Figure 5.8. Generally, the
evolution of the PCM projections creates a scenario where summer targets are forced to
rely more upon storage allocations than inflows. This causes an obvious tradeoff

between targets that currently have storage allocations and those that do not. This
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tradeoff is apparent in the interaction between firm power capacity and the McNary
average annual deficit. As seen in the results (Figure 5.8), the reduction of McNary
annual deficits to levels equal to the control climate condition requires the reduction of
firm capacity in Periods 2 and 3. Period 1 does not display this tradeoff because the
seasonality shift of the annual hydrograph is minimal.

A second tradeoff lies in a less risk-adverse policy toward flood control along the
lower Columbia. A two-week earlier refill date benefits the refill reliability and
hydropower revenue considerably for all three periods, at a noticeable cost to flood
control exceedances. Although the benefit to hydropower seems small, the relative
economic benefit of hydropower is much larger than the expected flood damages (see
Section 5.2, Figure 5.4). The implicit assumption of the tradeoff analysis is that the
economic benefit of hydropower would provide justification for greater frequency of
modest floods in the floodplain in the Portland-Vancouver area, so long as the levees

were not breached.

Table 5.5 - Resulting operational policies for the CRB, as determined by the heuristic processes
presented above.

Current

0 . Period 1 Period 2 Period 3
perations
Sustainable Firm Power Demand
(average million megawatt hours per 35 32 3.0 3.0
month)
Desirable allocation of storage for
environmental flows: million acre feet é'g) (g'g) (‘51.2) (g'g)
(billion m®) ) ) ' ’

. .. Current
Desirable timing of refill timing 2-weeks early | 2-weeks early | 2-weeks early

Assigned reallocation of firm power
demand (winter to summer). Based

. . 0%
on liberal assumptions of temperature
elasticity on the market

0% 5% 10%

Desirable flood evacuation (as a
percent of current Army Corps of 100% 100% 100% 100%
Engineer’s requirements)
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Figure 5.8 — Combined effects of changes to flood evacuation and refill timing, firm demand
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distribution, and instream storage allocation [black is control climate & current ops, white is climate
change with current operations, gray is climate change with heuristic operations.] :
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Chapter 6 - Conclusions

6.1: Conclusions

The DOE/NCAR PCM climate ensembles have the greatest impact on system
operations between the spring and autumn, when the system is intended to refill and
maintain storages until the winter reservoir drawdown for flood control and hydropower
production. The higher winter inflows associated with seasonality shifts necessitate the
continuation of present flood control policies despite the decreased ability of the system
to replenish current evacuations in the spring. The lower summer inflows exacerbate the
problems related to reduced refill by increasing the drafts for instream flow targets. The
lower resulting storage at the end of summer diminishes the ability of the system to meet
present firm power production (hydropower “safe yield”) during the winter, before major
precipitation cycles begin.

The impacts of PCM’s climate change projections can be summarized as follows:

1. Firm power is reduced by the system’s inability to meet current hydropower
demands without compromising other operating goals, as evidenced by an
increase in autumn shortfall frequency.

2. Hydropower revenues are relatively unaffected (occasionally increasing) under
the projected climate changes.

3. Instream flow targets designed to assist in the outward migration of salmonids are
negatively impacted, especially when seasonality shifts in the annual hydrograph
are the greatest. Reducing instream shortfalls requires the depletion of reserves
for hydropower, thus the insensitivity of hydropower revenues is true only if you
accept high losses to fish targets and can easily recover reduced hydropower
capacity elsewhere.

4. Although the monthly time step used in this study makes it impossible to
explicitly state the projected changes in flood risk, the opportunity costs
associated with maintaining the same general flood control policy seem

significantly higher than the associated benefits. This study suggests that the
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reconsideration of flood control needs and values and under seasonality shifted

hydrographs could create a major economic benefit through hydropower.

The alternative operating policies investigated in this thesis revealed that:

1.

For achieving spring refill goals, the use of earlier reservoir refill schedules was
much more beneficial than a reduction in flood control evacuations. Early refill is
particularly good because it ‘adapts’ to the shift in the hydrograph caused by a
warmer climate. Lower flood evacuations cahnot provide the same volume as

early refill without compromising flood control.

" Shifts in firm energy demand from the current peak in the winter to the summer

were unsuccessful in providing summer flow targets with greater volumes and had
little other impact on the system. This results because flood evacuations, which
presently align with hydropower demands, continue to require the same quantity of

winter withdrawals despite the change in dernandf Further, the demand for firm

‘power controls the timing and volume of releases only under the lowest of

hydrologic conditions. _

The increase of reservoir storage allocations for instream flow targets was the most
successful alternative for reducing shortfall quantities to Endangered Species Act
(ESA) instream flow requirements for salmonids. The reallocation of storage,
however, came at a cost to the reliability of firm power, which requires storages to
be maintained through the summer for generation during the late fall and early
winter.

The combination of all the alternatives in this thesis was successful in attaining
comparable levels of instream flow volumes for summer ESA targets. However,
the resulting system was increasingly unable to sustain the present level of
commitment to firm energy production. Briefly, this indicates that the climate
changes projected by PCM exacerbate the level of competition for reservoir
storages in the summer. This competition, in the real world, is couched between

the immediate economic interest of hydropower providers and consumers and the
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political mandates for instream habitat, which have economic consequences that

are less immediate and more difficult to quantify.

6.2: Recommendations

The results reported here could be extended by several refinements. These include:
1) the use of shorter (e.g. one-week) reservoir model time-step (note that the monthly
time-step is fixed in the current version of ColSim), 2) increased resolution of the Snake
River Plain reservoirs, and associated agricultural withdrawals and return flows, and 3)
the development of fish survival metrics in place of deficit and reliability statistics for the

assessment of environmental flow targets. Each of these is discussed briefly below.

6.2.1 The implementation of a one-week time-step

A one-week time-step would allow exploration of several important aspects of
reservoir operations that were not possible with the present version of ColSim, including
1) a better assessment of flood control at the Portland-Vancouver levees, 2) the
observation of climate change effects on the weekly timescale of flood control, and 3) the

inclusion of travel time for reservoir releases.

6.2.2 Implications for the Snake River

Better resolution on Snake River Plain agriculture would be provided by a one-week
time-step. An explicit representation of reservoirs and agricultural districts, which are
currently represented in aggregate, would allow for the evaluation of tradeoffs between
agriculture and the Lower Granite Dam flow target. Further, this would allow for the
assessment of market-based strategies to reallocate water between hydropower,
agriculture, and environmental flows, and their potential benefit under projected future

climate and hydrology.
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6.2.3 Development of fish survival metrics
This study relied heavily upon the assumption that present deficits at the McNary
target would continue to provide present levels of endangered species protection in the
lower Columbia River. This is somewhat misleading, as the goal of the flow targets are
the preservation of sea-bound salmon smolt. The development of better metrics from the
biological community, which relate factors of concern in maintaining viable salmon
populations as a function of recommended flow target performances, would allow a more

useful assessment of hydrologic changes and reservoir operations on fish populations.
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Glossary

Selected Acronyms:
BAU - business as usual

BiOP - Biological Opinion Paper

BPA - Bonneville Power Administration

COE -U.S. Army Corps of Engineers

CRB - Columbia River Basin

DOE - U.S. Department of Energy

ESA - Endangered Species Act

GCM - general circulation model

GHG - greenhouse gasses

- HC2 - UK Hadley Center (GCM research center)

IDWR - Idaho Department of Water Resources

IPCC - Intergovernmental Panel on Climate Change

MPI - Max Planck Institute (GCM research center)

NCAR - National Center for Atmospheric Research
NMES - National Marine Fisheries Service

PCM - the Department of Energy’s Parallel Climate Model
SRD - Storage Reservation Diagram (a.k.a. Flood Rule Curves)
SRES - the IPCC Special Report on Emissions Scenarios
SRP - Snaké River Plain

USBR - U.S. Bureau of Reclamation
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Required Storage Space (MAF)

FULL POOL EL. 2459.6

/

\\ \~3.0 MA
‘\ 4.0 MAF
\
\ \
- \
\\ ——s.0MAF
\ T —]
\\ \\‘-6 0 MAF
— \ )
T— TToOMAR——
\
‘ _\ \ :
\\\ .0 MAP—]
\ \\
i \\ \\~9.0 MAF =i
MINIMUM POOL EL. 2287.0 \ 10.0 MAF ==
|

1-May 8-May 15-May 22-May 29-May 5-Jun 12-Jun  19-Jun 26-Jun

NOTE:
1. PARAMETERS ARE PORECASTS OF INFLOW TO
LIBBY PROJECT FROM DATE THROUGH AUGUST.

2. RESERVOIR STORAGE SPACE MUST EQUAL OR
EXCEED VALUES AS SHOWN BY PARAMETER
EXCEPT IF (1) STORING IS REQUIRED FOR FLOOD
PROTECTION FOR KOOTENAI BASIN, OR (2) STORING
18 REQUIRED IN ACCORDANCE WITH REFILL CRITERIA.

CHART 12
LIBBY PROJECT
LOCAL FLOOD CONTROL
STORAGE RESERVATION DIAGRAM
FLOOD CONTROL ON KOOTENAI RIVER

FLOOD CONTROL OPERATING PLAN
COLUMBIA RIVER TREATY
SEPTEMBER 1972
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Procedure for Determining Flood Control Draft at Brownlee Reservoir,

November 1998
Tabular Format
Yolume Forccast (MAF)
) : TDA <75
Space Required (KAF)|] Bmng3 Bmn=4 Brn=35 Bm>6
28 Feb 0 200 300 400
31 Mar 0 100 200 350
15 Apr 0 50 150 250
30 Apr 0 0 50 150
_ TDA = 85
Space Required (KAF)|] Brn<3 Bm=4 Bm=35 Bm > 6
28 Feb 150 300 350 400
31 Mar 100 300 400 450
15 Apr 50 250 400 500
30 Apr 0 250 400 500
TDA =95
Space Required (KAF)| Bmn<3 Bm=4 Bm=35 Bm>6
28 Feb 200 300 350 400
31 Mar 150 300 400 500
15 Apr 100 300 425 550
30 Apr 50 300 450 600
. TDA = 105
Space Required (KAF)] Brn<3 Bm=4 Bm=35 Bm > 6
28 Feb 300 - 400 400 400
31 Mar 200 425 475 500
15 Apr 150 450 525 600
30 Apr 100 450 550 700
TDA > 115
Space Required (KAF)] Bm<3 Bmm=4 Brm=3$ Brn > 6
28 Feb 300 400 500 500
31 Mar 250 450 600 750
15 Apr 200 500 650 850
30 Apr 150 550 750 980
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Notes. The procedure for determining flood control draft at Brownlee is applicable from January
31 — April 30 to facilitate regulation of the spring flood season on the lower Snake and lower
Columbia Rivers. Forecasts from both The Dalles and Brownlee are used to specify draft
volumes at designated time periods throughout the spring runoff season. Interpolation may be
necessary at both The Dalles and Brownlee with respect to their forecasts. If a forecast at The
Dalles is less than 75 MAF, equal to 85, 95 or 105 MAF, or greater than 115 MAF, then
interpolation is necessary only at Brownlee. If Brownlee’s forecast is less than 3 MAF, equal to
4 or 5 MAF, or greater than 6 MAF, then interpolation is necessary only at The Dalles. If the
forecast does not lie at either of the volumes specified above, then interpolation is necessary at
both projects. The following is an example of the interpolation process when necessary at both
projects:

1. Determine the 4 lines of interpolation from the forecasts of The Dalles and Brownlee
at a specified date. For example, a 30 April forecast of 88 MAF at The Dalles and 4.2
MAF at Brownlee would produce the 4 following interpolation lines:

a. TDA=85, BRN=4, FC=250 c. TDA=95, BRN=4, FC=300
b. TDA=85, BRN=5, FC=400 d. TDA=95, BRN=5, FC=450

"2. Interpolate between the two different The Dalles runoff volumes for the same
Brownlee runoff volume. For example, interpolate between TDA=85, BRN=4 and
TDA=95, BRN=4:

(88-85/95-85)*(300-250)+250=265kaf
3. Interpolate between the same two runoff volume values at The Dalles in step 2, but
use the higher Brownlee runoff volume than in step 2. For example, interpolate
between TDA=85, BRN=5 and TDA=95, BRN=5:
(88-85)/(95-85)*(450-400)+400=415kaf

4. Interpolate between the values obtained from step 2 and step 3 to determine the space
required at Brownlee. For example:

(4.2-4.0)/(5.0-4.0)*(415-265)+265=295kaf
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